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Résumé

Le remplissage vasculaire est l’une des interventions les plus fréquentes dans
les unités de soins intensifs, l’effet attendu étant une augmentation du débit car-
diaque. Cependant, cette réponse est observée dans seulement environ 50 % des
cas. De plus, un remplissage vasculaire trop important peut mener à des effets
délétères, comme l’œdème pulmonaire, qui augmentent la durée de la respiration
mécanique, de l’hospitalisation, la mortalité et les coûts. Les médecins sont donc
à la recherche d’indices fournissant a priori une information sur les effets du rem-
plissage vasculaire. Cette thèse présente une méthode de prédiction de la réponse
au remplissage vasculaire basée sur un modèle mathématique. Un modèle math-
ématique est un ensemble d’équations représentant le comportement d’un sys-
tème donné, par exemple le système cardio-vasculaire.

Des éléments de base d’anatomie et de physiologie cardio-vasculaire sont
présentés dans la première partie de cette thèse, car ils sont nécessaires à la com-
préhension des principes du remplissage vasculaire. Ensuite, des détails supplé-
mentaires sont fournis sur la thérapie de remplissage vasculaire, ainsi que sur
les indices actuellement utilisés par les médecins pour en prédire les effets. Les
indices dits statiques sont faciles à obtenir, mais peu efficaces. Les indices dits dy-
namiques, basés sur les interactions cardio-pulmonaires, sont plus performants,
mais sont invasifs et difficiles à implémenter en clinique. Un nouvel indice, le
volume total de sang sous pression, pourrait s’avérer utile, mais est également
difficile à obtenir en clinique. Ce travail développe et utilise des modèles du sys-
tème cardio-vasculaire pour rendre ce paramètre disponible aux médecins.

Sur base des éléments de physiologie développés dans la première partie, la
seconde partie de cette thèse décrit comment modéliser les composants actifs et
passifs du système cardio-vasculaire sous forme d’éléments agrégés, comme des
compartiments, des valves et des résistances. Deux modèles du système cardio-
vasculaire, comptant respectivement trois et six compartiments, sont ensuite con-
struits à partir de tels éléments. Ces deux modèles impliquent un petit nombre
de paramètres, représentant notamment le volume total sous pression dans le
modèle.
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Résumé

La troisième partie de cette thèse explique comment identifier les paramètres
des deux modèles du système cardio-vasculaire. L’identification des paramètres
a pour but de trouver les valeurs des paramètres qui rendent les simulations du
modèle aussi proches que possible des données mesurées. Les données dispo-
nibles sont donc décrites en premier lieu, en fonction de l’endroit où elles sont
mesurées : dans un laboratoire expérimental ou une unité de soins intensifs. En-
suite, il est mathématiquement démontré que tous les paramètres du modèle peu-
vent théoriquement être identifiés à partir de données disponibles dans une unité
de soins intensifs. Cependant, d’un point de vue pratique, certains paramètres ne
peuvent être identifiés, car ils ont peu d’influence sur les simulations, ou ont le
même effet que d’autres paramètres. En dernier lieu, des méthodes numériques
pour identifier les paramètres à partir d’un ensemble de données cliniques sont
présentées et comparées.

La dernière partie de cette thèse présente deux applications des modèles du
système cardio-vasculaire à des données expérimentales. Premièrement, tous les
paramètres du modèle du système cardio-vasculaire à six compartiments sont
identifiés à partir de données provenant d’une expérience de réduction de pré-
charge. Ce résultat constitue la première validation quantitative du modèle à
six compartiments en situation transitoire. Deuxièmement, tous les paramètres
du modèle à trois compartiments, y compris le volume total sous pression, sont
identifiés à partir de données provenant d’expériences de remplissage vasculaire.
Les résultats montrent que le volume total sous pression est systématiquement lié
au changement de débit cardiaque après remplissage. Ce dernier indice fournit
donc, pour la première fois, une méthode basée sur un modèle pour prédire la
réponse au remplissage vasculaire.
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Abstract

Vascular filling is one of the most frequent interventions in intensive care units.
Its expected effect is to increase cardiac output. However, this increase is only
observed in approximately 50 % of cases. In addition, excessive vascular filling
can lead to deleterious effects, such as pulmonary oedema, which increase length
of ventilation, stay, mortality and cost. Clinicians are thus looking for indices to
provide a priori knowledge of the effect of vascular filling. This thesis focuses on
a mathematical model-based approach to predict the response to vascular filling.
Mathematical models are sets of equations representing the behaviour of a given
system as, for instance, the cardiovascular system.

To understand the concept of vascular filling, basic elements of cardio-vascular
anatomy and physiology are presented in the first part of this thesis. Then, fur-
ther details about vascular filling therapy are given, as well as the current indices
used by clinicians to predict its effects. The static indices are easy to obtain, but
do not perform well. The dynamic indices, based on cardio-pulmonary interac-
tions, perform better, but are difficult and highly invasive to implement clinically.
A new index, total stressed blood volume, also seems to perform well, but is not
easy to obtain clinically. This work develops and then uses models of the cardio-
vascular system to make this parameter available to clinicians.

Building on the elements of physiology provided in the first part, the second
part of this thesis describes ways to model the components of the cardio-vascular
system as lumped elements, such as chambers, valves and resistances. Two mod-
els of the cardio-vascular system, comprising respectively three and six cham-
bers, are built from such elements. These two models involve a small number of
parameters, including the total stressed volume in the model.

The third part of this thesis describes the potential and methods to identify
the parameters of the two cardio-vascular system models. Parameter identifica-
tion aims at finding the parameter values that make model simulations as close
as possible to measured data. The available data is thus first described, accord-
ing to whether it is collected in an experimental laboratory or an intensive care
unit. Then, it is mathematically demonstrated that all model parameters can the-
oretically be identified from data available in an intensive care unit. However,
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Abstract

practically speaking, some parameters are difficult to identify, because they have
little influence on the simulations, or have the same effect as other parameters. Fi-
nally, computational methods to perform parameter identification are presented
and compared.

The last part of this thesis presents two applications of the cardio-vascular
system models to experimental data. First, all parameters of the six-chamber
cardio-vascular system model are identified from data recorded during a preload
reduction experiment. This result provides the first quantitative validation of
the six-chamber model in transient conditions. Second, all parameters of the
three-chamber cardio-vascular system model, including total stressed volume,
are identified from data recorded during vascular filling experiments. The total
stressed volume parameter is shown to be systematically related to the change
in cardiac output after vascular filling. This last index thus provides, for the first
time, a model-based means of predicting the response to vascular filling.
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Chapter 1

Introduction

1.1 Vascular Filling

Vascular filling is one of the most frequent interventions in intensive care units
(ICUs) and represents "the cornerstone of haemodynamic management in ICUs" [1–3].
This therapy consists in intravenous administration of a given quantity of fluid
to a patient. The type of fluid, the quantity and the duration of the infusion vary
widely across ICUs. The goal of vascular filling is to increase the amount of fluid
in the blood circulation and, subsequently, to increase the pumping ability of the
heart. This therapy is the key element in case of shock, a condition that concerns
up to one third of ICU patients [4].

However, most studies performed in ICUs agree on the fact that vascular fill-
ing is effective in only approximately 50 % of cases [3]. This observation is linked
to the fact that ICU patients present very different cardio-vascular problems, and
patient state is rapidly changing. In addition, an excess of intra-vascular fluid
can lead to severe complications, such as pulmonary oedema, right ventricular
dysfunction or haemodilution [5, 6], which increase length of ventilation, length
of stay, mortality and cost. Clinicians are thus in need of robust, readily available
indices to predict the effect of vascular filling.

Prediction of the patient response to vascular filling is difficult, because the
clinical data available in an ICU is mostly coming from the periphery of the
cardio-vascular system (CVS). The decision to perform vascular filling thus largely
depends on the experience of the medical staff.

To make a decision about vascular filling, ICU clinicians typically rely on one
of the available physiological measurements, which include:

• Pressure in the central veins,
• Pressure in the peripheral arteries,
• Cardiac output.
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Chapter 1. Introduction

The static values of these measurements, that is, their mean values, have repeat-
edly been shown to be poor predictors over the last decade [5,7,8]. However, they
are still the current practice in 36 % of ICUs [1]. More recently, changes in mea-
surements caused by external influences, or dynamic values, have been suggested
as predictors. Several studies have demonstrated the better predictive ability of
dynamic indices [5, 7]. However, others have emphasised the difficulty of practi-
cally using them [9].

1.2 Approach

This work aims to contribute to the reliable prediction of the response to vascular
filling, in a way that complies with the recently published European guideline
stating that "fluid resuscitation should be guided by more than one single hemodynamic
variable" [4]. To do so, this thesis relies on an original approach, one that processes
several ICU available measurements to create a reliable predictor. The processing
is performed using two tools: a mathematical model and a parameter identifica-
tion procedure to turn clinical data into a patient-specific, model-based metric of
patient state.

1.2.1 Mathematical Model

A mathematical model is a set of equations representing the behaviour of a given
system. In general, the goal of a modelling process is one of the following: de-
scription, interpretation, prediction or explanation of the modelled phenomenon
[10]. In the present case, a mathematical model of the CVS could be used to help
interpret the clinical data [11] and predicting fluid responsiveness.

A model of the CVS intended for prediction of fluid responsiveness must be
applicable in the ICU without requiring additional measurements. The model
would also have to be robust to make correct predictions for different patients and
conditions, and fast enough to predict significant changes in real time. Finally, it
needs to provide a reasonably correct picture of the intrinsic haemodynamics,
which are not available from the ICU data alone.

As for all systems, there exists an infinite number of ways to model the CVS.
The more detailed the model, the more realistic the description it provides. For
instance, the most detailed models of the CVS thoroughly study the dynamics
of blood and muscle fibres [12]. However, more detailed models contain more
equations, which are also more complex, and thus, more computational time is
required to obtain a solution. The design of a model thus depends on the desired
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goal. Following the model’s intended use, the model designer chooses to neglect
some phenomena.

Since real-time prediction is crucial in the ICU, the models used in this work
will be simpler ones. These models are called lumped models, because they aggre-
gate several parts of the CVS. Lumped models, even if simple, still need to take
into account complex effects, such as cardiac contraction and valve dynamics.
Such lumped models are bold approximations of the reality, but can reproduce
well the macro-physiologic trends. Thanks to their simplicity, their equations can
be solved in a few seconds on a standard computer.

Every model contains several a priori unknown quantities, called parameters
and linking the variables involved in the model. Values have to be assigned to
these parameters for the model equations to be solved. In addition, reasonable
values have to be chosen so that the model simulations correctly represent the
reality of the modelled system.

In lumped CVS models, the number of parameters is limited. These parame-
ters usually represent the resistance to flow of small vessels and valves, and the
elastance, or stiffness, of large vessels and cardiac chambers. Another very im-
portant parameter of mathematical models of the CVS is the total stressed blood
volume contained by the system, capturing the ability of the heart and vessels to
generate pressure.

1.2.2 Parameter Identification

Parameter identification is sometimes called the inverse problem. It aims at finding
the parameter values that make model simulations as close as possible to a set
of experimental measurements. In the ICU case, example of available measure-
ments have been given in Section 1.1, and their limited number thus governs the
model complexity for patient-specific applications.

Identifying the parameters of a CVS model using the measurements available
in an ICU provides parameter values that concentrate all the available informa-
tion. The term patient-specific is used to emphasise that, thanks to the parameter
identification process perfomed on patient data, the model can be adapted to each
patient at a given point in time. The resulting parameter values can then be used
for cardio-vascular monitoring over time, potentially including prediction of the
response to vascular filling.

Parameter identification is not a simple task. For instance, several parameter
sets could lead to the same model outputs. In this case, the two parameter sets
cannot be distinguished and the model is said to be structurally non-identifiable.
The models developed in this work will thus be demonstrated to be structurally
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identifiable. In other words, it should be possible to uniquely retrieve their pa-
rameters values from the available data.

Even for a structurally identifiable model, parameter identification can go
wrong because of the data quality. All data are indeed limited and imperfect,
which can cause a structural identifiable model to be practically non-identifiable.
Using the models and the available data, the practical identifiability should also
be investigated. This analysis is usually done by observing the individual effects
of parameters on the simulations, through a sensitivity analysis, and the joint ef-
fects of parameters, through a correlation analysis.

For non-linear models, which are necessary to represent cardio-vascular and
physiological reality with sufficient accuracy, parameter identification is not an
immediate process. Instead, several model simulations have to be performed
with different parameter sets, to find which one is the best. Several methods exist
to do so. A method that will allow fast and reliable estimation of CVS model
parameters thus needs to be selected, derived or adapted.

1.3 Goals

The goals of this work are:

• To develop simple models of the CVS usable in the ICU,
• To demonstrate that the parameters of these models can be identified from

readily available ICU data, proving structural and practical identifiability,
• To verify the models using clinical data, to predict the response to vascular

filling.

This thesis is organised in four parts: one introductory part and three main parts,
each corresponding to these three goals.

1.4 Overview

The first part of this thesis provides the physiological and medical background
on which the next three parts will be built. Chapter 2 of this work describes the
elements of anatomy and physiology of the CVS that are useful to understand
the effects of vascular filling and the development of CVS models. Chapter 3 de-
scribes vascular filling in further details and presents the commonly used indices
of fluid responsiveness.

The second part of this thesis deals with the development of simple models of
the CVS. Chapters 4 and 5 describe the building blocks of such models. Passive
elements, such as resistances, valves and chambers are detailed in Chapter 4 and
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active elements, such as ventricles and atria, are modelled in Chapter 5. Finally,
in Chapter 6, two models are built from the previously introduced elements.

The third part of this thesis studies parameter identification of the two models
from ICU data. First, Chapter 7 describes the type of data that can be obtained
in an ICU, and the sensors that need to be used. Chapter 8 then mathematically
demonstrates that all model parameters can theoretically be obtained from such
data. In practice, however, the beat-to-beat nature of the data can prevent correct
parameter identification. Chapter 9 thus provides tests to ensure that parameters
can be practically identified. Finally, Chapter 10 presents a comparison of the
different methods that can be used to obtain the parameter values.

The last part of this thesis uses the models and identification methods to pre-
dict the response to vascular filling therapy. The first developed CVS model is
quantitatively validated in Chapter 11. Then, Chapter 12 shows that one param-
eter of the second CVS model, representing total stressed blood volume, is an
index of fluid responsiveness. Finally, Chapter 13 presents conclusions and ideas
for future improvements.

1.5 Summary

This introductory chapter detailed the elements mentioned in the title of this the-
sis, vascular filling and mathematical models. Vascular filling is a very frequent
therapy in the ICU, but its positive effect on the circulation is not granted and
difficult to predict. To solve this problem, this work proposes to use a mathemat-
ical model-based approach. Mathematical models are useful tools for prediction,
but a preliminary requirement is that their parameters have to be identified from
available data.

The three goals of this work were stated: development of CVS models, iden-
tification of CVS model parameters, and prediction of fluid responsiveness using
the models. The organisation of the thesis in three main parts according to these
three goals was detailed. An additional part, which directly comes after this para-
graph, describes the medical background necessary for understanding this thesis.
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Part I

Medical Background
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Introduction

Part I contains two chapters, which aim at explaining the medical concepts on
which the rest of this work is based. Chapter 2 presents an anatomical and phys-
iological summary of the CVS. Using the terminology introduced in Chapter 2,
Chapter 3 presents vascular filling therapy in more detail, along with its predic-
tors and outcomes.
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Chapter 2

The Cardio-Vascular System

2.1 Introduction

This chapter introduces the basic elements of CVS anatomy and physiology nec-
essary for this work. A general overview of the CVS is provided first, with a short
description of the heart and vessels. In the second part of this chapter, the func-
tioning of the CVS is described and indices used by clinicians to assess its state
are presented.

2.2 Overview of the Cardio-Vascular System

Blood supplies all cells of the organism with the nutrients and oxygen necessary
for proper functioning, and collects the waste and carbon dioxide created. The
role of the CVS is to maintain enough blood flow through the body, to provide
a permanent flow of nutrients, ensure perfusion of the organs, and permanently
removing waste. To perform this function, the CVS consists of a pump, the heart,
and a closed network of blood vessels.

The CVS is closely associated with the respiratory system, which is responsi-
ble for the removal of carbon dioxide and the supply of oxygen, from and to the
blood. The first part of the vascular system connects the heart to the lungs and
back to the heart, and is called the pulmonary circulation. The second part, which
connects the heart to every cell of the body and its return to the heart, is called
the systemic circulation.

The pulmonary and systemic circulations both involve the same three types of
blood vessels: arteries, capillaries and veins. When the heart contracts, it propels
blood into the arteries, which are large and deformable blood vessels. Down-
stream of the heart, arteries branch out into increasingly smaller vessels. The
smallest of these vessels are called the capillaries. The wall of the capillaries is
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porous, allowing the exchange of chemical species between blood and other body
cells in the systemic circulation, or between blood and the air in the lungs in the
pulmonary circulation. Further away, capillaries branch together and form in-
creasingly larger vessels, the veins. The veins are the vessels through which blood
returns to the heart. The situation is illustrated in Figure 2.1.

Heart

Pulmonary circulation

Systemic circulation

Lungs

Systemic arteries

Systemic capillaries, where 
oxygen is exchanged for  
carbon dioxyde 

Systemic veins

Pulmonary veins

Pulmonary capillaries, 
where carbon dioxyde is 
exchanged for oxygen

Pulmonary 
arteries

Figure 2.1: Simplified illustration of the cardio-vascular system (adapted from [13], with
permission). Red is used to depict oxygenated blood and blue represents de-oxygenated
blood.

2.2.1 The Heart

The heart is a muscular pump that connects the systemic and pulmonary circula-
tions. It consists of two parts, left and right, separated by a central wall called the
septum. The right part of the heart collects de-oxygenated blood coming from the
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systemic circulation and drives it to the pulmonary circulation, while the left part
collects oxygenated blood coming from the pulmonary circulation and drives it
to the systemic circulation.

The left and right parts of the heart are both composed of two contractile
chambers: an atrium and a ventricle. Two valves are located up and downstream
of each ventricle and prevent blood from flowing back. The valve located be-
tween the left atrium and the left ventricle is called the mitral valve, the one lo-
cated between the right atrium and ventricle is called the tricuspid valve. These
two valves are referred to as the atrio-ventricular valves. Finally, the valve located
between the left ventricle and the aorta, the major systemic artery, is the aortic
valve and the valve located between the right ventricle and the pulmonary artery
is the pulmonary valve. These last two valves are called the ventriculo-arterial valves.
Figure 2.2 presents an illustration of the heart and its valves.

Mitral valve

Tricuspid valve

Pulmonary valve

Aortic valve

Aorta

Right atrium 

Right ventricle 

Septum

Left ventricle 

Left atrium 

Pulmonary artery

Figure 2.2: Section of the heart showing the four chambers and the four valves (adapted
from [13], with permission).

The heart is enclosed in a serous and fibrous envelope, the pericardium [14].
Because of its rigidity, the pericardium prevents an excessive distension of cardiac
chambers. Consequently, if one of the ventricles is distended, the other will be
compressed through the motion of the septum. This interaction is called the direct
interaction of the ventricles.

2.2.2 The Vessels

The aorta is the vessel located downstream of the left ventricle and the aortic
valve. It is the main systemic artery and forms the beginning of the systemic
circulation, and it thus contains oxygenated blood. The pulmonary artery is the
vessel located downstream of the right ventricle and the pulmonary valve. It
forms the beginning of the pulmonary circulation and contains de-oxygenated
blood on the way to the lungs.
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The superior and inferior venae cavae are the two veins that bring de-oxygenated
blood back from the upper and lower parts of the body to the right atrium. The
four pulmonary veins are the vessels that bring oxygenated blood back from the
lungs to the left atrium. The arteries and the veins are the largest blood vessels.
They are also relatively elastic. In particular, veins can serve as reservoirs to store
blood and re-equilibrate pressures in the system, if necessary [15]. In these large
vessels, blood flows easily.

2.3 Physiology of the Cardio-Vascular System

2.3.1 The Cardiac Cycle

During a cardiac cycle, the heart muscle successively contracts to eject blood and
then relaxes to allow filling. Since this behaviour repeats in time, one must choose
a starting point to describe the cardiac cycle. In this section, the chosen starting
point is the end of ejection, marked by the closing of the aortic and pulmonary
valves.

Isovolumic Relaxation

At the closing of the aortic and pulmonary valves, the heart is still contracted.
It then starts to relax by keeping a constant volume, because all the valves are
closed, as the mitral and tricuspid valves closed at a prior time of the cardiac
cycle. This relaxation at a constant volume causes a pressure decrease. This action
is the isovolumic relaxation phase. It is represented in Figure 2.3.

Atrio-ventricular valves closed 

Closing of ventriculo-arterial valves

Figure 2.3: Situation of the heart during the isovolumic relaxation phase (adapted
from [13], with permission).
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Filling

The atrio-ventricular valves eventually open because of the ventricular pressure
drop, which causes the blood to spontaneously flow from the atria to the ventri-
cles. This change marks the beginning of the early filling phase, marked by a rapid
blood flow. It is represented in Figure 2.4.

Opening of atrio-ventricular valves 

Ventriculo-arterial valves closed

Figure 2.4: Situation of the heart during the early filling phase (adapted from [13], with
permission).

The accumulation of blood in the ventricles causes an increase in pressure.
Therefore, the pressure difference between the atria and the ventricles is gradu-
ally compensated and blood flow from the atria to the ventricles rapidly slows
down. At some point, the flow becomes nearly zero, marking the phase of diasta-
sis, as depicted in Figure 2.5.

Figure 2.5: Situation of the heart during the diastasis phase (adapted from [13], with
permission).

The last part of the ventricular filling is the atrial contraction. During this
phase, the atria contract and kick a supplementary amount of blood into the ven-
tricles, as illustrated in Figure 2.6.

During the whole filling phase, the aortic and pulmonary valves remain closed,
preventing the backflow of the blood ejected during the previous contraction.
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Figure 2.6: Situation of the heart during the atrial contraction phase (adapted from [13],
with permission).

Shortly after atrial contraction, ventricular contraction initiates, causing the atrio-
ventricular valves to close and marking the end of the filling phase.

Isovolumic Contraction

Ventricular contraction continues with all four valves closed, meaning that the
ventricular volume remains constant. This phase is thus termed the isovolumic
contraction. It is depicted in Figure 2.7.

Closing of atrio-ventricular valves 

Ventriculo-arterial valves closed

Figure 2.7: Situation of the heart during the isovolumic contraction phase (adapted
from [13], with permission).

Ejection

Finally, the further increasing ventricular pressure causes the aortic and pul-
monary valves to open, which allows the ejection of blood into the main arteries,
the aorta and pulmonary arteries. This phase is called ejection and is represented
in Figure 2.8. Blood flows into the arteries until the pressures in the arteries be-
come larger than the pressures in the ventricles. At this moment, the aortic and
pulmonary valves close, marking the end of the ejection phase. The cardiac cycle
then continues with the next phase, isovolumic relaxation.
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Atrio-ventricular valves closed 

Opening of ventriculo-arterial valves

Figure 2.8: Situation of the heart during the ejection phase (adapted from [13], with
permission).

2.3.2 Evolution of Pressures and Volumes

As implied in the previous section, the succession of events during a cardiac cycle
is closely related to the concept of pressure. Consequently, it is usual to represent
the evolution of pressures during a cardiac cycle on a diagram, such as the one
of Figure 2.9. In more detail, Figure 2.9 represents pressures in the left part of
the circulation, left atrium, left ventricle and aorta, and volume in the left ventri-
cle. Throughout this work, pressures will be expressed in millimetres of mercury
(mmHg; 1 mmHg = 1/760 atm ≈ 133.3 Pa).

All curves presented in Figure 2.9 are periodic, with a period equal to the
cardiac period. Aortic pressure increases during cardiac ejection, since the aorta
fills with blood. At the end of ejection, marked by the closing of the aortic valve,
the aortic pressure presents a small dip, called the dicrotic notch or incisura [15].
Once the aortic valve is closed, aortic pressure slowly decays because the stored
blood volume is flowing to the systemic circulation.

Left ventricular pressure usually ranges between approximately 0 mmHg and
a value higher than the maximum aortic pressure. During the isovolumic phases,
contraction and relaxation, ventricular pressure rises and falls very rapidly. The
effect of atrial contraction can sometimes be seen through an increase in ventric-
ular pressure at the same moment, as in Figure 2.9.

Left atrial pressure varies to a much lesser extent than left ventricular and
aortic pressures. Therefore, it is very often assumed to be constant in the first
approximation. In reality, the left atrial pressure curve is rather complex and
consists of several crests and troughs. After the opening of the mitral valve, left
atrial pressure decreases because blood is passively flowing into the left ventricle.
At the end of ventricular filling, the left atrium contracts, causing an increase in
pressure called the a-wave [15]. After atrial contraction, the mitral valve closes
and atrial pressure presents a second crest, called the c-wave. The c-wave is not
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Figure 2.9: Evolution of left atrial, left ventricular and aortic variables during two cardiac
cycles. Top: left ventricular pressure (black), aortic pressure (red) and left atrial pressure
(blue) with specific waves (a, c and v waves) indicated. Bottom: left ventricular volume.
Data points were extracted from [15].

always present and its physiological origins are uncertain [15]. Once the mitral
valve is closed, left atrial pressure increases owing to the blood inflow from the
veins. When the mitral valve reopens, left atrial pressure starts decreasing again.
On the pressure tracing, this rising and falling translates by a crest called the v-
wave.

Finally, left ventricular volume decreases during ejection and remains con-
stant during isovolumic phases, relaxation and contraction. As explained in the
previous section, the increase of left ventricular volume during filling happens in
two phases: the first increase is due to passive blood flow from the left atrium to
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the left ventricle, which eventually slows down, while the second increase is due
to left atrial contraction. The contribution of left atrial contraction to left ventric-
ular filling volume can be seen in Figure 2.9.

Figure 2.9 also introduces the definition of the two important sub-periods of
the cardiac cycle. Specifically, systole and diastole. As evidenced in the figure,
systole encompasses ventricular contraction and ejection, while diastole refers to
ventricular relaxation and filling [15].

2.3.3 Conventional Indices of the Cardiac Function

As explained in the previous section, haemodynamic signals have complex sha-
pes, including several local maxima and minima during one cardiac period. In
addition, these signals can strongly vary from patient to patient, especially in
pathological situations. Consequently, clinicians usually focus on beat-to-beat
indices derived from the pressure or volume curves, rather than on the whole
curves.

Another explanation for relying on beat-to-beat indices is that the entirety of
the curves is not always clinically available. Several important indices of the car-
diac function are presented in the following sections, and indices of the vascular
state are presented in Section 2.3.4.

Cardiac Period and Heart Rate

The cardiac period, T, is the time interval separating two heart beats. For instance,
in Figure 2.9, T is approximately equal to 0.8 s. The heart rate (HR), also called
cardiac frequency, is the inverse of the cardiac period:

HR =
1
T

. (2.1)

If period is expressed in seconds, then HR is expressed in hertz (Hz; 1 Hz =

1 s−1). If period is expressed in minutes, HR is expressed in beats per minute,
which is the most frequently encountered unit.

In Figure 2.9, the HR is approximately equal to 1/0.8 = 1.25 Hz, or 1.25× 60 =

75 beats per minute. For humans, the HR and T can vary to large extents, so
that the CVS can quickly adapt to various situations, for instance if a person is
exercising or changes its posture [15].
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End-Diastolic Volume

End-diastolic volume (EDV) is the volume of a ventricle at the end of diastole, that
is, the maximum ventricular volume during a cardiac cycle. In Figure 2.9, the left
ventricular end-diastolic volume (LVEDV) is approximately equal to 120 ml.

End-Systolic Volume

End-systolic volume (ESV) is the volume of a ventricle at the end of systole, that
is, the minimum ventricular volume during a cardiac cycle. In Figure 2.9, the left
ventricular ESV is approximately equal to 50 ml.

Stroke Volume, Stroke Volume Index, Cardiac Output and Cardiac Index

Stroke volume (SV) is defined as the volume of blood ejected by a ventricle at each
cardiac cycle. It is computed:

SV = EDV− ESV (2.2)

and is usually expressed in millilitres. For humans, the SV is usually around
70 ml [15]. In Figure 2.9, left ventricular SV is approximately equal to 120− 50 =

70 ml. Since the left and right ventricle are connected in series, left and right
ventricular SVs are equal in average. Otherwise, blood would build up in either
the systemic or the pulmonary circulation. The stroke volume index (SVI) is equal
to the ratio of SV to body surface area [16]. It is therefore expressed in ml/m2.

Cardiac output (CO) is the average blood flow exiting the heart. It is computed:

CO =
SV
T

. (2.3)

CO is consequently expressed in ml/s or litres per minute. CO usually ranges
between 5 and 6 litres per minute [15]. Using the data of Figure 2.9, CO equals
70/0.8 ≈ 88 ml/s, or 88× 0.06 = 5.25 litres per minute. Finally, cardiac index (CI)
is defined as the "ratio of CO to body surface area" [17]. It is consequently expressed
in ml/(s m2).

2.3.4 Conventional Indices of the Vascular State

Indices Derived from the Arterial Pressure Curve

As shown in Figure 2.9, aortic pressure changes in a large extent during a cardiac
cycle. Its maximum value occurs during systole and is therefore called systolic ar-
terial pressure (SAP) [15]. In Figure 2.9, SAP is approximately equal to 120 mmHg.
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Arterial pressure reaches its minimum during diastole; this minimum value is
called diastolic arterial pressure (DAP) [15]. In Figure 2.9, DAP is approximately
equal to 80 mmHg.

Arterial pulse pressure (PP) is defined as the difference between the maximum
(SAP) and minimum (DAP) values of arterial pressure [15]:

Arterial PP = SAP−DAP. (2.4)

In Figure 2.9, arterial PP approximately equals 120 − 80 = 40 mmHg. In this
work, the definition of PP will be applied to any measured pressure signal (cen-
tral venous, pulmonary arterial, etc.). PP thus represents the difference between
the maximum and minimum values of a measured pressure signal.

