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Abstract. In this paper, we recall basic results we have obtained about
generalized Hölder spaces and present a wavelet characterization that
holds under more general hypothesis than previously stated. This the-
oretical tool gives rise to a method for estimating the global Hölder
exponent which seems to be more precise than other wavelet-based ap-
proaches. This work should prove helpful for estimating long range cor-
relations.
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1 Introduction

A continuous function f ∈ L∞(Rd) belongs to the uniform Hölder space Λα(Rd) =
Λα with α > 0 if there exists a constant C such that for each x ∈ Rd, there
exists a polynomial Px of degree at most α for which

|f(x+ h)− Px(h)| ≤ C|h|α. (1)

Since these spaces are embedded, one can define the Hölder exponent as follows,

Hf = sup{α : f ∈ Λα}.

The Hölder exponent of a function is a notion of global regularity: the larger the
Hölder exponent, the more regular the corresponding function. In particular, if
f is n times continuously differentiable then f belongs to Λα for any α ≤ n. For
example, a sample path of a Brownian motion W belongs to Λ1/2 almost surely
and HW = 1/2 almost surely. More generally, the sample path of a fractional
Brownian motion of Hurst index H (H ∈ (0, 1)) belongs to ΛH almost surely and
the associated Hölder exponent is equal to H almost surely (a Brownian motion
is a fractional Brownian motion with Hurst index H = 1/2) [11]. Figure 1 clearly
illustrates the fact that the regularity increases with the Hölder exponent.

Among methods for estimating the Hölder exponent, the wavelet-based ap-
proach [9] is both fast and relatively efficient. It thus allows to test if whether or
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Fig. 1. A fractional Brownian motion with Hurst index H = 0.3 (top), a Brownian
motion, i.e. a fractional Brownian motion with Hurst index H = 0.5 (middle) and a
fractional Brownian motion with Hurst index H = 0.7 (bottom). One clearly sees that
the regularity of the walk increases with the Hurst index.
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not a fractional Brownian motion displays long range correlations (i.e. is associ-
ated to a Hurst exponent H > 1/2). However, such a method for estimating the
Hölder exponent cannot allow to make the distinction between say a Brownian
motion and a process displaying the same Hölder exponent. Yet, the Brownian
motion W exhibits a very specific behavior, since one has

|W (t+ h)−W (t)| ≤ C
√
|h| log | log |h||, (2)

almost surely, for a constant C >
√

2 [5].
The purpose of this paper is to provide a method that could help to make the

distinction between a process satisfying inequality (2) and a process belonging
to Λ1/2 for which inequality (2) is not satisfied. The basic idea is to generalize
the spaces Λα by replacing the the expression |h|α appearing in the right-hand
side of (1) with something more general, covering the usual case. Such spaces are
both inspired by generalized Besov spaces (see e.g. [10]) and moduli of continuity
for Hölder spaces [4].

This paper is organized as follows: we first review the notion of generalized
Hölder space based on admissible sequences, as introduced in [6, 7]. Next, we give
a wavelet characterization of these spaces. Finally, we propose an application
for better estimating the Hölder exponent of a Brownian motion, which should
help to make the distinction between a Brownian motion and another process
associated to the same Hölder exponent. This theorem as well as the application
are new and generalize previous results (see [9, 7]).

Throughout the paper, B denotes the open unit ball and we use the letter C
for generic positive constant whose value may be different at each occurrence.

2 Definitions

All the definitions and results presented in this section are taken from [6, 7]; the
reader is referred to these articles for further details.

2.1 Admissible Sequences

The notion of generalized Hölder space we want to introduce is based on the
following definition.

Definition 1. A sequence σ = (σj)j∈N of real positive numbers is called ad-
missible if there exists a positive constant C such that

C−1σj ≤ σj+1 ≤ Cσj ,

for any j ∈ N.

If σ is such a sequence, we set

Θj = inf
k∈N

σj+k
σk

and Θj = sup
k∈N

σj+k
σk
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and define the lower and upper Boyd indices as follows,

s(σ) = lim
j

log2Θj
j

and s(σ) = lim
j

log2Θj
j

.

Since (logΘj)j∈N is a subadditive sequence, such limits always exist. If σ is an
admissible sequence, let ε > 0; there exists a positive constant C such that

C−12j(s(σ)−ε) ≤ Θj ≤
σj+k
σk
≤ Θj ≤ C2j(s(σ)+ε),

for any j, k ∈ N.
The following result allows to generate admissible sequences from existing

admissible sequences:

Proposition 1. If τ and υ are two admissible sequences and α is a real number,
then

– The sequence σ = (2−jα)j∈N is an admissible sequence with s(σ) = s(σ) =
−α.

– Let ϕ : [0, 1]→ (0,∞) be a weakly varying function, i.e. a function satisfying

lim
x→0

ϕ(rx)

ϕ(x)
= 1,

for any r > 0. The sequence σ = (2−αjϕ(2j))j∈N is an admissible sequence
such that s(σ) = s(σ) = −α.

