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of plasmon waves on a nanoparticle chain

N. A. Pike1,2 and D. Stroud2,a)

1Department of Physics, University of Liege, 4000 Liege, Belgium
2Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

(Received 8 October 2015; accepted 29 February 2016; published online 15 March 2016)

We calculate the dispersion relations of plasmonic waves propagating along a chain of

semiconducting or metallic nanoparticles in the presence of both a static magnetic field B and a liquid

crystalline host. The dispersion relations are obtained using the quasistatic approximation and a

dipole-dipole approximation to treat the interaction between surface plasmons on different nanopar-

ticles. For plasmons propagating along a particle chain in a nematic liquid crystalline host with both B

and the director parallel to the chain, we find a small, but finite, Faraday rotation angle. For B perpen-

dicular to the chain, but director still parallel to the chain, the field couples the longitudinal and one of

the two transverse plasmonic branches. This coupling is shown to split the two branches at the zero

field crossing by an amount proportional to jBj. In a cholesteric liquid crystal host and an applied mag-

netic field parallel to the chain, the dispersion relations for left- and right-moving waves are found to

be different. For some frequencies, the plasmonic wave propagates only in one of the two directions.
VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943647]

I. INTRODUCTION

Ordered arrays of metal particles in dielectric hosts have

many remarkable properties.1–6 For example, they support

propagating modes which are linear superpositions of the so-

called surface or particle plasmons. In dilute suspensions of

such nanoparticles, these surface plasmons give rise to the

characteristic absorption peaks, in the near infrared or visi-

ble, which play an important role in their optical response,

and which have recently been observed in semiconductor

nanoparticles as well as metallic ones.7,8 For ordered chains,

if both the particle dimensions and the interparticle separa-

tion are much smaller than the wavelength of light, one can

readily calculate the dispersion relations for both transverse

(T) and longitudinal (L) waves propagating along the chain,

using the quasistatic approximation, in which the curl of the

electric field is neglected.

In a previous paper, we calculated these dispersion rela-

tions for metallic chains immersed in an anisotropic host,

such as a nematic or cholesteric liquid crystal (NLC or

CLC).5 The liquid crystalline host serves as an anisotropic

dielectric medium whose alignment and dielectric tensor can

be controlled by varying the direction and magnitude of an

external static electric field, or temperature. Thus, we can

tune the dispersion relations of the plasmonic waves by

adjusting these control parameters. The effects of an iso-

tropic host material, such as air or vacuum, can be found, for

example, in Refs. 5 and 9.

It is worth briefly summarizing some of the new effects

generated by the anisotropic host, in comparison to an iso-

tropic host such as air or vacuum. With an isotropic host, there

are three branches of plasmonic waves propagating along the

chain: one longitudinal (L) and two degenerate transverse (T)

branches. For a uniaxially anisotropoic host, such as an NLC,

these three branches still exist, and the two T branches remain

degenerate as long as the symmetry axis of the host dielectric

tensor (i.e., the director of an NLC) is parallel to the chain.

The degeneracy persists because the host does not break the

symmetry between the two T branches. The three branches

are, of course, shifted up or down because the host has a dif-

ferent dielectric tensor than an isotropic host. Furthermore,

the L branch continues to cross the doubly degenerate T

branch at a particular wave vector, just as in the isotropic

case. If, however, the director of the NLC is perpendicular to

the particle chain, the symmetry between the two T branches

is broken, and it is found that they are no longer degenerate.

This is a feature special to the anisotropic host and was

obtained numerically in Ref. 5.

In this article, we consider the additional effects of a

static magnetic field applied either parallel or perpendicular

to a chain of nanoparticles in an anisotropic host. In order to

obtain a larger effect from the magnetic field, we will also

consider doped semiconducting nanoparticles, besides the

metallic particles considered previously. Such nanoparticles

have a much lower electron density than typical metallic

nanoparticles. For example, the electron density in semicon-

ductor nanoparticles, such as the Cu2�xS nanoparticles whose

optical properties have recently been studied,7 can be

adjusted over a broad range from 1017 to 1022 cm�3 or even

lower. The largest effects are obtained with electron den-

sities towards the lower end of this range. We find, for a par-

allel magnetic field orientation, that a linearly polarized T
wave undergoes a Faraday rotation as it propagates along the

