SUR LES DIFFÉRENCES DE 1^p, ET SUR LE CALCUL DES NOMBRES DE BERNOULLI:

PAR E. CATALAN.

1. La formule

$$\Delta^{n}u_{0}=u_{n}-\frac{n}{1}u_{n-1}+\frac{n(n-1)}{1\cdot 2}u_{n-2}+\ldots \pm u_{0}$$

donne, en supposant $u_0 = 1^p$:

$$\Delta^{n}(1^{p}) = (n+1)^{p} - \frac{n}{1} \cdot n^{p} + \frac{n(n-1)}{1 \cdot 2} (n-1)^{p} - \ldots \mp \frac{n}{1} \cdot 2^{p} \pm 1^{p},$$

$$\Delta^{n-1}(1^{p}) = n^{p} - \frac{n-1}{1} (n-1)^{p} + \frac{(n-1)(n-2)}{1 \cdot 2} (n-2)^{p} - \ldots \pm \frac{n-1}{1} 2^{p} \mp 1^{p}.$$

On conclut, de ces deux équations,

$$(n+1)^{\Delta^{n}}(1^{p}) + n^{\Delta^{n-1}}(1^{p}) = (n+1)^{p+1} - \left[\frac{n+1}{1} - 1\right]n^{p+1}$$

$$+ \left[\frac{(n+1)n}{1 \cdot 2 \cdot n} - \frac{n}{1}\right](n-1)^{p+1} - \dots + \left[n+1\right)n - n(n-1)\left[2^{p} \pm \left[(n+1) - n\right]1^{p}\right]$$

$$= (n+1)^{p+1} - \frac{n}{1}n^{p+1} + \frac{n(n-1)}{1 \cdot 2}(n-1)^{p+1} - \dots + \frac{n}{1}2^{p+1} \pm 1^{p+1}.$$

Donc

$$\Delta^{n}(\mathbf{1}^{p+1}) = (n+1)\Delta^{n}(\mathbf{1}^{p}) + n\Delta^{n-1}(\mathbf{1}^{p})$$
 (A)

2. La relation (A) donne le moyen d'obtenir, de proche en proche, et par un calcul assez simple, les différences successives de 1², 1³, 1⁴, 1⁵,

En effet, si l'on prend les nombres naturels :

dont les différences premières et secondes sont

on en conclut que les quantités

$$1^{\tau}$$
, $\Delta(1^{\tau})$, $\Delta^{2}(1^{\tau})$

ont pour valeurs

Multipliant ces derniers nombres par

ce qui donne

on a, par la formule (A):

$$\Delta(1^2) = 1 + 2 = 3$$
, $\Delta^2(1^2) = 2 + 0 = 2$, $\Delta^3(1^2) = 0$.

Ainsi, la quantité 12, et ses différences successives, ont pour valeurs:

En continuant, on forme le tableau suivant (*):

	1	2	3	4	5	6,	7	8	9	10	11
11	1	1									
12	1	2									
	1	3	2								
1 ³	1	6	6								
	1	7	12	6							
14	1	14	36	24							
	1	15	50	60	24						
1 ⁵	1	30	150	240	120						
	1	31	180	390	360	120					
1 ⁶	1	62	540	1560	1800	720					
	1	63	602	2100	3360	2520	720				
17	1	126	1806	8400	16800	15120	5040		į		
	1	127	1932	10206	25200	31920	20160	5040	 		
18	1	254	5796	40824	126000	191520	141120	40320			
	1	255	6050	46620	166824	317520	332640	181440	40320		
19	1	310	18150	186480	834120	1905120	2328480	1451520	362880		
	1	511	18660	204630	1020600	2739240	4233800	3780000	1814400	362880	
110	1	1022	55980	818520	5103600	16435440	29635200	30240000	16329600	3628800	
	1	1028	57002	874500	5921520	21538440	46070640	59875200	46569600	19958400	3628800

^(*) Ce tableau est tiré, en grande partie, d'une brochure intitulée: Table des quarrés et des cubes, par C. Séguin l'aîné (1801). L'auteur, après avoir donné, sous forme empirique, la relation (A), indique le développement de

$$S_p = 1^p + 2^p + \ldots + n^p$$
,

ordonné suivant les puissances de n. Je dois la connaissance de ce curieux opuscule, très rare aujour-d'hui, au savant M. Terquem.

3. Dans une Note sur la somme des puissances semblables des nombres naturels, insérée aux Nouvelles Annales de Mathématiques (*), j'ai démontré la formule

$$S_{p} = \frac{A_{p}}{p+1} (n+1)n(n-1) \dots (n-p+1) + \frac{B_{p}}{p} (n+1)n(n-1) \dots (n-p+2) + \frac{C_{p}}{p-1} (n+1)n(n-1) \dots (n-p+3)$$

$$+ \dots + \frac{N_{p}}{3} (n+1)n(n-1) + \frac{1}{2} (n+1)n.$$
(B)

Les coefficients A_p , B_p , C_p ,.... ont les valeurs contenues dans le tableau suivant:

p	$\underline{\mathbf{A}_p}$	\mathbf{B}_{p}	C_p	D_p	\mathbb{E}_p	T_p	G_p	\mathbf{H}_{p}	K_p	\mathbf{L}_p	M_p	N_p
1	1											
2	1	1										
3	1	3	1									
4	1	6	7	1								
5	1	10	25	15	1							
6	1	15	65	90	31	1						
7	1	21	140	350	301	63	1					
8	1	28	266	1050	1701	966	127	1				
9	1	36	462	2646	6951	7770	3025	255	1			
10	1	45	750	19980	22827	42525	34105	9330	511	1		
11	1	55	1155	25980	162687	179687	246430	145750	28501	1023	1	
12	1	66	1705	36375	370527	1318296	1323582	1378900	311501	86526	2047	1