Mean arterial pressure (MAP) represents the mean value of arterial pressure
during one cardiac cycle. In Figure 2.9, MAP is equal to 97 mmHg. The exact
computation of MAP requires a continuous arterial pressure measurement, which
is not always available [18]. The following formula has thus been developed to
approximate MAP when only SAP and DAP are available:

MAP ≈ 1
3

SAP +
2
3

DAP. (2.5)

Using this approximate formula, MAP in Figure 2.9 is equal to 120/3 + 2 ×
80/3 ≈ 93 mmHg.

The definitions presented in this section can be transposed to the pulmonary
artery, hence leading to the introduction of systolic and diastolic pulmonary arterial
pressures, mean pulmonary arterial pressure (MPAP) and pulmonary arterial PP.

Systemic Vascular Resistance

Systemic vascular resistance (SVR) represents the resistance to blood flow exerted
by the systemic circulation. It is computed [15]:

SVR =
MAP−CVP

CO
, (2.6)

where central venous pressure (CVP) represents the pressure in the systemic ve-
nous circulation, assumed to be constant. The equation for SVR represents the
ratio of the driving force for blood flow, defined as the pressure difference be-
tween the beginning and end of the systemic circulation, to the resulting flow.
Consequently, the lower the SVR, the more easily the blood flows through the
systemic vasculature. SVR is expressed in mmHg s/ml.
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Pulmonary Vascular Resistance

Pulmonary vascular resistance (PVR) represents the pulmonary counterpart of SVR
and is thus computed as [19, 20]

PVR =
MPAP− PVP

CO
(2.7)

where pulmonary venous pressure (PVP) is also assumed constant. PVR is also
expressed in mmHg s/ml.

2.3.5 Determinants of Cardiac Output

CO is generally considered to be determined by four factors: preload, contractil-
ity, afterload and HR. Each of these factors describes the heart’s ability as a pump
or the forces around the heart. They are described below.

Preload

Preload represents the stretching of the heart muscle fibres before contraction be-
gins [5, 15]. More generally, preload describes the ability of the heart to fill. The
Frank-Starling mechanism states that the larger the preload, the larger the contrac-
tion force generated, and thus, the larger the SV [15]. The effect of preload on SV
is thus often represented using the Frank-Starling curve, shown in Figure 2.10.
The important feature to observe on the Frank-Starling curve is that, at some
point, increasing preload will not lead to an increase in SV. Some authors also
believe that, if preload increases beyond that limit point, SV will eventually de-
crease [21].

SV

Preload

Figure 2.10: Frank-Starling curve representing the effect of preload on SV.

22



2.3. Physiology of the Cardio-Vascular System

The EDV is widely used as an index of preload. Indeed, it represents the
ventricular volume just before contraction. Therefore, it can be associated with
the stretching of the muscle fibres at that moment [5, 15].

Contractility

Contractility is the ability of the heart muscle to generate force. At a given preload,
the larger the contractility, the larger the contraction force generated, and thus,
the larger the SV. Consequently, increasing contractility moves the Frank-Starling
curve to the upper-left part of the plane, as shown in Figure 2.11.

SV

Preload

Increasing
contractility

Figure 2.11: Effect of increasing contractility on the Frank-Starling curve.

An important index of contractility is the concept of end-systolic elastance [22].
It will be described in detail in Section 5.2.1, but captures this strength capacity of
the heart for a given volume. Other indices of contractility include the maximum
value of the time derivative of the left ventricular or arterial pressure signals,
respectively termed the left ventricular and arterial dP/dtmax [22].

Afterload

Afterload is the resistance the ventricle has to overcome to eject blood [15]. This
resistance is caused by everything located downstream of the ventricle, for in-
stance, the ventriculo-arterial valve and the pressure of the blood in the arteries.
At a given preload and contractility, the larger the afterload, the lower the SV. As
a consequence, increasing afterload moves the Frank-Starling curve to the lower-
right part of the plane, as shown in Figure 2.12.

SVR is usually used as an index of left ventricular afterload, as it represents
the resistance of the total systemic vasculature. Other indices of afterload exist,
but are less commonly used and thus will not be described here. Overall, a low
afterload implies less work required to achieve a given blood flow and perfusion.
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SV

Preload

Increasing
afterload

Figure 2.12: Effect of increasing afterload on the Frank-Starling curve.

Heart Rate

The previous three elements, preload, contractility and afterload, determine the
SV, which is the volume of blood ejected at each heartbeat. A fourth element
enters into play when considering the CO. Specifically, the HR, which, with these
factors, determines the total volume pumped per minute based on the number of
times the heart beats every minute.

2.4 Summary

In this chapter, the heart and the blood vessels were both described in several
ways. First, their particular anatomy was briefly described. Second, their func-
tioning was explained, with a particular emphasis on the complex way pressures
and volumes vary in the different structures of the CVS. Third, the essential fea-
tures of the pressure and volume curves in the heart and the vessels were sum-
marised in important indices. Finally, the four determinants of CO (preload, con-
tractility, afterload and HR) were detailed.
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Chapter 3

Fluid Responsiveness

3.1 Introduction

3.1.1 Vascular Filling

Vascular filling, the intravenous administration of fluid to a patient, is a circulatory
management therapy. It takes several other different names in the literature:

• Fluid therapy,
• Volume expansion [5, 23],
• Fluid resuscitation [5, 24, 25].

Vascular filling aims to increase circulating volume, and subsequently CO.
The overall goal is to improve tissue perfusion1 as a result [1,27]. Vascular filling
is frequently used to treat acute circulatory shock [6]. This therapy is one of the
most frequent interventions in the ICU [1–3].

The type and volume of fluid used for vascular filling vary, along with the du-
ration of the infusion. The fluids typically used are either crystalloids or colloids.
Crystalloids are aqueous fluids that only contain small chemical elements. Exam-
ples of widely used crystalloids include normal saline, Ringer’s lactate and Hart-
mann’s solution [24]. Colloids contain both small and macromolecular chemical
components. Examples of colloids include albumin, hydroxyethyl starch, dextran
and gelatin [24].

For adults, the volume of fluid infused ranges from 100 ml [7] to 750 ml [5]. In
the majority of cases, the volume is 500 ml. Other authors use a volume propor-
tional to the patient’s actual or ideal weight, varying between 7 and 20 ml/kg [25].
The duration of the fluid infusion usually ranges from 1 to 45 minutes [25]. Tak-
ing the volume infused and the duration of the infusion into account, the rate at

1The red blood cell concentration, and thus, haemoglobin concentration are decreased by vas-
cular filling. However, a low haemoglobin concentration seems to be well tolerated thanks to
various regulatory mechanisms [26].
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which the volume is infused varies between 500 ml/h [5] and 6000 ml/h [28] or,
when the volume depends on the patient’s weight, from 16 ml/(kg h) [29] to 60
ml/(kg h) [30].

3.1.2 Fluid Responsiveness

The problem with vascular filling is that it is only effective in approximately 50 %
of the cases it is used [3, 6, 31], which leads to a distinction between situations of
fluid responsiveness and non-responsiveness. Furthermore, even if vascular filling
improves the haemodynamic state of certain patients, excessive fluid administra-
tion can lead to deleterious effects, such as pulmonary oedema, right ventricular
dysfunction or haemodilution [5, 6]. Clinicians are thus looking for reliable pre-
dictors of fluid responsiveness [5].

At this stage, it is important to emphasise that the success of a fluid infusion
depends on several factors:

• The volume of fluid used for the infusion,
• The patient’s state before the infusion,
• The type of fluid infused and
• The duration of the infusion.

These highly variable factors underline the complexity of predicting fluid respon-
siveness in a general population or for any specific patient. Especially, if only
simple haemodynamic metrics are used or available. Many indices of fluid re-
sponsiveness exist, but, for the previously mentioned reasons, none of them is
perfect. Consequently, European guidelines do not recommend the use of a par-
ticular index [4].

Several indices of fluid responsiveness are presented and reviewed in this
chapter. Before describing such indices, the following section first presents the
statistical tools needed to assess the performance of a given index.

3.2 Assessment of Index Performance

In most cases, fluid responsiveness is measured by the effect of a fluid infusion on
CO, SV or their indexed values, SVI and CI. However, since changes in CO, SV, CI
or SVI relative to the situation before filling are used in the vast majority of studies,
the effect of body surface area cancels out. Consequently, relative changes in CO
are strictly equivalent to relative changes in CI, and relative changes in SV are
strictly equivalent to relative changes in SVI. An index of fluid responsiveness
will thus be considered as performing if it is able to predict the change in CO
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or SV caused by vascular filling. Three statistical tools have been used in the
literature to assess the performance of indices.

3.2.1 Quantitative Prediction: Linear Regression

The simplest way to assess the performance of an index of fluid responsiveness is
to perform a linear regression between this index and the relative change in CO
or SV after vascular filling. The quality of the index is then assessed using the r
or r2 value of the linear regression. The closer r2 is to one, the greater the index
captures the observed variability and thus the better the index. An example is
given in Figure 3.1 using an index called total stressed blood volume that will be de-
scribed in Section 3.5. The data in this figure is far from a perfect line, causing the
low value of r2 = 0.13, indicating only 13 % of observed variability is explained
by the regression line.
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Figure 3.1: Linear regression between change in CO and total stressed blood volume.
The data points were obtained from [32].

3.2.2 Binary Prediction

The remaining two methods require defining an arbitrary threshold for fluid re-
sponsiveness. This threshold usually lies between 5 and 15 % relative change in
CO, SV, CI or SVI after vascular filling [5, 25, 33]. Using this criterion, each fill-
ing step can be qualified as successful or unsuccessful, without concern for the
quantitative value of the change in CO or SV.

27



Chapter 3. Fluid Responsiveness

t-Test

To perform such a test, the values of the index must first be separated according to
the associated positive or negative response to vascular filling. Two mean values
of the index are computed for all positive and negative responses. Performing a t-
test allows investigating whether these two mean values are statistically different.
The t-test provides a p-value, which is equal to the probability of the observed
difference between the mean indices happening by chance [34]. The lower the
p-value, the better the predictive power of the index. A p-value lower than 0.05
is usually considered as statistically significant.

As an example, using the data of Figure 3.1 and defining a threshold for fluid
responsiveness as a change in CO > 12%, there are 9 positive responses to fill-
ing and 6 negative ones. The index is equal to 1122± 390 ml (mean ± standard
deviation) for positive responses, and to 1478 ± 698 ml for negative ones. The
associated p-value equals 0.22, and the means are thus not significantly different.

Receiver-Operator Characteristic Curve

This analysis requires defining a test based on the index value. A positive re-
sult to the test should be associated with fluid responsiveness. For instance, Fig-
ure 3.2 represents the situation when the test for fluid responsiveness is that total
stressed blood volume is lower than 1000 ml and fluid responsiveness is defined
as a relative change in CO larger than 12 %.

The second step consists in counting the data points falling into each cate-
gory of the contingency table presented in Table 3.1 [34]. The columns indicate
whether the test is successful or not, and the rows indicate whether there was a
positive or a negative response to filling. For an index that is not perfect, there
will be cases for which the test was successful, but the patient did not respond to
filling. These cases are false positives: the test was positive, but the outcome was
not. Conversely, there will be cases for which the test was unsuccessful, but the
patient still responded to filling. These cases are false negatives.

Table 3.1: Contingency table.

Test successful Test unsuccessful

Positive response True positive (TP) False negative (FN)

Negative response False positive (FP) True negative (TN)
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Figure 3.2: Separation of the data points from [32] according to the positive response
to vascular filling (change in CO > 12 %) and the value of total stressed blood volume
(greater or less than 1000 ml).

The precision of this test can be assessed by the following two quantities [34]:

Sensitivity =
TP

TP + FN
(3.1)

Specificity =
TN

TN + FP
. (3.2)

The closer the sensitivity is to 1, the better the test identifies positive responses
to filling. The closer the specificity is to 1, the better the test identifies negative
responses to filling.

According to the data presented in Figure 3.2,

Sensitivity =
TP

TP + FN
=

3
3 + 6

≈ 0.33 (3.3)

Specificity =
TN

TN + FP
=

4
4 + 2

≈ 0.67. (3.4)

The sensitivity and specificity both depend on the value chosen for the index
threshold. In Figure 3.2, the threshold was set at 1000 ml.

To choose the best threshold, it is useful to investigate how the sensitivity
and the specificity vary when the threshold is changed. Such an investigation
results in two curves, sensitivity as a function of the threshold, and specificity as
a function of the threshold. An example is given in Figure 3.3.
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Figure 3.3: Sensitivity (blue) and specificity (red) of the test for fluid responsiveness
based on total stressed blood volume being lower than a given threshold.

The receiver operating characteristic (ROC) curve combines the previous two
functions in one. It represents the points with coordinates (1 − Specificity, Sensi-
tivity) for all possible threshold values. Figure 3.4 presents the ROC curve corre-
sponding to the curves of Figure 3.3. The best threshold is often chosen as the one
that maximises the sensitivity and the specificity, that is, the one that corresponds
to the upper-left corner of the ROC curve. In Figure 3.4, the best threshold is thus
1623 ml.

An ideal predictor gives no FP or FN. Its sensitivity and specificity are thus
both equal to 1. The corresponding ROC curve is shown in green in Figure 3.4.
A random predictor gives as much TPs as FPs, and as much TNs as FNs. The
sum of its sensitivity and specificity thus always equals 1. A corresponding ROC
curve is shown in red in Figure 3.4. If the ROC curve of an index is under the
ROC curve of a random predictor, then the index is less efficient than flipping a
coin to make a decision about vascular filling.

Finally, the measure of the quality of an index for prediction of fluid respon-
siveness is the area under the ROC curve. The area under the ROC curve of an
ideal predictor is equal to 1 and the area under the ROC curve of a random pre-
dictor is equal to 0.5. The closer the area under the ROC curve of an index is to 1,
the better the index.
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Figure 3.4: ROC curve for the example test of fluid responsiveness using the data of
Figure 3.1. The numbers indicate the corresponding values of the threshold. The green
line represents the ROC curve of a perfect predictor, the red line represents the ROC curve
of a random predictor.

3.3 Static Indices of Fluid Responsiveness

The original reasoning behind vascular filling was based on the Frank-Starling
curve presented in Figure 2.10. According to this curve, if CO is insufficient, a
larger CO can be obtained by increasing preload, which will increase SV, and
thus CO. Consequently, vascular filling can be performed based on low indices
of preload, such as LVEDV or right ventricular end-diastolic volume (RVEDV)
[5, 35]. However, since EDV is not easily measured, more readily measurable
surrogates are often used instead, such as:

• CVP [16, 21, 31, 33, 36–50],
• Pulmonary artery occlusion pressure (PAOP), defined in Section 7.3.3 [5, 8,

30, 33, 35, 36, 40, 44, 51–55],
• Right atrial pressure (RAP) [5, 30, 51–53],
• Global end-diastolic volume (GEDV), defined in Section 7.3.5 [25, 46, 56].

Table 3.2 provides the values of the three performance measures introduced in
Section 3.2 as reported for each static index in the literature. Because of their weak
performance, static indices of fluid responsiveness are currently considered to be
inefficient [5, 7–9]. One explanation for this ineffectiveness is that, as explained
in Section 2.3.5, the effect of preload on SV also depends on contractility and
afterload [6], creating a multifunctional problem not easily captured. Despite its
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low performance, CVP was found to be the most frequently used index of fluid
responsiveness in a recent study conducted in 46 countries [1], likely due to its
frequent measurement in ICU care.

Table 3.2: Performance measures of the static indices of fluid responsiveness.

r2 p-value Area ROC References

LVEDV 0.005 to > 0.05 [5]

RVEDV < 0.001 to < 0.002 [5, 35]

CVP 0.003 to 0.31 < 0.001 to 0.4 0.43 to 0.71 [16,21,31,33,36–50]

PAOP 0.001 to 0.46 0.001 to 0.3 0.40 to 0.77 [5, 30,33,35,36]

[40,44,51–55]

RAP 0.029 to 0.25 0.04 to > 0.05 0.51 [5, 30,51–53]

GEDV > 0.05 0.52 to 0.69 [25,46,56]

3.4 Dynamic Indices of Fluid Responsiveness

3.4.1 Cardio-Pulmonary Interactions

So-called dynamic indices of fluid responsiveness have been defined based on
cardio-pulmonary interactions during mechanical ventilation. Mechanical ven-
tilation, i.e. the use of a respirator to ventilate sedated patients in ICUs, causes
transient changes in lung pressures. Since the heart and the lungs are enclosed
in a rigid cavity, the thorax, a larger lung pressure increases the pressure acting
on the outside of the heart and large vessels. Therefore, mechanical ventilation
alters left and right ventricular preload and afterload [5], and thus, the overall
functioning of the heart.

More specifically, during forced inspiration, lung pressure increases and, as a
consequence, the pressure acting on the heart and pulmonary circulation also in-
creases2. Because they are under pressure, the right atrium and ventricle fill with
more difficulty, and right ventricular preload decreases [5,8,57]. According to the
Frank-Starling mechanism, right ventricular SV is then also decreased. Within a
few heartbeats, flow entering the left ventricle is also decreased and, in turn, left
ventricular SV is eventually diminished [5, 7, 8, 57].

During expiration, the opposite phenomena occur: lung pressure decreases,
which makes right ventricular filling easier. Right ventricular SV increases, and,
a few heartbeats later, left ventricular SV also increases. Other, more complex,

2Normal inspiration is caused by different physiological mechanisms [26].
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haemodynamic effects occur during mechanical ventilation [7], but do not alter
the main conclusion that mechanical ventilation affects both left and right ven-
tricular SV.

The systemic arteries are located directly downstream of the left ventricle and
carry the ejected blood. As a consequence of the respiratory influence on left
ventricular SV, the systemic arteries carry different quantities of blood during the
different phases of the respiratory cycle. This influence is observed by transient
increases and decreases in arterial pressure during a breath. The ventilation-
induced changes in left ventricular SV and systemic arterial pressure are illus-
trated in Figure 3.5.
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Figure 3.5: Ventilation-induced changes in systemic arterial pressure (red) and left ven-
tricular stroke volume (black). The figure was built using data from [58].

3.4.2 Definition of the Dynamic Indices

According to Figure 3.6, a given transient change in preload due to the effects
of mechanical ventilation, causes larger changes in SV for patients being on the
increasing part of the Frank-Starling curve [7]. This statement, along with other
observations, explains how hypovolemic conditions could be detected by high
variations in SV during mechanical ventilation [7].
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Figure 3.6: Frank-Starling curve, where the nonlinear, saturable stroke volume as a
function of preload illustrates how a given change in preload can yield different changes
in stroke volume, depending on the initial level of preload.

Stroke Volume Variation

Based on the idea introduced above, the stroke volume variation (SVV) index is
defined [5]:

SVV = 2
SVmax − SVmin

SVmax + SVmin
(3.5)

where SVmax and SVmin are the maximum and minimum values of SV observed
during a respiratory cycle. SVV quantifies the magnitude of the transient changes
in SV caused by mechanical ventilation.

Figure 3.7 displays arterial pressure, arterial PP and SV for the first respiratory
cycle of Figure 3.5. For the respiratory cycle displayed in Figure 3.7:

SVV = 2
35− 26
35 + 26

≈ 30 %. (3.6)

Pulse Pressure Variation

Since SV is not easy to assess beat-by-beat in the ICU, other dynamic indices have
been introduced, based on blood pressure measurements, which are more read-
ily available. For instance, systemic arterial PP represents the arterial reflection
of SV, and may thus be a useful surrogate. The pulse pressure variation (PPV) is
defined [6]:

PPV = 2
PPmax − PPmin

PPmax + PPmin
(3.7)

where PPmax and PPmin are the maximum and minimum values of arterial PP
observed during a respiratory cycle. Since pressures are often measured in real-
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Figure 3.7: Arterial pressure (top), arterial pulse pressure (centre) and stroke volume
(bottom) during the first respiratory cycle of Figure 3.5.

time in the ICU, PPV is far more readily available than SV. Using the example of
Figure 3.7:

PPV = 2
41− 36
41 + 36

≈ 13 %. (3.8)

Systolic Pressure Variation

A third important dynamic index of fluid responsiveness is the systolic pressure
variation (SPV), which characterises the changes of SAP with mechanical ventila-
tion [53]:

SPV = 2
SAPmax − SAPmin

SAPmax + SAPmin
(3.9)

where SAPmax and SAPmin are the maximum and minimum values of SAP ob-
served during a respiratory cycle. The computation of SPV using the data of
Figure 3.7 yields:

SPV = 2
125− 114
125 + 114

≈ 9 %. (3.10)

3.4.3 Performance

Table 3.3 summarises the performance measures of the SVV, PPV and SPV in-
dices, as reported in the literature. Overall, the dynamic indices are better pre-
dictors of fluid responsiveness than the static indices introduced in Section 3.3.
However the reported performance measures are very different between studies.
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Table 3.3: Performance measures of the dynamic indices of fluid responsiveness.

r2 p-value Area ROC References

SVV 0.12 to 0.55 < 0.0001 to 0.232 0.50 to 0.92 [16,33,37,39,41,59]

[25,43,45,47,48,60–62]

SPV 0.52 to 0.69 0.0001 to 0.017 0.63 to 0.94 [16,36,43,48,53–55,63]

PPV 0.054 to 0.94 < 0.0001 to 0.107 0.51 to 0.99 [21,25,28–31,36,39–48]

[53,56,60,62–66]

3.4.4 Limitations

Because of their numerous underlying hypotheses, dynamic indices of fluid re-
sponsiveness suffer many limitations. Some of these limitations are described in
the present section.

First, because of the underlying mechanisms, the dynamic indices cannot be
applied to all ICU patients. Patients presenting the following physiological limi-
tations are excluded:

• Spontaneous breathing [9, 48, 67, 68],
• Open thorax [69],
• Arrhythmias [3, 9, 48, 67, 68].

The first limitation is important, as the current trend in ICUs is to let patients
breathe spontaneously as early as possible.

Second, the dynamic indices are based on a cascade of cardio-pulmonary in-
teractions, which can be affected by many physiological variables, including:

• Tidal (inspired) volume [8, 48, 57, 67–70],
• Lung compliance [8, 67, 71],
• Chest wall compliance [57, 67],
• Abdominal pressure [69],
• Left and right cardiac contractility [57, 67, 71] and compliance [8],
• Systemic and pulmonary arterial compliance [8, 67, 71],
• SVR and PVR [3, 8, 71],

All these variables exert an influence on the dynamic indices that is not related
to the patient’s volume status. These influences make it very difficult to compare
values of the dynamic indices across patients and for a given patient when any
of these variables is changed. Hence, Table 3.3 has often poor values of r2, p and
area under the ROC curve, as this variability is not explained or captured by the
metric.

Two recent studies indicate that these influencing variables and patient re-
quirements mean dynamic indices can only be applied to a fraction of ICU pa-
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tients, ranging from 2 % [9] to 42 % [68]. In a recent study, Cecconi et al. recorded
the actual use of dynamic indices in only 22 % of patients [1].

Third, technical issues have also been reported to influence the computed
value of the dynamic indices. For instance:

• The number of respiratory cycles on which SVV, PPV and SPV are com-
puted [48],
• The number of cardiac cycles per respiratory cycle [69],
• The site of pressure measurement [67],
• The lack of reliability and reproducibility of PPV measurements provided

by cardio-vascular monitoring devices [3].

All these issues can significantly alter the metric value and may thus explain some
of the performance variability in Table 3.3.

3.4.5 Other Dynamic Indices

Several other dynamic indices have been proposed in the literature, but are less
documented. Some of these indices are:

• Respiratory variation in superior vena cava diameter [38],
• Respiratory variation in inferior vena cava diameter [50, 72],
• Dynamic arterial elastance, defined as the ratio of PPV to SVV [57, 73].

Other authors also developed specific tests to cause transient increases in preload,
replacing the cyclic influence of mechanical ventilation. For instance, the passive
leg raising manoeuvre [23, 48, 56, 66, 74, 75] and the end-expiratory occlusion test
[48, 56]. A sufficient increase in CO during the test is considered as predictive of
fluid responsiveness.

3.5 Total Stressed Blood Volume

The total stressed blood volume (SBV) is defined as the total pressure-generating blood
volume in the circulation [32]. This concept is thus particularly interesting in the
context of vascular filling therapy.

Indeed, in 15 ICU patients, Maas et al. computed SBV and recorded the change
in CO following a 500 ml fluid infusion. The results of their study were presented
in Figures 3.1 to 3.4 and were used as the example of Section 3.2. The performance
metrics of this index are thus r2 = 0.13, p = 0.22 and area under the ROC curve
of 0.70. Even if these performance metrics are far from optimal, they are similar
to those of the clinically used indices, displayed in Tables 3.2 and 3.3. SBV thus
has the potential to be used as an index of fluid responsiveness.

37



Chapter 3. Fluid Responsiveness

However, SBV cannot currently be used to guide vascular filling therapy, be-
cause its experimental determination is cumbersome and highly invasive. First,
the heart has to be stopped to let the CVS reach its equilibrium pressure, called
the mean circulatory filling pressure (MCFP) [76]. Then, a given fluid volume is in-
fused in the CVS and the heart is stopped again. The MCFP is now higher than
before fluid infusion. These steps of fluid infusion and cardiac arrest can be re-
peated. Finally, a linear regression of the infused volume-MCFP points allows
estimation of SBV as the volume that should be withdrawn for MCFP to be zero.
The method and concept are illustrated in Figure 3.8.

Infused volume 

MCFP 

0 –SBV 
0 

Figure 3.8: Illustration of the experimental method to determine SBV.

Such experiments have been performed in pigs [77] and dogs [78–83], but
are inconceivable and unethical in humans. For humans, Maas et al. [32] deter-
mined SBV by stopping blood flow and measuring MCFP in the arm instead of
the whole body. However, even that approach is invasive and, equally impossible
to validate.

The current method to compute SBV has many drawbacks. First, it involves
repeated circulatory arrests, either global or regional. Second, fluid has to be
infused, which can be useless if there is no positive response, or even harmful.
Particularly, if the goal is to determine fluid responsiveness in the first case. Third,
it is time-consuming, requiring more than 20 minutes [32]. Finally, it relies on the
concept of MCFP, which is not a pressure encountered in normal situations.

However, a model-based method using measurements typically available in
an ICU could obviate all of these concerns. The goal of this work is thus to de-
velop a mathematical model of the CVS, which will provide access to a model-
based surrogate of SBV.

38



3.6. Summary

3.6 Summary

This chapter introduced the concepts of vascular filling and fluid responsiveness,
which represent the core of this work. As implied in this chapter, there are various
ways to assess fluid responsiveness, static indices, dynamic indices or SBV, with
no clear consensus.

The present work aims to develop a new method to estimate a surrogate of
SBV without requiring circulatory arrests or fluid administration. This method is
based on the use of mathematical models of the CVS, of which the SBV surrogate
is a parameter. The following part will therefore focus on how to translate the
functioning of the CVS, described in Chapter 2, into mathematical terms.
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Modelling of the Cardio-Vascular
System
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Introduction

To assist physicians, engineers have developed a wide range of mathematical
models, in particular of the CVS. There exists a large number of ways to math-
ematically represent the behaviour of the CVS, with various complexities and
objectives. The main goals range from clinical input to deeper physiological un-
derstanding.

At one extreme of the spectrum lie distributed models of the CVS, which are
complex, three-dimensional finite elements models, involving millions of degrees
of freedom [12, 84]. These models can be used to gain precise understanding
on local parts of the CVS. However, because of the time required to perform a
single simulation of a finite-element CVS model, such models cannot currently be
used to perform cardiac and circulatory monitoring. Furthermore, building such
models requires large amounts of medical data, coming from three-dimensional
scans of the anatomy, such as from magnetic resonance imaging [85] or computed
tomography.

At the other end of the spectrum lie lumped models of the CVS [86–102]. Lum-
ped models present a discrete representation of the CVS, where the variables of
interest are considered only at specific points called nodes. Between the nodes,
whole sections of the CVS are represented as single elements, cardiac chambers
or vascular resistances, for instance.

A consequence is that these models cannot be used to gain detailed local un-
derstanding of the CVS. They do not perfectly reproduce the reality, but focus
more on the macro-physiological trends. However, thanks to their simplicity, the
involved equations can be solved in a few seconds on a standard computer. Fur-
thermore, lumped CVS models involve a low number of unknown parameters.
Consequently, these parameters can be more readily identified from clinical data,
and in real time [103].

The intermediate class of models comprises pulse-wave propagation models of
the CVS [104]. These models are based on an approach similar to the lumped
models of the CVS. The difference is that more nodes are used, leading to more
precise representations of some anatomical structures, typically the arterial tree
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[104–106]. As a consequence, the number of unknown parameters increases, and
identifiability and bedside use decrease.

Patients in the ICU are difficult to treat, which is in part due to the fact that
a diagnosis is hard to establish in circulatory or CVS dysfunction. The two main
reasons are that the patient state is highly variable [11] and the amount of mea-
surements available is limited. In addition, these measurements are mainly pe-
ripheral, such as CVP, arterial pressure and electrocardiograms, and thus do not
provide accurate information on the central functioning of the CVS. Yet, this kind
of information is of extreme interest in the study of many diseases.

A mathematical model of the CVS can be used to provide a picture of the
central haemodynamics from such limited and peripheral data. Such a model
should be usable at bedside and, consequently, should only require commonly
available measurements. Second, the model has to be computationally fast, to
predict changes in real time. Since these real-time and few data aspects are the
most important for an application in the ICU, the models used in this work belong
to the lumped family.