chain. For a field of 2 T and a suitably low electron density,

this Faraday rotation can be at least 1� per ten interparticle

spacings. For the case of very small nanoparticles with diam-

eters (denoted 2a) of 3–5 nm,7 and spacing d ¼ 3a, this rota-

tion corresponds to a 1� for every 45–75 nm of chain length.a)Electronic mail: Stroud@physics.osu.edu
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In this case, for the parallel field orientation, the NLC quanti-

tatively modifies the amount of Faraday rotation, but there

would still be rotation without the NLC host.

As mentioned, our calculations are carried out in the qua-

sistatic approximation, which is suitable when both the parti-

cle size and the separation between particles are small

compared to the wavelength of light in the medium. If both

these conditions are satisfied, the relevant quantity for calcu-

lating the plasmon dispersion relation is the ratio a/d between

the particle radius a and center-to-center separation d between

particles. As is shown below, the plasmon waves typically

propagate at frequencies of order 0:4xp, where xp is the

plasma frequency. For particles of typical metallic electron

density, xp is in the near ultraviolet, so the particles should be

spaced of order 20–40 nm or less, in order to satisfy this con-

dition. However, if semiconducting nanoparticles are used,

the spacing (and particle radius) can be much larger. Our cal-

culations are all carried out in terms of the dimensionless

quantity kd, so they are, in principle, valid for a range of parti-

cle sizes and separations, so long as the ratio a/d is fixed. As

far as chain length is concerned, our dispersion relations are

computed assuming an infinitely long chain of particles. Of

course, a realistic chain in a physical system will be a finite

number of perhaps 50–100 particles. The “end effects” associ-

ated with the finite chain length could be calculated, in princi-

ple, though they are not considered in this paper, but the

infinite-chain calculation should provide a good approxima-

tion, and can easily be carried out using Bloch’s theorem.

We also consider the propagation of plasmonic waves

along a nanoparticle chain but with a CLC host. In this case,

if the magnetic field is parallel to the chain and the director

rotates about the chain axis with a finite pitch angle, we

show that the frequencies of left- and right-propagating

waves are, in general, not equal. Because of this difference,

it is possible, in principle, that for certain frequencies, a line-

arly polarized wave can propagate along the chain only in

one of the two possible directions. Indeed, for sufficiently

low electron concentration, we do find one-way propagation

in certain frequency ranges. This realization of one-way

propagation is quite different from other proposals for one-

wave wave-guiding.10–14

The remainder of this article is organized as follows:

First, we use the formalism of Ref. 5 to determine the disper-

sion relations for the L and T waves in the presence of an ani-

sotropic host and a static magnetic field. Next, we give

simple numerical examples and finally we provide a brief

concluding discussion.

II. FORMALISM

We consider a chain of identical metallic or semicon-

ducting nanoparticles, each a sphere of radius a, arranged in

a one-dimensional periodic lattice along the z axis, with lat-

tice spacing d, so that the nth particle is assumed centered at

ð0; 0; ndÞ (�1 < n < þ1). The propagation of plasmonic

waves along such a chain of nanoparticles has already been

considered extensively for the case of isotropic metal par-

ticles embedded in a homogeneous, isotropic medium.9 In

the present work, we calculate, within the quasistatic

approximation, how the plasmon dispersion relations are

modified when the particle chain is immersed in both an ani-

sotropic dielectric, such as an NLC or CLC, and a static

magnetic field. We thus generalize earlier work in which an

anisotropic host is considered without the magnetic field.5,6

In the absence of a magnetic field, the medium inside

the particles is assumed to have a scalar dielectric function.

If there is a magnetic field B parallel to the chain (which we

take to lie along the z axis), the dielectric function of the par-

ticles becomes a tensor, �̂. In the Drude approximation, the

diagonal components are �ðxÞ, while �xy ¼ ��yx ¼ iAðxÞ
and all other components vanish. In this case, the compo-

nents of the dielectric tensor take the form

� xð Þ ¼ 1�
x2

p

x xþ i=sð Þ ! 1�
x2

p

x2
(1)

and

A xð Þ ¼ �
x2

ps

x
xcs

1� ixsð Þ2
!

x2
pxc

x3
; (2)

where xp is the plasma frequency, s is a relaxation time, and

xc is the cyclotron frequency, and the second limit is appli-

cable when xs!1. We will use Gaussian units through-

out. While this approximation may be somewhat crude,

especially for semiconducting nanoparticles, it should be a

reasonable first approximation.

