

margaux.lognoul@ulg.ac.be

Background

- $> N_2O$ is produced by soil nitrifying and denitrifying microorganisms. In agricultural soils, the upper layer constitutes the main source of N_2O emission.
 - ⇒ Oxygenation conditions in pores (WFPS) and soil temperature affect the activity of N_2O producing microorganisms. Determining variables also include soil properties like N and C availability, and soil pH.
- \succ Farming practices such as tillage can influence these soil properties and consequently affect GHG emissions.
 - \Rightarrow However, there is no consensus concerning the effect of reduced and conventional tillage on GHG emissions by agricultural soils in temperate regions.

Material & Methods

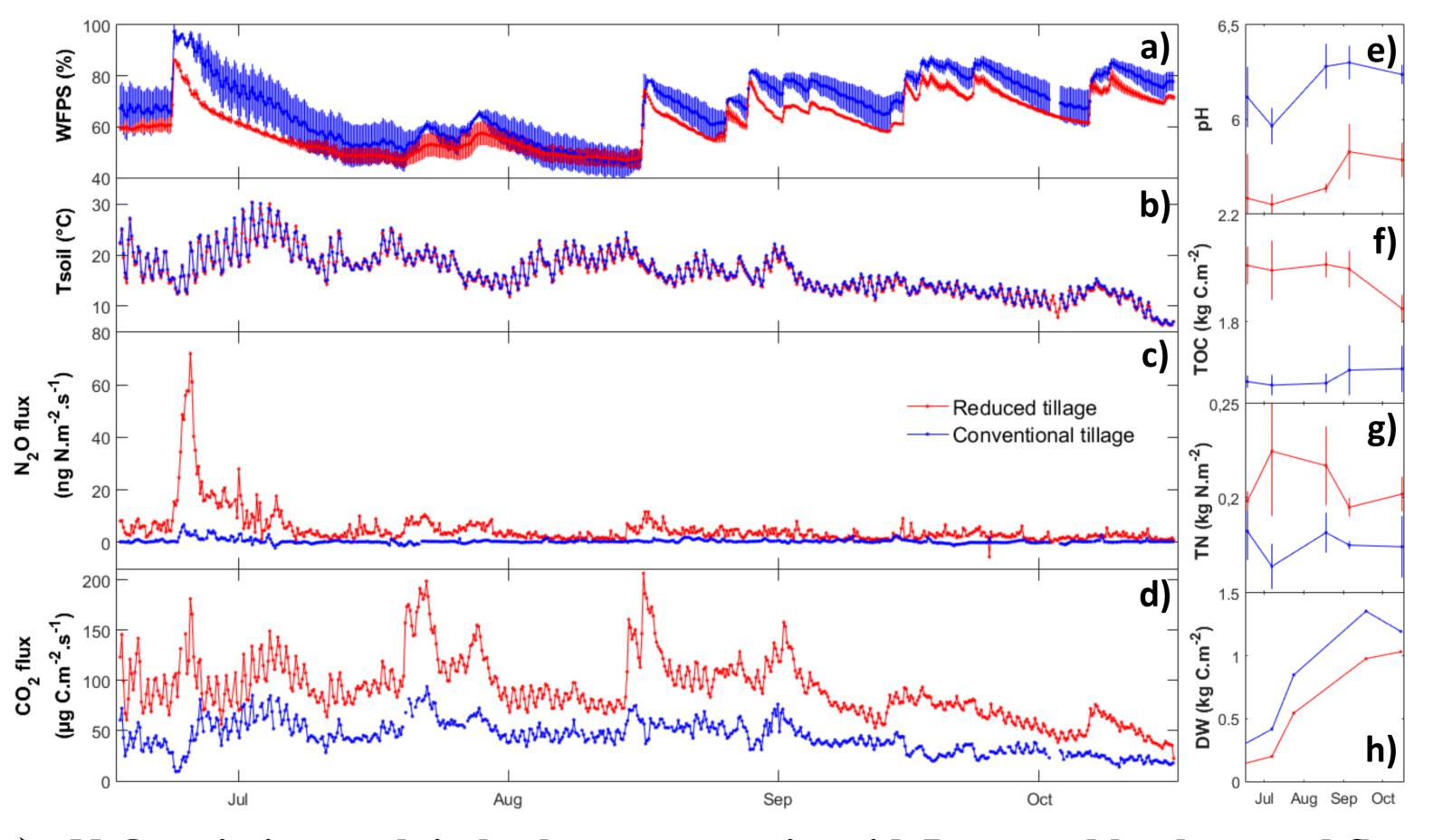
Fig. 1:

dynamic Automated chambers: PVC closed collars + motorized lids + air circulation to gas analyzers (Gascard® NG OEM CO_2 analyzer and Thermo Scientific[™] 46i N_2O analyzer:). 8 chambers per treatment used were to continuously measure CO_2 and N_2O fluxes at a 4.5-hour resolution.