Before presenting complete lumped CVS models in Chapter 6, the following
chapters first present the building blocks of such models. Chapter 4 describes
passive elements, namely vessels and chambers and Chapter 5 describes active
chamber elements.
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Chapter 4

Passive Elements: Resistances,
Valves and Chambers

4.1 Introduction

Lumped CVS models represent the circulatory system as a more or less complex
interconnection of elastic chambers and non-deformable vessels, called resistances.
Another very important feature of the CVS is the presence of valves, which also
have to be taken into account in any realistic model of the CVS and its regulated
flow. Resistances, valves and chambers are termed passive elements because they
do not generate pressure, unlike the heart. Mathematical models for these passive
elements are described in the present chapter.

4.2 Omh’s Law - Resistances

A vessel is represented in Figure 4.1. As evidenced in the figure, one side of
the vessel is submitted to a pressure Pup(t), while the other side is submitted to
Pdown(t). The flow Q(t) in the vessel is usually described:

Q(t) =
Pup(t)− Pdown(t)

R
, (4.1)

where R is a proportionality constant, called the resistance of the vessel [90, 107,
108]. This equation is identical to Ohm’s law in electricity, which states that elec-
trical current, the flow of electrons, is equal to the ratio of the voltage difference,
the driving force, to the resistance of the wire. By extension, Equation 4.1 is also
referred to as Ohm’s law.

Equation 4.1 is also very similar to Poiseuille’s equation, which describes the
steady flow of an incompressible fluid through a rigid tube. Poiseuille’s equation
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Pup PdownQ

R R R

R R R

Figure 4.1: Illustration of Ohm’s law.

reads [109]:

Q =
(Pup − Pdown)πr4

8ηl
, (4.2)

where η is the viscosity of blood, l is the length of the vessel and r, its radius. It
is thus often stated that R = 8ηl/πr4. However, the hypotheses formulated to
derive Poiseuille’s equation, steady and laminar flow, rigid and perfectly cylin-
drical vessel, are not valid in the CVS, meaning that R cannot be computed using
Equation 4.2.

The plot on the left of Figure 4.2 shows the linear relation assumed in Equa-
tion 4.1. The right panel of Figure 4.2 displays the diagram and notation that will
be used later to represent resistance elements.

Pup
R

Q

Q

Pup – Pdown
Pdown

Figure 4.2: Relationship between flow and pressure difference (left), and symbol (right)
of a resistance element.

4.2.1 Inertances

Equation 4.1 assumes that blood flow stops as soon as the pressure gradient
reaches zero. This simplification neglects the blood’s inertia. Some models [90,98,
107,108,110–112] involve elements called inertances to represent this phenomenon.

46



4.3. Valve law

In such cases, Equation 4.1 is modified to read:

Q =
Pup(t)− Pdown(t)

R
− L

R
dQ
dt

(t), (4.3)

where L denotes the value of the inertance.

The term −(L/R)dQ(t)/dt implies that blood will keep on flowing for some
time, even if the pressure gradient reaches zero. The notation L used for inertance
also results from an electrical analogy between inertances and inductors. In an
electrical circuit, inductors also oppose changes of current, the flow of electrons,
in a similar way.

4.3 Valve law

The simplest model of a heart valve assumes that:

1. there is flow through the valve only when the pressure upstream of the
valve is higher than the pressure downstream, and

2. the flow through an open valve can also be described by Ohm’s law.

Hence, one can define [107, 108]:

Q(t) =


Pup(t)− Pdown(t)

R
if Pup(t) > Pdown(t)

0 otherwise.
(4.4)

Figure 4.3 displays the diagram and notation for a valve element, and also il-
lustrates Equation 4.4. The plot of Figure 4.3 shows linearity, but only when
Pup > Pdown. There is a close similarity between the valve element presented
in this section and the behaviour of an ideal electric diode.

Pup
R

Q

Q

Pup – Pdown
Pdown

Figure 4.3: Relationship between flow and pressure difference (left), and symbol (right)
of a valve element.
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Equation 4.4 can also be adapted to take the blood’s inertia into account. Such
a valve model allows to reproduce the fact that the valves "open on pressure and
close on flow" [89,113]. However, adapting Equation 4.4 to include inertances is not
an easy task because the differential Equation 4.3 has to be solved a priori to know
when Q becomes negative, making simulation more computationally intensive.

4.4 Pressure-Volume Relationships of the Chambers

In lumped models of the CVS, passive elastic chamber elements are used to ac-
count for the deformable properties of the large vessels, namely the arteries and
veins. As its name indicates, the pressure-volume relationship of a chamber de-
scribes the relationship between the blood volume inside the chamber and the
pressure exerted by the chamber. The pressure-volume relationship is often de-
scribed using a convex function P(V) [109,114], an example of which is displayed
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Figure 4.4: Left: illustration of P(V) and its first-order Taylor approximation. Right:
illustration of the change of variables in Equation 4.11.

A first-order Taylor approximation of this function around a chosen working
point [109] V = V̄, yields

P(V) ≈ P(V̄) +
dP
dV

∣∣∣∣
V=V̄

(V − V̄). (4.5)

48



4.4. Pressure-Volume Relationships of the Chambers

The elastance E of the chamber is defined as the slope of its pressure-volume rela-
tionship at V = V̄:

E =
dP
dV

∣∣∣∣
V=V̄

. (4.6)

More specifically, the elastance is the increase in pressure caused by a unit change
in volume. The linear approximation implies that E is assumed to be constant.
Equation 4.5 thus becomes:

P(V) ≈ P(V̄) + E(V − V̄). (4.7)

As defined, Equation 4.7 is difficult to use, as it requires the knowledge of P(V̄),
E and V̄ to compute P from V. It will thus be further manipulated to substitute
two of the three unknown quantities.

First, let Vu, for unstressed volume, be the volume at which pressure is equal to
zero, according to the first-order approximation. Inserting this quantity in Equa-
tion 4.7 gives:

0 ≈ P(V̄) + E(Vu − V̄). (4.8)

⇔ P(V̄) ≈ E(V̄ −Vu). (4.9)

Substituting P(V̄) into Equation 4.7 finally gives:

P(V) ≈ E(V −Vu). (4.10)

Equation 4.10 now only requires two parameters to compute pressure from
volume. However, the quantity Vu is very difficult to estimate. Indeed, it rep-
resents the volume at which pressure is zero, assuming that the linear model is
valid. However, in reality, pressure is zero at a volume that is usually very differ-
ent from Vu, as seen in Figure 4.4.

A further simplification consists in performing the following change of vari-
able:

Vs = V −Vu ⇔ V = Vs + Vu. (4.11)

This change leads the model to work only with the stressed volume ,Vs, rather than
the total volume. The vessel volume V is thus virtually divided in two compo-
nents: the unstressed volume Vu, that does not contribute to pressure generation,
and the stressed volume Vs, that solely contributes to pressure.

Equation 4.10 then becomes:

P(Vs) ≈ EVs. (4.12)
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Chapter 4. Passive Elements: Resistances, Valves and Chambers

Equation 4.12 now only requires the knowledge of E for computation of pressure
from stressed volume. Passive vessels, such as arteries and veins, will be de-
scribed using Equation 4.12. Figure 4.5 displays the symbol that will be used to
represent a chamber element. Finally, when using Equation 4.12, it is extremely
important to remember that stressed volume does not correspond to a physical
volume.

P, Vs

Figure 4.5: Symbol of a chamber element.

It is worth mentioning that pressure-volume relationships of arteries and veins
are affected by several factors. These factors include: reflex constrictions, pas-
sive recoil, viscoelastic properties and myogenic activation of the smooth muscle
around the vessels [78, 115]. This observation implies that parameters E and Vu

are not constant with time and can be affected by all the aforementioned factors.

Here also, an electrical analogy can be made, as the behaviour of a chamber
element is similar to that of a capacitor in electricity. A capacitor accumulates
electrons, which proportionally increases the voltage difference between its two
plates. Equivalently, the chamber accumulates blood, which increases the pres-
sure inside the chamber.

4.5 The Continuity Equation - Closing the Loop

The continuity equation states that there can be no loss of matter. In lumped CVS
models, it implies no loss of volume or blood. It can be written:

dV(t)
dt

= Qin(t)−Qout(t). (4.13)

This equation states that the volume change of a chamber dV/dt is equal to the
difference between flows coming in, Qin, and going out, Qout, of the chamber. In
other words, flow coming into a chamber either contributes to a volume increase
of the chamber or goes out of the chamber and total volume is conserved. The
continuity equation is illustrated in Figure 4.6.
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4.5. The Continuity Equation - Closing the Loop

V
QoutQin

Figure 4.6: Illustration of the continuity equation.

Using the change of variables introduced in Equation 4.11, Equation 4.13 can
equivalently be written in terms of stressed volume:

dVs(t)
dt

= Qin(t)−Qout(t). (4.14)

The continuity equation is also valid for active chambers, which will be presented
in the next chapter. Summing Equation 4.14 for all model chambers, active and
passive, gives

∑
i

dVs,i(t)
dt

= ∑
i

Qin,i(t)−∑
i

Qout,i(t). (4.15)

Since the CVS is a closed loop, the flow coming out of a chamber is the flow going
into the next one, and the right-hand side of the previous equation cancels out,
leaving:

∑
i

dVs,i(t)
dt

= 0. (4.16)

Consequently, the total stressed volume contained in the system is constant, and
thus defined:

∑
i

Vs,i(t). (4.17)

This quantity represents a model-based equivalent of SBV. The goal of this work
is to estimate this parameter and test it as an index of fluid responsiveness.

For large time scales, the total stressed volume is not necessarily constant.
Indeed, total stressed volume can be modified by sympathetic nervous actions,
time-dependent vascular properties, fluid exchange through the capillaries, haem-
orrhage and others [78,108]. Equally, as described in Chapter 3, clinical treatment
can add fluid. The total stressed volume is thus constant over shorts and inter-
mediate periods where changes are known and accounted for.
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Chapter 4. Passive Elements: Resistances, Valves and Chambers

4.6 Summary

This chapter presented the passive elements used in most lumped CVS models:
resistances, valves, inertances and chambers. To model the CVS, a description
of its central element, the heart, is still needed. The following chapter presents
different models for the active elements of the CVS: the ventricles and the atria.
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Chapter 5

Active Elements: Ventricles and
Atria

5.1 Introduction

Lumped CVS models represent the ventricles and atria as chambers as they have
pressure and volume. However, according to physiology, these chambers are
active, meaning that they are able to generate a pressure increase through con-
traction. Consequently, the pressure generated by the chamber does not solely
depend on the volume inside of the chamber, but also depends on time, namely
the phase of the cardiac cycle currently happening.

This chapter first presents two ways of describing the active ventricular be-
haviour. The first model described is the time-varying elastance theory, the most
simple and commonly applied model of active ventricular behaviour. The sec-
ond section deals with models built to account for the drawbacks of time-varying
elastance theory. The last part of this chapter deals with the application of these
two ventricular models to the smaller, but also active, atria.

5.2 The Ventricles

5.2.1 Time-Varying Elastance Theory

When ventricular pressure and volume are plotted against one another, the result
is a pressure-volume loop, as shown in Figure 5.1. On this loop, the four main
phases of the cardiac cycle can be distinguished:

• Filling (pressure is more or less constant at a small value, volume increases),
• Isovolumic contraction (pressure increases, volume is constant),
• Ejection (pressure is more or less constant at a high value, volume decreases),
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• Isovolumic relaxation (pressure decreases, volume is constant).
The width of the pressure-volume loop is equal to the SV.
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Figure 5.1: Left ventricular pressure-volume loop (adapted from [13], with permission).

The time-varying elastance, also termed time-varying pressure-volume ratio, has
been introduced by Suga et al. [116]. These authors observed various pressure-
volume loops corresponding to different levels of afterload. They identified the
top-left point of each of these loops, and observed that these points lay approxi-
mately on a straight line, as shown in Figure 5.2. The equation of the straight line
can be stated as:

P = EES(V −Vu) (5.1)

where EES is the slope of the line and Vu is its intercept with the volume axis. The
Vu value is referred to as the left ventricular unstressed volume. It is the extrapolated
volume at which left ventricular pressure would be zero.

When the experiment was repeated after epinephrine infusion, Suga et al. ob-
served an increase of EES, but virtually no change in Vu. This major result in-
dicates that EES is an index of ventricular contractility. Figure 5.2 presents an
illustration of the experiment. This experiment also indicates that EES is indepen-
dent of afterload, since all points obtained at different afterload levels lie on the
same straight line.

Suga et al. performed a second experiment with varying preload levels, and
found that the top-left pressure-volume points also lay on the same curve. Conse-
quently, EES represents a preload and afterload independent index of ventricular
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Figure 5.2: Illustration of the experiment of Suga et al. [116]. Black: baseline pressure-
volume loops; red: pressure-volume loops obtained after epinephrine infusion.

contractility. The EES value is called the end-systolic elastance, because the top-left
point of a pressure-volume loop approximately corresponds to the end of systole.
Similarly, the line given by Equation 5.1, is called the end-systolic pressure-volume
relationship (ESPVR).

Suga et al. also defined the following pressure-volume ratio:

E(t) =
P(t)

V(t)−Vu
(5.2)

and computed it over an entire cardiac cycle. The resulting E(t) is shown in
Figure 5.3. The maximum value of E(t) is EES, since EES was computed using the
top-left points of the loops, approximately at maximum pressure and minimum
volume.

Finally, Suga et al. normalised E(t) with respect to amplitude:

e(t) =
E(t)
EES

=
P(t)

EES(V(t)−Vu)
. (5.3)

The function e(t) thus has a maximum value of 1. It is plotted in Figure 5.3 (cen-
tre). The function e(t) was also normalised with respect to time:

eN(t/tES) = e(t), (5.4)

where tES is the time at which E(t) = EES.
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Figure 5.3: Example of E(t), e(t) and eN(t/tES). Data points were extracted from [116].

Suga et al. showed that eN(t/tES) was independent on contractility, preload,
afterload and cardiac period, meaning that it can be used to describe the heart in
any loading condition. This finding has been confirmed for humans by Senzaki et
al. [117]. As a result, e(t) can be obtained through a contraction or an expansion
of the generic eN(t/tES) to account for different cardiac periods.

Consequently, ventricular pressure P(t) can be computed at any time of the
cardiac cycle from the sole knowledge of e(t), V(t), EES and Vu using Equa-
tion 5.3, yielding:

P(t) = e(t)EES(V(t)−Vu) (5.5)

at any time of the cardiac cycle. The link between pressure and volume thus only
depends on two parameters and one function The function e(t) is often called the
activation or driver function.

There is an interesting similarity between Equations 5.5 and 4.10. The only
difference between these two equations is that the elastance of the heart is equal
to e(t)EES and is thus not constant. Hence, its name time-varying elastance. Per-
forming the change of variables in Equation 4.11, Equation 5.5 becomes:

P(t) = e(t)EESVs(t). (5.6)

This time-varying ventricular model will be represented by the symbol displayed
in Figure 5.4.

Extension

During filling, ventricular pressure is close to zero, and so is e(t), as shown in
Figures 5.1 to 5.3. Precise description of the ventricular behaviour during filling
using the time-varying elastance theory thus requires an accurate knowledge of
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5.2. The Ventricles

P, Vs

Figure 5.4: Symbol of a time-varying ventricle element.

the small value of e(t). Because it is practically complex, some authors have as-
sumed e(t) to be zero during filling. Doing so, they could adapt the time-varying
elastance theory to include a more precise description of the diastolic behaviour.

In such cases, Equation 5.5 is modified to become:

P(t) = e(t)EES(V(t)−Vu) + (1− e(t))PED
(
V(t)

)
(5.7)

where PED
(
V(t)

)
is a pressure-volume curve describing the behaviour of the ven-

tricle during diastole, when e(t) = 0. The curve PED(V) is called the end-diastolic
pressure-volume relationship [15]. Several equations have been proposed for the
end-diastolic pressure-volume relationship, most of them curvilinear [96,98,118–
120].

Limitations

Despite its many advantages described in the previous section, many criticisms
have been raised against the time-varying elastance concept. First, its biggest ad-
vantage, namely that it allows a simple relationship between ventricular pressure
and volume, is also its biggest drawback. Indeed, this ad hoc approach does not
consider the fact that cardiac muscle contraction begins at a microscopic scale.

Second, more recent experiments have shown the ESPVR to be more parabolic
than linear in shape [109, 118, 121, 122]. As a consequence, some researchers have
observed negative values of Vu [109, 122, 123]. A negative value of Vu is not seen
as physiologically impossible. Indeed, Vu is nothing, but the result of a linear
regression on a series of pressure-volume points. If ventricular volume was ac-
tually decreased until ventricular pressure reached zero, the resulting volume
would indeed be positive. This inconsistency is due to the parabolic shape of
the ESPVR. Some researchers subsequently modified the time-varying elastance
theory to include various nonlinear pressure-volume relationships [124–126].

Third, instantaneous ventricular pressure has also been shown to be nega-
tively dependent on instantaneous flow out of the ventricle, an effect that has
been termed the internal resistance of the ventricle [127–129]. The authors that
made these observations added their ad hoc modifications to the time-varying
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Chapter 5. Active Elements: Ventricles and Atria

elastance theory to account for this resistive effect by including a flow term in
Equation 5.2, yielding:

E(t) =
P(t)

V(t)−Vu
− RQ(t) (5.8)

where R is a resistance and Q(t) is the flow out of the ventricle.

Finally, the relationship between ventricular pressure and volume has been
demonstrated to depend on the mechanical load exerted on the ventricle [130].
This result implies the load dependence of the ESPVR, in turn indicating that the
ESPVR is not unique. This effect cannot be accounted for by any generic modifi-
cation of the time-varying elastance theory. A similar observation has been made
for the right ventricle [131]. In addition, for the right ventricle, it was found that
Vu was not constant during a cardiac cycle and also changed with epinephrine
administration.

5.2.2 Multi-Scale Models

The objections presented in the previous section have led many authors to gain
deeper knowledge of the fundamental mechanisms underlying cardiac contrac-
tion. From this knowledge, they built multi-scale ventricular models whose con-
traction is described at the level of a cardiac muscle unit, a sarcomere [91,118,132–
135]. The previously cited multi-scale ventricular models are built on the same
two elements: a sarcomere model describing force generation at the muscle unit
level, and a ventricle model converting sarcomere force into ventricular pressure
and sarcomere length into ventricular volume. The situation is depicted in Fig-
ure 5.5

Cardiac
sarcomere
model

Ventricle
model

Stress

Length

Volume

Pressure

Figure 5.5: Multi-scale model of a ventricle, built as the interconnection of two models.

Sarcomere Models

Sarcomere models describe active stress, σa, generated by a single sarcomere as
the product of two quantities, the deformation, ε, of the sarcomere, and its con-
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tractile state, C:

σa = ε(L)C(L, ...), (5.9)

where L is the length of the sarcomere and is computed from the ventricular vo-
lume as described in the following section.

The models available in the literature vary widely in the level of detail used
to describe the sarcomere’s contractile state, C. The simplest model [132] de-
scribes C as the solution to an empirical differential equation. The others de-
scribe the chemical pathways of calcium in the sarcomere using a four-state mo-
del [91, 118, 133–135]. Contractility is then defined as the concentration of the
protein troponin attached to another protein, thus generating contraction.

Total stress, σ, generated by the sarcomere is given by the sum of the active
stress, σa, and a passive component, σp, generated by a nonlinear spring, yielding:

σ = σa + σp, (5.10)

where σp only depends on L.

Ventricle Models

Ventricle models available in the literature assume the ventricle to be a tube [132],
a sphere [91, 118, 133] or a hemisphere [134, 135]. These geometrical assumptions
allow the derivation of a relationship between sarcomere length and ventricular
volume:

L = L(V). (5.11)

The geometrical assumptions performed to build the ventricle model also al-
low the linking of sarcomere stress, σ, to ventricular pressure. As a general rule,
pressure is directly related to sarcomere stress, σ, and nonlinearly related to ven-
tricular volume V:

P = σ f (V) (5.12)

where f is a shape function depending on the assumed ventricular geometry. The
simplest version of Equation 5.12 reads:

P =
2hσ

r
(5.13)
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where h is the constant wall thickness and r is the radius of the sphere (or the
hemisphere). In haemodynamics, Equation 5.13 is called the law of Laplace [109,
134, 135].

5.3 The Atria

The previous sections presented two ways of modelling the ventricular behaviour,
the time-varying elastance theory and multi-scale models. The following section
discusses the application of these two types of models to the two other active
cardiac chambers. Specifically, the atria, located just before the ventricles.

5.3.1 Time-Varying Elastance Theory

The typical evolution of left atrial and left ventricular pressures and left atrial
volume is shown in Figure 5.6. When left atrial pressure and volume are plotted
against one another, the result is a closed curve in the pressure-volume plane,
called the left atrial pressure-volume loop. An example of such a loop is given in
Figure 5.7 . This loop is composed of two lobes, giving it a particular figure-eight
shape. The right lobe, at higher volumes, is the v loop, and represents the passive
properties of the atrium. The left lobe, at lower volumes, is the a loop, which is
caused by active contraction of the atrium.

Only two groups have experimentally computed a time-varying elastance
curve for the left atrium [136, 137]. Both found the E(t) curve for an ejecting
atrium has two local maxima. In addition, only the group of Alexander et al. [136]
tested the load independence of the atrial E(t) and came up with a negative con-
clusion. Specifically, that the atrial E(t) is different for ejecting and non-ejecting
beats. More recently, other groups [138–140] also plotted pressure-volume loops
for differently loaded left atrial beats, but did not explicitly compute an atrial
elastance curve. Thus, the application of the time-varying elastance concept to
the atria remains very uncertain.

Despite all these theoretical issues regarding the use of an atrial time-varying
elastance, many models available in the literature rely on this concept [90, 102,
141–146]. In addition, these models only use atrial elastance curves similar to the
ventricular one. More specifically, one with only one maximum per cardiac cycle.
This approach holds largely due to the simplicity of the time varying elastance
theory, even though experiments have proven these curves were different.
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Figure 5.7: Sketch of a typical left atrial pressure-volume loop [134].

5.3.2 Multi-Scale Models

As with the ventricles, some multi-scale models of the atrial behaviour have been
developed in the literature [132, 134]. Since multi-scale models are based on a
microscopic-scale description of contraction, they can easily be transposed from
the ventricles to the atria, whose contraction happens on the same physiological
basis. The atrial equations are thus similar to Equations 5.9 to 5.12, but some
parameter values are different to account for the differences between the atria and
the ventricles, including, for instance, the geometry and timing of the contraction.
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5.4 Summary

This chapter first presented the most commonly used model to describe ventricu-
lar contraction in lumped CVS models, namely the time-varying elastance theory.
The simplicity of this theory makes it a very convenient tool, but this simplicity
comes with neglecting many complex phenomena happening during ventricu-
lar contraction. Multi-scale ventricular models were developed to overcome the
lack of physiological grounds of the time-varying elastance theory. Such models
are particularly interesting in the case of the atria since there exists no accurate
time-varying elastance model applicable to these chambers.
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Chapter 6

Models of the Cardio-Vascular
System

6.1 Introduction

This chapter presents two CVS models involving the passive and active elements
described in Chapters 4 and 5. The first model is a very simple three-chamber
model, describing the heart using the time-varying elastance theory. The second
is a more complete model, involving six chambers and taking into account both
the systemic and the pulmonary circulation.

6.2 Three-Chamber Model

The three-chamber CVS model is presented in Fig. 6.1. It consists of three elastic
chambers representing the heart (h), the arteries (a) and the veins (v). The three
model chambers are linked by vessel resistances representing an input (Ri) and
output (Ro) heart valve, and the circulation (Rc). This model can be linked to the
work of Danielsen and Ottesen [87], in which the venous chamber is replaced by
a constant pressure generator. The three-chamber model is also somewhat similar
to the one introduced by Parlikar and Verghese [147], the main difference lying in
the way the valves are modelled. More recently, Rüschen et al. have used a nearly
identical model to estimate CO in animals equipped with a left ventricular assist
device [148]. In their model, the input valve was not included, and the heart was
bypassed by the left ventricular assist device.
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Ea

Circulation
Rc
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+ = Vs,3+

Figure 6.1: Schematic representation of the three-chamber CVS model.

6.2.1 Equations

The arteries and veins in this model are described:

Pa(t) = EaVs,a(t) (6.1)

Pv(t) = EvVs,v(t) (6.2)

where Pa, Ea and Vs,a respectively denote arterial pressure, elastance and stressed
volume. The equivalent venous quantities are denoted using the subscript v.

The cardiac chamber is modelled using the time-varying elastance theory from
Equation 5.6:

Ph(t) = e(t)EhVs,h(t) (6.3)

where Ph, Eh and Vs,h respectively denote cardiac pressure, elastance and stressed
volume.

Flow Qc through the circulation is described by Ohm’s law from Equation 4.1:

Qc(t) =
Pa(t)− Pv(t)

Rc
(6.4)

where Rc denotes the resistance of the circulation. Flows Qi and Qo, through the
input and output valves, are described using the simple valve model of Equa-
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tion 4.4:

Qi(t) =


Pv(t)− Ph(t)

Ri
if Pv(t) > Ph(t)

0 otherwise
(6.5)

Qo(t) =


Ph(t)− Pa(t)

Ro
if Ph(t) > Pa(t)

0 otherwise.
(6.6)

where Ri and Ro denote the resistances of the input and output valves.

Finally, the continuity equation seen in Equation 4.14 gives the rate at which
the stressed volumes of the chambers change and results in:

dVs,h(t)
dt

= Qi(t)−Qo(t), (6.7)

dVs,a(t)
dt

= Qo(t)−Qc(t), (6.8)

dVs,v(t)
dt

= Qc(t)−Qi(t). (6.9)

Summing Equations 6.7 to 6.9 gives:

dVs,h(t)
dt

+
dVs,a(t)

dt
+

dVs,v(t)
dt

= 0. (6.10)

Consequently, the total stressed volume contained in the CVS model is a constant
parameter that can be expressed:

Vs,h(t) + Vs,a(t) + Vs,v(t) = Vs,3. (6.11)

6.2.2 Parameters

The three-chamber CVS model has eight parameters:

• T, cardiac period,
• Eh, cardiac end-systolic elastance,
• Ea, arterial elastance,
• Ev, venous elastance,
• Ri, input valve resistance,
• Ro, output valve resistance,
• Rc, resistance of the circulation and
• Vs,3, total stressed volume.

The model is set going using a driver function e(t) and initial conditions for Vs,h,
Vs,a and Vs,v(t) respecting Equation 6.11.
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6.2.3 Simulation

Figure 6.2 displays the result of a simulation of the three-chamber CVS model
using the parameter values given in Table 6.1. These values were chosen to pro-
duce physiological pressure and volume curves. The simulation displayed in
Figure 6.2 begins during diastole, so the input valve of the heart is open, while
the output valve is closed. Accordingly, flow through the input valve, Qi, is posi-
tive and proportional to the pressure difference between the veins and the heart,
Pv − Ph. In contrast, flow through the output valve, Qo, is zero because the pres-
sure in the arteries, Pa is higher than that of the heart, Ph. Consequently, venous
stressed volume, Vs,v, is decreasing, while cardiac stressed volume, Vs,h, is in-
creasing. Since the heart is filling, cardiac pressure, Ph gradually increases. On
the pressure-volume loop, filling is seen in the low pressure area.

Table 6.1: Parameter values for the simulation of the three-chamber CVS model presented
in Figure 6.2.

Parameter Units Value

T s 1.1

Eh mmHg/ml 1.4

Ea mmHg/ml 1.2

Ev mmHg/ml 0.2

Ri mmHg s/ml 0.05

Ro mmHg s/ml 0.04

Rc mmHg s/ml 2

Vs,3 ml 250

e(t) - exp

[
−20

(
(t mod T)− T

2

)2
]

At a moment dictated by the driver function, cardiac contraction initiates,
causing a rapid rise in cardiac pressure, which then becomes larger than the up-
stream venous pressure. The input valve subsequently closes, marking the end
of diastole. This closure allows the veins to fill, which is translated by a small
increase in pressure. Since the output valve is still closed, the cardiac volume
remains constant at its end-diastolic value. On the pressure-volume loop, this
period is illustrated by the vertical line at high volume.

Cardiac contraction is still going on, meaning that cardiac pressure keeps in-
creasing, until it becomes larger than arterial pressure. At this moment, the out-
put valve opens, marking the beginning of systole. Blood flows to the arteries,
consequently filling the arteries and emptying the heart. Arterial pressure sub-
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Figure 6.2: Simulation of the three-chamber CVS model using the parameters of
Table 6.1. Top-left: cardiac (Ph, black), arterial (Pa, red) and venous (Pv, cyan) pres-
sures. Top-right: cardiac (Vs,h, black), arterial (Vs,a, red) and venous (Vs,v, cyan) stressed
volumes. Bottom-left: input (Qi, cyan), output (Qo, black) and circulatory (Qc, red)
flows. Bottom-right: cardiac pressure-volume loop and the corresponding ESPVR.

sequently increases proportionally to the increase in arterial volume. This part
of the cardiac cycle corresponds to the top of the pressure-volume loop, where
pressures are large and volume is decreasing.

Arterial pressure, increasing because of filling, soon passes over ventricular
pressure, which is decreasing because of the drop in ventricular volume and be-
cause the heart starts to relax. At this moment, the output valve closes, marking
the end of systole. The output flow goes back to zero. Since the input valve is
still closed, the cardiac volume remains constant at its end-systolic value. On the
pressure-volume loop, this behaviour is seen in a vertical line at low volume.

Finally, cardiac pressure keeps decreasing, until it becomes lower than the up-
stream venous pressure. At this moment, the input valve opens, and the cardiac
cycle resumes. Thus, several cardiac cycles may be simulated if desired, thanks
to the modulo operator inserted in the driver function.
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6.2.4 Discussion

The pressures depicted in Figure 6.2 reproduce quite well the physiological ones
presented in Section 2.3.2. Simulated arterial pressure ranges between approxi-
mately 80 and 120 mmHg, which is its expected physiological range. As can be
seen from the arterial pressure waveform, the three-chamber CVS model does
not reproduce the dicrotic notch, defined in Section 2.3.2. This problem can be
solved using inertance elements, described in Section 4.2.1, and using two cham-
bers to describe the arteries [149]. Venous pressure is approximately constant, as
physiologically observed. Please note that simulated cardiac pressure is approxi-
mately symmetrical only because the chosen driver function is symmetrical. This
formulation of the driver function was chosen because it is the simplest possi-
ble, involving only two parameters. The use of a more complex driver function,
closer to the experimental one depicted in Figure 5.3, yields a more realistic car-
diac pressure curve [86–88, 92, 141, 150].