Avec un peu d'attention, on reconnaît que les nombres placès en diagonale, dans ce second tableau, sont égaux à ceux qui constituent le tableau précédent, divisés par les produits 1.2, 1.2.3, 1.2.3.4, Autrement dit:

$$3 = \Delta(1^2)$$
, $7 = \Delta(1^3)$, $15 = \Delta(1^4)$,
 $6 = \frac{1}{2} \Delta^2(1^3)$, $25 = \frac{1}{2} \Delta^2(1^4)$, $90 = \frac{1}{2} \Delta^2(1^5)$,
 $10 = \frac{1}{2 \cdot 3} \Delta^3(1^4)$, $65 = \frac{1}{2 \cdot 3} \Delta^3(1^5)$, $350 = \frac{1}{2 \cdot 3} \Delta^3(1^6)$, ...

Il résulte de là que l'on peut écrire ainsi la formule (B) :

^(*) Tome XV, p. 230.

$$S_{p} = \frac{1}{2} (n+1)n + \frac{1}{3} (n+1)n(n-1)\Delta(1^{p-1})$$

$$+ \frac{1}{4 \cdot 2} (n+1)n(n-1)(n-2)\Delta^{2}(1^{p-1}) + \frac{1}{5 \cdot 2 \cdot 3} (n+1) \cdot \cdot \cdot (n-3)\Delta^{3}(1^{p-1})$$

$$+ \cdot \cdot \cdot + \frac{1}{(p+1) \cdot 2 \cdot 3 \cdot \cdot \cdot (p-1)} (n+1)n \cdot \cdot \cdot (n-p+1)\Delta^{p-1}(1^{p-1}) \quad (C)$$

Cette seconde expression de S_p (trouvée par M. Puiseux) va nous donner les nombres de Bernoulli sous une forme beaucoup plus commode, pour le calcul effectif, que toutes celles que l'on connaît jusqu'à présent.

En effet, le $(p-1)^s$ nombre de Bernoulli est égal au coefficient de n, dans le développement de S_p , ordonné suivant les puissances de n (*). Donc, d'après l'équation (3) :

$$B_{p-1} = \frac{1}{2} - \frac{1}{3} \Delta(1^{p-1}) + \frac{1}{4} \Delta^{2}(1^{p-1}) - \ldots \pm \frac{1}{p+1} \Delta^{p-1} (1^{p-1}) ;$$

ou, pour plus de régularité dans la notation,

$$B_q = \frac{1}{2} - \frac{1}{3} \Delta(1^q) + \frac{1}{4} \Delta^2(1^q) - \ldots + \frac{1}{q+2} \Delta^q(1^q).$$
 (D)

5. Cette relation générale donne successivement, d'après le premier tableau :

$$\begin{split} B_{\rm r} &= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}, \\ B_{\rm s} &= \frac{1}{2} - \frac{8}{3} + \frac{2}{4} = 0 \ , \\ B_{\rm s} &= \frac{1}{2} - \frac{7}{3} + \frac{12}{4} - \frac{6}{5} = \frac{1}{2} - \frac{1}{3} - \frac{1}{5} = -\frac{1}{30}, \\ B_{\rm 4} &= \frac{1}{2} - \frac{15}{3} + \frac{50}{4} - \frac{60}{5} + \frac{24}{6} = \frac{1}{2} + \frac{1}{2} - 1 = 0 \ ; \\ \text{etc. (**)} \end{split}$$

6. Le Tableau des carrés et des cubes donne, sous forme empirique, une règle qui équivaut à la formule

$$\mathbf{B}_{q} = 1 - \frac{1}{2} \Delta(1^{q+1}) + \frac{1}{3} \Delta^{2}(1^{q+1}) - \dots \pm \frac{1}{q+1} \Delta^{q}(1^{q+1}) = \frac{1}{q+2} \Delta^{q+1}(1^{q+1}) \quad (E),$$

^(*) Lacroix, tom. 3° p. 84.

^(**) On sait que $B_q = 0$, si l'indice q est pair.

laquelle est un peu moins simple que la nôtre. Pour vérifier l'accord des deux formules, il suffit de prouver que

$$1 - \frac{1}{2} \left[\Delta (1^{q+1}) + 1^{q} \right] + \frac{1}{3} \left[\Delta^{2} (1^{q+1}) + \Delta (1^{q}) \right] - \frac{1}{4} \left[\Delta^{3} (1^{q+1}) + \Delta^{2} (1^{q}) \right] + \dots$$

$$= \frac{1}{q+2} \left[\Delta^{q+1} (1^{q+1}) + \Delta^{q} (1^{q}) \right] = 0.$$
 (F)

Or, la formule (A) peut être écrite sous cette forme :

$$\Delta^{n}(\mathbf{1}^{p+1}) + \Delta^{n-1}(\mathbf{1}^{p}) = (n+1) \left[\Delta^{n}(\mathbf{1}^{p}) + \Delta^{n-1}(\mathbf{1}^{p}) \right],$$

puis sous celle-ci:

$$\frac{\Delta^{n} (1^{p+1}) + \Delta^{n-1} (1^{p})}{n+1} = \Delta^{n-1} (2^{p});$$

donc l'équation (F) équivaut à

$$1 - (2^q) + \Delta(2^q) - \Delta^2(2^q) + \ldots = \Delta^q(2^q) = 0.$$

Enfin cette dernière relation est identique, si l'on égard à la formule presque évidente:

$$u_1 - \Delta u_1 + \Delta^2 u_1 - \ldots \mp \Delta^p u_1 = u_0 \pm \Delta^{p+1}(u_0)$$

Paris, Juillet 1859.