- > Experimental site: maize crop located in Gembloux, Belgium (silt loam under oceanic temperate climate).
- > Treatments compared: <u>reduced tillage</u> (crop residues incorporation at 10-cm depth) and <u>conventional tillage</u> (crop residues incorporation at 10-cm depth + winter ploughing at 25cm depth) since 2008.
- \succ CO₂ and N₂O flux measurements: homemade automated dynamic closed chambers (Fig. 1).

Impact of tillage on CO₂ and N₂O efflux in an agricultural crop

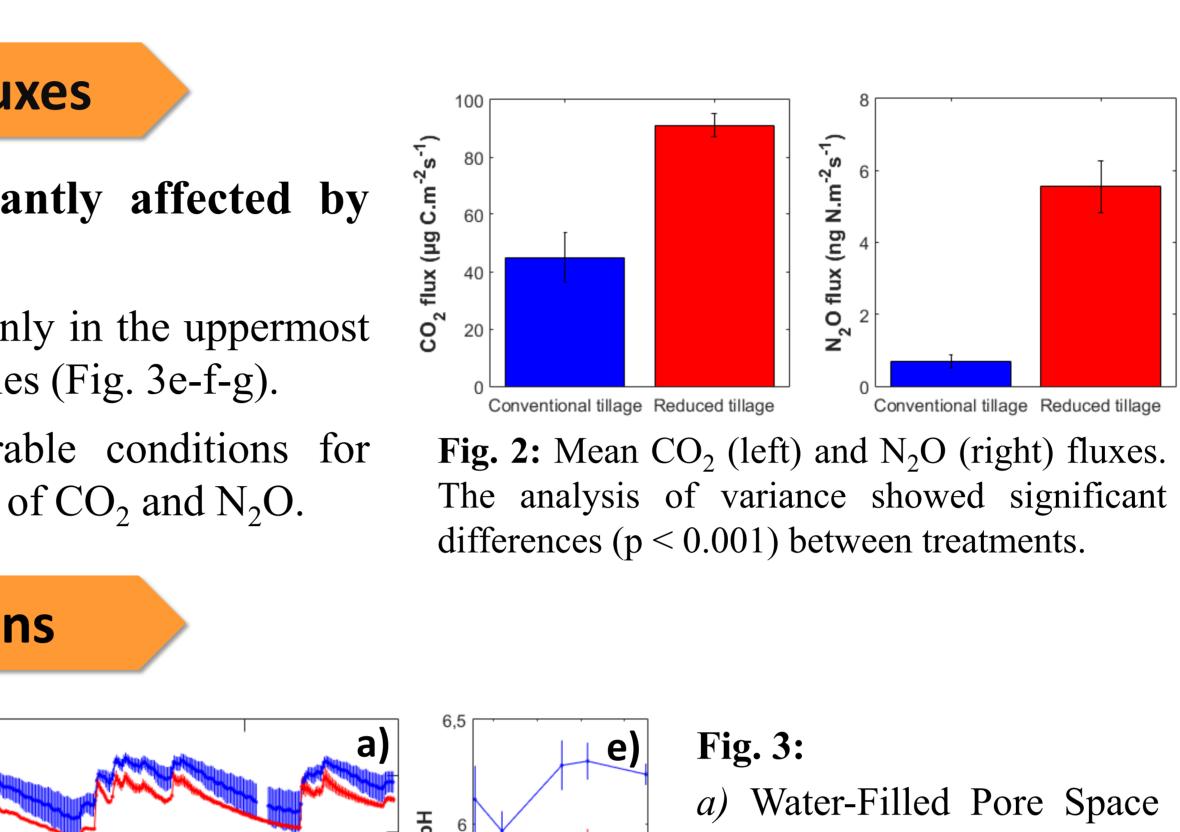
Margaux Lognoul¹, Nicolas Theodorakopoulos², Marie-Pierre Hiel², Bernard Heinesch¹, Bernard Bodson² and Marc Aubinet¹. University of Liège – Gembloux Agro-BioTech, 8 Avenue de la Faculté, 5030 Gembloux, Belgium – ¹TERRA, Ecosystem Atmosphere Exchanges and ²AgroBioChem Dept.