As a reminder, the outputs of the simulation are stressed volumes, which means
that they cannot be compared to actual volumes without knowing the value of the
corresponding unstressed volume, as defined in Equation 4.11. However, a differ-
ence of stressed volumes can be compared to a difference of actual volumes, since
unstressed volume is subtracted from itself during the computation. For instance,
in Figure 6.2, the range of the cardiac stressed volume curve equals:

∆Vs,h = Vs,h(tEF)−Vs,h(tEE) ≈ 140− 90 = 50 ml, (6.12)

where tEF and tEE denote the end of filling and the end of ejection. The range of
actual cardiac volume is identical to the previous quantity, since:

∆Vh = Vh(tEF)−Vh(tEE) = Vs,h(tEF) + Vu,h −Vs,h(tEE)−Vu,h = ∆Vs,h. (6.13)

The previous quantity is the model-based equivalent of SV. As for SV, it is also
equal to the width of the pressure-volume loop. The model-based equivalent of
CO can be obtained as:

∆Vs,h

T
≈ 50

1.1
≈ 45 ml/s. (6.14)

Equations 6.7, 6.8 and 6.9 dictate that the changes in chamber (stressed) vol-
umes are equal to the difference between flows coming in and going out of the
chambers. This statement can be checked from the plots of Figure 6.2. Please
note that during cardiac ejection, cardiac volume decreases and arterial volume
increases, but not by the same amount. Indeed, part of the volume ejected by the
heart flows directly into the vein, as will be discussed later. In a more general
fashion, the sum of all stressed volumes is constant at all times and equal to Vs,3.
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As expected from model Equations 6.1 and 6.2, the ratio of arterial (or venous)
pressures and volumes in Figure 6.2 is equal to Ea (or Ev).

One can also observe on the bottom-left panel of Figure 6.2 that the flow
curves have the shape of the differences between up and downstream pressures,
as dictated by Equations 6.4, 6.5 and 6.6. The integral of all three flows over one
heartbeat, the areas under the flow curves, is equal to ∆Vs,h. In particular, at
each cardiac cycle, this volume leaves the heart, goes through the circulation, and
comes back into the heart, to be ejected at the next heartbeat.

The bottom-right panel of Figure 6.2 displays the pressure-volume loop sim-
ulated by the three-chamber model and the corresponding ESPVR, whose equa-
tion is P = EhVs,h. The ESPVR crosses the origin because the graph represents
stressed volume. When absolute volume is represented, the equation of the ES-
PVR is P = Eh(V − Vu,h), repeating Equation 5.1, and the ESPVR does not cross
the origin, unless Vu,h = 0. As dictated by Equation 6.3, the pressure-volume
loop meets the ESPVR near end-systole or, more precisely, when e(t) is equal to
one.

6.2.5 Limitations

Besides the hypotheses formulated to establish the equations of the lumped el-
ements presented in Chapters 4 and 5, the building of the three-chamber CVS
model itself also relies on a series of assumptions. These assumptions are dis-
cussed in the following sections.

Only One Circulation

The biggest limitation of the three-chamber CVS model presented is the difficulty
to interpret it in terms of cardio-vascular physiology. Indeed, as explained in
Chapter 2, the CVS consists of two parallel circuits, the systemic and pulmonary
circulations, which are not represented in the model. The assumption underlying
the building of the three-chamber CVS model is that the systemic and pulmonary
circulations can be merged or considered separately. Other authors [147,148,151]
have previously proposed models representing only one circulation.

No Thoracic Pressure

As mentioned in Section 3, the heart and sections of the largest blood vessels are
enclosed in the thorax, resulting in part of the lung pressure being transmitted
to these structures. Taking thoracic pressure into account in the three-chamber
model is difficult because of the absence of two distinct circulations. Indeed, the
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effects of respiration on the left ventricle are different than on the right [14, 152].
This aspect cannot be correctly reproduced using the three-chamber CVS model,
since it includes only one cardiac chamber. Furthermore, the modelled passive
chambers, the arteries and the veins, are physiologically both partially located in
the thorax. Therefore, it is difficult to apply thoracic pressure in an anatomical
fashion in the model [153].

No Ventricular Interaction

As mentioned in Section 2.2.1, the heart is enclosed in a rather rigid structure,
called the pericardium. Consequently, an increase in left ventricular volume
compresses the right ventricle and reciprocally. Since there is only one cardiac
chamber in the three-chamber CVS model, inserting the direct interaction of the
ventricles in this model is not relevant.

No Atria

As explained in Section 5.3, the time-varying elastance theory has not yet been
demonstrated to be applicable to the atria. Consequently, the only way to repre-
sent the atria is to use a multi-scale model. However, multi-scale models involve
a large number of unknown parameters that cannot be identified from the limited
amount of clinical data available. For instance, the model developed by Pironet et
al. involves 21 parameters, only to represent the left atrial behaviour [134]. Since
the goal of the present work is an application in the ICU, the atria have been
neglected in establishing the three-chamber CVS model.

It is estimated that left atrial contraction can account for 15 to 30 % of left ven-
tricular filling [154–156]. However, the absence of atrial contraction in the model
will not lead to an underestimation of ventricular filling. Indeed, the model pa-
rameters can be adjusted so that model simulations match experimental data,
as explained in Part III of this work. Since all ventricular filling in the model is
caused by passive blood flow to the ventricles, the identified inflow resistance pa-
rameter, Ri will thus likely be lower than in reality, to allow for equivalent filling
that is totally passive.

No Inertances

The inertance elements introduced in Section 4.2.1 were not included in the three-
chamber CVS model, for several reasons. First, they have been shown to have
small values and to weakly affect model dynamics [149, 157]. Second, neglecting
these inertial parameters reduces uncertainty in the parameter estimation pro-
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cess. Finally, these parameters are difficult to measure and not well defined, and
thus difficult to validate even if used.

6.3 Six-Chamber Model

The six-chamber CVS model captures both circuits. It represents the left (LV)
and right (RV) ventricles, the systemic (SA) and pulmonary arteries (PA), and the
systemic (SV) and pulmonary veins (PV). The six chambers are linked by resistive
vessels, representing the four heart valves (mitral: MV, aortic: AV, tricuspid: TV
and pulmonary: PV) and the systemic and pulmonary circulations (sys and pul).
The model is presented in Figure 6.3.

Systemic
circulation

Rsys

+ = Vs,6+

ELV eLV(t)

Pulmonary
valve RPV

ERV eRV(t)

PPA, Vs,PA
Pulmonary

arteries

PPV, Vs,PV
Pulmonary

veins

PLV, Vs,LV
Left

ventricle

PSV, Vs,SV
Systemic

veins

PSA, Vs,SA
Systemic
arteries

PRV, Vs,RV
Right

ventricle

ESVEPA

ESAEPV

Tricuspid
valve RTV

Mitral
valve RMV

Aortic
valve RAV

Pulmonary
circulation
Rpul

+ ++
Figure 6.3: Schematic representation of the six-chamber CVS model.

The six-chamber CVS model used in this work has previously been presented
by Burkhoff and Tyberg [86]. This model is the simplest model to consider both
the systemic and pulmonary circulations. It has allowed theoretical studies as-
sessing the consequences of left ventricular dysfunction [86] and ventricular in-
teraction [96, 112]. From an experimental point of view, a similar model has been
used for haemodynamic monitoring during septic shock [95] and pulmonary em-
bolism [94, 101].
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6.3.1 Equations

The systemic and pulmonary arteries and veins are modelled as passive cham-
bers using Equation 4.12:

PSA(t) = ESAVs,SA(t) (6.15)

PSV(t) = ESVVs,SV(t) (6.16)

PPA(t) = EPAVs,PA(t) (6.17)

PPV(t) = EPVVs,PV(t), (6.18)

where PSA, ESA and Vs,SA respectively denote systemic arterial pressure, elastance
and stressed volume. The equivalent sytemic venous, pulmonary arterial and
pulmonary venous quantities are denoted using the subscripts SV, PA and PV,
respectively.

The left and right ventricles are active chambers. Thus, the relationship be-
tween pressure and volume is time-varying per Equation 5.6:

PLV(t) = eLV(t)ELVVs,LV(t) (6.19)

PRV(t) = eRV(t)ERVVs,RV(t), (6.20)

where PLV, eLV(t), ELV and Vs,LV(t) respectively denote left ventricular pressure,
elastance, driver function and stressed volume. The equivalent right ventricular
quantities are denoted using the subscript RV.

In the systemic and pulmonary circulations, flows Qsys and Qpul are given by
Ohm’s law in Equation 4.1:

Qsys(t) =
PSA(t)− PSV(t)

Rsys
(6.21)

Qpul(t) =
PPA(t)− PPV(t)

Rpul
. (6.22)

where Rsys and Rpul denote the resistance of the systemic and pulmonary circu-
lations. In the case of the valves, the model assumes that there is only flow when
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the pressure difference across the valve is positive, using Equation 4.4:

QMV(t) =


PPV(t)− PLV(t)

RMV
if PPV(t) > PLV(t)

0 otherwise
(6.23)

QAV(t) =


PLV(t)− PSA(t)

RAV
if PLV(t) > PSA(t)

0 otherwise
(6.24)

QTV(t) =


PSV(t)− PRV(t)

RTV
if PSV(t) > PRV(t)

0 otherwise
(6.25)

QPV(t) =


PRV(t)− PPA(t)

RPV
if PRV(t) > PPA(t)

0 otherwise,
(6.26)

where, QMV and RMV denote the flow through and the resistance of the mitral
valve. The equivalent quantities, linked to the aortic, tricuspid and pulmonary
valves, are denoted using the subscripts AV, TV and PV, respectively.

Finally, volume change in any of the six chambers is given by the difference
between flows in and out of the chamber using Equation 4.14:

dVs,LV(t)
dt

= QMV −QAV (6.27)

dVs,SA(t)
dt

= QAV −Qsys (6.28)

dVs,SV(t)
dt

= Qsys −QTV (6.29)

dVs,RV(t)
dt

= QTV −QPV (6.30)

dVs,PA(t)
dt

= QPV −Qpul (6.31)

dVs,PV(t)
dt

= Qpul −QMV. (6.32)

Summing Equations 6.27 to 6.32 gives:

dVs,LV(t)
dt

+
dVs,SA(t)

dt
+

dVs,SV(t)
dt

+
dVs,RV(t)

dt
+

dVs,PA(t)
dt

+
dVs,PV(t)

dt
= 0.

(6.33)

and integrating Equation 6.33 yields:

Vs,LV(t) + Vs,SA(t) + Vs,SV(t) + Vs,RV(t) + Vs,PA(t) + Vs,PV(t) = Vs,6. (6.34)

73



Chapter 6. Models of the Cardio-Vascular System

Equation 6.33 expresses that, since the model is a closed-loop, there is no net flow
going in or out of the whole CVS. Equation 6.34 expresses that, as a consequence,
total stressed volume in the model is conserved and set as a constant, denoted
Vs,6.

6.3.2 Parameters

The six-chamber model counts fourteen parameters:
• T, cardiac period ,
• ELV, left ventricular end-systolic elastance,
• ERV, right ventricular end-systolic elastance,
• ESA, systemic arterial elastance,
• EPA, pulmonary arterial elastance,
• ESV, systemic venous elastance,
• EPV, pulmonary venous elastance,
• RMV, mitral valve resistance,
• RAV, aortic valve resistance,
• RTV, tricuspid valve resistance,
• RPV, pulmonary valve resistance,
• Rsys, resistance of the systemic circulation,
• Rpul resistance of the pulmonary circulation, and
• Vs,6 total stressed volume.

This model requires two driver functions eLV(t) and eRV(t), for the left and right
ventricles, respectively.

6.3.3 Simulation

Figure 6.4 shows the result of the simulation of the six-chamber CVS model using
the parameter values in Table 6.2. The timing of the cardiac cycle is physiologi-
cally correct, as shown in Figure 6.4. The first phase represented in Figure 6.4 is
filling of the left and right ventricles. Mitral and tricuspid valves closure occurs
when ventricular pressures rise at the initiation of a new contraction. Isovolu-
mic contraction then begins. During this phase, ventricular pressures increase
until the aortic and pulmonary valves open due to crossover of ventricular and
downstream arterial pressures.
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Figure 6.4: Simulation of the six-chamber CVS model using the parameters of Table 6.2.
Top-left: left (PLV, black) and right (PRV, grey) ventricular, systemic (PSA, red) and
pulmonary arterial (PPA, magenta), systemic (PSV, light blue) and pulmonary venous
(PPV, blue) pressures. Top-right: left (Vs,LV, black) and right (Vs,RV, grey) ventricular,
systemic (Vs,SA, red) and pulmonary arterial (Vs,PA, magenta) stressed volumes. Centre-
left: systemic (Vs,SV, light blue) and pulmonary venous (Vs,PV, blue) stressed volumes.
Centre-right: mitral (QMV, blue), aortic valvular (QAV, black) and systemic (Qsys, red)
flows. Bottom-left: tricuspid (QTV, light blue), pulmonary valvular (QPV, grey) and
pulmonary (Qpul, magenta) flows. Bottom-right: left (black) and right (grey) ventricular
pressure-volume loops and the corresponding ESPVRs.
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Table 6.2: Parameter values for the simulation of the six-chamber CVS model presented in
Figure 6.4.

Parameter Units Value

T s 0.6

ELV mmHg/ml 2

ERV mmHg/ml 0.8

ESA mmHg/ml 2.5

EPA mmHg/ml 2.1

ESV mmHg/ml 0.01

EPV mmHg/ml 0.01

RMV mmHg s/ml 0.05

RAV mmHg s/ml 0.04

RTV mmHg s/ml 0.04

RPV mmHg s/ml 0.03

Rsys mmHg s/ml 2.5

Rpul mmHg s/ml 0.4

Vs,6 ml 1500

eLV(t) - exp

[
−80

(
(t mod T)− T

2

)2
]

eRV(t) - exp

[
−80

(
(t mod T)− T

2

)2
]

During ejection, the aorta and pulmonary artery fill up with blood, increasing
their pressures until they exceed the ventricular pressures. At this moment, the
aortic and pulmonary valve closes, denoting the beginning of isovolumic relax-
ation. When ventricular pressures drop below upstream venous pressures, the
mitral and tricuspid valves open, allowing filling of the ventricles, and the cycle
resumes.

The four phases of cardiac contraction, namely filling, isovolumic contrac-
tion, ejection and isovolumic relaxation can clearly be distinguished on the two
pressure-volume loops of Figure 6.4 (bottom-right).

The model thus captures the fundamental dynamics of the CVS. The choice of
a simple driver function as that of Table 6.2 only affects the overall shape of the
pressure and volume curves.
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6.3.4 Discussion

All comments that were made in Section 6.2.4 regarding the three-chamber model
can be reproduced here for the six-chamber model. Here also, the model-based
equivalent of SV can be computed as the height of the ventricular stressed volume
curves or the width of the pressure-volume loops. The computations yield

∆Vs,LV = ∆Vs,RV ≈ 25 ml. (6.35)

The model-based equivalent of CO is equal to:

∆Vs,LV

T
=

∆Vs,RV

T
≈ 25

0.6
≈ 42 ml/s. (6.36)

Left and right ventricular model-based SVs and COs are equal, which is to be
expected1 when the CVS model is simulated with constant determinants of CO
(contractility, preload, afterload and HR, as explained in Section 2.3.5).

As physiologically expected, pressures in the pulmonary circuit are lower
than in the systemic circuit [15]. Left and right ventricular contractions occur
at approximately the same time, which is due to the fact that left and right driver
functions used in this simulation are identical. However, this behaviour could
be made more realistic with small, physiological changes to the driver functions
used.

6.3.5 Limitations

The hypotheses underlying the formulation of the six-chamber CVS model are
detailed in this section.

No Thoracic Pressure

A more elaborated version of the six-chamber model takes thoracic pressure into
account [112]. However, in this work, simulations of the six-chamber model will
be compared to measurements obtained during open-chest and open-pericardium
experiments, meaning that the effects of thoracic pressure are cancelled. Con-
sequently, for a consistent comparison, these effects were not introduced in the
six-chamber model in this study, but can be readily added.

1The contrary would imply a constant accumulation of volume in some area of the CVS model.
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No Ventricular Interaction

As previously mentioned, ventricular interaction occurs through two structures:
the septum, which separates both ventricles, and the pericardium, which encloses
the whole heart. Smith et al.’s version of the six-chamber model also takes these
two structures into account [112]. Santamore and Burkhoff developed another
version of the six-chamber model, in wich ventricular interaction can be turned
on or off [96].

As explained in the previous section, the measurements to which simulations
will be compared are taken during open-chest and open-pericardium experi-
ments. As a consequence, the effects of pericardial pressures are cancelled and
ventricular interaction only occurs through the septum. For a consistent com-
parison with these experimental data, the pericardium was not introduced in the
six-chamber model. The effect of the septum, on the other hand, will be merged
in the identified values of the parameters ELV and ERV.

No Atria

A version of the six-chamber model in which the left atrium is taken into account
using a multi-scale model has been developed by Pironet et al. [134]. However,
as already mentioned in Section 6.2.5, this multi-scale model involves many pa-
rameters, that cannot be identified from data available in an ICU. Hence, it is not
used in this study of overall haemodynamics.

No Inertances

Some versions of the six-chamber model also include inertances [98]. For the
reasons listed in Section 6.2.5, these elements were not taken into account in the
version of the six-chamber model used in this work.

6.4 Summary

This chapter presented two very simple lumped models of the CVS. The models
presented were voluntarily kept as simple as possible, so that the number of pa-
rameters involved, as listed in Sections 6.2.2 and 6.3.2, was as low as possible. As
a result, identification of the model parameters can be performed using smaller
amounts of data, typically available in an ICU. Now that the CVS models have
been presented, the next part of this work describes how the parameter identifi-
cation of these models is performed.
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Part III

Identification of Cardio-Vascular
System Models
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Introduction

The goal of parameter identification is to find the model parameter values that
make simulations as close as possible to the data. Having discussed the models
in Part II, Part III first describes what kind of data is available for parameter iden-
tification. Chapter 8 investigates what data is absolutely necessary to perform
parameter identification. Chapter 9 discusses the concept of how to practically
find the best parameter values. Finally, Chapter 10 compares different methods to
perform parameter identification.
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Chapter 7

Available Data

7.1 Introduction

Parameter identification requires data, and model parameter values are then ad-
justed so the simulation results are as close as possible to the data. As a conse-
quence, the data of interest must correspond to variables of the previous chapter:
pressures, volumes and flows.

In this work, experimental animal data from a haemodynamics laboratory will
be used. Since the methodology is aimed to be implemented in the ICU, the data
available in an ICU must also be considered. While the type of data recorded
remains the same in the laboratory and in the ICU, the available quantity of data
and the way to record them are very different. These two settings will therefore
be described in two separate sections of the present chapter. Finally, please note
that this chapter only presents the sensors needed for the comprehension of the
following chapters and thus does not provide an extensive review of all available
cardio-vascular monitoring devices.

7.2 Experimental Data

The experimental data used in this work comes from three different sets of ex-
periments performed on pigs. These experiments were performed in the Haemo-
dynamics Laboratory of the GIGA-Cardiovascular Siences (University of Liège),
with the approval of the Ethics Commission for the Use of Animals at the Uni-
versity of Liège. The experimental procedures are detailed in Chapters 11 and
12, while the sensors used during these experiments are described in the present
section.
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7.2.1 Pressure Catheters

In a haemodynamics laboratory, pressure catheters are the most commonly used
data acquisition devices. Such catheters are tipped with a piezoelectric pressure
sensor [114], which is able, after a calibration step, to measure pressure changes
with respect to atmospheric pressure. Such sensors can then be positioned in
a wide range of anatomical locations, such as the aorta, vena cava, left atrium,
pulmonary artery, and others. They can then provide the continuous evolution
of pressures in these areas.

7.2.2 Pressure-Volume Catheters

As their name indicates, pressure-volume catheters are able to simultaneously
measure pressure and the volume of blood surrounding them. This dual mea-
surement is particularly useful to plot ventricular pressure-volume loops, such as
the one presented in Figure 5.1. They thus measure the fundamental CVS curve
directly at its location.

The principle of pressure measurement is similar to the one presented in the
previous section. To measure blood volume, the pressure-volume catheter actu-
ally measures the electric conductance, the inverse of resistance, of the surround-
ing blood. In more detail, the catheter consists of several electrode pairs [158,159].
A small alternating current is applied between the two extreme electrodes and
the voltage is measured between a pair of inner electrodes, as illustrated in use
in Figure 7.1. From the knowledge of current and voltage, the conductance can
be derived. The total conductance is, in turn, proportional to the blood volume
around the catheter [158, 159].

The main disadvantage of the conductance method is that the measured con-
ductance also takes into account the conductance of the tissues surrounding the
blood [158, 159]. Various methods have been designed to estimate the conduc-
tance of the tissues. These methods include the injection of saline solution, which
changes the conductance of the blood, but not that of the tissues.

Another way of estimating the conductance of tissues makes use of the alter-
nating nature of voltages and currents [159,160]. In that case, the resulting signal
is called admittance. Because blood and tissue have different frequency responses,
their contributions to the total admittance can be separated.
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Exciting electrode
Recording electrode
Pressure sensor
Recording electrode
Exciting electrode

Figure 7.1: Illustration of a pressure-volume catheter (adapted from [13], with permis-
sion).

7.3 Clinical Data

7.3.1 Pressure-Volume Catheters

The use of pressure-volume catheters is very rare in the ICU. Indeed, such cathe-
ters are meant to be placed into the ventricles, which is a highly invasive proce-
dure. Hence, they are not usually used clinically on humans.

7.3.2 Pressure Catheters

Pressure sensors used in the ICU rely on a different principle from those used in
the laboratory. They consist of a needle introduced in the vessel of interest, which
is often a peripheral vessel, such as the inferior vena cava or the femoral, radial,
brachial or axillary arteries [18]. Behind the needle is a plastic catheter filled with
saline fluid. Hence, the name fluid-filled catheter. Pressure is transmitted by the
two fluids, blood and saline, through the catheter to a pressure transducer located
at the end of the catheter [114].

7.3.3 The Pulmonary Artery Catheter

The pulmonary artery catheter is often referred to using the name of its design-
ers, Swan and Ganz. As its name indicates, the first purpose of this catheter is
measurement of pulmonary arterial pressure. What differentiates it from other
pressure catheters is the presence of a balloon at its tip, which helps correctly
position the catheter in the pulmonary artery.
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The placing of a pulmonary artery catheter is illustrated in Figure 7.2. The
pulmonary artery catheter is first inserted through the subclavian or jugular vein
[18]. It is then advanced in the superior vena cava, where the balloon is inflated to
help the catheter follow the blood flow. Thanks to the balloon, the catheter can be
advanced into the right atrium, then into the right ventricle. The pressure curves
provided by the catheter help in knowing its current position [18]. The catheter
is then pushed through the pulmonary valve into the pulmonary artery.

The catheter is again pushed further, until it gets wedged in a pulmonary
artery. Because the catheter is wedged, it prevents blood from flowing in the
vessel. Consequently, the pressure measured at the tip of the balloon, called the
pulmonary artery occlusion pressure (PAOP) or the the wedge pressure [161], is a re-
flection of the downstream pressures, namely pulmonary venous pressure and
left atrial pressure.

Finally, the balloon is deflated while the catheter is left at its current position,
thereby allowing blood to flow in the pulmonary artery. The catheter now pro-
vides a measurement of pulmonary arterial pressure.

Lungs

Wedge pressure

Pulmonary arterial
        pressure

Right ventricular
     pressure

Right atrial
 pressure

Thermistor

Thermistor

Balloon inflated

Superior 
vena cava

Figure 7.2: Illustration of the placement of a pulmonary artery catheter.

Pulmonary artery catheters also contain two thermistors, which are temper-
ature sensors. The first is located close to the tip of the catheter and the second
one, further from the balloon. When the catheter is correctly positioned, the first
thermistor should be located in the pulmonary artery and the second one, in the
right atrium [18]. These sensors can be used for measurement of CO by thermod-
ilution, as explained in the next section.
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7.3.4 Thermodilution

The thermodilution technique allows determination of CO [18]. It requires two
thermistors, usually located upstream and downstream of the heart [161]. Be-
fore the thermodilution, the blood temperature upstream and downstream of the
heart is equal to Tb. To estimate CO, a given volume, Vi, of cold fluid (at tem-
perature Ti) is quickly injected at the upstream site. The cold fluid subsequently
enters the heart, before being ejected. When the cold fluid progressively reaches
the downstream thermistor, a drop in the downstream temperature, Td(t), is de-
tected. The downstream temperature goes back to normal at a rate that is directly
proportional to the blood flow, in other words, to the CO.

Mathematically speaking, the relation reads:

CO =
(Tb − Ti)ViK∫ +∞

0 (Tb − Td(t)) dt
(7.1)

where K is a correction constant [161]. The previous equation is often called the
Stewart-Hamilton equation. A thermodilution curve refers to a plot of Tb − Td(t).
Such a curve is depicted in Figure 7.3.

Tb – Td(t)

Injection
t = 0

Time
MTt

exp(–t/DSt)�

Figure 7.3: Example of a thermodilution curve.

7.3.5 The PiCCO

The PiCCO is a hemodynamic monitoring device manufactured by Pulsion AG
(Germany). Its placement is depicted in Figure 7.4. The PiCCO requires the use
of arterial and venous catheters, located in the femoral artery and superior vena
cava in Figure 7.4. These two catheters are fluid-filled pressure catheters. The
arterial catheter can also measure temperature through a thermistor [162, 163].

The purpose of the thermistor is to provide an estimate of CO using ther-
modilution. With the PiCCO, as for the pulmonary artery catheter, the cold fluid
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Central venous catheter

Cold fluid injection site

Arterial catheter Thermistor

CO						27
l/min

GEDV	239
ml

FC							71
PA				95/45
PAM			63
PVC				20

25/16

PiCCO

Figure 7.4: Illustration of the PiCCO monitoring device.

is injected in the superior vena cava [163]. However, with the PiCCO, the cold
fluid goes through both the right and left sides of the heart, as illustrated in Fig-
ure 7.5, before being detected by the thermistor located in the femoral artery.
The cold fluid thus goes through the whole pulmonary circulation before being
detected. Therefore, this version of the thermodilution method is called transpul-
monary thermodilution [162, 163].

Right 
atrium

Right
ventricle

Lungs

PBV
+

GEDV
=

ITTV

Left 
atrium

Left
ventricle

Figure 7.5: Overview of the structures through which the cold fluid goes during a transpul-
monary thermodilution.
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During the transpulmonary thermodilution, the cold fluid is successively pum-
ped in the right atrium, right ventricle, lungs, left atrium, left ventricle and in the
arteries, as shown in Figure 7.5. Thanks to the thermodilution curve, the PiCCO
is also able to provide estimates of several pulmonary and cardiac volumes [162].
Among these volumes, the first one is the intrathoracic thermal volume (ITTV).
It is the volume through which a temperature drop is felt during the transpul-
monary thermodilution process. It consists of blood in the heart, lung water, and
a fraction of the heart and vessel walls. It is computed:

ITTV = CO MTt (7.2)

where MTt is the mean transit time of the cold fluid [161], as depicted in Fig-
ure 7.3. The second volume of interest is the pulmonary blood volume (PBV).
It can be determined by knowing that the transpulmonary thermodilution curve
decays in an exponential fashion, as exemplified in Figure 7.3. The time constant
of the exponential decay is called the downslope time (DSt). It is determined by
the volume of the largest compartment through which the fluid circulates, the
lungs [161]. Consequently, the PBV can be determined from the DSt:

PBV = CO DSt. (7.3)

Finally, the volume of the combined four heart chambers, called the global end-
diastolic volume (GEDV), can be estimated by subtracting PBV from ITTV:

GEDV = ITTV− PBV. (7.4)

In addition, the PiCCO uses the thermodilution-derived CO to compute the
parameters of its own mathematical model for CO. This approach allows beat-to-
beat estimation of CO, while the thermodilution only provides intermittent val-
ues of CO. This continuous estimation of CO is reliable as long as arterial proper-
ties do not change [164]. Otherwise, the system must be recalibrated using a new
thermodilution.

Finally, thanks to the catheter placed in the femoral artery, the PiCCO is able
to continuously compute the PPV index of fluid responsiveness [21]. In addition,
the continuous estimation of CO allows the PiCCO to continuously display the
SVV index of fluid responsiveness [162]. Note that the PPV and SVV indices were
introduced in Section 3.4.
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7.4 Summary

This chapter presented the data available in the two settings investigated in this
work: the animal laboratory and the ICU. In the animal laboratory, pressures
can be measured in nearly any location of the CVS using dedicated catheters.
Furthermore, ventricular volumes are also accessible, using ventricular pressure-
volume catheters.

However, in the ICU, ventricular volumes are typically not accessible and
measured pressures are usually peripheral ones. Consequently, to obtain car-
diac information such as CO, the thermodilution technique is often used. Two
devices were presented with which this technique can be performed: the pul-
monary artery catheter and the PiCCO. Both of these devices are able to measure
a wide range of other useful parameters, which will be of interest in the rest of
this work.
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Structural identifiability

8.1 Introduction

Chapter 6 presented two different mathematical models of the CVS. For these
models to be clinically relevant, they should be able to reproduce any given pa-
tient’s condition. To do so, the model parameters, presented in Tables 6.2.2 and
6.3.2, have to be identified from measured data so that simulations of the models
match the clinical data. This task is not obvious due to the indirect nature of the
typically available clinical data, as explained in Chapter 7.

