
1 INTRODUCTION 

Distortions can affect steel-made components during 
the cooling phase that follows hot forging operations 
determining deformations that can induce permanent 
damage with the consequence that the effective 
geometry at room temperature can substantially 
differ from the nominal one. This is due to 
phenomena occurring during this step of the 
productive process and, mainly, to phase 
transformations and non-homogeneous boundary 
conditions [1].  
Nowadays, only few pieces in a batch are measured 
at room temperature: in such a way, anomalies 
occurred during the forging process can be detected 
only after a large number of components have been 
produced. From this stand-point, if final dimensions 
could be known from the forming stage, it would be 
possible to eventually have a retroactive control on 
the process itself.  
The possibility to reach this aim is strictly linked to 
the capability to accurately model the cooling phase 
after deformation taking into account all the 
phenomena occurring during it [2]. However, this 
task turns out to be quite difficult, mainly due to the 
coupling effects between phenomena that are not 

easy to be identified and quantified. 
Neural networks can represent the most suitable tool 
to reach the proposed aim, as they are able to infer 
the complex relationships existing between 
parameters, the knowledge of whose effects is not 
known a priori.  
The objective of the paper is to prove the possibility 
to utilise a well-trained neural network to predict the 
final geometry of rectangular section rings at room 
temperature after ring rolling operations.  
A large number of ANNs characterized by different 
topologies have been considered and evaluated in 
terms of accuracy in predicting final dimensions of 
rings, identifying the most suitable network; the 
training phase has been performed on a database of 
different geometries obtained through a calibrated 
numerical model of the cooling phase. In particular, 
data about material behaviour (42CD4 steel) during 
cooling have been introduced in the numerical 
model so that it could accurately reproduce the 
industrial reference process. Then, the testing phase 
of the neural model has been conducted on a set of 
geometries that hasn’t been used for training. 
Finally the neural network-based model has been 
industrially validated. 
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2 THE APPROACH 

The setting up of a model capable to predict final 
geometry of hot rolled rings after the cooling phase 
requires the complete understanding of all the 
phenomena occurring during this step of the 
production process. In particular, the modelling of 
micro-structural changes is needed to correctly 
evaluate the evolution of geometrical features during 
cooling. The numerical model of the cooling process 
then requires a suitable calibration in terms of 
boundary conditions and material data concerning 
the transformation phase. The reference component 
is a rectangular section ring whose productive 
process is schematically represented in Figure 1. Just 
after the exit of the rolling mill, the ring geometry as 
well as its surface thermal field is measured through 
a laser measuring system integrated with optical 
pyrometers. 
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Fig. 1. Scheme of the rings manufacturing route . 
 

To develop the numerical model of the cooling 
phase, the following assumptions have been done: 
· the thermal field at the cooling starting is 
considered uniform in the section 
· the geometry of the rings coming out from the 
rolling mill is set equal to the nominal one (no 
distortions due to ring rolling are considered)  
· the previous thermal and mechanical histories due 
to ring rolling are considered as negligible. 
Then, the model calibration has been extended to 
those parameters that have shown to significantly 
affect the behaviour during cooling. These data 
include thermo-physical characteristics as well as 
elasto-plastic properties of all the phases of the 
reference steel, which have been recognized to 
significantly influence plastic deformation during 
cooling [1]. Some of these data have been found in 
literature; while the others have been experimentally 
determined through physical simulation experiments 
carried out on the thermo-mechanical simulator 
Gleeble 3800™. More details about these tests and 
their relevant results can be found in [3]. 
2D axisymmetric simulations of the cooling phase 
have then been carried out with the calibrated 

numerical model implemented in the F.E. code 
Lagamine™ developed by the University of Liège 
[4]. 

3 NEURAL NETWORK MODEL 

An artificial neural network is a model based on the 
neural structure of human brain capable to learn on 
the basis of experience. The general architecture of 
an ANN is schematically represented in Figure 2. 
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Fig. 2. Neural network general architecture. 
 

The network consists of neurones disposed on 
layers; the human brain behaviour is reproduced 
through connections between neurons. In this way, 
the capability of the network to find a solution for a 
given problem is strictly linked to the flow of 
information through the layers.  
The setting up of an ANN consists of two 
subsequent phases, called training and testing. 
During the first step, a set of examples is presented 
to the network to understand the relationships 
existing between inputs and outputs. The knowledge 
resulting from the training step is stored into the 
connections between layers called weights and 
biases. Then, during testing, another set of examples, 
different from the ones used during training, is 
presented to the network in order to evaluate the 
capability of the ANN to generalize and give a 
solution for the considered problem.  
The network capability of predicting is measured 
through the so-called performance factor:  
 

( )2

11

11
jiji

U

j

E

i

ep
UE

ePerformanc −= ��
==

                    (1) 

 

where E  represents the number of examples, U  the 
number of outputs, jip  the prediction of the neural-



based model and jie  the expected output. The most 
suitable network should minimize errors both in 
training and testing [5-7].  

3.1 Design of the training database 

The reliability of an ANN in predicting is strictly 
linked to the effectiveness of the training phase.  
In this work, a numerical training database has been 
generated: the cooling phase of rings with different 
dimensions and section shapes, all belonging to 
industrial production, has been numerically 
simulated using the calibrated model [1].  
In particular, numerical simulations of the cooling 
phase have been carried out on rings with: 
·  different rectangular section shapes (plate, square 
or tubular); 
· different dimensions (ratio between external 
diameter and height and between internal diameter 
and height); 
·  different thermal fields in the section at the cooling 
starting. 
From these simulations, surface thermal field and 
geometry at the beginning and as well as geometry 
at the end of cooling have been recorded. These data 
constitute, respectively, the inputs and the outputs 
nodes of the neural network. 
For the training phase, a set of about 1000 examples 
has been finally chosen. Rings geometries are 
represented in Figure 3. 
  