Results

/laize harvest	
	→
October	

Impact of tillage on CO₂ and N₂O fluxes

- $> CO_2$ and N₂O emissions were significantly affected by tillage treatments (Fig. 2).
 - ⇒ Reduced tillage distributes crop residues only in the uppermost layer, significantly influencing soil properties (Fig. 3e-f-g).
 - \Rightarrow We assume that it created more favorable conditions for microorganisms growth and for production of CO_2 and N_2O .


Temporal variability of N₂O emissions

between microorganisms and growing maize (Fig. 3h).

Drivers of N₂O background fluxes

- > In reduced tillage, soil temperature explained ~10% of N_2O background flux variability (Fig. 4).
 - \Rightarrow Increased soil temperature stimulates of microbial activity (agreement of N₂O and CO₂ fluxes, Fig 3c-d). WFPS added in the linear regression explained $\sim 1\%$ of the variability.
- \succ In conventional tillage, no significant link between N₂O background fluxes and soil temperature nor WFPS was found.
- \succ No clear pattern (e.g. daily cycle) in N₂O background flux was identified.

(WFPS) at 10-cm depth. b) Soil temperature (Tsoil) at 10-cm depth. c) Nitrous oxide fluxes. d) Carbon dioxide fluxes. Time series from a to d are given at a 4.5h resolution.

e) Soil pH (0-10cm). *f*) Soil total organic carbon (TOC). g) Soil total nitrogen (TN). Soil properties (e to g)significantly differ between treatments except for TN in the first sample. h) Maize dry weight (DW).

> N₂O emission peak in both treatments in mid-June, and background fluxes afterwards (Fig. 3c)

 \Rightarrow N₂O production was triggered by an increase of WFPS (Fig. 3a) following heavy precipitations, leading to an emission peak less than 24h after the rainfall in both treatments.

 \Rightarrow Later on, the absence of important peak after rainfall could be due to an increased competition for soil N

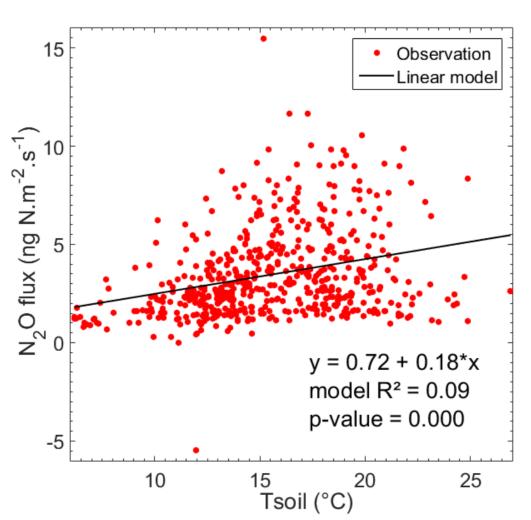


Fig. 4: Regression analysis of N_2O background flux with soil temperature in reduced tillage.

Conclusions

Using automated dynamic closed chambers, we measured CO_2 and N_2O emissions in a maize crop during 4 months and compared fluxes in parcels under conventional tillage and reduced tillage.

- Reduced limiting tillage, bV incorporation of crop residues to the uppermost soil layer, created more favorable conditions for CO₂ and N₂O emissions.
- 2 N₂O emission peaks triggered by an increase of WFPS can happen long after fertilization (2 months), highlighting the need for continuous measurements.
 - N₂O background fluxes in reduced tillage showed to be slightly influenced by soil temperature, however no daily pattern identified. Need is for more was measurements with high temporal resolution to identify background flux dynamics.

The use of our homemade **automated** system of closed chambers was well suited for this kind of experiment.

Acknowledgments

FÉDÉRATION

WALLONIE-BRUXELLES

Ø

This research is funded by the Federation Wallonia-Brussels.

Thanks to the research platform "Agriculture Is Life" (TERRA Research **Centre, University of Liège**)

Gembloux Agro-Bio Tech Université de Liège