Importantly, as will be shown in this chapter, there are several measurement
sets from which the parameters of these models cannot be uniquely computed.
The key question is thus: can we find a measurement set that allows unique identifica-
tion of all model parameters? In more theoretical terms, this question can be stated
as: what is the set of model outputs one has to include in the model definition for the
model to be structurally globally identifiable?

8.1.1 Structural Identifiability

Structural identifiability analysis of a model determines whether all model pa-
rameters can be uniquely retrieved under perfect conditions of noise-free and
continuous measurements of the model outputs. If the answer is yes, then the
model is said to be structurally globally identifiable [165, 166]. Otherwise, if there
exists multiple parameter values for the given model outputs, the model is struc-
turally locally identifiable to a set of limited possible values. Finally, if there is an
infinite number of possible parameter values, the model is termed structurally
non-identifiable and no unique values can be retrieved.

Structural identifiability is called structural because it only depends on the
model structure, that is, its equations. Therefore, it depends on the roles of the
parameters and the nature and number of the available model outputs. For in-

91



Chapter 8. Structural identifiability

stance, if the number of model outputs is too low with respect to to the number
of parameters to identify, the model is likely to be non-identifiable, and there will
not be enough unique measurements to separate parameter values.

Taking the measurement noise and the practically finite number of data points
into account and investigating if the model parameters can still be uniquely de-
termined relates to a different topic, called practical identifiability [167], and dis-
cussed in Chapter 9. Structural identifiability is a necessary condition for practi-
cal identifiability. It is therefore risky to perform a parameter identification pro-
cedure on a model that has not been shown to be structurally identifiable.

8.1.2 Goal

This chapter aims to prove the structural identifiability of the three-chamber mo-
del described in Section 6.2 from a typical clinically available output set. As said
above, this structural identifiability analysis is a necessary step to ensure that re-
sults obtained when identifying the model parameters from limited clinical data
are unique, and thus, relevant.

8.2 Methods

8.2.1 Parameter Set

The model is defined in Equations 6.1 to 6.11 and the parameter set to identify, p,
consists of seven elements:

p = (Ea Ev Eh Ri Ro Rc Vs,3). (8.1)

This parameter set is different from the list in Section 6.2.2 because the cardiac
period, T, and the driver function, e(t) are missing. The cardiac period is indeed
trivial to obtain from any haemodynamic signal, and the form of the driver func-
tion does not matter in the following specific analysis, as long as it is T-periodic
and ranges from 0 (diastole) to 1 (end-systole).

8.2.2 Output Sets

In this section, three different model output sets, yk (k = 1, 2 or 3), are proposed
for the three-chamber model. Structural identifiability of the model is then as-
sessed for each of these output sets.
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Output Set y1 Containing Only Volumes

To show a first example of structural non-identifiability, it is assumed that all
chamber stressed volumes are model outputs. Consequently, the outputs of the
three-chamber model are:

• Stressed volume in the arteries, Vs,a(t),
• Stressed volume in the veins, Vs,v(t),
• Stressed volume in the heart, Vs,h(t),

and the output set is:
y1 = (Vs,a(t) Vs,v(t) Vs,h(t)). (8.2)

Output Set y2 Containing Only Pressures

For the second example of structural non-identifiability, it is assumed that all
chamber pressures are model outputs. Consequently, the outputs of the three-
chamber model are:

• Pressure in the arteries, Pa(t),
• Pressure in the veins, Pv(t),
• Pressure in the heart, Ph(t),

and the output set is:
y2 = (Pa(t) Pv(t) Ph(t)). (8.3)

Clinically Available Output Set y3

Finally, to show structural identifiability, the outputs of the three-chamber model
are chosen to be the following clinically available measurements:

• Pressure in the arteries, Pa(t),
• Pressure in the veins, Pv(t),
• Integral of the ejected flow during one cardiac period,

∫ T
0 Qo(t) dt.

The availability of these measurements in a clinical setting is explained in Sec-
tion 8.4. The output set is thus defined:

y3 =

(
Pa(t) Pv(t)

∫ T

0
Qo(t) dt

)
. (8.4)

8.3 Results

As previously mentioned, there are certain measurement sets from which the mo-
del parameters cannot be uniquely determined. In these cases, the model is struc-
turally non-identifiable. Two such cases are first described in this section.
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8.3.1 Output Set y1 Containing Only Volumes

From the model equations, it can be seen that all simulated volumes will be ex-
actly the same if all elastances, Ea, Ev and Eh, and resistances, Ri, Ro and Rc, are
multiplied by the same factor. Indeed, expressing Equations 6.7, 6.8 and 6.9 solely
in terms of volumes by substituting pressures and flows using Equations 6.1 to
6.6 results in:

dVs,h(t)
dt

= r
[

EvVs,v(t)− Ehe(t)Vs,h(t)
Ri

]
− r

[
Ehe(t)Vs,h(t)− EaVs,a(t)

Ro

]
(8.5)

dVs,a(t)
dt

= r
[

Ehe(t)Vs,h(t)− EaVs,a(t)
Ro

]
− EaVs,a(t)− EvVs,v(t)

Rc
(8.6)

dVs,v(t)
dt

=
EaVs,a(t)− EvVs,v(t)

Rc
− r

[
EvVs,v(t)− Ehe(t)Vs,h(t)

Ri

]
, (8.7)

where r(x) is the ramp function, defined:

r(x) =

 x if x > 0

0 otherwise.
(8.8)

Equations 8.5 to 8.7 only involve the following ratios of elastances to resis-
tances:

Ev

Ri
,

Eh

Ri
,

Eh

Ro
,

Ea

Ro
,

Ea

Rc
,

Ev

Rc
. (8.9)

Therefore, including only stressed volumes in the output vector results in a case
of structural non-identifiability.

8.3.2 Output Set y2 Containing Only Pressures

Once again, from the model equations, it can be seen that all simulated pressures
will be exactly the same if all elastances , Ea, Ev and Eh, and resistances, Ri, Ro and
Rc, are multiplied by the same factor, while Vs,3 is divided by this factor. Hence,
like the first case, it is not structurally identifiable as there is an infinite number
of such multipliers.

8.3.3 Clinically Available Output Set y3

It can be shown that all seven parameters of the three-chamber model can be
uniquely retrieved from the output set y3. The corresponding demonstration
is quite technical and is provided in the following section. This outcome, in
turn, proves that the three-chamber CVS model is structurally globally identi-
fiable from these specific output signals. Consequently, given all required mea-
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surements of the outputs, there exists one and only one possible parameter set
corresponding to these measurements, a unique solution.

8.3.4 Demonstration of Structural Identifiability from the Third
Output Set, y3

To perform the structural identifiability of a model, it is assumed that the outputs
can be perfectly and continuously measured [168]. Consequently, they can be
differentiated as much as necessary. As a reminder, the outputs of the three-
chamber model were chosen to be:

• Pressure in the arteries, Pa(t),
• Pressure in the veins, Pv(t),
• Integral of the ejected flow during one cardiac period,

∫ T
0 Qo(t) dt.

Furthermore, it will also be assumed that the driver function, e(t), is known.

In the following sections, it is shown that unique relationships can be estab-
lished between the seven model parameters in p and the three model outputs in
y3 in Equation 8.4. This outcome implies that the three-chamber model is identi-
fiable from this output set.

During the Whole Cardiac Cycle

Integrating Equation 6.4 over a whole heartbeat, from = 0 to t = T, yields:

∫ T

0
Qc(t) dt =

∫ T
0 [Pa(t)− Pv(t)] dt

Rc
. (8.10)

Rearranging this equation gives:

Rc =

∫ T
0 [Pa(t)− Pv(t)] dt∫ T

0 Qc(t) dt
. (8.11)

This result shows that the parameter Rc is the model-based equivalent of the SVR,
introduced in Section 2.3.4.

Integrating Equation 6.8 during one cardiac cycle gives:

∫ T

0

dVs,a(t)
dt

dt =
∫ T

0
Qo(t) dt−

∫ T

0
Qc(t) dt (8.12)

⇔ Vs,a(T)−Vs,a(0) =
∫ T

0
Qo(t) dt−

∫ T

0
Qc(t) dt. (8.13)
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Since the simulated signals are all T-periodic, the left-hand side is equal to zero,
leading directly to:

∫ T

0
Qo(t) dt =

∫ T

0
Qc(t) dt. (8.14)

Combining Equations 8.11 and 8.14 gives:

Rc =

∫ T
0 [Pa(t)− Pv(t)] dt∫ T

0 Qo(t) dt
, (8.15)

Equation 8.15 makes it possible to compute Rc, since all elements of the right-
hand side are known.

During Ejection

At the beginning of ejection, t = tBE, cardiac pressure equals arterial pressure:

Pa(tBE) = Ph(tBE). (8.16)

Using Equation 6.3 gives:

Pa(tBE) = Ehe(tBE)Vs,h(tBE) (8.17)

⇔ Vs,h(tBE) =
Pa(tBE)

Ehe(tBE)
(8.18)

Similarly, at the end of ejection, t = tEE, cardiac pressure once again equals arte-
rial pressure:

Pa(tEE) = Ph(tEE) (8.19)

= Ehe(tEE)Vs,h(tEE) (8.20)

⇔ Vs,h(tEE) =
Pa(tEE)

Ehe(tEE)
(8.21)

Integrating Equation 6.7 during ejection results in:

∫ tEE

tBE

dVs,h(t)
dt

dt =
∫ tEE

tBE

Qi dt−
∫ tEE

tBE

Qo dt (8.22)

⇔ Vs,h(tEE)−Vs,h(tBE) =
∫ tEE

tBE

Qi dt−
∫ tEE

tBE

Qo dt. (8.23)

During ejection, flow going into the heart, Qi, is equal to zero. In addition, flow
going out of the heart, Qo, is different from zero only during ejection. Conse-
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quently, Equation 8.23 can also be written:

Vs,h(tEE)−Vs,h(tBE) = −
∫ T

0
Qo dt. (8.24)

Combining Equations 8.18, 8.21 and 8.24 gives:

Pa(tEE)

Ehe(tEE)
− Pa(tBE)

Ehe(tBE)
= −

∫ T

0
Qo dt. (8.25)

⇔ Eh =
1∫ T

0 Qo dt

(
Pa(tBE)

e(tBE)
− Pa(tEE)

e(tEE)

)
. (8.26)

Since the right side of Equation 8.26 is known, it provides the second identifiable
parameter Eh.

During cardiac ejection, the input valve is closed because cardiac pressure
is higher than venous pressure, Ph(t) > Pv(t). Consequently, the combination of
Equations 6.4, 6.5 and 6.9 can be written:

dVs,v(t)
dt

= Qc =
Pa(t)− Pv(t)

Rc
(8.27)

Combining this equation with Equation 6.2 gives:

dPv(t)
dt

= Ev
Pa(t)− Pv(t)

Rc
. (8.28)

Equation 8.28 thus shows that Ev is identifiable, since Rc is already known:

Ev =
dPv(t)

dt
Rc

Pa(t)− Pv(t)
. (8.29)

Since the data is assumed to be perfect, the right-hand side of Equation 8.29 is
exactly equal to Ev at any time during cardiac ejection.

During Filling

During cardiac filling, Pa(t) > Ph(t), and the combination of Equations 6.4, 6.6
and 6.8 gives:

dVs,a(t)
dt

= −Qc = −
Pa(t)− Pv(t)

Rc
. (8.30)

Using Equation 6.1, Equation 8.30 becomes:

dPa(t)
dt

= −Ea
Pa(t)− Pv(t)

Rc
. (8.31)
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This equation can be solved for Ea, proving that this parameter is identifiable:

Ea = −dPa(t)
dt

Rc

Pa(t)− Pv(t)
. (8.32)

Since the data is assumed to be perfect, the right-hand side of Equation 8.32 is
entirely known and exactly equal to Ea at any time during cardiac filling.

During cardiac filling, Pv(t) > Ph(t), thus flow through the input valve is
positive. The combination of Equations 6.2, 6.4, 6.5 and 6.9 yields:

dPv(t)
dt

= Ev

(
Pa(t)− Pv(t)

Rc
− Pv(t)− Ph(t)

Ri

)
. (8.33)

If Equation 8.33 is differentiated once more, the result is:

d2Pv(t)
dt2 = Ev

[
1

Rc

(
dPa(t)

dt
− dPv(t)

dt

)
− 1

Ri

(
dPv(t)

dt
− dPh(t)

dt

)]
. (8.34)

To eliminate dPh(t)/dt, the derivative of Equation 6.3 can be used:

dPh(t)
dt

= Eh
de(t)

dt
Vs,h(t) + Ehe(t)

dVs,h(t)
dt

. (8.35)

To eliminate the unknown dVs,h(t)/dt from Equation 8.35, the combination of
Equations 6.5, 6.6 and 6.7 during filling yields:

dVs,h(t)
dt

=
Pv(t)− Ph(t)

Ri
. (8.36)

The algebraic system formed by Equations 6.3, 8.33, 8.34, 8.35 and 8.36 has five
equations and five unknowns, Ri, Ph, Vh, dPh(t)/dt and dVs,h(t)/dt. Solving this
system with a symbolic computation software (Mathematica Version 8.0, Wol-
fram Research Inc., Champaign, IL) shows that it has a unique solution for all
t. The uniqueness of the solution, in turn, guarantees the identifiability of the
parameter Ri. It also provides the curve of Vs,h(t) during filling, which will be
useful further in this demonstration.

Since arterial and venous pressures are known, as well as the elastances of the
two corresponding chambers, Ea and Ev, stressed volume in these chambers can
be obtained from Equations 6.1 and 6.2. And, since cardiac volume Vs,h(t) is now
also known, Vs,3 can be computed from its definition, Equation 6.11:

Vs,3 = Vs,h(t) + Vs,a(t) + Vs,v(t) = Vs,h(t) +
Pa(t)

Ea
+

Pv(t)
Ev

. (8.37)
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During Ejection (Continued)

The knowledge of arterial elastance Ea from the previous section now makes
it possible to obtain the value of the output valve resistance, Ro. To do so, it
is necessary to return to the ejection phase and to apply a reasoning similar to
the one used to compute the input valve resistance, Ri. During cardiac ejection,
Ph(t) > Pa(t), flow through the output valve is positive. The combination of
Equations 6.1, 6.4, 6.6 and 6.8 now yields:

dPa(t)
dt

= Ea

(
Ph(t)− Pa(t)

Ro
− Pa(t)− Pv(t)

Rc

)
. (8.38)

If Equation 8.38 is differentiated once more, the result is:

d2Pa(t)
dt2 = Ea

[
1

Ro

(
dPh(t)

dt
− dPa(t)

dt

)
− 1

Rc

(
dPa(t)

dt
− dPv(t)

dt

)]
. (8.39)

The combination of Equations 6.5, 6.6 and 6.7 during ejection yields:

dVs,h(t)
dt

= −Ph(t)− Pa(t)
Ro

. (8.40)

The algebraic system formed by Equations 6.3, 8.35, 8.38, 8.39 and 8.40 has five
equations and five unknowns, Ro, Ph, Vh, dPh(t)/dt and dVs,h(t)/dt. Solving
this system shows that it has a unique solution for all t. This outcome, in turn,
guarantees the identifiability of the parameter Ro.

All seven model parameters have thus been shown to be computable from
the selected set of model outputs, which implies that the three-chamber model is
structurally globally identifiable from this set of model outputs. For a better un-
derstanding, the demonstration exposed above is summarised in Table 8.1. Each
model parameter involved is linked with the equation(s) used to compute it from
the output set y3.

8.4 Discussion

The aim of this chapter was to investigate the structural identifiability of the
three-chamber CVS model, from three different output sets. The property of be-
ing structurally identifiable guarantees that all model parameters can be uniquely
retrieved under the assumption of perfect measurement of the outputs. If a mo-
del cannot be shown to be structurally identifiable, performing parameter iden-
tification using real data is risky, because there is no guarantee that the resulting
parameter values are unique.
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Table 8.1: Summary of the demonstration of structural identifiability of the three-chamber
CVS model.

Parameter Corresponding equation(s)

Rc 8.15

Eh 8.26

Ev 8.29

Ea 8.32

Ri 6.3, 8.33, 8.34, 8.35 and 8.36

Vs,3 8.37

Ro 6.3, 8.35, 8.38, 8.39 and 8.40

The first output set, y1, contained stressed volumes in all three model cham-
bers and using it resulted in a case of structural non-identifiability. Two conclu-
sions can be derived from this result. First, the model will also be structurally
non-identifiable from any output set that is a subset of y1, in other words, that
contains only stressed volumes in part of the model chambers. Second, it can
be stated that an adequate output set for this CVS model has to contain more
information than only stressed volumes. For example, uniquely identifying an
elastance parameter requires both volume and pressure.

Similarly, the second output set, y2, contained pressures in all three model
chambers and also resulted in a case of structural non-identifiability. This sec-
ond result implies that the model will also be non-identifiable from an output
set containing only pressures in part of the model chambers. Thus, similarly, an
adequate output set for the three-chamber CVS model must include more infor-
mation than only pressures.

Taking these two observations together results in the conclusion that an ade-
quate output set for the three-chamber model must combine information on both
pressures and stressed volumes for the model to potentially be structurally identi-
fiable. However, due to the lumped nature of the model and technical limitations,
chamber stressed volumes are actually very difficult to measure. Hence, only one
unavoidable volume measurement, the integral of the ejected flow during one
cardiac period,

∫ T
0 Qo(t) dt, was included in the third output set, y3. The rest of

this set consisted of arterial and venous pressures. The model was then shown to
be structurally identifiable from this output set.

The measurements contained in y3 can readily be obtained in an ICU setting.
First, the integral of the ejected flow during one cardiac period,

∫ T
0 Qo(t) dt, is a

model-based equivalent of SV and can thus be determined using thermodilution,
as explained in Section 7.3.4. In addition, model-based methods for real-time
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measurement of SV are emerging [169]. Second, systemic arterial pressure and
vena cava pressure can be obtained using arterial and central venous lines.

The three-chamber CVS model was thus shown to be structurally globally
identifiable from a limited output set containing arterial and venous pressures
and SV. However, this limited measurements set might still be reduced. It would
thus be useful to investigate the structural identifiability of all model parameters
from other output sets, either smaller or containing different outputs.

To reduce the number of model outputs, additional assumptions may be suit-
able. For instance, these assumptions can take the form of a definition of a re-
lation between parameters. Another way to reduce the size of the output set is
to fix some model parameters. For instance, a second demonstration, performed
in Appendix A, shows that, if valve resistances are not identified, the remaining
parameters can be identified using an output set y4 containing only arterial pres-
sure, Pa(t), and

∫ T
0 Qo(t) dt. In this case, venous pressure, Pv(t), does not have

to be included in the outputs, which is a significant improvement, mathemati-
cally and clinically. The reason for not identifying valve resistances is that these
parameters are practically difficult to identify, as will be shown in Chapter 12.
Chapter 9, in turn, will provide simple formulae to obtain approximate values
for these parameters.

It is also important to mention that, even if the present analysis was focused on
the three-chamber CVS model, the two non-identifiability cases mentioned in Sec-
tion 8.3 are not exclusive to the three-chamber CVS model. Many other CVS mod-
els, including the six-chamber model [170], suffer the same non-identifiability
cases, since they involve very similar equations. For instance, Abdulla et al. in-
vestigated the structural identifiability of cardio-vascular feedback models [171].
Two of the four models investigated were not identifiable using only HR and
MAP as outputs. For these models, including SV or CO in the outputs made the
models identifiable.

The demonstration presented in Section 8.3.4 is based on the equations of the
three-chamber model, and thus, cannot be applied as such to other CVS mod-
els. However, most lumped CVS models are built from elements very similar to
those involved in this three-chamber model, for instance time-varying elastances
of Equation 5.5 and vascular resistances of Equation 4.1. Consequently, Equa-
tions 8.15 and 8.26, that were developed to show the identifiability of these pa-
rameters, can be used with other models. In particular, a demonstration equiva-
lent to the one presented in this chapter has been applied to prove structural iden-
tifiability of the six-chamber CVS model from SV, arterial pressure, pulmonary
artery pressure, vena cava pressure and pulmonary venous pressure [170]. The
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additional data, pulmonary artery and venous pressures, can be provided by a
pulmonary artery catheter, as described in Section 7.3.3.

8.5 Summary

The three-chamber CVS model and others are not identifiable from a general mo-
del output set. In this chapter, two such cases of structural non-identifiability
were first presented. These cases occur when the model output set only contains
a single type of information, such as solely pressures or volumes.

Thus, a specific output set was chosen, mixing pressure and volume infor-
mation, and containing only a limited number of clinically available measure-
ments. Then, by manipulating the model equations involving these outputs,
it was demonstrated that the three-chamber CVS model is structurally globally
identifiable. The model parameters are thus unique and can theoretically be iden-
tified from the specified limited output set.

A further simplification was made, assuming known cardiac valve resistances.
Under this hypothesis, the three-chamber model is structurally identifiable from
an even smaller dataset involving only arterial pressure and SV.

The results of this chapter imply that parameter values computed from lim-
ited but well-chosen datasets are theoretically unique. As a consequence, the
parameter identification procedure can theoretically be performed on the model
from such a well-chosen dataset. The next chapter deals with the practical aspects
of parameter identification.
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Practical Identifiability

9.1 Introduction

In the previous chapter and in Appendix A, formulae were developed involving
time derivatives of physiological measurements up to the fourth order. Such for-
mulae are impossible to use in practice because the measurement noise would
be amplified by each differentiation step. Thus, the assumption of perfect and
noise-free data does not hold in practice and the equations developed in Chap-
ter 8 cannot be used to practically compute the model parameters, although they
do prove the structural identifiability. The next step is to investigate how to prac-
tically identify the model parameters in the presence of actual, noisy and discrete
data, thus investigating the practical identifiability of the model [167].

First, a criterion needs to be defined that will be used to decide which param-
eter set is the best one (Section 9.2). Section 9.3 then investigates the effect of each
parameter on this criterion, while Section 9.4 investigates whether two parame-
ters have the same effect. A parameter that does not influence the error criterion
much or that has the same effect as another one is not likely to be practically
identifiable. Section 9.5 shows how to decide which parameters not to identify.
Finally, Section 9.6 shows how to find good initial parameter values to start the
identification process.

9.2 Minimisation Criterion

The aim of the parameter identification process is to find the parameter values
that make the simulations as close as possible to the data. The results thus depend
on what error value is defined as close. A measure of distance is first introduced,
and the goal is to minimise this value.

103



Chapter 9. Practical Identifiability

The output vector y that will be used for the rest of this work does not depend
on time. The reason for this choice is twofold. First, the temporal evolution of all
signals is not always available clinically, such as for ventricular volumes. Further-
more, even if haemodynamic monitors, such as the PiCCO, display the pressure
curves, these data cannot always be exported. Consequently, only beat-to-beat
data, such as MAP, SAP, DAP, CVP or CO are usually available when using such
monitors.

Second, as explained in Sections 2.3.3 and 2.3.4, the cardiac and vascular state
is not usually assessed using continuous curves. Instead beat-to-beat parameters,
which are ranges and means of these curves are typically reported. Therefore,
only errors on ranges and means of signals are taken into account in this chapter.

The range of a simulated pressure or volume signal S(t) over one cardiac pe-
riod is defined:

∆S = max
T

S(t)−min
T

S(t). (9.1)

It is the difference between the maximum and the minimum of this signal over
one cardiac period, T, which is thus twice its amplitude. The mean of a signal
S(t) over one cardiac period is defined using the common definition:

S̄ =
1
T

∫
T

S(t) dt. (9.2)

Let yref be a vector containing the Ny reference measurements and y(p), a
vector containing the Ny corresponding simulated values using the parameter
vector p. The relative error vector e between simulated and reference values is
defined:

ei(p) =
yref

i − yi(p)
yref

i
, for i = 1 to Ny. (9.3)

A scalar error function ψ2 is defined as the sum of the squared components of
e:

ψ2(p) =
Ny

∑
i=1

ei(p)2. (9.4)

Alternatively, the error function is sometimes defined as the sum of the absolute
values of the components of e:

ψ1(p) =
Ny

∑
i=1
|ei(p)|. (9.5)

The goal of the parameter identification process is thus to find the parameter
vector p∗ that makes ψ2 (or ψ1) the smallest. In mathematical terms, it can be
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written:
p∗ = arg min

p
ψ2(p). (9.6)

Using ψ2, p∗ is the best or optimal parameter vector in the least-squares sense [165].
If ψ1 is used, p∗ is the best parameter vector in the least-modulus sense [165].

9.3 Sensitivity Analysis

The aim of a sensitivity analysis is to know which parameters have the largest
influence on the error vector. This question can be answered using the Jacobian
matrix. The non-dimensionalized Np×Ny Jacobian matrix, J, contains the deriva-
tives of the error vector, e, with respect to the vector of model parameters p [172]:

J =



∂e1

∂p1
p1

∂e2

∂p1
p1 · · ·

∂eNy

∂p1
p1

∂e1

∂p2
p2

∂e2

∂p2
p2 · · ·

∂eNy

∂p2
p2

...
... . . . ...

∂e1

∂pNp

pNp

∂e2

∂pNp

pNp · · ·
∂eNy

∂pNp

pNp



. (9.7)

In this work, the derivatives in the Jacobian matrix are computed by central
difference approximation:

∂el
∂pk
≈ el(p + hlk)− el(p− hlk)

2h
(9.8)

where h is a small step (typically 1 % of pk) and lk is a vector whose Np entries
are all zeros, except the kth one, which is equal to 1.

This method requires solving the model equations twice per parameter, yield-
ing 2Np simulations required. A more precise method exists to compute the Jaco-
bian [173], but it implies solving 3Np or 6Np additional equations, depending on
whether the three or six-chamber model is used. These additional equations are
called the sensitivity equations [88].
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To evaluate the sensitivity J̄k of the error vector e to the kth parameter pk, the
Euclidean norm of the kth row of the Jacobian matrix can be computed

J̄k =

√√√√ Ny

∑
l=1

[J]2kl. (9.9)

The previous number should be normalised by Ny if different Jacobian matrices
need to be compared. In this work, only rows of the same Jacobian matrices are
compared, so the normalisation is not needed.

9.4 Correlation Analysis

Performing a correlation analysis allows testing if any pair of parameters pm and
pn exerts the same influence on e. The motivation to perform such an analysis
is that, if two parameters have very similar effects on the error vector, they will
not be easily identifiable together. Hence, they may not be practically identifiable
[167].

The probabilistic concepts introduced in this section are used when the uncer-
tainty on the measurements is taken into account in the parameter identification
process. This uncertainty is often summarised in the the variance of the error,
which needs to be known. However, in the particular case of the correlation anal-
ysis, assuming the variance of the error to be a constant, denoted σ2

e , is sufficient.

Let Σ be the Np × Np covariance matrix of the parameter vector, p. This ma-
trix describes how estimates of the parameters are spread around their optimal
value, p∗, because of the uncertainty on the measurements [165]. Ideally, the com-
ponents of Σ should be as small as possible, indicating a low uncertainty on the
optimal parameter values.

A minimum bound on the covariance between parameters is provided by the
Cramér-Rao inequality [165]:

Σ � F−1. (9.10)

The previous equation actually states that Σ− F−1 is a positive semidefinite ma-
trix. The Np × Np matrix F is called the Fisher information matrix [165]. In the
simplest cases, it can be computed by [174]:

F = σ−2
e JJT, (9.11)

where T denotes the transpose matrix.
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Then, the Np × Np correlation matrix C can be obtained from F as [165, 174]

[C]mn =
[F−1]mn√

[F−1]mm[F−1]nn
=

[(JJT)−1]mn√
[(JJT)−1]mm[(JJT)−1]nn

. (9.12)

The closer the element [C]mn is to 1 (or −1), the more the parameters pm and pn

are directly (or inversely) correlated.

9.4.1 Example on the Three-Chamber Model

The correlation analysis has been applied to the three-chamber CVS model. The
reference values for the model outputs, which are the components of yref, were
extracted from Figure 2.9 and are summarized in Table 9.1. Since no venous pres-
sure curve is displayed in Figure 2.9, left atrial pressure was used instead. The
parameter vector includes:

p = (Eh Ea Ev Ri Ro Rc Vs,3), (9.13)

and the parameter values at which the Jacobian matrix was computed were taken
from Table 6.1.

Table 9.1: Reference output values for the parameter correlation analysis performed on the
three-chamber CVS model.

Measurement Value Units Reference output

Left ventricular SV 80 ml ∆Vref
s,h

Aortic PP 40 mmHg ∆Pref
a

Left ventricular PP 130 mmHg ∆Pref
h

Mean left ventricular pressure 65 mmHg P̄ref
h

MAP 93 mmHg P̄ref
a

Mean left atrial pressure 10 mmHg P̄ref
v

Mean left ventricular volume 90 ml V̄ref
h

The computed correlation matrix C is displayed in Figure 9.1. As can be ob-
served, each parameter is perfectly correlated with itself ([C]ii = 1 for i = 1 to
7), as should be expected. Other strong correlations, defined as |[C]ij| > 0.85,
according to Olufsen and Ottesen [174], are present in the matrix. Thus, not all
parameters of the model will be practically identifiable from the set of outputs in
Table 9.1.

In particular, [C]3,7 = [C]7,3 = −1.00, so that there is a nearly perfect inverse
correlation between venous elastance, Ev and total stressed volume, Vs,3. Indeed,
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Figure 9.1: Correlation matrix C for the parameters of the three-chamber CVS model
and the outputs of Table 9.1.

Vs,3 can be increased arbitrarily if the venous elastance is decreased accordingly
so that the venous chamber stores enough blood. This case results in the same
mean venous pressure for appropriate pair of values, and thus indicates they are
not both practically identifiable.