 
 

Fig. 3. Training set geometries. 

3.2 Design of the ANN 

A multi–layer feed-forward back-propagation neural 
network [6] has been utilized: the choice of its 
architecture for this application has required some 
trials.  
Firstly, inputs and outputs have been identified. 
Input nodes are 20 and they correspond to the (x,y) 
coordinates of the 7 points represented in Figure 4 
and their temperature, except for the y coordinate of 
point 1 that has been fixed to 0 in the numerical 
model. In Figure 4 heat transfer coefficients utilized 
in the numerical model of the cooling phase for each 

face of the ring, obtained from on-field experiments, 
are also reported [3]. The corresponding outputs are: 
x1, x4, y4, x5, y5, x6, y6, x90, x111.  
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Fig 4. Points chosen as inputs of the network model. 
 

The number and the position of the output nodes 
have been chosen in order to have, at room 
temperature, a satisfactory description of the ring 
section shape without excessively enlarging the 
dimensions of the network.  
An ANN with two hidden layers has shown to give 
the best performances. Figure 5 shows the mean 
squared error (MSE) performances both in training 
and testing, changing the number of hidden neurons 
in each hidden layer of the network.  
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Fig. 5. Network performances as a function of the number of 
hidden neurons. 

 

As it can be observed, the performance exhibits its 
minimum for a total number of neurons between 12 
and 14 both for both training and testing. Finally, a 
two hidden layers network with 13 hidden neurons 
in each hidden layer has been chosen. 
The network sensitivity to learning parameters has 
been also investigated; particular attention has been 
paid to model response to different transfer functions 
between the different layers and to the number of 
training epochs. 
Network topology and relevant training parameters 
are presented in detail in Table 1. 



Table 1. Network topology and training parameters. 

Number of input nodes 
Number of output nodes  
Number of hidden layers  
Number of hidden nodes for the each hidden layer  
Activation function input-first hidden layer  
Activation function first-second hidden layer  
Activation function second hidden-output layer 
Number of epochs 
Momentum, � 
�dec 
�inc 
�max 

20 
9 
2 

13 
logsig 
logsig 
purelin 
3000 
10-3 
0.1 
10 

1010 

4 NEURAL MODEL PREDICTIONS 

In order to evaluate the accuracy of the network 
predictions, the testing phase has been first carried 
out on a data set of geometries coming from 
numerical simulations and, later, on industrial rings 
geometries, thus representing the industrial 
validation of the developed approach. The fitting 
between expected results and forecasting is really 
good; in fact, the network seems able to reproduce, 
through its connections, all the effects due to 
phenomena occurring during cooling and, also, the 
coupling between them. 
Tables 2 and 3 report the network predictions on two 
industrial rings characterized by tubular and square 
sections, respectively.  
 
Table 2. Testing results on industrial rings. 

Hot nominal 
geometry 

[m] 

Output 
nodes 

Predicted 
(ANN) 

[m] 

Measured 
(Troom) 

[m] 

Deviation 
[m] 

 

OD=0.9580 
ID=0.8680 
H=0.0400 

 

 
 

 

X1 
X4 
Y4 
X5 
Y5 
X6 
Y6 

 X90 
  X111 

 

0.4278 
0.4281 
0.0394 
0.4722 
-0.0003 
0.4726 
0.0392 
0.4280 
0.4724 

 

0.4278 
0.4281 
0.0395 
0.4722 
-0.0002 
0.4725 
0.0392 
0.4280 
0.4724 

 

- 
- 

10-4 

- 
10-4 

10-4 

- 
- 
- 

 
Table 3. Testing results on industrial rings. 

Hot nominal 
geometry 

[m] 

Output 
nodes 

Predicted 
(ANN) 

[m] 

Measured 
(Troom) 

[m] 

Deviation 
[m] 

 

OD=0.9580 
ID=0.8680 
H=0.0900 

 

 
 

 

X1 
X4 
Y4 
X5 
Y5 
X6 
Y6 

 X90 
  X111 

 

0.4279 
0.4285 
0.0889 
0.4723 
-0.0003 
0.4729 
0.0886 
0.4282 
0.4726 

 

0.4279 
0.4284 
0.0889 
0.4723 
-0.0003 
0.4728 
0.0886 
0.4281 
0.4726 

 

- 
10-4 

- 
- 
- 

10-4 

- 
10-4 

- 

As it can be noticed from Tables 2 and 3, the 

deviations of predictions from the expected values 
are lower than 1 mm for both rings; this value has 
been previously fixed as threshold for accuracy in 
forecasting. 

5 CONCLUSIONS 

In this paper, a new application of artificial neural 
network has been presented and results obtained in 
terms of prediction of rings geometry at room 
temperature have been evaluated. It has been 
demonstrated that ANN can represent a suitable tool 
to infer the complex relationships existing between 
phenomena occurring during cooling and 
influencing the final geometry of forged pieces. The 
use of artificial intelligence techniques in the 
prevision of geometrical distortions seems then 
encouraging and the developed procedure can be 
considered general enough to be applied to the 
geometry prediction of profiled section rings.  
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