UNE POLEMIQUE ENTRE GOLDBACH ET DANIEL BERNOULLI
PAR EUGÈNE CATALAN

Extrait d'une lettre adressée par M. Eugène-Charles Catalan à B. Boncompagni en date de « Liège, 29 novembre 1884 ».

« Dans le dessein d’avoir l’énoncé exact de ce théorème de Goldbach (ou de Waring): Tout nombre pair est la somme de deux nombres premiers, j’ai emprunté, à l’Académie de Belgique, la Correspondance Mathématique et Physique, etc., publiée par P.-H. Fuss. Je n’ai pas trouvé, dans cet intéressant ouvrage, le théorème de Goldbach; mais, par compensation, j’y ai rencontré des choses curieuses. Il est résulté, de cette lecture, la petite Note ci-jointe. Je vous prie de vouloir bien l’agréer pour le Bulletino, si vous supposez qu’elle soit de nature à intéresser vos lecteurs. Dans le cas contraire, soyez assez bon pour me la renvoyer, à l’occasion. »

Lettre de Goldbach à Daniel Bernoulli, (31 janvier 1729). (**) »

« P. S. Si dans la suite $A \ldots \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \ldots$ etc., dont le terme général est $\frac{1}{x^2 + 2x + 1}$, on efface tous les termes dont les dénominateurs ont, outre la racine quarrée, une ou plusieurs autres racines du 3^{ème}, 4^{ème}, etc. degrés et que l’on ôte une unité à chaque dénominateur des termes qui restent, pour faire $B \ldots \frac{1}{5} + \frac{1}{8} + \frac{1}{14} + \frac{1}{25} + \frac{1}{48} + 0 + 0 + \frac{1}{99} + \ldots$ etc.

la somme de tous les termes B sera $=\frac{1}{6}$ à la somme de tous les termes A. »

Réponse de Bernoulli, (30 janvier 1728) (***):

(*) Saint-Pétersbourg, 1843; 2 volumes, in-8°.
(**) Correspondance Mathématique et Physique: de quelques célèbres géomètres du XVII^{ème} siècle; précédée d’une notice sur les travaux de Léonard Euler, tant imprimés qu’inédits; et publiée sous les auspices de l’Académie impériale des sciences de Saint-Pétersbourg; par P.-H. Fuss, conseiller d’état actuel de S.M. l’Empereur de toutes les Russies, membre et secrétaire perpétuel de l’Académie impériale des sciences de St.-Pétersbourg, docteur en philos., membre de plusieurs académies et sociétés savantes russes et étrangères, Chevalier des ordres impériaux et royaux de St.-Stanislas, de St.-Vladimir et de Ste Anne. Tome II. Avec le portrait de Daniel Bernoulli, gravé sur acier, 4 planches de figures et 5 fac similés St-Pétersbourg, 1843. Tome II, page 283, fig. 20—28.

(***) Correspondance Mathématique et Physique: de quelques célèbres géomètres du XVIII^{ème} siècle, etc. Tome II, etc., pages 248, 249. Ainsi, la réponse aurait été écrite un an avant la missive! De plus, dans la Correspondance, elle précède celle-ci d’environ quarante pages! Comment le savant Editeur n’a-t-il point aperçu cette double inversion?
« P. S. Après avoir fini cette lettre, j’examinois votre théo-
» rème, et j’ai trouvé que vous vous êtes précipité en
» deux endroits, car je crois avoir deviné votre rai-
» sonnement. Vous dites, M., que

> A... \(\frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \text{etc. est égal à} \)

> B... \(\frac{1}{3} + \frac{1}{8} + 0 + \frac{1}{24} + \frac{1}{35} + \frac{1}{48} + 0 + 0 + \frac{1}{99} + \text{etc.} \)

> Pour en faire voir le contraire, prenons la suite B
> toute complète, en faisant cette autre

> C... \(\frac{4}{3} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \frac{1}{35} + \frac{1}{48} + \frac{1}{63} + \frac{1}{80} + \frac{1}{99} + \text{etc.;} \)

> il faudrait maintenant que \(C - A \) fût \(C - B \); or

> le terme général pour \(C - A \) est \(\frac{1}{xx+2x(xx+2x+1)} \)