– The sequences τ + υ and τυ are admissible sequences (with s(τυ) ≥ s(τ) +
s(υ) and s(τυ) ≤ s(τ) + s(υ))

– If α > 0, ατ is an admissible sequence (with s(ατ) = s(τ) and s(ατ) = s(τ)).
– If α > 0, τα is an admissible sequence such that s(τα) = αs(τ) and s(τα) =
αs(τ).

– If α < 0, τα is an admissible sequence such that s(τα) = αs(τ) and s(τα) =
αs(τ).

For example, ϕ = | log | is a weakly varying function.
The following result gives informations about the convergence of the series

associated to an admissible sequence.

Proposition 2. Let σ be an admissible sequence.

– If s(σ−1) > 0, there exists a positive constant C such that for any J ∈ N,∑
j≥J

σj ≤ CσJ .

– If s(σ−1) < n with n ∈ N, there exists a positive constant C such that for
any J ∈ N,

J∑
j=1

2jnσj ≤ C2JnσJ .
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2.2 Generalized Hölder spaces

We can now introduce a definition of generalized Hölder space.
As usual, [α] will denote the greatest integer lower than α,

[α] = sup{p ∈ Z : p ≤ α}

and ∆n
hf will stand for the finite difference of order n: given a function f defined

on Rd and x, h ∈ Rd, ∆1
hf(x) = f(x+ h)− f(x) and

∆n+1
h f(x) = ∆1

h∆
n
hf(x),

for any n ∈ N.

Definition 2. Let α > 0 and σ be an admissible sequence; a function f ∈
L∞(Rd) belongs to the space Λσ,α(Rd) = Λσ,α if there exists C > 0 such that

sup
|h|≤2−j

‖∆[α]+1
h f‖∞ ≤ Cσj ,

for any j ∈ N.

One sets Λσ = Λσ,s(σ
−1). The application

|f |Λσ,α = sup
j

(σ−1j sup
|h|≤2−j

‖∆[α]+1
h f‖L∞)

defines a semi-norm on Λσ,α and therefore ‖f‖Λσ,α = ‖f‖L∞ + |f |Λσ,α is a norm
on this space. We have the following result.

Theorem 3. Let α > 0 and σ be an admissible sequence; the space Λσ,α

equipped with the norm ‖ · ‖Λσ,α is a Banach space.

Many equivalent definitions of theses spaces can be given. In particular, they
can be written using polynomials. Let us denote the set of polynomials of degree
at most n by Pn.

Theorem 4. Let σ be an admissible sequence, α > 0 and f ∈ L∞(Rd); f
belongs to Λσ,α if and only if there exists a constant C > 0 such that

inf
P∈P[α]

‖f − P‖L∞(2−jB+x0) ≤ Cσj , (3)

for any x0 ∈ Rd and any j ∈ N.

For example a sample path of a Brownian motion belongs to Λσ with

σ = (2−j/2
√

log j)j (4)

almost surely.
One also can show that these spaces are related to the regularity of their

elements. For example, we have the following result:
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Theorem 5. Let σ be an admissible sequence and N,M be two positive integers
such that

N < s(σ−1) ≤ s(σ−1) < M.

Any element of Λσ is equal almost everywhere to a function f ∈ CN (Rd) satis-
fying Dβf ∈ L∞(Rd) for any multi-index β such that |β| ≤ N and

sup
|h|≤2−j

‖∆M−|β|
h Dβf‖∞ ≤ C2j|β|σj , (5)

for any j ∈ N and |β| ≤ N . Conversely, if f ∈ L∞(Rd) ∩ CN (Rd) satisfies
inequality (5) for |β| = N , then f ∈ Λσ.

3 Wavelet characterization

3.1 Definitions

Under some general assumptions (see e.g. [9, 2]), there exists a function ϕ and
2d − 1 functions (ψ(i))1≤i<2d called wavelets such that

{ϕ(x− k)}k∈Zd ∪ {ψ(i)(2jx− k) : 1 ≤ i < 2d, k ∈ Zd, j ∈ N0}

form an orthogonal basis of L2(Rd). Any function f ∈ L2(Rd) can be decom-
posed as follows,

f(x) =
∑
k∈Zd

Ckϕ(x− k) +

∞∑
j=0

∑
k∈Zd

∑
1≤i<2d

c
(i)
j,kψ

(i)(2jx− k),

where

c
(i)
j,k = 2dj

∫
Rd

f(x)ψ(i)(2jx− k) dx

and

Ck =

∫
Rd

f(x)ϕ(x− k) dx.

The above formulas are still valid in more general settings; they have to be
interpreted as a duality product between regular functions (the wavelets) and
distributions [9, 3]. In what follows, we will suppose that the wavelets are the
Daubechies wavelets [2] (which are compactly supported and can be chosen
arbitrarily regular, let us say r-regular with r > s(σ−1)).