The dielectric function of the liquid crystal host, for ei-

ther the NLC or CLC case, is taken to be that described in

Ref. 5. The dispersion relations for the surface plasmon

waves are determined within the formalism of Ref. 5.

Specifically, we write down a set of self-consistent equations

for the coupled dipole moments; these are given in Ref. 5 as

Eq. (9), and repeated here for reference

pn ¼ �
4pa3

3
t̂
X
n0 6¼n

Ĝ xn � xn0ð Þpn0 : (3)

Here,

t̂ ¼ d�̂ð1̂ � Ĉd�̂Þ�1
(4)

is a “t-matrix” describing the scattering properties of the

nanoparticle spheres in the surrounding material, Ĝ and Ĉ
are a 3� 3 Green’s function and depolarization matrix given

in Ref. 5, 1̂ is the 3� 3 identity matrix, and d�̂ ¼ �̂ � �̂h,

where �̂h is the dielectric tensor of the liquid crystal host.

A. Nematic liquid crystal

We first consider a chain of such particles placed in

an NLC host with Bkẑ and parallel to the liquid crystal direc-

tor n̂. Using the formalism of Ref. 5, combined with Eq. (3),

we obtain two coupled sets of linear equations for the trans-

verse (T) components of the polarization, pnx and pny. The

solutions are found to be left- and right-circularly polarized

transverse waves with frequency x and wave number k6,

where the frequencies and wave numbers are connected by

113103-2 N. A. Pike and D. Stroud J. Appl. Phys. 119, 113103 (2016)
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the dispersion relations in the nearest-neighbor

approximation

1 ¼ � 2

3

a3

d3

�k

�2
?

� xð Þ � 1

� xð Þ þ 2
7

3A xð Þ
� xð Þ þ 2ð Þ2

 !
cos k6dð Þ; (5)

where we use the notation of Ref. 5. These equations are

accurate to first order in AðxÞ. The longitudinal (L or z)

mode is unaffected by the magnetic field. Since the

frequency-dependences of both �ðxÞ and AðxÞ are assumed

known, these equations represent implicit relations between

x and k6 for these T waves.

If Bkx̂ while both n̂ and the chain of particles are paral-

lel to ẑ, then the y and z polarized waves are coupled. The

dispersion relations are obtained as solutions to the coupled

equations

p0y ¼
�2a3

3d3

�k

�2
?

tyyp0y �
2

�?
tyzp0z

� �
cos kdð Þ;

p0z ¼
�2a3

3d3
�
�k

�2
?

tyzp0y �
2

�?
tzzp0z

� �
cos kdð Þ: (6)

These y and z modes are uncoupled from the x modes.

If we solve this pair of equations for p0y and p0z for a

given k, we obtain a nonzero solution only if the determi-

nant of the matrix of coefficients vanishes. For a given real

frequency x, there will, in general, be two solutions for

kðxÞ which decay in the þz direction. These correspond to

two branches of propagating plasmon (or plasmon polari-

ton) waves, with dispersion relations which we may write

as k6ðxÞ. The frequency dependence appears in tyz, tyy, and

tzz, which depend on x [through �ðxÞ and AðxÞ]. However,

unlike the case where the magnetic field is parallel to the

z axis, the waves are elliptically rather than circularly

polarized.