> Voyons ce que c’est que \(C - B \). On voit que

> \(C - B \) est \(= \) à la somme de toutes ces suites

> D... \(\frac{1}{4} + \frac{1}{16} + \frac{1}{25} + \text{etc.}(\ast) \)

> E... \(\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{48} + \text{etc.} \)

> \(\frac{1}{3} + \frac{1}{15} + \frac{1}{35} + \frac{1}{48} + \text{etc.} \)

> G... \(\frac{5.55}{-1} + \frac{5.55}{-1} + \frac{5.55}{-1} + \text{etc.} \)

> au lieu de ces suites, vous aurez pris ces autres, en

> omettant toujours l’unité dans les dénominateurs:

> d... \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \text{etc.} = \frac{1}{3.4} \)

> e... \(\frac{1}{3} + \frac{1}{3.3} + \frac{1}{3.3.3} + \text{etc.} = \frac{1}{8.9} \)

> f... \(\frac{1}{4} + \frac{1}{4.4} + \frac{1}{4.4.4} + \text{etc.} = \frac{1}{15.15} \)

> g... \(\frac{1}{5.5} + \frac{1}{5.5.5} + \frac{1}{5.5.5} + \text{etc.} = \frac{1}{24.25} \)

> et en ce cas on aurait \(C - A = C - B \) ou \(A = B \) ; mais se-

> lom la construction de votre suite \(B \), on doit omettre les

> suites telles que \(f \), étant déjà comprises sous des précédentes

> telles que \(d \).

> Mais je suis sûr que vous vous serez aperçu avant moi

> du défaut de ce raisonnement, si vous y avez songé depuis,

> et que vous me l’avez marqué fort à la hâte, puisque ce

> n’était qu’en forme de postscriptum. »

Arrêtons-nous, un instant, sur cette singulièrée réfutation.
En premier lieu, d’après Bernoulli lui-même,

\[
C - B = \frac{1}{15} + \frac{1}{63} + \frac{1}{255} + \ldots
\]

\[
+ \frac{1}{80} + \frac{1}{728} + \frac{1}{6560} + \ldots
\]

\[
+ \frac{1}{384} + \frac{1}{15624} + \ldots
\]

\[
+ \ldots \ldots \ldots \ldots \ldots
\]

\[
C - A = \frac{1}{3} + \frac{1}{4} - \frac{1}{8} - \frac{1}{9} - \frac{1}{15} - \frac{1}{16} - \frac{1}{24} - \frac{1}{25} + \ldots
\]

(\ast) Les notations \(\Box 2.2, \Box 2.2.2, \ldots \) employées par Bernoulli, représentent \((2^2)^2, (2^2)^3, \ldots \)
Or, on ne voit pas pourquoi ces deux quantités seraient inégalées (*)

Réplique de Goldbach (26 mai 1729) (**):

« Après ma petite dissertation De terminis serierum, j'ai dessein d'écrire une autre De summis, où je rapporterai quelques obser- vations que j'ai faites sur cette matière et parmi lesquelles se trouvera aussi le théorème dont je vous ai parlé dans mes lettres précédentes. Le voici en attendant tel que je l'ai écrit dans mon livre:

> Summa seriei $A \ldots \frac{1}{(x+1)^m}$ aequalis est summæ seriei $B \ldots \frac{1}{(x+1)^m - 1}$ si in hac ommittantur omnes termini, in quibus $x+1$ habet radicem rationalem cuiuscunque potestatis, et in utroque sid numerus positivus. Posito v. gr. $m = 1$, erit series

$A \ldots \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \text{ etc.} \ (****)$

$= B \ldots \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + 0 + 0 + \text{ etc.}$

posito $m = 2$, erit series

$A \ldots \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \frac{1}{49} + \frac{1}{64} + \frac{1}{81} + \text{ etc.}$

$B \ldots \frac{1}{3} + \frac{1}{8} + 0 + \frac{1}{24} + \frac{1}{35} + \frac{1}{48} + 0 + \text{ etc.}$

>Demonstratio. Si ex serie $A \ldots \frac{1}{2^m} + \frac{1}{3^m} + \frac{1}{4^m} + \frac{1}{5^m} + \text{ etc.}$

à

Le second exemple est, comme vous voyez, la série de mon potscriptum. La somme de cette autre série

$C \ldots \frac{1}{2} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \frac{1}{24} + \text{ etc.}$

(dont j'ai parlé dans ma dernière lettre) suit fort naturellement du premier exemple, car si on ajoute la suite B à la suite C, on aura visiblement $B + C = A + 1$. Or $B = A$.

donc $C = 1$. »

L'égalité $B + C = A + 1$ est-elle visible? Je ne le pense pas. Dans les Commentaires de Pétersbourg (1737), Euler a essayé une démonstration de l'égalité $C = 1$. Mais cette démonstration est inadmissible. C'est pourquoi j'en ai donné une autre (****).