For example, Figure 9.2 shows a simulation of the three-chamber CVS model
using the parameters given in Table 9.2. The Vs,3 value in Table 9.2 is twice that
of Table 6.1 . The venous elastance of Table 9.2 has been decreased to compen-
sate for this larger Vs,3, thus resulting in the same mean venous pressure P̄v. The
two simulations of Figures 6.2 and 9.2 are thus extremely similar, the only visi-
ble differences being the venous volume curve and the amplitude of the venous
pressure curve.

Since this information has not been included in the output set of Table 9.1,
there is no way to distinguish between the two simulations using this output set.
Consequently, venous elastance and total stressed volume cannot simultaneously
be determined from the selected output set. Using such data, the model is practi-
cally non-identifiable [175].

The same kind of problem arises with the six-chamber model for an output
vector that contains the elements of Table 9.1 and their counterparts for the right
side of the CVS. There is a practical inability to uniquely identify the two venous
elastances of this model, ESV and EPV, and Vs,6. However, it is more difficult
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Table 9.2: Parameter values for the simulation of the three-chamber CVS model presented
in Figure 9.2.

Parameter Units Value

T s 1.1

Eh mmHg/ml 1.4

Ea mmHg/ml 1.2

Ev mmHg/ml 0.034

Ri mmHg s/ml 0.05

Ro mmHg s/ml 0.04

Rc mmHg s/ml 2

Vs,3 ml 500

e(t) - exp

[
−20

(
(t mod T)− T

2

)2
]
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Figure 9.2: Simulation of the three-chamber CVS model using the parameters of
Table 9.2. Top-left: cardiac (Ph, black), arterial (Pa, red) and venous (Pv, light blue)
pressures. Top-right: cardiac (Vs,h, black), arterial (Vs,a, red) and venous (Vs,v, light
blue) stressed volumes. Bottom-left: input (Qi, light blue), output (Qo, black) and
circulatory (Qc, red) flows. Bottom-right: cardiac pressure-volume loop and the corre-
sponding ESPVR.
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to show this relationship as it involves the interplay between three parameters,
rather than two.

As previously mentioned, the existence (or not) of correlations depends on
the choice of model outputs used. For instance, if one output, namely venous PP,
with reference value of 10 mmHg is added to the list of Table 9.1 as a reference
for ∆Pv, parameter correlations are much less strong, as the correlation matrix of
Figure 9.3 shows for this case. There remains only one strong correlation, between
Vs,3 and Ea, according to the criterion of Olufsen and Ottesen [174].
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Figure 9.3: Correlation matrix C for the parameters of the three-chamber CVS model
and the outputs of Table 9.1, plus venous pulse pressure, ∆Pv.

Consequently, when parameter correlations are present, using more data sour-
ces can solve the issue. However, this option is not always feasible. When more
data are not available, some parameters have to be left out of the parameter iden-
tification procedure, because they cannot be practically identified. The next sec-
tion presents an algorithm designed to select which parameters to identify, to
maximise identifiability and clinical utility.

9.5 Subset Selection Algorithm

Since some parameters are not sensitive enough to be identified using the avail-
able data and some others are correlated, it is very difficult to identify them all.
This issue is frequent in all classes of parameter identification problems. Conse-
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quently, some authors have developed techniques to select a subset of parameters
that can reliably be identified [172, 176–178].

The subset selection algorithm used in this work was introduced by Burth
et al. [172] and was used in cardio-vascular modelling by Pope et al. [92]. The
algorithm will be briefly described here. Further detail can be found in [92, 172].

For this method, the Np×Np non-dimensonalized Hessian matrix, H, is [172]:

[H]ij =
∂2ψ2

∂pi∂pj
pi pj (9.14)

=
∂2

∂pi∂pj

( Ny

∑
k=1

e2
k

)
pi pj (9.15)

= 2
∂

∂pi

( Ny

∑
k=1

∂ek
∂pj

ek

)
pi pj (9.16)

= 2

( Ny

∑
k=1

∂2ek
∂pi∂pj

ek +
Ny

∑
k=1

∂ek
∂pj

∂ek
∂pi

)
pi pj. (9.17)

If the components, ek, of the error vector are assumed to be small [172], indicat-
ing a solution near the optimum, the first term is close to zero and the previous
equation can be approximated:

[H]ij ≈ 2
Ny

∑
k=1

∂ek
∂pj

∂ek
∂pi

pi pj (9.18)

= 2
Ny

∑
k=1

[J]jk[J]ik. (9.19)

In matrix notation, the previous equation is written:

H ≈ 2JJT. (9.20)

The principle of the subset selection algorithm is to compute the Np eigenval-
ues of H and to separate them in two subsets containing ρ and Np − ρ eigenval-
ues. The first subset contains the ρ largest eigenvalues and this ρ value dictates
the number of parameters that can be iteratively optimised. In this work, the
value of ρ is defined:

ρ = arg max
i

(
λi

λi+1

)
with λi ≥ λi+1. (9.21)

That is, ρ is chosen so that the ratio between two consecutive eigenvalues (λi and
λi+1) is the highest. In case ρ = 1, the second highest ratio was selected.
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Let Vρ be the Np × ρ matrix containing the ρ eigenvectors of H associated
with the ρ largest eigenvalues. To find the ρ parameters corresponding to the
ρ largest eigenvalues, an Np × Np permutation matrix P is found through a QR
decomposition of VT

ρ :
VT

ρ P = QR. (9.22)

Finally, the parameter vector p is rearranged using P, which gives the ρ parame-
ters that can be used for optimization. Full details are in [172].

9.6 Initial Parameter Values

The sensitivity and correlation analyses of Sections 9.3 and 9.4 and the subset se-
lection algorithm of Section 9.5 are local procedures, because they depend on the
parameter values used to compute the Jacobian matrix. In addition, the precision
of the subset selection algorithm also depends on the validity of the hypothesis
ek ≈ 0 used to obtain Equation 9.18. Consequently, for the procedures presented
in the previous sections to be relevant, it is important to choose initial parameter
values that are as close as possible to the optimal ones.

This section describes how to obtain these initial values for the model pa-
rameters using simplifications of the three-chamber CVS model equations. The
three-chamber model is used for simplicity. However, the formulae developed in
the present section can be applied to the six-chamber model with the appropriate
changes in notations, and the approach is thus general.

9.6.1 Input Valve Resistance, Ri

From Continuous Data

The combination of Equations 6.5 and 6.7 during filling (Qo = 0) gives:

dVs,h(t)
dt

=
Pv(t)− Ph(t)

Ri
. (9.23)

Integrating this equation from beginning (tBF) to end (tEF) of filling gives:

Vs,h(tEF)−Vs,h(tBF) =

∫ tEF
tBF

(Pv(t)− Ph(t)) dt

Ri
. (9.24)

Since Vs,h(tEF) is the maximum of Vs,h during a cardiac cycle, and Vs,h(tBF), its
minimum, the left-hand side of the previous equation equals ∆Vs,h. Therefore,
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one obtains:

Ri =

∫ tEF
tBF

(Pv(t)− Ph(t)) dt

∆Vs,h
. (9.25)

This equation can be graphically interpreted by stating that the area between ve-
nous and cardiac pressures during filling is equal to the product of ∆Vs,h and Ri,
as illustrated in Figure 9.4.
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Figure 9.4: Graphical illustration of Equations 9.25 and 9.31. Left: venous (light blue),
cardiac (black) and arterial (red) pressures. Right: cardiac stressed volume.

From Discrete Data

Assuming Pv(t) to be constant and equal to its mean value P̄v, Equation 9.25
becomes:

Ri ≈
∫ tEF

tBF
(P̄v − Ph(t)) dt

∆Vs,h
. (9.26)

Neglecting cardiac pressure during filling, so that Ph(t) ≈ 0, gives:

Ri ≈
∫ tEF

tBF
P̄v dt

∆Vs,h
≈ P̄v

∆Vs,h
(tEF − tBF). (9.27)

Finally, assuming tEF − tBF = T/2, one obtains:

Ri ≈
P̄v T

2 ∆Vs,h
. (9.28)
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9.6.2 Output Valve Resistance, Ro

From Continuous Data

The combination of Equations 6.6 and 6.7 during ejection, when Qi = 0, reads:

dVs,h(t)
dt

= −Ph(t)− Pa(t)
Ro

. (9.29)

Integrating this equation during ejection, from tBE to tEE, gives:

Vs,h(tEE)−Vs,h(tBE) = −
∫ tEE

tBE
(Ph(t)− Pa(t)) dt

Ro
. (9.30)

Because Vs,h(tBE) is the maximum value of Vs,h and Vs,h(tEE), its minimum, the
left-hand side is equal to −∆Vs,h. Rearranging terms yields:

Ro =

∫ tEE
tBE

(Ph(t)− Pa(t)) dt

∆Vs,h
. (9.31)

The graphical interpretation of Equation 9.31 implies that the area between car-
diac and arterial pressures during ejection is equal to ∆Vs,h times Ro, as also
shown in Figure 9.4. Using Equation 9.31 requires knowledge of cardiac pres-
sure, which is not usually measured. Consequently, an approximation of Ph(t)
must be used, as described in the next section.

From Discrete Data

Assuming that cardiac stressed volume Vs,h(t) decreases from V̄s,h + 0.5∆Vs,h to
V̄s,h − 0.5∆Vs,h during ejection, from tBE to tEE, allows construction of a linear
approximation of Vs,h(t) defined:

Ṽs,h(t) = V̄s,h +
∆Vs,h

tEE − tBE

(
tEE + tBE

2
− t
)

. (9.32)

Using this approximation and Equation 6.3 yields:

Ph(t) ≈ Ehe(t)Ṽs,h(t). (9.33)

Using Equations 9.31 and 9.33, and assuming that Pa(t) ≈ P̄a, one gets:

Ro ≈
∫ tEE

tBE
(Ehe(t)Ṽs,h(t)− P̄a) dt

∆Vs,h
. (9.34)
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9.6.3 Resistance of the Circulation, Rc

The resistance of the circulation can be exactly obtained using Equation 8.15:

Rc =

∫ T
0 [Pa(t)− Pv(t)] dt∫ T

0 Qo(t) dt
=

P̄a − P̄v∫ T
0 Qo(t) dt

T (9.35)

where P̄a and P̄v are, respectively, mean arterial and venous pressures. The in-
tegral of the flow through the output valve, Qo is equal to the volume going
through the output valve during systole. In turn, this volume is exactly equal to
the change of cardiac volume during systole, ∆Vs,h. Therefore:

Rc =
P̄a − P̄v

∆Vs,h
T (9.36)

For simplicity, P̄v is often neglected with respect to P̄a, because it is much
smaller [15]. Hence, Equation 9.36 simplifies to:

Rc ≈
P̄a T
∆Vs,h

. (9.37)

9.6.4 Cardiac End-Systolic Elastance, Eh

From a Preload Reduction Manoeuvre

As explained in Section 5.2.1, the end-systolic elastance, and unstressed volume
as a byproduct, must be determined using a linear regression of the end-systolic
pressure-volume points during a preload reduction experiment. A dedicated
method has been developed by Kass et al. [179]. This methods begins by find-
ing the points with the maximum pressure-volume ratio and fitting them with a
straight line. This straight line yields first estimates of Eh and Vu,h. Next, new
points of end-systole are defined as those having the maximum Ph/(Vh − Vu,h)

ratio. A new line is fitted to these points, and the process is repeated until con-
vergence of Eh and Vu,h.

From a Single Beat

For simplicity reasons, many researchers have tried to determine the end-systolic
elastance using a single heartbeat, rather than a preload reduction experiment
(e.g. [117,180,181]). Since a single heartbeat only provides one end-systolic point,
a further simplifying hypothesis is always necessary [182]. The simplest hypoth-
esis consists of stating that the ventricular unstressed volume is equal to zero [93].
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Under this hypothesis, Equation 5.1 for the ESPVR becomes:

Ph(tES) ≈ EhVh(tES) (9.38)

where Vh is the true volume and not the stressed volume. This ESPVR line thus
passes through the origin of the pressure-volume plane.

Equation 9.38 can be rearranged to yield:

Eh ≈
Ph(tES)

Vh(tES)
. (9.39)

In turn, assuming end-systolic cardiac pressure to be equal to maximum arterial
pressure gives:

Eh ≈
maxT Pa(t)

Vh(tES)
. (9.40)

9.6.5 Arterial Elastance, Ea

From Continuous Data

During diastole, volume change in the artery is described by the combination of
Equations 6.4 and 6.8:

dVs,a(t)
dt

= −Pa(t)− Pv(t)
Rc

. (9.41)

If, once again, Pv is neglected with respect to Pa and Equation 6.1, is used, one
gets:

dVs,a(t)
dt

≈ −Ea Vs,a(t)
Rc

. (9.42)

Solving this equation for Vs,a(t) yields:

Vs,a(t) ≈ exp
(
−Ea(t− tBD)

Rc

)
Vs,a(tBD). (9.43)

where tBD denotes the beginning of diastole. Multiplying both sides of (9.43) by
Ea yields:

Pa(t) ≈ exp
(
−Ea(t− tBD)

Rc

)
Pa(tBD). (9.44)

Since Rc can be computed from Equation 9.36 or 9.37, Ea can be determined by
fitting the reference Pa(t) curve during diastole to Equation 9.44. An example is
displayed in Figure 9.5. Estimating arterial elastance, or its inverse, called arterial
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compliance, by fitting an exponential function to the diastolic portion of the arterial
pressure curve is a well-known method [109, 183–186].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

75

80

85

90

95

100

105

110

115

120

125

A
rt

e
ri
a
l 
p
re

s
s
u
re

 (
m

m
H

g
)

t
BD

Figure 9.5: Fitting of Equation 9.44 (black) to arterial pressure during diastole (red).

From Discrete Data

If the complete curve of Pa(t) is not available, and only its range ∆Pa is given, a
simpler expression is required to obtain an initial value of Ea. Integrating Equa-
tion 6.8 during ejection, from tBE to tEE, yields:

Vs,a(tEE)−Vs,a(tBE) =
∫ tEE

tBE

Qo(t) dt−
∫ tEE

tBE

Qc(t) dt. (9.45)

Multiplying both sides by Ea and using Equation 6.1 gives:

Pa(tEE)− Pa(tBE) = Ea

∫ tEE

tBE

Qo(t) dt− Ea

∫ tEE

tBE

Qc(t) dt. (9.46)

As can be observed in Figure 9.4, the left-hand side is nearly equal to the range of
arterial pressure, ∆Pa:

∆Pa ≈ Ea

∫ tEE

tBE

Qo(t) dt− Ea

∫ tEE

tBE

Qc(t) dt. (9.47)

117



Chapter 9. Practical Identifiability

All ejected blood goes through the output valve during systole. Consequently,
the integral of Qo is equal to ∆Vs,h, where this substitution gives:

∆Pa = Ea ∆Vs,h − Ea

∫ tES

tBS

Qc(t) dt. (9.48)

Neglecting the integral of Qc yields the following approximation for Ea:

Ea ≈
∆Pa

∆Vs,h
. (9.49)

This assumption underestimates Ea because it assumes that the increase in arte-
rial pressure during systole is caused entirely by ∆Vs,h. In fact, some fraction of
∆Vs,h, the integral of Qc, flows through the arteries to the veins without causing
an increase in arterial pressure. A more detailed discussion of the validity of this
approximation can be found in [187].

9.6.6 Venous Elastance, Ev

Equation 6.9 during systole, when Qi = 0, reads:

V̇s,v(t) = Qc(t). (9.50)

Flow through the capillaries is assumed to be constant and equal to its mean
value, and thus:

V̇s,v(t) ≈
∆Vs,h

T
. (9.51)

Integrating this equation from beginning, tBS, to end, tES, of systole gives:

Vs,v(tES)−Vs,v(tBS) ≈
∆Vs,h

T
(tES − tBS). (9.52)

Multiplying both sides by Ev and using Equation 6.2 gives:

Pv(tES)− Pv(tBS) ≈ Ev
∆Vs,h

T
(tES − tBS). (9.53)

Finally, assuming Pv(tES)− Pv(tBS) ≈ ∆Pv and tES − tBS ≈ T/2, and rearranging
terms, one obtains:

Ev ≈
2 ∆Pv

∆Vs,h
. (9.54)
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9.6.7 Total Stressed Volume, Vs,3

Equation 6.11 is averaged on one cardiac cycle, giving:

V̄s,h + V̄s,a + V̄s,v = Vs,3. (9.55)

Then, Equations 6.1 and 6.2 can also be averaged, yielding:

V̄s,h +
P̄a

Ea
+

P̄v

Ev
= Vs,3. (9.56)

The previous equation enables the estimation of Vs,3 if the quantities in the left-
hand side are available. Therefore, the measurements needed to approximate Ea

and Ev are also needed.

9.7 Summary

Throughout this chapter, the parameter identification problem was formulated.
First, the objective function was introduced as the criterion defining the closeness
between simulations and the measurements, that has to be made as small as pos-
sible. Because of the model structure and the limited available data, some param-
eters have little effect on the objective function, while others have similar effects,
preventing their unique identification. Therefore, the subset selection algorithm
was introduced to leave such parameters out of the identification process. Finally,
formulae were designed to obtain the initial values of the parameters.

Starting from these initial values, the next step is to find a minimum of the
objective function. A specific optimization method is necessary to identify the
remaining model parameters. The next chapter describes and compares several
such methods.
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Chapter 10

Parameter Identification Methods

10.1 Introduction

To be clinically relevant, mathematical models have to be made patient-specific,
which means that their parameters have to be identified so that simulations repre-
sent a patient’s individual state. The parameter identification problem has been
stated in the previous chapter. It aims at finding the parameters that minimise
the objective function ψi assessing the error between simulation and clinical data.
There exist several methods to find such a minimum [188–190].

To achieve real time monitoring using lumped CVS models, it is important to
select the best parameter identification method, in terms of speed, efficiency and
reliability. This chapter focuses on the three-chamber CVS model and investi-
gates seven typical parameter identification methods. These methods are first de-
scribed, and then, compared using in silico and experimental reference data [103],
where in silico data allows the truth underlying simulations to be known.

10.2 The Methods

10.2.1 The Proportional Method

The proportional method was developed by Hann et al. [113, 191] specifically for
parameter identification of the six-chamber CVS model. It is based on a series
of a priori proportionality relations between parameters and outputs of the six-
chamber model. More accurately, the model they used is a version of the six-
chamber model where venous pressures are kept constant. For instance, the au-
thors observed that the simulated range of systemic arterial pressure ∆PSA is pro-
portional to systemic arterial elastance ESA. Consequently, during the parameter
identification process, ESA is successively updated using a proportional feedback
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rule defined:

ESA[n + 1] = ESA[n]
∆Pref

SA
∆PSA(p[n])

. (10.1)

where ESA[n] is the current value of ESA and ESA[n + 1], the next one, ∆Pref
SA is

the target value of the range of systemic arterial pressure and ∆PSA(p[n]), its
simulated value using the current parameter vector p[n].

The proportionality relations hypothesized in the original article [113] were:

• RAV is inversely proportional to the difference between systemic arterial
pressure at its inflection point and at its minimum:

PSA(tinflect)−min
T

PSA(t), (10.2)

• ELV is inversely proportional to mean left ventricular volume V̄LV,
• RMV is inversely proportional to the range of left ventricular volume ∆VLV,
• ESA is directly proportional to the range of systemic arterial pressure ∆PSA,
• Rsys is directly proportional to mean systemic arterial pressure P̄SA.

In subsequent versions of the method, some of these hypotheses have been al-
tered and others have been added to identify more parameters [93, 191–193].

The biggest advantage of this method is that this a priori knowledge allows the
parameter identification method to know in which direction to move in the pa-
rameter space without having to compute any gradients, saving significant com-
putational effort. Its biggest drawback is that the proportionality hypotheses are
approximations, and thus, are not always valid. For instance, through computa-
tion of the value of the derivative ∂∆VLV/∂RMV, it can be shown that the second
proportionality relation above can be wrong for sufficiently large values of ELV.
This reasoning is detailed in Appendix B. In general, if the parameter identifica-
tion method gets out of the validity domain of the hypotheses, it will fail.

The proportionality relations can be summarised in a Np×Ny matrix, defined,
for the original version of the method:



PSA(tinflect)−minT PSA(t) V̄LV ∆VLV ∆PSA P̄SA

RAV −1 0 0 0 0
ELV 0 −1 0 0 0
RMV 0 0 −1 0 0
ESA 0 0 0 1 0
Rsys 0 0 0 0 1

 = M. (10.3)

This matrix can be seen as an oversimplified version of the Jacobian matrix, where
each line only has one non-zero element. Conversely to the Jacobian matrix, the
non-zero elements do not quantitatively represent the derivatives of the error
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vector with respect to the vector of model parameters, but rather represent them
qualitatively through a plus or a minus sign.

In this work, the proportional method was implemented as follows:
1. For each parameter pi, find the related measurement in the proportionality

matrix, i.e. find j such that [M]ij = 1 or −1.
2. Update the parameter pi using

pi[n + 1] = pi[n]

(
yref

j

yj(p[n])

)[M]ij

. (10.4)

3. Compute the error vector with the new parameter vector and check if the
jth component has decreased as expected, i.e. if ej(p[n + 1]) < ej(p[n]).

4. If it is the case, update the parameter pi four more times maximum or until
the error ej on the related measurement is lower than a fixed threshold. If
not, go to step 5.

5. Go to the next parameter, i.e. increase i.
This procedure is repeated while the components of the error vector that are re-
lated to a parameter are higher than a given threshold.

10.2.2 The Simplex Method

The simplex method was developed by Nelder and Mead [190] for minimisation
of an Np-dimensional scalar function, ψi in the present case. This method works
with a simplex, namely a surface bounded by Np + 1 points in the Np-dimensional
parameter space. Thus, the simplex is a triangle if two parameters are to be opti-
mised. At each iteration of the method, the simplex is modified according to one
of the following operations [188]:
• Reflection: the point associated with the highest ψi value is reflected through

the face of the simplex formed by all other points,
• Expansion: the simplex is stretched in the direction of the point associated

with the lowest ψi value,
• Contraction: the simplex is contracted away from the point associated with

the highest ψi value.
Therefore, the simplex moves on the error surface towards the lowest ψi regions.

10.2.3 The Direct Search Method

The direct search method has also been conceived for minimisation of an Np-
dimensional scalar function. The principle of the method is to search for a bet-
ter point, with a lower ψi value, by taking a step from a starting point in all
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the 2Np possible directions. For example, steps that move up, down, left and
right if two parameters are to be optimised. If a better point is found, then the
search is restarted from this point. If no better point is found, then the size of
the search step is reduced and the search is resumed from the current best point.
The version of the direct search method that is used in this work uses random-
generated search directions and investigates these directions in a random order
for increased speed [193].

10.2.4 Gradient-Based Methods

The principle of gradient-based methods is to use the information contained in
the gradient of the objective function, ψi, to find a direction in the parameter
space in which ψi is decreasing [188]. There exists a large number of methods,
each primarily differing by the size of the step they take in the direction of the
gradient. In this work, the following gradient-based methods were used:
• Active set method,
• Sequential quadratic programming (SQP) method,
• Interior point method,
• Trust-region reflective (TRR) method.

The first three methods are implemented in the fmincon function of Matlab and
the last one, in the lsqnonlin function. The fmincon function takes ψ2 as its ar-
gument, while lsqnonlin takes the error vector e as its argument and internally
computes ψ2 from it, using Equation 9.4.

10.3 Comparison of the Methods

The seven parameter identification methods introduced in Sections 10.2.1 to 10.2.4
(proportional, simplex, direct search, active set, SQP, interior point and TRR) were
tested on the three-chamber CVS model. They were tested on both simulated (in
silico) and experimental reference data. In silico data allows a noise-free eval-
uation where the ground truth parameter values are known, to assess method
accuracy.

10.3.1 Parameter Identification Process

Output Vector

The following model outputs were considered to be available:
• Range of arterial pressure, ∆Pa,
• Range of venous pressure, ∆Pv,
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• Range of cardiac stressed volume, ∆Vs,h,
• Mean arterial pressure, P̄a,
• Mean venous pressure, P̄v,
• Mean cardiac stressed volume, V̄s,h,
• Maximum derivative of arterial pressure, (maxT dPa(t)/dt).

Accordingly, the output vector was defined:

y =

(
∆Pa ∆Pv ∆Vs,h P̄a P̄v V̄s,h max

T

dPa(t)
dt

)
. (10.5)

Some comments have to be made regarding the composition of the output
vector. First, ∆Vs,h, the model-based equivalent of SV is a necessary output for
parameter identification of lumped CVS models. It thus had to be included in the
available data. In addition, mean cardiac volume V̄s,h is intuitively needed for
practical identification of the cardiac elastance, Eh, or there is no way of knowing
the location of the pressure-volume loop on the volume axis, thus making Eh un-
determined. Third, in Chapter 8, the knowledge of arterial and venous pressures
was shown to be necessary for identifiability. The means and ranges of these
curves, which represent their essential features, were thus included in y. Finally,
maxT dPa(t)/dt was included because it is an index of contractility [22], has been
linked to identifiability of the output valve resistance [191], and was found to
decrease correlations between parameters, which should improve practical iden-
tifiability. The clinical relevance of the choice of model outputs is discussed in
Section 10.3.4.

Error Vector

Let yref be a vector containing the reference values and y(p), a vector containing
the corresponding simulated values. The relative error vector e between simu-
lated and reference values is defined:

ei =
yref

i − yi(p)
yref

i
, for i = 1 to 7. (10.6)

The goal of the parameter identification process was to minimise the sum of
squared components of this vector

ψ2 = e2
1 + e2

2 + e2
3 + e2

4 + e2
5 + e2

6 + e2
7 (10.7)

by varying p, to find an optimal parameter vector p∗.
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Initial Parameter Values

The following information was assumed to be available:

• Cardiac period, T,
• Driver function, e(t),
• Onset, tBE, and end, tEE, times of cardiac ejection.

Using this information and the data contained in the output vector y, initial pa-
rameter values were obtained for each dataset using Equations 9.28, 9.34, 9.36,
9.49, 9.54 and 9.56 derived in Section 9.6. For estimation of initial cardiac elas-
tance, Eh, Equation 9.40 was used, assuming an estimate of maximum arterial
pressure that was equal to mean arterial pressure plus half the range of arterial
pressure:

max
T

Pa(t) ≈ P̄a + 0.5 ∆Pa. (10.8)

A similar hypothesis was formulated for minimum (end-systolic) cardiac volume:

Vh(tES) ≈ V̄h − 0.5 ∆Vh. (10.9)

Parameter Vector

As can be seen from the equality sign in Equation 9.36, no approximation has
been used to obtain the value of Rc, which means the value of this parameter
can be exactly retrieved from the selected set of model outputs. This parameter
was thus not included in the parameter identification procedure. The remaining
parameter vector is defined:

p = (Eh Ea Ev Ri Ro Vs,3). (10.10)

Adaptation of the Proportional Method

The proportional method was adapted to estimate the parameters of the three-
chamber model from the data presented in this section. The proportionality rela-
tions used in this adaptation are summarised in the following matrix:



∆Pa ∆Pv ∆Vs,h P̄a P̄v V̄s,h maxT
dPa(t)

dt

Eh 0 0 0 0 0 −1 0
Ea 1 0 0 0 0 0 0
Ev 0 1 0 0 0 0 0
Ri 0 0 0 0 1 0 0
Ro 0 0 0 0 0 0 −1
Vs,3 0 0 1 0 0 0 0


= M. (10.11)
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The proportionality relations for Eh and Ea are adapted from the initial version
of the method [113], while the one for Ro is adapted from a later version [93].
In the initial version of the method, Rc was also linked to P̄a. However, in this
work, Rc is exactly computed from P̄a and other measurements. Consequently,
the proportionality between Rc and P̄a does not appear in the matrix. The re-
lation between Ev (or Ri) and its corresponding output can be directly inferred
from Equation 9.54 (or 9.28). Finally, the proportionality between Vs,3 and ∆Vs,h

is inherent to the model equations and is not an approximation.

Implementation

Matlab (2014b, MathWorks, Natick, MA) was used to solve model equations and
perform parameter identification procedures. It was run on a standard laptop
computer. The model was simulated for 100 cardiac periods, to let transient ef-
fects disappear. Then, the values obtained during the 101st period were used to
compute the output vector.

The seven parameter identification methods have different termination crite-
ria, related to the size of the step taken in the parameter space, to the size of the
decrease in ψ2 value, or to the values of the components ei. To fairly compare the
methods, they were all simulated with very strict termination criteria, and each
function evaluation was recorded. Then, using the recorded results, the same
termination criteria were applied to all methods. The criteria were:

• A maximum of 100 function evaluations,
• A tolerance of 0.01 on the optimal function value. In other words, a method

was not considered successful, and thus not stopped, until [194]:

ψ2 − ψ2(p∗) ≤ 0.01(1 + |ψ2(p∗)|), (10.12)

where ψ2(p∗) is the optimal value of ψ2. For parameter identifications per-
formed using in silico reference data, ψ2(p∗) was known and equal to zero.
For parameter identifications performed using experimental reference data,
ψ2(p∗) was taken as the lowest ψ2 value found across all methods and all
function evaluations.

The TRR, interior point, active set and SQP methods require the user to pro-
vide upper and lower bounds on the possible parameter values. These bounds
were set at 10 and 0.1 times the initial parameter values.
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10.3.2 Test 1: In Silico Reference Data

Methodology

First, zero-noise, in silico reference data yref was generated using the four param-
eter sets displayed in Table 10.1. Parameter sets A and B produce simulations
representing the haemodynamics of a patient with high (A) or low (B) cardiac
contractility, Eh. Parameter set C produces simulations representing the effects
of dobutamine, defined here as high contractility, Eh and low cardiac period, T.
Parameter set D represents a case with low venous elastance, Ev. These four
sets cover a representative spread of parameter values that might be encountered
clinically.

Table 10.1: Reference parameter sets.