B. Cholesteric liquid crystal

We now consider immersing the chain of semiconduct-

ing nanoparticles in a CLC in the presence of a static mag-

netic field with Bkẑ and the chain. A CLC can be thought of

as an NLC whose director is perpendicular to a rotation axis

(which we take to be ẑ), and which spirals about that axis

with a pitch angle a per interparticle spacing. For a CLC, if

we include only interactions between nearest-neighbor

dipoles, the coupled dipole equation [Eq. (3)] takes the

form

~pn ¼ �
4pa3

3
R̂
�1

z1ð Þt̂Ĝ � ~pnþ1 þ R̂ z1ð Þt̂Ĝ � ~pn�1

h i
; (7)

as is shown in Refs. 5 and 6. Here, ~pn ¼ RnðzÞpn and RnðzÞ
is a 2� 2 rotation matrix for the director n̂ðzÞ. If Bkẑ, the

two T branches are coupled. One can write a 2� 2 matrix

equation for the coupled dipole equations in the rotated x
and y directions. This equation is found to be

~p0 ¼ �
2a3

3d3
M̂ k;xð Þ � ~p0; (8)

where ~p0 is the rotated two-component column vector whose

components are ~px0 and ~py0. The components of the matrix

M̂ðk;xÞ are found to be

Mxx ¼ �1½txx cosðkdÞ cosðadÞ þ itxy sinðkdÞ sinðadÞ�;
Myy ¼ �2½tyy cosðkdÞ cosðadÞ þ itxy sinðkdÞ sinðadÞ�;
Mxy ¼ �2½txy cosðkdÞ cosðadÞ � ityy sinðkdÞ sinðadÞ�;
Myx ¼ �1½itxx sinðkdÞ sinðadÞ � txy cosðkdÞ cosðadÞ�;

(9)

where �1 ¼ �
1=2

?
�

3=2

k
and �2 ¼ 1ffiffiffiffiffiffiffi

�?�k
p . The dispersion relations for

the two T waves are the non-trivial solutions to the secular

equation formed from Eqs. (8) and (9).

The most interesting result emerging from Eqs. (8)

and (9) is that the dispersion relations are non-reciprocal,
i.e., xðkÞ 6¼ xð�kÞ, in general. The magnetic field appears

only in the off-diagonal elements txy and tyx, which are linear

in the field except for very large fields. The terms involving

txy and tyx in Eq. (9) are multiplied by sinðkdÞ and thus

change sign when k changes sign. Thus, the secular equation

determining xðkÞ is not even in k, implying that the disper-

sion relations are non-reciprocal. The non-reciprocal nature

of the dispersion relations disappears at B¼ 0 even though

the off diagonal terms of Mðk;xÞ are still nonzero, because

sinðkdÞ appears only to second order. Also, when the host

dielectric is an NLC, the non-reciprocity vanishes because

the rotation angle a¼ 0 and all terms proportional to sinðkdÞ
vanish, even at finite B.

For a finite B, the difference in magnitude of wave num-

ber between a right-moving or left-moving wave is

DkiðxÞ ¼ jReðki;LÞj � jReðki;RÞj; (10)

where i¼ 1, 2 for the two elliptical polarizations and L or R
denotes the left-moving or right-moving branch. If, for

example, DkðxÞ 6¼ 0, then the left- and right-moving waves

have different magnitudes of wave numbers for a given fre-

quency and are non-reciprocal.

C. Faraday rotation and ellipticity

By solving for kðxÞ using either Eq. (5) or Eq. (6) for

an NLC, or Eq. (8) for a CLC, one finds that the two modes

polarized perpendicular to B and propagating along the

nanoparticle chain have, in general, different wave vectors.

For the NLC, we denote these solutions kþðxÞ and k�ðxÞ,
while for the CLC, we denote them k1ðxÞ and k2ðxÞ.

We first discuss the case of an NLC host and Bkẑ. Then,

the two solutions represent left- and right-circularly polar-

ized waves propagating along the chain. A linearly polarized

mode therefore represents an equal-amplitude mixture of the

two circularly polarized modes. This mixture undergoes a

rotation of the plane of polarization as it propagates down

the chain and is analogous to the usual Faraday effect in a

bulk dielectric. The angle of rotation per unit chain length

may be written as

h xð Þ ¼ 1

2
kþ xð Þ � k� xð Þ½ �: (11)
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In the absence of damping, h is real. If s is finite, the

electrons in each metal or semiconductor particle will experi-

ence damping, leading to an exponential decay of the plas-

monic waves propagating along the chain. This damping

is automatically included in the above formalism and can be

seen most easily if only nearest neighbor coupling is

included. The quantity,

hðxÞ ¼ h1ðxÞ þ ih2ðxÞ; (12)

is the complex angle of rotation per unit length of a linearly

polarized wave propagating along the chain of particles.