3.2 The characterization

We aim at showing the following result.
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Theorem 6. Let σ be an admissible such that s(σ−1) > 0. If f belongs to Λσ,
there exists C > 0 such that

|Ck| ≤ C and |c(i)j,k| ≤ Cσj , (6)

for any j ∈ N, any k ∈ Zd and any i ∈ {1, . . . , 2d − 1}.
Conversely, if f ∈ L∞loc(Rd) and (6) holds, then f ∈ Λσ.

Other hypothesis are given in [7], but the admissible sequence is requested to be
strong.

Proof. Let f ∈ Λσ and let us prove that (6) holds. Let M ∈ N and j0 ∈ N be
such that M > s(σ−1) and suppψ(i) ⊂ 2j0B for any i. We have

|Ck| = |
∫
f(x)ϕ(x− k) dx| ≤ C‖f‖L∞ .

Using Theorem 4, for k ∈ Zd and j ≥ j0 one can find a polynomial P of degree
less or equal to M − 1 such that

‖f(·)− P (· − k/2j)‖L∞(B′) ≤ Cσj−j0 ,

where B′ = k2−j + 2−(j−j0)B. One gets

|c(i)j,k| = 2jd|
∫
f(x)ψ(i)(2jx− k) dx|

= 2jd|
∫
B′

(
f(x)− P (x− k/2j)

)
ψ(i)(2jx− k) dx|

≤ Cσj sup
i∈{1,...,2d−1}

‖ψ(i)‖L1(Rd).

Let us now suppose that (6) holds. We need to show that the hypothesis of
Proposition 5 are satisfied. Let N,M ∈ N0 be such that

N < s(σ−1) ≤ s(σ−1) < M ≤ r

and let us define

f−1(x) =
∑
k∈Zd

Ckϕ(x− k) and fj(x) =

2d−1∑
i=1

∑
k∈Zd

c
(i)
j,kψ

(i)(2jx− k),

for any j ∈ N0. One easily checks that fj converges uniformly on every compact
set, so that fj has the same regularity as ψ(i). For every j, we have |fj | ≤ Cσj
so that g =

∑∞
j=−1 fj uniformly converges to a function belonging to L∞(Rd).

One thus gets f = g. Using the properties of ϕ and ψ(i), one gets

|Dβfj | ≤ C2|β|jσj ,
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for any multi-index β such that |β| ≤M . Consequently, g is differentiable up to
order N , which shows that we have f ∈ CN (Rd) and |Dβf | ≤ C for any β such
that |β| ≤ N . Let α be a multi-index such that |α| = N and let h ∈ Rd and
j0 ∈ N be such that |h| < 2−j0 . We have

‖∆M−N
h Dαf‖L∞

≤
∑
j≤j0

‖∆M−N
h Dαfj‖L∞ +

∑
j>j0

2M−N‖Dαfj‖L∞

≤ C
∑
j≤j0

|h|M−N sup
|β|=M−N

‖Dα+βfj‖L∞ + C
∑
j>j0

2Njσj

≤ C|h|M−N2Mj0σj0 + C2N(j0+1)σj0+1

≤ C2Nj0σj0 ,

hence the conclusion.

3.3 Usefulness in the Estimation of the Hölder Exponent

The usual version of Theorem 6 theoretically allows to estimate the uniform
Hölder regularity of a function f by looking at the behavior of the wavelet
coefficients versus the scales j. For the sake of simplicity, let us suppose that
f belongs to L2([0, 1]) (this is by no mean a restriction, see e.g. [1]) and let Ψj
denotes the set of wavelet coefficients at scale j. Let us suppose that f ∈ ΛH ; at
each scale j, one computes the wavelet power spectrum of f (see e.g. [12]):

Sf (j) =

√
1

#Ψj

∑
i,k

|c(i)j,k|2.

Following the standard wavelet characterization [9], one should have

Sf (j) ∼ Cω(H)(2−j)

with ω(H)(r) = rH . This implies

log2 Sf (j) ∼ −Hj + C,

so that a log-log plot can be used to estimate the slope H. Another method
consists in fitting a parametric curve Cω(H)(2−j) to the function Sf . In this
case, one can also apply Theorem 6 and modify ω(H) to obtain a better fit. For
the Brownian motion, having (2) or (4) in mind, one should choose

ω
(H)
W (r) = (r log | log r|)H (7)

in order to get a sharper estimation and help to discern between two models.
As an illustration, the wavelet power spectrum of a Brownian motion W (215

points) is represented in Figure 2. When trying to fit the curve C2−jh to SW
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using the Levenberg-Marquardt algorithm [8], one gets h0 = 0.48 with (asymp-
totic) standard deviation 5 10−2 (see Figure 2). The same computation with the

curve Cω
(H)
W (2−j) gives h0 = 0.499 with (asymptotic) standard deviation 3 10−2,

which is closer to the expected value 1/2. Of course, additional work has to be
done in order to suitably validate this method.
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Fig. 2. The function SW (thick black), with the curves j 7→ C2−jh (grey) and j 7→
Cω

(H)
W (2−j) (dashed lines) defined by equality (7). Both curves are obtained with the

Levenberg-Marquardt algorithm.

References
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