Parameter Units A B C D

T s 0.8 0.8 0.5 1.1

Rc mmHg s/ml 1.5 1.1 2.7 3.7

e(t) - exp

[
−W

(
(t mod T)− T

2

)2
]

W s−2 17 80 60 19

Ri mmHg s/ml 0.04 0.05 0.04 0.04

Ro mmHg s/ml 0.2 0.05 0.01 0.02

Eh mmHg/ml 4.7 1.4 4 2.6

Ea mmHg/ml 1.2 1 3 1.4

Ev mmHg/ml 0.1 0.2 0.2 0.008

Vs,3 ml 400 250 140 600

Let pref be a set of reference parameters and p[n] be the parameter vector
obtained at the nth iteration of the parameter identification process. The relative
error vector r between reference and identified parameters was defined:

rj[n] =
pref

j − pj[n]

pref
j

, for i = 1 to 6. (10.13)

As previously explained, the number of components in r is 6, for parameters Eh,
Ea, Ev, Ri, Ro and Vs,3, since Rc can be directly computed from the available data
using Equation 9.36, and T and e(t) are assumed known. The total relative error
between reference and identified parameter values was defined:

‖r‖1 = |r1|+ |r2|+ |r3|+ |r4|+ |r5|+ |r6|. (10.14)
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Equation 10.14 is thus a measure of method accuracy in a noise-free case, when
the true parameter values are known.

Results: Ability to Retrieve the Reference Parameters

Table 10.2 summarises the outcomes of the parameter identification procedures
carried out using the seven methods of Section 10.2 on the four in silico reference
datasets of Table 10.1. All methods reached a ψ2 value lower than 0.01 for at least
one dataset. TRR and active set reached it for all 4 datasets, proportional, for 3
datasets, and SQP, for 2 datasets.

Results: Convergence Speed and Number of Function Evaluations

Figure 10.1 displays the evolution of the error, ψ2, between reference and simu-
lated output values during the parameter identification processes carried using
the in silico reference parameter sets. Table 10.3 displays the number of function
evaluations taken by the seven parameter identification methods to solve the four
parameter identification problems on in silico reference data. According to these
results, the TRR and active set methods were the fastest.
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Figure 10.1: Error between reference and simulated output values for the seven parameter
identification methods, tested on data from the four in silico reference datasets.
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Table 10.2: Result of the 28 parameter identification procedures carried out on in silico
reference data. Successful results according to Equation 10.12 are bold-faced.

Dataset Method r1 r2 r3 r4 r5 r6 Min. ψ2

Proportional -0.03 0.06 -0.03 0.10 -0.03 0.03 0.009
TRR 0.07 -0.02 -0.07 -0.34 0.11 0.02 0.004
Interior point 0.05 -0.13 -0.11 -0.49 -0.32 0.05 0.014

A Active set -0.03 -0.09 0.00 0.03 -0.34 0.03 0.005
SQP -0.14 -0.22 -0.04 0.11 -1.26 0.05 0.018

Simplex -0.17 -0.10 -0.03 -0.90 -0.42 -0.20 0.120

Direct search -0.00 -0.27 -0.22 -0.32 -0.65 0.14 0.034

Proportional 0.00 -0.01 0.01 0.06 -0.43 -0.01 0.010
TRR -0.04 -0.04 0.01 0.00 -0.32 0.01 0.002
Interior point -0.11 -0.05 0.03 0.02 -0.77 0.01 0.008

B Active set -0.06 -0.02 -0.00 0.05 -0.62 -0.01 0.009
SQP -0.06 -0.03 -0.00 0.05 -0.62 -0.01 0.009
Simplex -0.14 -0.05 -0.00 0.03 -0.47 0.02 0.008
Direct search -0.16 -0.02 0.06 0.07 -0.46 0.01 0.008

Proportional -0.04 0.00 -0.02 0.14 -1.31 0.05 0.009
TRR 0.04 -0.08 -0.03 -0.15 -1.67 0.01 0.006
Interior point -0.07 -0.10 0.02 -0.09 -5.77 -0.02 0.021

C Active set -0.05 -0.05 -0.01 0.05 -3.55 0.02 0.009
SQP -0.09 -0.04 0.08 0.16 -3.37 -0.00 0.014

Simplex -0.00 -0.41 -0.19 -0.34 -11.98 0.14 0.078

Direct search -0.26 -0.43 -0.12 0.28 -3.28 0.30 0.168

Proportional -0.02 -0.01 -0.50 -0.53 0.29 0.15 0.214

TRR 0.05 -0.06 -0.09 -0.06 -0.21 0.09 0.006
Interior point -0.04 -0.11 -0.01 0.04 -3.06 0.05 0.020

D Active set -0.05 0.01 0.03 0.05 -1.13 -0.03 0.005
SQP -0.05 -0.04 0.03 0.08 -1.87 -0.00 0.010
Simplex -0.02 -0.44 -0.13 -0.23 -6.88 0.08 0.091

Direct search 0.05 -0.86 -0.08 -0.67 -15.99 0.00 0.295

10.3.3 Test 2: Experimental Reference Data

Methodology

As a second test, experimental animal data was used for parameter identifica-
tion. This data came from measurements on three anaesthetized pigs. The pigs
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Table 10.3: Number of function evaluations taken by the seven parameter identification
methods to determine parameters for the four in silico reference datasets.

Evaluations A B C D

Proportional 96 16 83 100

TRR 36 42 29 22

Interior point 100 60 100 100

Active set 78 25 86 71

SQP 100 28 100 84

Simplex 100 32 100 100

Direct search 100 89 100 100

were mechanically ventilated at a positive end-expiratory pressure of 5 cmH2O.
Catheters (Transonic, NY) provided continuous recording of left ventricular pres-
sure and volume and aortic pressure. SV, aortic PP, MAP, mean left ventricular
volume (MLVV), aortic dP/dtmax, T, e(t), tBE and tEE were inferred from these
measurements. A PiCCO monitor provided recording of CVP and vena cava PP.
These experiments were approved by the Ethics Commission for the Use of An-
imals at the University of Liège, and details on the experimental procedure can
also be found in Chapter 12.

The following correspondence was established between measurements and
reference output values:

• Aortic PP was taken as ∆Pref
a ,

• Vena cava PP was taken as ∆Pref
v ,

• SV was taken as ∆Vref
s,h ,

• MAP was taken as P̄ref
a ,

• CVP was taken as P̄ref
v ,

• MLVV was taken as V̄ref
s,h , thus assuming zero cardiac unstressed volume:

Vu,h = 0,
• Aortic dP/dtmax was taken as maxT dPref

a /dt

Datasets E, F and G correspond to the basal state of pigs number 1, 2 and 3, while
dataset H was recorded on pig number 3 after dobutamine infusion. The quality
of the parameter estimation was assessed using only the error function ψ2, since
there are no reference parameter values in this case.

Results: Final Error Value

Table 10.4 displays the final ψ2 value for the seven parameter identification meth-
ods tested on the four experimental datasets. Overall, the gradient-based meth-
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ods, comprising the active set, SQP, interior point ant TRR methods, were able
to find the lowest error values when applied to experimental data. The simplex
method performed slightly worse than the gradient-based methods and the di-
rect search and proportional methods were the worst in finding the lowest error
values. The proportional method is strongly penalised by its bad performance on
dataset G, as it performed very well on the other datasets.

Table 10.4: Minimum error value for the four parameter identification problems using exper-
imental data. Successful results according to Equation 10.12 are bold-faced.

Minimum ψ2 E F G H

Proportional 0.008 0.040 3.217 0.005
TRR 0.003 0.011 0.592 0.007
Interior point 0.005 0.051 0.696 0.007
Active set 0.246 0.011 0.832 0.443

SQP 0.049 0.011 0.604 0.004
Simplex 0.170 0.260 1.735 0.043

Direct search 0.032 0.126 3.231 0.056

In terms of successful parameter identification procedures according to Equa-
tion 10.12, the TRR method was best, as it was successful in 3 of 4 cases. The
interior point and proportional methods were successful in 2 cases and the SQP
method, in 1 case. No parameter identification method was successful for dataset
F. For this dataset, the direct search method reached the lowest error of 0.0006 af-
ter 1292 function evaluations. However, note that the optimal values for parame-
ters Ri and Ro was slightly below the lower bound set on these parameters for the
TRR, active set, interior point and SQP methods. This observation explains why
none of these methods was able to retrieve the optimal parameter values, even if
three of them, TRR, active set and SQP, stopped very close.

Results: Convergence Speed and Number of Function Evaluations

Figure 10.2 displays the evolution of the error between reference and simulated
output values, ψ2, during the parameter identification processes carried using the
experimental reference parameter sets.

Table 10.5 displays the number of function evaluations taken by the seven
parameter identification methods to solve the four parameter identification prob-
lems on experimental reference data. The two fastest methods are the propor-
tional and TRR.
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Figure 10.2: Error between reference and simulated output values for the seven parameter
identification methods, tested on data from the four experimental reference datasets.

Table 10.5: Number of function evaluations taken by the seven parameter identification
methods to determine parameters for the four experimental datasets.

Evaluations A B C D

Proportional 54 100 100 51

TRR 29 100 36 22

Interior point 95 100 100 74

Active set 100 100 100 100

SQP 100 100 100 70

Simplex 100 100 100 100

Direct search 100 100 100 100

10.3.4 Discussion

Seven methods were investigated in this chapter. These methods have been cho-
sen because they are frequently applied to CVS models and/or because they are
built in the widely used software Matlab, and thus, commonly used for parame-
ter identification in general. The seven methods investigated encompass the two
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main classes of identification methods, namely gradient-based and derivative-
free methods. Two of these methods, TRR and proportional, work on the error
vector, e, as a whole. The other five work on the norm of the error vector, ψ2.

The proportional method of Hann et al. [113] is not always able to retrieve the
parameters used to generate in silico reference data. It sometimes stops without
having reached a low error value. However, it is one of the two fastest methods,
along with the TRR method, which is related to the a priori information required
by this algorithm.

The TRR method was, with the active set, the most effective when applied to in
silico reference data. It also performed well on experimental data. As mentioned
previously, it is one of the two fastest methods, with the proportional method. In-
terestingly, these two fastest methods are the two methods working on the error
vector, rather than on its norm. The good performance of the TRR method indi-
cates that the objective function ψ2 is smooth, since the principle of the method is
to approximate the objective with a quadratic function.

The interior point method reached average performance, both when retriev-
ing reference parameter values and when minimising the error between simula-
tions and measured reference data. This average performance is not compensated
by speed, since this method also had an average speed.

The active set method retrieved the reference parameters in all cases. How-
ever, it never succeeded when tested with experimental data. On average, it was
the third fastest method, after the TRR and proportional methods.

The SQP method retrieved the reference parameters in half the cases. When
applied to experimental data, it achieved the second lowest errors. However, it
stopped before succeeding in 3 of 4 cases. This method has an average speed.

The simplex method retrieved only one of the reference parameter sets and
stopped with high error values. It is also very time-consuming. These drawbacks
are probably linked to the fact that this method is derivative-free.

The other derivative-free method, the direct search method, was as unreliable
with in silico reference data. It also had the highest errors when applied to ex-
perimental data. However, it found the lowest error for dataset F, for which no
method succeeded. Its speed was the lowest in comparison to the others.

Comment on Practical Identifiability

Table 10.2 presents several cases for which the minimum ψ2 value is lower than
0.01, but large errors are still present on the 5th parameter, Ro. These errors reach
up to 355 %, meaning that the valve parameter Ro is practically difficult to iden-
tify from the selected model outputs, despite noise-free data. The 4th parameters,
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Ri, also presents one occurrence of a similar issue, with an error equal to 34 %.
In the successful parameter identification procedures, the final error on the other
four parameters is always lower than 16 %, meaning that these parameters, Eh,
Ea, Ev and Vs,3, are correctly retrieved.

Limitations

The results discussed in this chapter only apply to the three-chamber CVS model,
with the selected output set and error function. If a different model, output set or
error function is investigated, the analysis would need to be repeated. To do so,
the methodology can easily be transposed, as the overall approach is general.

Precision of the Initial Values

To evaluate the quality of Equations 9.28, 9.34, 9.40, 9.49, 9.54 and 9.56 used to
compute the initial parameter values, the initial total relative error ‖r[1]‖1 be-
tween reference and identified parameters was assessed. Its value ranges from
133 to 1576 %. Interestingly, the largest errors were again related to the valve
parameters. If these errors are not considered, the total initial error on the four
remaining parameters (Eh, Ea, Ev and Vs,3) ranges from 35 to 136 %, indicating
relatively good precision for the approximations of Equations 9.40, 9.49, 9.54 and
9.56.

Availability of the Experimental Data

As previously mentioned, the experimental data used in Section 10.3.3 was ob-
tained from animal experiments in a haemodynamics laboratory. The present
section discusses the availability of the same data in the ICU. First, CO, and
thus, SV can clinically be obtained using the thermodilution, as explained in Sec-
tion 7.3.4, or echocardiography techniques. Second, MLVV can be approximated
as the mean of LVEDV and left ventricular end-systolic volume (LVESV), using:

MLVV ≈ 0.5 LVEDV + 0.5 LVESV

= LVEDV− 0.5 SV.
(10.15)

GEDV is measured by some cardio-vascular monitoring devices using transpul-
monary thermodilution procedures, as discussed in Section 7.3.4. In turn, LVEDV
can be derived from the value of GEDV [195].

Third, systemic arterial pressure can be obtained using an arterial catheter.
This measurement allows the computation of arterial PP, MAP, arterial dP/dtmax,
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T, tBE and tEE, which are needed for parameter identification. Fourth, central ve-
nous pressure is provided by a central venous catheter. Its mean, CVP, and PP
can then easily be obtained. Finally, practical determination of the driver func-
tion requires simultaneous measurements of left and right ventricular pressures
and volumes at different afterload levels. These measurements are not generally
made in a clinical setting. However, Senzaki et al. found that the driver func-
tion was relatively similar for any human heart [117]. This makes a priori generic
driver functions a sensible assumption in subject-specific use.

10.4 Summary

This chapter presented seven parameter identification methods and compared
their performance on the three-chamber CVS model. The seven methods were
tested using in silico and experimental reference data and assessed on their speed
and ability to decrease the error between simulations and measurements. The
TRR method seems to be the best method to recommend for the three-chamber
model. The proportional method also performed well, as it is specifically de-
signed for the identification of lumped CVS models.

Overall, this chapter confirmed that identification of three-chamber CVS mo-
del parameters can be performed rapidly. Such models offer a large interest for
cardiac and vascular monitoring applications. The application of these methods
and models to the prediction of fluid responsiveness is the topic of the following
chapters.
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Application: Prediction of Fluid
Responsiveness
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Introduction

In Chapter 3, SBV was introduced as a potential index of fluid responsiveness.
However, the experimental procedure required to measure this parameter is very
cumbersome. Mathematical models of the CVS allow to estimate model-based
equivalents of this parameter, without having to perform circulatory arrests.

Part II of this work introduced two mathematical models of the CVS and
their parameters, Vs,3 and Vs,6, which represent model-based equivalents of SBV.
Part III explained how to identify the parameters of these two models. The last
part of this work presents two applications of the previously introduced concepts
to experimental data. Chapter 11 explains how to identify the total stressed vo-
lume, Vs,6, of the six-chamber model. Chapter 12 presents the identification of the
three-chamber model parameters to vascular filling data and compares Vs,3 with
other indices of fluid responsiveness.
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Chapter 11

Parameter Identification in the
Six-Chamber Model from a Preload
Reduction Manoeuvre

11.1 Introduction

This chapter focuses on the computation of Vs,6, the parameter of the six-chamber
model representing the total stressed blood volume in the CVS. It is an important
parameter for both physicians and engineers. From the clinician’s point of view,
Vs,6 is interesting because it is a model-based analogue of SBV, introduced in Sec-
tion 3.5. Indeed, as for its physiological counterpart SBV, if a blood volume equal
to Vs,6 is removed from the six-chamber model, all pressures become zero.

As explained in Section 3.5, SBV has recently regained interest in the context
of fluid therapy. In this context, Maas et al. have recently shown that, the lower
the SBV, the higher the likelihood a patient would positively respond to fluid
therapy [32]. The current method to determine SBV has several drawbacks, which
have been described in Section 3.5.

To assist physicians, engineers have developed a wide range of CVS models.
Such models can either be open [87,93] or closed-loop [88,92,98]. Open-loop mod-
els only represent a section of the CVS and thus, have input and output flows.
Closed-loop models represent the whole CVS and thus, have neither input nor
output flows. In other words, the total quantity of blood in such models is fixed
and conserved, per Equation 4.16. When using a closed-loop model, it is thus
paramount to know the total volume in the model. More precisely, most closed-
loop CVS models rely on the concept of total stressed volume, as emphasised in
Chapter 6.
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However, this importance is often underestimated, because most studies fo-
cusing on CVS models aim at simulating situations in which the determinants
of CO, which are contractility, preload, afterload and HR, as described in Sec-
tion 2.3.5, are constant [87, 93–95, 98, 99, 101, 112, 141, 150], while the effect of total
stressed volume only appears in simulations in which these determinants change.
Nevertheless, this type of simulation is the most useful, because in real life, these
determinants are constantly changing due to breathing, exercise, and other fac-
tors. In addition, sudden larger changes occur in dysfunction. It is equally impor-
tant clinically, where changes in state must be managed by treatment. Paradox-
ically, few works have sought to determine this total stressed volume and many
authors do not even mention the value used in simulation.

This chapter presents a method to estimate total stressed volume, Vs,6, based
on the use of the six-chamber CVS model. The model has been described in Sec-
tion 6.3. Identification of the model parameters on data from preload reduction
manoeuvres provides a value for Vs,6. The overall study presented is adapted
from [123, 196].

11.2 Methods

11.2.1 Cardio-Vascular System Model

The six-chamber model presented in Section 6.3 was used, and the following form
was chosen for the driver functions [98]:

ei(t) = exp

[
−Wi

(
(t mod T)− T

2

)2
]

with i = LV or RV, (11.1)

where Wi dictates the width of the Gaussian function and T is the cardiac period.
This formulation of the driver functions is the simplest possible, while still being
physiologically representative, and involves only two parameters. It was chosen
to make the model and the parameter identification process as simple as possible,
and maintain physiological relevance.

11.2.2 Rationale for Identification of Vs,6

When preload or afterload are changing, the inability to simultaneously deter-
mine venous elastances and Vs,6 highlighted in Section 9.4.1 vanishes. To show it,
the six-chamber model reaction to a preload reduction manoeuvre is simulated.
The preload reduction manoeuvre is modelled as a sudden twofold increase of
tricuspid valve resistance RTV at an instant chosen to be t = 0 and going on for
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t > 0. This method of reproducing the experimental preload reduction manoeu-
vre is discussed in detail in Section 11.4.

The model reaction to such an increase of RTV is displayed in Figure 11.1 for
the two parameter sets of Table 11.1. As can be seen in this figure, the simula-
tions before preload reduction (t < 0) are very similar for the two parameter sets.
However, when preload is suddely reduced, pressures and volumes change dif-
ferently for the two parameter sets. Note that the new steady state reached after
the preload change is also different. The parameters ESV, EPV and Vs,6 are thus
important when preload is varying. This idea will be used to compute Vs,6 from
experimental data.

Table 11.1: Parameter values for the two simulations of the six-chamber CVS model presented
in Figure 11.1.

Parameter Units Value

T s 0.6

ELV mmHg/ml 2

ERV mmHg/ml 0.8

ESA mmHg/ml 2.5

EPA mmHg/ml 2.1

ESV mmHg/ml 0.01 (left), 0.22 (right)

EPV mmHg/ml 0.01 (left), 0.30 (right)

RMV mmHg s/ml 0.05

RAV mmHg s/ml 0.04

RTV mmHg s/ml 0.04

RPV mmHg s/ml 0.03

Rsys mmHg s/ml 2.5

Rpul mmHg s/ml 0.4

Vs,6 ml 1500 (left), 250 (right)

eLV(t) - exp

[
−80

(
(t mod T)− T

2

)2
]

eRV(t) - exp

[
−80

(
(t mod T)− T

2

)2
]

11.2.3 Experimental Data

To identify model parameters and prove the concept, experimental animal data
were used. These data came from basal state measurements on seven pigs (num-
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Figure 11.1: Simulations of the six-chamber CVS model using the two parameter sets
of Table 11.1. Tricuspid valve resistance is doubled at t = 0 s. Black : left ventricular
pressure, blue: pulmonary vein pressure, red : aortic pressure, green: left ventricular
stressed volume.

bered 1 to 7). The ethical approval for these experiments is mentioned in Sec-
tion 7.2. Detail on the experimental procedures, including detail on medication
and mechanical ventilation settings are available elsewhere [197–199]. Only the
elements important for the understanding of the methodology are repeated here.

As previously mentioned, the chests of the pigs were opened to enable easier
access to the heart. Measurements comprised continuous recording of:

• Left and right ventricular volumes and pressures with conductance micro-
manometer-tipped catheters,
• Systemic arterial pressure with a micromanometer-tipped catheter inserted

into the descending thoracic aorta,
• pulmonary arterial pressure with a micromanometer-tipped catheter inser-

ted into the main pulmonary artery.

The pigs were also weighed at the beginning of the experiments.

A Fogarty balloon catheter was introduced in the inferior vena cava of each
animal. After all sensors were correctly positioned, preload was transiently re-
duced by inflating the balloon, as illustrated in Figure 11.2. This procedure is
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further referred to as a preload reduction manoeuvre. In two animals (numbered 1
and 3), two preload reduction manoeuvres were performed.

Inferior
Vena cava

Figure 11.2: Illustration of the preload reduction manoeuvre.

In total, 9 experimental datasets were thus used, relative to seven animals.
Table 11.2 summarises the following experimental data for the nine datasets:

• Mean left (MLVV) and right ventricular volumes,
• Left and right ventricular SVs,
• Mean systemic (MAP) and pulmonary arterial (MPAP) pressures,
• Systemic and pulmonary arterial PPs.

These eight indices were computed on the last heart beat before initiation of
the preload reduction manoeuvre, presented in the first eight rows of Table 11.2,
and on the last heart beat before stopping the preload reduction manoeuvre,
which are in the last eight rows. The duration, tmax, of each preload reduction
manoeuvre is provided in Section 11.3.2.

Note that in [198] and [199], more experiments were performed to obtain
data from preload reduction manoeuvres. However, the resulting measurements
were not regular, due to premature ventricular contractions, and were thus not
included in the present analysis. These premature contractions were probably
caused by the large amount of sensors inserted in the animals’ CVS and were
thus not physiologically relevant to the present study.
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11.2.4 Parameter Identification

The parameter identification procedure involved three steps. First, initial values
had to be assigned to all 16 model parameters. From simulations carried out us-
ing these values, the subset selection algorithm of Section 9.5 selected a sensitive
subset of parameters to be further identified. Finally, this subset of parameters
was identified using an iterative procedure.

Initial Parameter Values

To assign initial values to the model parameters, the formulae developed in Sec-
tion 9.6 were used in combination with the available data.

1. The cardiac period, T, was computed by dividing the duration of the preload
reduction manoeuvre by the number of cycles during the experiment. The
assumption of constant cardiac period was consistent with the experimental
data presented in Section 11.3.2.

2. Left ventricular end-systolic elastance, ELV, and left ventricular unstressed
volume Vu,LV as a byproduct, have been determined by linear regression
of the left ventricular end-systolic pressure-volume points, according to the
method of Kass et al. [179], described in Section 9.6.4. Then, the experimen-
tal driver function was computed using Equation 5.3 and the parameter
WLV for the driver function in Equation 11.1 was estimated by fitting Equa-
tion 11.1 to the previously computed curve.

3. Parameters ERV, Vu,RV and WRV were computed by an analogous procedure.
In the previous computations, parameters T, WLV, WRV, ELV and ERV were
computed by directly fitting the model to the data. Computation of the
other parameters from the available data required some degree of approxi-
mation. When it was not possible to infer a parameter value only from the
data, reference values published in the literature were used.

4. The resistance of the systemic circulation, Rsys, was computed using Equa-
tion 9.37.

5. The resistance of the pulmonary circulation, Rpul, was estimated using the
pulmonary counterpart of Equation 9.37.

6. Systemic arterial elastance, ESA, was estimated by fitting the measured aor-
tic pressure during diastole to Equation 9.44.

7. The same procedure has been applied to compute EPA from the measured
pulmonary arterial pressure.

8. As venous pressures were not measured, Equations 9.25 or 9.28 could not be
used to compute mitral and tricuspid valve resistances RMV and RTV. These
parameters were thus initialized at values provided by Revie et al. [93] in
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another study performed on the data used in this chapter, specifically:

RMV = 0.05 mmHg s/ml (11.2)

RTV = 0.04 mmHg s/ml. (11.3)

9. As further discussed in Section 11.3.2, measured aortic pressure is higher
than measured left ventricular pressure during a large part of ejection. This
discrepancy prevented the use of Equation 9.31 for computation of aortic
and pulmonary valve resistances RAV and RPV. They were also initialised
at values provided by Revie et al. [93]:

RAV = 0.04 mmHg s/ml (11.4)

RPV = 0.03 mmHg s/ml. (11.5)

10. Since systemic venous pressure was not measured, Equation 9.54 could not
be used to compute initial systemic venous elastance ESV. Therefore, a study
by Zanzinger et al. [200] was used, where inferior vena cava elastance for
pigs was found to be 0.44 mmHg/(ml/kg). This value was divided by 2 to
account for the two venae cavae in parallel. The initial value of ESV is thus
0.22 mmHg kg/ml divided by the pig’s weight.

11. Since pulmonary venous pressure was also not measured, an experimen-
tal study by Barbier et al. was used to obtain the amplitude of pulmonary
vein pressure in pigs [201]. Using this data, Equation 9.54 could be used to
approximate EPV.

12. To evaluate Vs,6, experimental pressure-volume curves on dogs published
by Drees and Rothe [78] were used. These pressure-volume curves are sim-
ilar to the one presented in Figure 3.8, except that the infused volume is ex-
pressed in ml/kg. From these curves, a SBV of 31.95 ml/kg was estimated,
which was taken as the initial value for Vs,6 in the identification process.

As mentioned before, initial values of the parameters T, WLV, WRV, ELV and
ERV were computed by directly fitting the model equations to the data. Con-
sequently, it was assumed that the parameter identification process would not
greatly alter these parameter values. They were thus excluded from the follow-
ing selection procedure, and the remaining 1× 11 parameter vector was defined:

p = (ESA EPA Rsys Rpul RMV RAV RTV RPV ESV EPV Vs,6). (11.6)
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Subset Selection Algorithm

A subset of the parameter vector, p, was selected for optimization using the ded-
icated algorithm presented in Section 9.5. As explained in that section, the algo-
rithm performs a sensitivity analysis on the error vector, e, and selects the param-
eters to which e is the most sensitive.

The output vector yn for dataset number n was defined:

yn
1 =

1
T

∫ 0

−T
VLV(t) dt (11.7)

yn
2 = max

t∈[−T,0]
VLV(t)− min

t∈[0,T]
VLV(t) (11.8)

yn
3 =

1
T

∫ 0

−T
PSA(t) dt (11.9)

yn
4 = max

t∈[−T,0]
PSA(t)− min

t∈[0,T]
PSA(t) (11.10)

yn
5 =

1
T

∫ 0

−T
VRV(t) dt (11.11)

yn
6 = max

t∈[−T,0]
VRV(t)− min

t∈[0,T]
VRV(t) (11.12)

yn
7 =

1
T

∫ 0

−T
PPA(t) dt (11.13)

yn
8 = max

t∈[−T,0]
PPA(t)− min

t∈[0,T]
PPA(t) (11.14)

yn
9 =

1
T

∫ tmax

tmax−T
VLV(t) dt (11.15)

yn
10 = max

t∈[tmax−T,tmax]
VLV(t)− min

t∈[tmax−T,tmax]
VLV(t) (11.16)

yn
11 =

1
T

∫ tmax

tmax−T
PSA(t) dt (11.17)

yn
12 = max

t∈[tmax−T,tmax]
PSA(t)− min

t∈[tmax−T,tmax]
PSA(t) (11.18)

yn
13 =

1
T

∫ tmax

tmax−T
VRV(t) dt (11.19)

yn
14 = max

t∈[tmax−T,tmax]
VRV(t)− min

t∈[tmax−T,tmax]
VRV(t) (11.20)

yn
15 =

1
T

∫ tmax

tmax−T
PPA(t) dt (11.21)

yn
16 = max

t∈[tmax−T,tmax]
PPA(t)− min

t∈[tmax−T,tmax]
PPA(t). (11.22)

That is, the output vector contains mean values and ranges of left and right ven-
tricular volumes, and systemic and pulmonary arterial pressures. The first eight
components of yn are related to the last heart beat before the preload reduction
manoeuvre, whereas the 9th to 16th components of yn are similar to the previous
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ones, but are computed on the last heart beat before stopping the preload reduc-
tion manoeuvre. Equations 11.7 to 11.22 were used to compute the elements of
Table 11.2 from experimental data. The same equations are used to compute the
model output vector, yn(p), from the simulations.

As emphasised in Table 11.2, in four experimental datasets, measured pul-
monary artery pressure was negative at the end of the preload reduction ma-
noeuvre. The corresponding components (yn

15 and yn
16) were not included in the

output vector. Hence, y1, y2, y3, y8 and y9 are 1× 16 vectors, while y4, y5, y6 and
y7 are 1× 14 vectors. Cardiac pressures were not included in the output vector
since they had already been used to compute parameters T, WLV, WRV, ELV and
ERV.

The error vector, en, for dataset n was built as the relative error between simu-
lated and measured values, displayed in Table 11.2. More specifically, the vector
yn,ref was taken as the nth column of Table 11.2. The kth component of en is thus:

en
k =

yn,ref
k − yn

k (p)

yn,ref
k

(11.23)

where yn(p) contains the corresponding simulated values. Finally, a global 1×
136 error vector, e, was built as a concatenation of the nine error vectors en relative
to each dataset:

e = (e1 e2 e3 e4 e5 e6 e7 e8 e9) (11.24)

and the 11× 136 Jacobian matrix, defined in Equation 9.7, was computed as the
derivative of this vector with respect to p.