Re½hðxÞ� represents the angle of rotation of a linearly polar-

ized wave (per unit length of chain), and Im½hðxÞ� is the cor-

responding Faraday ellipticity, i.e., the amount by which the

initially linearly polarized wave becomes elliptically polar-

ized as it propagates along the chain.

In the case of a CLC host, neither of the two T modes is

circularly polarized in general. Thus, the propagation of a

linearly polarized wave along the chain cannot be simply

interpreted in terms of Faraday rotation.

III. NUMERICAL ILLUSTRATIONS

We now numerically evaluate the dispersion relations

presented in Sec. II assuming the host is the liquid crystal

known as E7. This liquid crystal was described by M€uller

et al.,15 from whom we take the dielectric constants �k and �?.

We first consider the case of an NLC host with both the direc-

tor and an applied magnetic field parallel to the chain axis ẑ.

To illustrate the predictions of our simple expressions,

we take a=d ¼ 1=3, and assume a magnetic field such that the

ratio xc=xp ¼ 0:07 or 0.007 as indicated in the figures. For

a typical plasma frequency of �1013 s�1, the ratio of 0.007

would correspond to a magnetic induction of B � 2T. We

consider both the undamped and damped cases; in the latter,

we choose xps ¼ 100. For propagating waves, we choose sol-

utions for which Im½k6� > 0 so that these waves decay to

zero, as expected, when z!1 when Re k > 0.

The calculated dispersion relations for the two circular

polarizations of plasmonic wave are shown in Fig. 1 with

and without single-particle damping. The splitting between

the two circularly polarized T waves is too small to be seen

on the scale of this plot. The difference can be seen through

its effect on the Faraday rotation angle, which is shown in

Fig. 2. In this, and all subsequent plots, we have calculated

far more points than are shown in the Figure, so that effec-

tively the entire range 0 < kd < p is included.

In Fig. 2, we plot the corresponding quantity hðkÞd, the

rotation angle for a distance equal to one interparticle spac-

ing. When there is no damping, we find that the real part of

hd is very small and that the imaginary part is zero. Both

become larger when damping is included, as we do here by

setting xps ¼ 100. Even in this case, neither Re½hðxÞd� nor

Im½hðxÞd� exceed about 0.005 rad, showing that a linear

incident wave is rotated only slightly over a single particle

spacing (by about 1/4� per interparticle spacing for the cho-

sen parameters). If we assume that the wave intensity has an

exponential decay length of no more than around 20 interpar-

ticle spacings in realistic chains, the likely Faraday rotation

of such a wave will only be 3�–4� over this distance. The

present numerical calculations also suggest that hðkÞd is very

nearly linear in B for a given k, so a larger rotation could be

attained by increasing B; it can also be increased if the elec-

tron density is reduced.

For a chain of Drude particles in an NLC where B? ẑ,

we find, using the same parameters and requirements as the

previous case, that the two non-degenerate waves (one an L
and the other a T wave) become mixed when B 6¼ 0. The dis-

persion relations, again with and without damping, are plot-

ted in Fig. 3. When compared to the previous work in Ref. 5

without the presence of damping, the dispersion relations in

Fig. 3 are modified because of the finite damping and pres-

ence of the magnetic field. Decreasing the electron density

of the metal or semiconductor at fixed B increases the inter-

action of the coupled L and T mode near their crossing point

FIG. 1. Blue symbols (x’s and þ’s): Dispersion relations for left-(x) and

right-(þ) circularly polarized T plasmon waves propagating along a chain of

nanoparticles immersed in a NLC with both the director and a magnetic field

parallel to a chain. The particles are described by a Drude dielectric function

with xps ¼ 100 and xc=xp ¼ 0:07. Red symbols (open squares and trian-

gles): Same as the blue symbols, but assuming no single-particle damping

(xps ¼ 1). In both cases, the splitting between left and right circularly

polarized waves is not visible on the scale of the figure (but the rotation is

visible in Fig. 2). For xp ¼ 5:0� 1012 s�1, the chosen xc=xp corresponds

to B � 2 T.