Voici encore un curieux P. S. d'une lettre de D. Bernoulli, du 23 mai 1728 (*****)

« Avez vous remarqué cette propriété

> numeri naturales: 1 2 3 4 5 etc.

> eorum cubii: 1 8 27 64 125 etc.

> erit summa cuborum semper = quadrato summae numerosum, id est, v. gr. $1 + 8 + 27 + \text{ etc.} = (1 + 2 + 3 + \text{ etc.})^2$;

> c'est une observation d'Adadouroff. »

Les lecteurs du Bullettnino savent que ce théorème:

(*) Il y a plus: elles sont égales, parce que le théorème de Goldbach est vrai. D'un autre côté, en écrivant : « au lieu de ces suites, vous auriez pris ces autres », Bernoulli affirme une chose qu'il ignore: il fait, à Goldbach, un véritable procès de tendance.

(**) CORRESPONDANCE || MATHÉMATIQUE ET PHYSIQUE || DE QUELQUES CÉLÈBRES GÉOMÈTRES || DU XVIIIème SIÈCLE, etc. TOME II, etc., pages 305, 306.

(***) Comme la plupart de ses contemporains, Goldbach s'inquiète peu de la convergence des séries.

(***** JOURNAL || DE || MATHÉMATIQUES || PURES ET APPLIQUÉES, etc. Publié par Joséph Liouville, etc. TOME VII — ANNÉE 1842. || PARIS, etc. 1842.

(******) CORRESPONDANCE||MATHÉMATIQUE ET PHYSIQUE||DE QUELQUES CÉLÈBRES GÉOMÈTRES||DU XVIIIème SIÈCLE, etc., TOME II, etc., page 261, lig. 24—29.
la somme des cubes des n premiers nombres naturels égale le carré de la somme de ces nombres remonte, au moins, à Brahmegupta (*).

Qui était donc cet Adadouroff ?

Extrait d’une lettre adressée au Prince Boncompagni par Eugène Catalan (10 décembre 1884).

« Depuis trois mois, je demande, à tous mes correspondants : « où Goldbach a-t-il énoncé son théorème ? » Je suis donc hors d’état de répondre, d’une manière satisfaisante, à la question que vous me faites l’honneur de m’adresser. Voici tout ce que je puis vous dire : 1° Dans le tome XIV des Nouvelles Annales, Terquem donne cet énoncé : « Tout nombre pair est la somme de deux nombres premiers (Goldbach). » 2° Dans le tome XVIII (Bulletin de Bibliographie, etc. p. 2) le savant Rédacteur publiait une Note ainsi conçue : Théorème de Waring sur les nombres premiers.

« On lit dans la 3.° édition (1782) des Meditationes analyticoë, au haut » de la page 379. »

Ainsi ce théorème, ... appartient à Waring et non à Goldbach ; je l’ai dit par erreur ... d’après la Correspondance mathématique et physique (Fuss).

Ici (comme je l’écrivais naguère à M. Desboves) je crois que Terquem, malgré toute son érudition, s’est trompé.

La première édition des Méditationes a été publiée en 1776. A cette époque, Goldbach, né en 1690, était mort depuis douze ans.

L’allusion à la Correspondance Mathématique et physique est fort embarrassante. J’ai feuilleté cet ouvrage, et je n’ai pu y trouver l’énoncé du théorème de Goldbach ; ce qui ne veut pas dire qu’il n’y soit pas. 2° Dans le même tome XIV des N. A. (p. 293) M. Desboves commence ainsi une Note sur le théorème de G. :

« Tout nombre pair, excepté 2, est la somme de deux nombres premiers, » au moins de deux manières. »

J’ai écrit trois fois, à mon ancien Collègue, afin de savoir si cet énoncé est celui de Goldbach : impossible d’obtenir une réponse satisfaisante ! Voilà, cher Prince, l’état de la question. »