FIG. 2. Real and imaginary parts of hd, the rotation angle per interparticle

spacing (in radians), as a function of frequency, assuming xc=xp ¼ 0:07.

Blue þ’s (real part) and green x’s (imaginary part of hd): Drude model with

no damping (xps!1). Black triangles (real part) and red circles (imagi-

nary part of hd): Drude model with finite damping (xps ¼ 100). In both

cases, the magnetic field and the director of the NLC are assumed parallel to

the chain axis, as in Fig. 1. The dotted lines merely connect the points.
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kd¼ 0.7, although this is not visible in the figure for the cho-

sen parameters.

We find that the magnetic field appears to “repel” the

two dispersion relations near their crossing point, although

this is again not visible in the figure for a magnetic field of

2 T. For fixed electron density ne, we find that this band gap

between the mixed L and T waves increases monotonically

with increasing magnetic field. Also, for a fixed magnetic

field, the band gap decreases monotonically with increasing

electron density. In the Appendix, we show analytically that

the band gap varies linearly with the magnitude of the mag-

netic field. We have not obtained a simple analytical rela-

tionship between the gap and the electron density for fixed

magnetic field, but we do show numerically in the Appendix

that this gap does increase monotonically with decreasing

electron density.

Finally, we discuss the case of a chain parallel to the z
axis, subjected to a magnetic field along the z axis, and

immersed in a CLC whose twist axis is also parallel to ẑ.

Using the same host dielectric constants given above and a

twist angle of ad ¼ p=6, we show in Fig. 4(a) the resulting

dispersion relations, i.e., x=xp plotted against jkdj, for the

two transverse branches. In particular, we show both trans-

verse branches for a right-moving wave, displayed as black

(þ) symbols, and a left-moving wave, displayed as red (x)

symbols, giving a total of 4 plots shown in Fig. 4(a). The

separation between the two T branches is on the order of

0:05 x=xp for all k.

In Fig. 4(b), we plot the corresponding difference in

wave number between the left- and right-moving waves as

DkiðxÞd. Since DkiðxÞd is nonzero in a wide frequency

range, the wave propagation is indeed non-reciprocal in this

range. One-way wave propagation clearly does occur in part

of this range. Such propagation occurs when, at particular

frequencies, waves can propagate only in one of the two

directions. From Fig. 4(a), we can see that for the upper dis-

persion relation, only the right-hand-moving wave can prop-

agate near kd ¼ p, whereas for the lower one, only the

left-hand-moving wave propagates near kd¼ 0. Thus, there

is a gap in the plot of DkiðxÞd near x=xp ¼ 0:41, within

which there is only one-way wave propagation. In Fig. 4(b),

the boundaries of the frequency band for one-way propaga-

tion are indicated by the two horizontal lines.

IV. DISCUSSION

The present numerical calculations omit several poten-

tially important factors which could alter the numerical

results. The first of these are the effects of particles beyond

the nearest neighbors on the dispersion relations.9 We

believe that these further neighbors will mainly modify the

details of the dispersion relations without changing the quali-

tative features introduced by the magnetic field and the NLC

or CLC host. Another omitted factor is the (possibly large)

influence of the particles in disrupting the director orienta-

tion of the liquid crystalline host,16–20 whether NLC or CLC.

This could be quite important in modifying the dielectric

properties of the host liquid near the particles, and could also

cause the positions of the particles themselves to be dis-

turbed, depending on whether they are somehow held in

place. Even though these effects could be quite substantial,

we believe that the qualitative effects found in the present

calculations, notably the regime of one-way propagation

found for certain frequencies in a CLC host, should still be

present. We hope to investigate these effects in future work.

Finally, it is known that radiative damping,21 not included in

the quasistatic approximation, can have a significant effect

on the dispersion relations at special frequencies. Once

again, however, we believe that the qualitative effects

FIG. 4. (a). Black þ symbols: the two dispersion relations for right-moving

transverse plasmon waves propagating along a chain of Drude nanoparticles

immersed in a CLC host with Bkẑ, plotted as a function of jkdj. Red x’s:

same quantities but for left-moving plasmon waves. We assume that

xc=xp ¼ 0:007; xps ¼ 100, and the twist angle ad ¼ p=6. (b). The absolute

value jDkidj of the difference Dkid ¼ jReðki;LdÞj � jReðki;RdÞj, between the

normalized wave vectors for left-propagating and right-propagating modes of

the two branches, as given by Eq. (10), as functions of frequency. L, R refer to

the left-moving or right-moving waves, and i (i¼ 1,2) labels the two branches

for each direction. Note that a non-zero value of jDkiðxÞdj implies that for a

given frequency the left- and right-traveling waves have different wave vec-

tors. Numerically, we find that jDkiðxÞdj is independent of i. There is a gap

between the two curves in Fig. 4(b). This gap corresponds to a region where

the waves propagate in a single direction only. These one-way modes occur in

the upper branch near jkdj ¼ p, where there is a small region where only the

red branch has solutions, and in the lower branch near jkdj ¼ 0, where only

the black branch has solutions. One-way wave propagation occurs only in the

region between the two horizontal lines in Fig. 4(b).

FIG. 3. Red open squares: dispersion relations for plasmon waves ellipti-

cally polarized in the yz plane and propagating along a chain of nanopar-

ticles described by a Drude dielectric function and assuming no damping.

The chain is assumed immersed in an NLC with director parallel to the chain

(ẑ), Bkx̂ and xc=xp ¼ 0:007. Blue x’s: same as red open squares, but assum-

ing single-particle damping corresponding to xps ¼ 100. For xp ¼
1:0� 1013 s�1, the chosen xc=xp corresponds to about 2 T.
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discussed in this paper should still be present even if radia-

tion damping is included. Thus, we believe that our calcula-

tions do qualitatively describe the combined effects of a

liquid crystalline host and an applied magnetic field on the

surface plasmon dispersion relations.

It should be noted that the magnetic field effects

described in this paper are numerically small, for the param-

eters investigated. The smallness is caused mainly by the

small value of the ratio xc=xp, taken here as 0.07 or 0.007

depending on the electron density used in the calculation. To

increase this ratio, one could either increase xc (by raising

the magnetic field strength) or decrease xp (by reducing the

free carrier density in the particle). For the case of a particle

chain in a CLC host, any change which increases xc=xp will

increase Dk, leading to a broader frequency rage for one-way

wave propagation.

In summary, we have calculated the dispersion relations

for plasmonic waves propagating along a chain of semicon-

ducting or metallic nanoparticles immersed in a liquid crystal

and subjected to an applied magnetic field. For a magnetic

field parallel to the chain and director axis of the NLC, a lin-

early polarized wave is Faraday-rotated by an amount pro-

portional to the magnetic field strength. For a CLC host and

a magnetic field parallel to the chain, the transverse wave

solutions become non-reciprocal (left- and right-traveling

waves having different dispersion relations) and there are

frequency ranges in which waves propagate only in one

direction. Thus, plasmonic wave propagation can be tuned,

either by a liquid crystalline host or a magnetic field, or both.

In the future, it may be possible to detect some of these

effects in experiments, and to use some of the predicted

properties for applications, e.g., in optical circuit design.
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APPENDIX: ANALYSIS OF BAND GAP IN FIG. 3

In this Appendix, we show that the two bands shown in

Fig. 3, which in zero magnetic field cross near kd¼ 0.7, are

“repelled” in a finite magnetic field Bkx̂ resulting in the open-

ing of a band gap which, at fixed electron density ne, is propor-

tional to jBj. We will also shows numerically that this band gap

at fixed jBj is monotonically increasing with decreasing ne.

The dispersion relations for the coupled y and z polar-

ized waves are obtained from the two coupled equations (6).

They have non-trivial solutions when the determinant of the

matrix of coefficients vanishes, i.e.,

1þ 2

3

a3

d3

�k

�2
?

tyy xð Þcos kdð Þ
" #

1� 4

3

a3

d3

1

�?
tzz xð Þcos kdð Þ

� �

� 8

9

a6

d6

�k

�3
?

t2
yz xð Þ cos2 kdð Þ ¼ 0: (A1)

We first consider the case of zero magnetic field. In this

case, the off-diagonal components of the t-matrix, namely,

tyz ¼ �tzy, both vanish. The dispersion relations are then

given by

F1 k;xð Þ � 1þ 2

3

a3

d3

�k

�2
?

tyy xð Þcos kdð Þ ¼ 0 (A2)

and

F2 k;xð Þ � 1� 4

3

a3

d3

1

�?
tzz xð Þcos kdð Þ ¼ 0: (A3)

The two bands will be degenerate when F1ðk;xÞ
¼ F2ðk;xÞ, or equivalently

�k

�2
?

tyy xð Þ þ 1

�?
tzz xð Þ ¼ 0: (A4)

Equation (A4) gives the frequency of the degeneracy,

which we denote x0. The corresponding wave vector k0 of

the degeneracy is determined by either

F1ðk0;x0Þ ¼ 0 (A5)

or

F2ðk0;x0Þ ¼ 0: (A6)

Now, we consider Eq. (A1) with non-zero magnetic field,

i.e., finite tyzðxÞ. For k¼ k0, assuming that the band energies

x are close to their zero-field value x0, we can expand F1 and

F2 in Taylor series as Fiðk0xÞ � ðx� x0ÞF0iðk0;x0Þ for

i¼ 1, 2, where F0iðk0;x0Þ ¼ ½@Fiðk0;xÞ=@xÞ�x¼x0
. Again to

lowest order in B, we can write tyzðxÞ � tyzðx0Þ. Then, the

solutions to Eq. (A1) are given by

F01 k0;x0ð ÞF02 k0;x0ð Þ x� x0ð Þ2 ¼
8

9

a6

d6

�k

�3
?

t2yz x0ð Þ cos2 k0dð Þ

(A7)

or

FIG. 5. Semilog plot of the (dimensionless) matrix element jtyzj as a function

of electron density ne (in cm�3) for a fixed magnetic field of B ¼ 2 T. The

orientations of the magnetic field and chain are the same as in Fig. 3. Since

the gap equals a density-independent constant multiplied by jtxyj, this plot

shows that the gap also is monotonically decreasing with increasing ne at

fixed jBj. In all cases, we assume xps ¼ 100.
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x Bð Þ �x0

¼6

(
8

9

a6

d6

�k

�3
?

t2
yz x0ð Þcos2 k0dð Þ=jF01 k0;x0ð ÞF02ðk0;x0Þj

)1=2

:

(A8)

Here, xðBÞ represents one of the two band energies at k¼ k0.

Since tyzðx0Þ is proportional to B (see below), and since

the other terms in Eq. (A8) do not depend on magnetic field,

Eq. (A8) shows at the splitting between these two band ener-

gies at k¼ k0 is proportional to jBj.
To show that tyzðx0Þ / B, we can calculate tyz (and the

other components of t) from Eqs. (1), (2), and (4). The result,

to lowest order in d�yzðxÞ, is

tyz xð Þ ¼ d�yz xð Þ
1� Cyyd�yy xð Þ
� �

1� Czzd�zz xð Þð Þ
: (A9)

Since d�yzðxÞ / AðxÞ, we see that tyzðxÞ / xc / B.

Hence, the splitting between the two bands at k¼ k0 is pro-

portional to jBj.
In addition to the magnetic field dependence, one can

also numerically determine the dependence of the band gap

on the electron density ne. In Fig. 5, we show the calculated

matrix element jtyzj as a function of ne for jBj ¼ 2 T; it

increases monotonically with decreasing ne over several

orders of magnitude of ne. For the magnitudes of jBj and ne

considered in Fig. 3, this splitting is not visible on the scale

of the Figure, but we have verified numerically that this split-

ting is definitely present for finite magnetic field and finite

electron density.

In the plot of Fig. 5, we assume xps ¼ 100 for all den-

sities. Since xp depends on ne, we are effectively assuming

that s also depends on ne. We have done similar calculations,

however, with s independent of ne, and also with no damping

(s ¼ 1). In all cases, we find the same monotonic decrease

in gap with increasing ne, though quantitatively the behavior

is different.
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