The reason for using a global error vector e was to apply the subset selection
algorithm to this vector, rather than to the individual vectors en. Doing so, a com-
mon parameter set is selected for all pigs during the preload reduction manoeu-
vre, which allows consistent comparisons between pigs. Using Equation 9.21, ρ

was found to be equal to 5. In the present case, the five selected parameters were
ESA, EPA, Rsys, Rpul and Vs,6. The remaining six parameters, RMV, RAV, RTV, RPV,
ESV and EPV, were thus kept at their initial values.

Iterative Adjustment of the Selected Parameters

The five selected parameters were identified by an iterative procedure for each of
the nine datasets. The objective of this procedure was to minimise ψn

2 , the sum
of squared components of en. This task was performed using all seven param-
eter identification methods presented in Chapter 10. The initial values required
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by this algorithm were the ones computed previously. All computations were
performed using Matlab (2010a).

11.3 Results and Discussion

11.3.1 Sensitivity and Correlation Analyses

The sensitivities J̄k computed using Equation 9.9 are displayed in Figure 11.3.
The three parameters to which the error vector, e, is the most sensitive are Vs,6,
vena cava elastance, ESV, and tricuspid valve resistance, RTV. The fact that ESV

and RTV are the second and third most influent parameters is due to the way
the preload reduction manoeuvre is simulated, by doubling RTV, which is the
resistance downstream of the systemic veins. The fourth to seventh most influent
parameters are arterial elastances, ESA and EPA, and vascular resistances, Rsys and
Rpul. The three remaining valve resistances, RMV, RAV and RPV, and pulmonary
vein elastance, EPV, are the least influent parameters. This outcome emphasises
the fact that valve resistances are difficult to identify from the data available, as
already noted by Revie et al. [93].
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Figure 11.3: Sensitivities J̄k of the error vector e to each parameter.
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Figure 11.4 displays the symmetric correlation matrix C1. The six largest cor-
relations occurred between the following parameter pairs:
• ESV and RTV,
• RAV and RPV,
• Vs,6 and ESV,
• ESV and RPV,
• Rpul and EPV,
• Rpul and RMV.
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Figure 11.4: Correlation matrix C between the model parameters.

The reason why the subset selection algorithm selected the parameters Vs,6,
ESA, EPA, Rsys and Rpul can be understood by comparing Figures 11.3 and 11.4.
Among all six strong pairwise correlations, the parameter to which the error vec-
tor is less sensitive were never selected. Of the six remaining parameters, Vs,6,
ESA, EPA, Rsys, Rpul and RAV, the five exerting the largest influence on e were
selected.

The results presented in this section emphasise the importance of Vs,6 for
closed-loop CVS model simulations. The group of four parameters ESA, EPA, Rsys

and Rpul is also shown to be relevant in a CVS model. This outcome matches and
revalidates the widespread use of two-parameter windkessel models that include
only an arterial elastance and a vascular resistance to represent the systemic or
pulmonary arterial system.

1As can be seen in Figure 11.4, correlation between parameters is not transitive. This observa-
tion is discussed in [202].
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It is worth mentioning that the sensitivity analysis and subset selection proce-
dures were also applied to each of the nine en vectors separately. The individual
sensitivities followed a pattern very similar to the one in Figure 11.3 and were
also strongly correlated with the global sensitivity vector J̄k (average r2 = 0.87).
The parameter subsets selected on the basis of the vectors en included the same
five parameters, Vs,6, ESA, EPA, Rsys and Rpul, in 87 % of the cases and rejected the
same six other ones in 92 % of the cases, thus validating the approach further.

11.3.2 Parameter Adjustment

Tables 11.3 and 11.4 shows the initial and optimised parameter values, along
with the pig weights and final values of the root mean squared error (RMSE)
for dataset n, equal to:

RMSEn =

√
ψn

2
Ne

(11.25)

In the previous equation, Ne is the number of components in en, equal to 14 or 16
as explained in Section 11.2.4. The largest value of the RMSE is 29.2 %. For the
corresponding dataset, Ne = 14 and not 16 because measured pulmonary artery
pressure was negative at the end of the preload reduction manoeuvre. The overall
poor quality of this dataset could justify this highest RMSE value. Figure 11.5
shows simulated and measured ventricular and arterial pressures for this worst-
case dataset.

For all other datasets, the RMSE lies between 18.8 and 26.2 %. Consequently,
the parameter adjustment can be qualified as good. To further emphasise this
statement, Figure 11.6 shows simulated and measured left ventricular and aortic
pressures for the best-case dataset (pig number 7, RMSE = 18.8 %). As can be
seen on this figure, simulated and measured pressures and volumes are in very
good agreement all along the preload reduction manoeuvre.

The errors between measurements and simulations have three main causes,
which can be seen in Figures 11.5 and 11.6. First, in four datasets, measured pul-
monary artery pressure is negative at the end of the experiment. These measure-
ments are marked by asterisks in Table 11.2. It is uncertain whether this outcome
is a measurement error or if pulmonary artery pressure was actually lower than
atmospheric pressure. However, a negative pulmonary artery pressure cannot be
reproduced by the CVS model, given its assumptions and formulation2, which is

2In theory, the model is able to reproduce a negative pulmonary arterial pressure if stressed
pulmonary arterial volume is negative. During diastole, left ventricular pressure needs to be
even lower to allow ventricular filling. However, by choosing Equation 11.1 for the driver func-
tion, minimum left ventricular pressure is necessarily zero, which is a common assumption [203].
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Figure 11.5: Result of parameter identification for pig number 3 (dataset 2). Dashed
lines: measurements; full lines: simulations..

the reason why the objective function was modified in such cases, as explained
in Section 11.2.4.

Second, for all datasets, measured aortic pressure is higher than left ventricu-
lar pressure during a large part of systole. This second outcome is probably due
to an error in the calibration of the pressure catheters. Simulated arterial pres-
sure thus has to be lower than measured, because it would otherwise prevent
emptying of the ventricle.

Third, measured left and right SVs are different, as can be seen in Table 11.2.
This situation cannot be reproduced by the model in steady conditions before
preload reduction. Consequently, simulated SV for t < 0 must be a trade-off
between measured left and right SVs.

Despite these discrepancies likely due to sensor errors and the difficulty of
such in vivo measures in general, the model is able to track the pressure changes
when preload is reduced. The trends appear accurately reproduced, which is,
overall, clinically valuable and can thus be considered as an important success.

Therefore, the choice of the driver function is the reason why a negative pulmonary arterial pres-
sure could not be reproduced.
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Figure 11.6: Result of parameter identification for pig number 7. Dashed lines: mea-
surements; full lines: simulations.

Overall, these results are the first quantitative validation of the six-chamber CVS
model in a situation of changing load.

Parameter Identification Methods

As previously mentioned, the seven parameter identification methods were ap-
plied to the nine available datasets. Figure 11.7 presents the total squared error
reached by each parameter identification method, computed as:

ψ2 =
136

∑
i=1

e2
i . (11.26)

Interestingly, the derivative-free methods, simplex and direct search, were
able to reach the lowest errors. The proportional method on its own, did not per-
form well, but when the results of this method were input to the simplex method,
the results were the second best. The combination of these two methods offers the
potential for improved speed, as the proportional method is very fast.

The good performance of derivative-free methods was not observed in Chap-
ter 10. This observation could indicate that the error functions of this chapter are
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Figure 11.7: Total minimum squared error, ψ2, reached by all parameter identification
methods on the nine datasets.

not smooth, in opposition to the one used in Chapter 10. The discrepancy can
also be explained by the different scale of the parameter identification problems:
in this chapter, 5 parameters had to be identified from 14 to 16 measurements,
while there were 6 parameters and 7 measurements in Chapter 10. Consequently,
the remark that was formulated in Chapter 10 about the necessity to repeat the
comparison of methods for a different parameter identification problem, can also
be made here.

11.3.3 Comparison Between Vs,6 and SBV

As previously mentioned, the parameter Vs,6 is a model-based analogue of SBV. In
this section, the computed values of Vs,6 are compared with SBV values provided
in the literature. From the results displayed in Table 11.4, it can be observed that
Vs,6 for pigs ranges from 256 to 669 ml. In humans, Maas et al. reported SBV
values of 1265 ± 541 ml [32] (mean ± standard deviation). For comparison, the
mean Vs,6 observed in the present study is 486 ± 117 ml. There is a large inter-
subject variability in experimentally determined values in the present study and
that of Maas et al. with coefficients of variation of 24 and 43 %, respectively. The
experimental study of Maas et al. is the only one that was found providing SBV
values expressed in millilitres.
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The reason why no value of SBV in millilitres was found is that many in-
vestigators, when performing the experiment illustrated in Figure 3.8, infuse a
quantity of fluid expressed proportionally to the animal’s weight (e.g. 10 ml/kg).
As a consequence, these experimental studies provide a specific value of SBV,
expressed in ml/kg. For instance, in an experimental study on pigs, Ogilvie et
al. [77] reported mean SBV values of 29, 34 and 41 ml/kg for three different ways
of inducing circulatory arrest. No other experimental study on pigs was avail-
able.

Similarly, in an experiment performed on dogs, Drees and Rothe [78] found
values ranging from 27.8 to 43.1 ml/kg, depending on the time elapsed between
volume infusion or removal and circulatory arrest. The same authors [83] also
reported values between 37.9 to 41.4 ml/kg, depending on the amount of blood
that was infused or removed. Another research group [80,81] published curves of
MCFP versus infused volume, such as the one in Figure 3.8, in control dogs and
investigated the changes due to pharmacologic agents. In both studies, control
dogs had an average SBV of 14.5 ml/kg (standard deviation was 0.2 ml/kg in the
first study [80], 0.5 in the second [81]). Finally, the results of Maas et al. can also
be divided by the mean patient weight, yielding values of 15.6 ± 6.7 ml/kg.

For comparison with these specific SBV values, specific Vs,6 values were com-
puted and are provided in the last row of Table 11.4. The average specific Vs,6 is
equal to 15.7 ± 3.6 ml/kg. The results of this study are thus of the same order of
magnitude as all the previously mentioned specific SBV values, and present less
variability. This observation tends to indicate that Vs,6 could be an analogue of
SBV, but comparisons with other porcine studies would be better, if available.

In summary, both SBV and Vs,6, specific or not, present a large inter-subject
variability. The previously reported articles have emphasised the influence of
how the experiment is performed. Change of Vs,6 or SBV can also be attributed to
sympathetic actions, time-dependent vascular properties, fluid exchange through
the capillaries, and other factors [78]. Consequently, Vs,6 also presents an intra-
subject variability. For example, compare the two Vs,6 values for pigs number
1 and 3 in Table 11.4. This outcome further highlights the need to identify this
subject and condition-specific parameter directly, and in real-time, as its value
may also be clinically relevant in titrating care.

11.3.4 Other Parameter Values

This section discusses values of parameters other than Vs,6. First, optimised val-
ues of the parameters are compared with their initial values. Second, the pa-
rameter values are compared with other studies performed on the same datasets.
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Finally, differences in the parameters identified from datasets coming from the
same animal (pigs number 1 and 3) are evaluated.

Maximal errors in the initial values of parameters ESA and Rsys compared with
optimised values were, respectively, 52 % and 36 %. This result justifies Equa-
tions 9.37 and 9.44 used to compute the initial values of these parameters and
the underlying assumption of venous pressure negligible with respect to arterial
pressure. Interestingly, there is a mild correlation (r2 = 0.51) between initial and
optimised values of Rsys, as shown in Figure 11.8 (left). The outlying point corre-
sponds to the dataset associated with the highest RMSE value, as can be seen in
Table 11.4. Using the information in Figure 11.8 (left), a better approximation for
Rsys can be defined:

Rsys ≈ 0.83
P̄SA T
∆VLV

+ 1.2 mmHg s/ml. (11.27)
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Figure 11.8: Linear correlation between initial and optimised values of Rsys and Rpul.

On the pulmonary side, the maximal errors in the initial values of parameters
EPA and Rpul were, respectively, 92 and 11,586 %. There are two main reasons
for this large discrepancy between initial and optimised values of Rpul. First, in
the datasets, pulmonary artery pressure is particularly low, sometimes even neg-
ative, as previously mentioned. Second, in the case of the pulmonary circulation,
downstream pressure cannot be neglected with respect to pulmonary artery pres-
sure [20]. The approximation Rpul ≈ P̄PAT/∆VRV is not valid. However, since
downstream pressure was not available, this assumption was necessary.

As in the systemic case, there is a good correlation (r2 = 0.82) between initial
and optimised values of Rpul, shown in Figure 11.8 (right). This result suggests
the following approximation:

Rpul ≈ 0.39
P̄PA T
∆VLV

− 0.027 mmHg s/ml.
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In other studies on the same datasets, Revie et al. [95, 204] identified all the
parameters of the six-chamber CVS model, except Vs,6, which represents a unique
feature of the present study. They published the values of the parameters Rsys,
Rpul, ELV and ERV. When compared to the values presented in Table 11.4, only
the values of Rsys and Rpul are well correlated (r2 = 0.79 and 0.72, respectively).
The values of ELV and ERV show no correlation. The reason is that Revie et al.
assumed Vu,LV and Vu,RV to be zero, which is not the case, as shown in Table 11.3.
As explained by these authors, their values of ELV and ERV do not represent left
and right ventricular contractilities in a strict sense [93].

As previously explained, two preload reduction datasets were available for
pigs number 1 and 3. The identified parameter values are displayed in Table 11.4.
For the two parameter sets identified for pig number 1, the maximum relative
differences are approximately 30 % for ERV and 29 % for Rsys. For all other pa-
rameters, maximum relative difference is 17 %.

For pig number 3, the maximum relative differences are 591 % for Vu,LV and
162 % for Rpul. These high differences are caused by the fact the two preload
reduction manoeuvres did not have the same effect on the pig, as shown in Fig-
ure 11.9. In particular, the second preload reduction manoeuvre seems to have
had less effect. For instance, the identified left heart contractility ELV changed by
75 % between the two manoeuvres. The animals’ state is continuously changing
under the influence of numerous physiological reflex mechanisms. Consequently,
measured pressures and volumes and thus, identified parameter values, includ-
ing Vs,6, can be different for two successive measurements in a single animal. The
method described in this work only aims to determine the instantaneous state of
the animal. It cannot account for the transition between states, because the reflex
mechanisms are not modelled.
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Figure 11.9: Left ventricular pressure-volume loops (dashed line) and end-systolic
pressure-volume relationships (full line) for the two datasets of pig number 3.
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As can be seen from Table 11.4, the unstressed volume Vu,LV of the left ven-
tricle is the most varying parameter (10.2 ± 16.1 ml), being sometimes even neg-
ative, as in Figure 11.9 (right). This observation has been made by many other
researchers [109, 122], who questioned the physiological meaning of a negative
volume. The explanation of this phenomenon is that the ESPVR is only linear
on a limited volume range, but tends to become concave for low volumes, as
explained in Section 5.2.1.

11.4 Limitations

This chapter presented a method to compute all the parameters of the six-chamber
CVS model, including total stressed volume Vs,6, from data of preload reduction
manoeuvres. In these experimental manoeuvres, one of the two input vessels to
the right ventricle, the venae cavae, was occluded. In this chapter, it was assumed
that this preload reduction manoeuvre could be simply modelled as a sharp dou-
bling of the right ventricular input resistance, namely RTV. This hypothesis is the
main limitation and is discussed here.

First, to agree with the experimental setting, the change had to be modelled
as a change in resistance, the elastance of the vessel being unaffected by the oc-
clusion. However, the lumped nature of the model causes the venae cavae to be
represented as a single elastic chamber with no resistance. The remaining choice
was to alter either the resistance upstream of the elastic chamber, the resistance
of the systemic circulation, Rsys, or the one downstream, the tricuspid valve re-
sistance, RTV. Since the resistance of the systemic circulation is mainly attributed
to the capillaries, which are unaffected by the preload reduction manoeuvre, it
seemed more appropriate to alter the tricuspid valve resistance, RTV.

Second, it was assumed that the preload reduction manoeuvre could be mod-
elled by doubling this resistance. Indeed, since one of the two input vessels is
occluded, there is no flow in this vessel and its resistance becomes infinite. Us-
ing the rules valid for electrical circuits, the total resistance after occlusion is thus
twice that before occlusion.

Finally, the preload reduction manoeuvre was reproduced by a sharp change
of the resistance. It is likely that the computed Vs,6 value could change according
to how fast the inferior vena cava is occluded. However, measuring the time
evolution of inferior vena cava occlusion requires an echographic study, which
was not available here.

The computed Vs,6 values should be compared to SBV values obtained by
the experiments described in the introduction and in Figure 3.8. As mentioned
previously, such experiments are invasive and risky, as they involve repetitive
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circulatory arrests in all or part of the CVS and multiple fluid administrations [32,
77–83]. If the method provided here correlates well with these other approaches,
it could be used as a faster replacement, also avoiding the need for circulatory
arrests.

11.5 Summary

In the past, total stressed volume has been considered to be an unimportant pa-
rameter of closed-loop CVS models. Its value has been omitted from numer-
ous studies presenting such models, despite its role in simulations with changing
preload or afterload conditions. In this chapter, the importance of this parameter
for CVS models was shown.

Next, a method was presented to compute this parameter along with all other
parameters of the six-chamber CVS model from usual haemodynamic data. This
method consists in fitting the CVS model to data from a preload reduction ma-
noeuvre. Because data is limited and not perfect, the subset selection algorithm
presented in Section 9.5 was used to select a subset of parameters to fit. The pa-
rameter Vs,6 was selected by the algorithm, which further confirms its important
role. Its value could then be computed for all available datasets.

The method presented here requires many invasive data and is based on a
preload reduction manoeuvre through vena cava occlusion, which is an invasive
procedure, as illustrated in Figure 11.2. However, the method could be made less
invasive by suppressing the need for continuous ventricular pressures and vol-
umes measurements. As previously shown, Vs,6 is the most sensitive parameter.
Therefore, it is likely to be identifiable using only arterial and/or venous pres-
sure measurements. The second step to make the method less invasive would be
to replace the vena cava occlusion by another, non-invasive, preload reduction
manoeuvre, for example a passive leg raising manoeuvre or an end-expiratory
occlusion test, as described in Section 3.4.5. These changes would result in a
non additionally-invasive method to compute a patient’s volume status. Non
additionally-invasive measurements are critical to enable easy identification of a
patient’s volume status and whether fluid therapy should be performed, which
is central to monitoring and treating CVS dysfunction.
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Chapter 12

Comparison between Conventional
and Model-Based Indices of Fluid
Responsiveness

12.1 Introduction

The previous chapter presented a method to compute the total stressed volume
parameter of the six-chamber model, Vs,6. This method has two drawbacks. First,
it requires data from both the systemic and pulmonary circulations, since the six-
chamber model represents these two circulations. Second, this data has to be ob-
tained during a preload reduction manoeuvre, to eliminate the indetermination
between total stressed volume and venous elastances.

In this chapter, these two limitations are overcome using the three-chamber
model, and a method requiring only systemic circulation data in steady condi-
tions, including range of venous pressure. Using this measurement eliminates
the indetermination between total stressed volume and venous elastance, as dis-
cussed in Section 9.4.1.

The method is validated against experimental vascular filling data, and is also
detailed in Pironet et al. [205]. The resulting Vs,3 value is then tested as an index
of fluid responsiveness, and compared with the conventional indices introduced
in Section 3.4.
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12.2 Methods

12.2.1 Experimental Data

To identify the eight parameters of the three-chamber model, comprising three
elastances Eh, Ea and Ev, three resistances Ri, Ro and Rc, the cardiac period T and
Vs,3, experimental animal data were used. These data came from vascular filling
experiments performed on eight anaesthetized pigs, weighing 20 to 41 kg. The
ethical approval for these experiments is mentioned in Section 7.2. The pigs were
administered a muscle relaxant (Nimbex, GlaxoSmithKline AG, Switzerland) and
were mechanically ventilated at a positive end-expiratory pressure of 5 cmH2O.

The experiments consisted in 2 to 6 successive administrations of saline solu-
tion. Pigs number 1 and 2 received slow 500 ml fluid infusions and pigs number
3 to 8 received rapid 225 ml fluid boluses. In addition, pigs number 6, 7 and 8
received dobutamine before the final 225 ml fluid bolus.

Micromanometer-tipped catheters (Transonic, NY) provided continuous re-
cording of:

• Left ventricular pressure and volume (using the admittance technique),
• Aortic pressure,
• Inferior vena cava pressure (only for pigs number 1 and 2),
• Left atrial pressure (only for pig number 1).

A PiCCO monitor was also used for pigs number 5 to 8, providing beat-to-beat
recording of:

• SV,
• CVP,
• Vena cava PP (not recorded for pig number 5).

The PiCCO was recalibrated with three thermodilutions after each fluid adminis-
tration to avoid any drift in the measured SV, linked to changes in haemodynam-
ics [162, 164], as explained in Section 7.3.5. Table 12.1 summarises the available
data for each animal.

Since cardio-pulmonary interaction is not accounted for in the three-chamber
model, only data during temporary interruptions of the mechanical ventilator
were used. However, pausing the ventilator causes transient preload and after-
load changes. Consequently, only the last heartbeat before the end of the expira-
tory pause was used, so that the hemodynamics were as stabilized as possible.
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Table 12.1: Summary of the experimental data.

Pig number 1 2 3 4 5 6 7 8

Catheter data

Left ventricular pressure X X X X X X X X

Left ventricular volume X X X X (X) X X X

Aortic pressure X X X X X X X X

Vena cava pressure (X) X

Left atrial pressure X

PiCCO data

SV X X X X

CVP X X X X

Vena cava PP X X X

Number of fluid 4 2 4 5 5 6 6 5

administrations

12.2.2 Parameter Identification

The parameter identification procedure aims to reproduce the measured signals
with the model. To do so, the following correspondence was established between
model outputs and experimental measurements.

• Measured left ventricular pressure and volume were taken as references for
the model cardiac pressure, Ph, and volume, Vh,.
• Measured aortic pressure was taken as a reference for the model arterial

pressure, Pa.
• Measured vena cava and left atrial (only for pig number 1) pressures were

considered as the reference for the model venous pressure, Pv.

The parameter identification procedure involved four steps, described in the
following four sections. First, initial values had to be assigned to all eight model
parameters. Second, an error vector was defined. From the error vector com-
puted using the initial parameter values, the subset selection algorithm selected
a sensitive subset of parameters to be further identified. Fourth, this subset of
parameters was identified using an iterative procedure.

Initial Parameter Values

To assign initial values to the model parameters, the approximate formulae de-
rived in Section 9.6 were used in combination with the available data.
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1. The cardiac period, T, was computed as the time interval between two min-
ima of the aortic pressure signal, as exemplified in Figure 2.9.

2. Input valve resistance, Ri, was initialized using Equation 9.26.
3. Output valve resistance, Ro, was initialised using Equation 9.31.

When Equations 9.26 or 9.31 could not be used, due to missing or inconsis-
tent data, initial valve resistances values were taken from Revie et al. [93]:

Ro = 0.04 mmHg s/ml (12.1)

Ri = 0.05 mmHg s/ml. (12.2)

4. The resistance of the circulation, Rc, was computed using Equation 9.37.
5. The cardiac end-systolic elastance, Eh, was computed using Equation 9.39.

The use of this approximation is justified in the present chapter, because Eh

need not be precisely estimated. Indeed, in the data used in this chapter,
preload and afterload do not vary, in contrast to Chapter 11. Consequently,
the points of end-systole do not move on the ESPVR, whose slope is thus
not important.
The driver function e(t) was then obtained as:

e(t) =
Ph(t)

EhVh(t)
. (12.3)

It was specifically found using measured left ventricular pressure for Ph and
left ventricular volume for Vh. The resulting curve was then approximated
by its Fourier series up to the tenth harmonic. This Fourier approximation
was used to drive the three-chamber model.

6. Arterial elastance, Ea, was estimated by fitting Equation 9.44 to measured
aortic pressure during diastole.

7. Venous elastance, Ev, was estimated using Equation 9.54. If ∆Pv was not
available, it was estimated to be equal to 9 mmHg [201].

8. To determine the initial value of Vs,3, Equation 9.56 was used. If part of the
data necessary to compute the initial value of Vs,3 was missing, previously
published experimental results on pigs were used [196]. From these results,
Vs,3 was estimated to be equal to 593 ml.

In the previous computations, parameters T and Eh were computed by directly
fitting the model to the data. Consequently, it was assumed that the parameter
identification process would not largely alter these parameter values. They were
thus excluded from the following sensitivity analysis procedure, and the remain-
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ing parameter vector was defined:

p = (Vs,3 Ea Ev Rc Ri Ro). (12.4)

Error Vector

Table 12.2 summarizes the data included in the output vector, y, for each pig.
The error vector, e, was then built as the relative error between simulated and
measured values of these data, as dictated by Equation 9.3. The motivations for
choosing the data in Table 12.2 are given in the following paragraphs.

Table 12.2: Data included in the output vector y.

Pig number 1 2 3 4 5 6 7 8

Mean cardiac volume, V̄h X X X X (X) X X X

Range of cardiac volume, ∆Vh X X X X X X X X

Mean arterial pressure, P̄a X X X X X X X X

Range of arterial pressure, ∆Pa X X X X X X X X

Mean venous pressure, P̄v X X X X X

Range of venous pressure, ∆Pv X X X X X

Mean cardiac pressure, P̄h X

Range of cardiac pressure, ∆Ph X

As demonstrated in Chapter 8, using at least one volume-related piece of in-
formation, for instance ∆Vh, is necessary to ensure structural identifiability in a
lumped CVS model. In this chapter, mean and range of cardiac volume were
both used. For pigs number 5 to 8, two estimates of SV were available, from the
ventricular pressure-volume catheter and from the PiCCO, which were averaged
to obtain the reference value of ∆Vh.

Cardiac pressures were not included in the output vector since they had al-
ready been used to compute Eh and e(t). However, for pig number 5, reference
cardiac volume was not always reliable, as denoted by the parentheses in Ta-
bles 12.1 and 12.2. This observation, in turn, prevented the estimation of Eh and
e(t) as explained in the previous section. Consequently, for this animal, Eh was
inserted in the parameter vector, p, while mean cardiac pressure P̄h and range of
cardiac pressure ∆Ph were inserted in the output vector, y. Additionally, mea-
sured mean vena cava pressure was negative for pig number 1, as noted by the
parentheses in Table 12.1, which cannot be reproduced by the model. Since it was
available, mean left atrial pressure was used as the reference for mean venous
pressure instead.
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Subset Selection Algorithm

A subset of the parameter vector, p, was selected for optimization using the algo-
rithm presented in Section 9.5. In this chapter, the subset selection algorithm was
used on each individual error vector, in contrast to what was done in Chapter 11.
The motivation for this change is that different data are available for each pig, as
emphasised in Table 12.1.

Iterative Adjustment of the Selected Parameters

The selected parameters were computed by an iterative procedure. The objective
of this procedure was to minimise the mean absolute error (MAE), defined:

MAE =
ψ1

Ny
=

1
Ny

Ny

∑
i=1
|ei|, (12.5)

where Ny is the number of components in y and e, equal to 4, 5, 6 or 7 in func-
tion of the available data, given in Table 12.2. This task was performed using the
custom implementation of the proportional method presented in Section 10.2.1
combined with the simplex method for nonlinear optimisation presented in Sec-
tion 10.2.2. The initial values needed by this algorithm were the ones computed in
at the beginning of the present section. All computations were performed using
Matlab (2010a).

12.3 Results and Discussion

12.3.1 Subset Selection Algorithm

Figure 12.1 shows the frequency of parameter selection by the algorithm. As
can be observed in this figure, the total stressed volume, Vs,3, and the resistance
of the circulation, Rc, have been selected by the algorithm for all 37 datasets,
allowing the estimation of these parameters in all cases. This result emphasises
the importance of Vs,3 for CVS model simulations, as previously pointed out in
Chapter 11 for the six-chamber CVS model.

As mentioned in the previous section, cardiac elastance, Eh, was only submit-
ted to the subset selection algorithm for pig number 5. For this animal, Eh was
also selected for all datasets. Hence, this extra parameter was identified.

The valve resistances, Ri and Ro, were the least frequently selected parame-
ters. They are indeed difficult to identify from the available data, as already noted
in Chapter 10. It should also be noted that Ellwein et al. [88] performed a param-
eter sensitivity analysis in a different CVS model including 11 compartments and
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Figure 12.1: Frequency of parameter selection by the subset selection algorithm.

52 parameters. Input valve resistance was the 42nd most sensitive parameter and
output valve resistance, the 46th, which matches the present results.

12.3.2 Quality of the Parameter Identification

After parameter identification on the 37 datasets, the MAE amounts to 8.58 % on
average and ranges from 0.89 to 33.23 %. The quality of the parameter identifi-
cation is thus very good in most cases, which also implies that the very simple
three-chamber CVS model can capture the dynamics observed in the diversity
of the experimental measurements obtained. For instance, pig number 6 pre-
sented a pulsus alternans, alternating strong and weak beats with a stable cardiac
rhythm [14], which caused the highest MAE values. However, this condition was
still correctly reproduced by the model. Additionally, pig number 8 was diag-
nosed in shock, which did not prevent the model from correctly representing this
animal’s condition, as the average MAE for this pig is 3.31 %.

The best and worst cases of parameter identification are displayed in Fig-
ures 12.2 and 12.3. The MAE for the corresponding datasets are 0.89 and 33.23 %.
Simulated and measured pressures and volumes are thus in good agreement.

A frequent source of error can be evidenced using Figure 12.2. During a whole
cardiac cycle, measured aortic pressure is nearly always higher than measured
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Figure 12.2: Identification result for pig number 3, after 900 ml fluid administration.
Left: simulated (full lines) and reference (dashed lines) cardiac (black) and arterial (red)
pressures, and simulated venous pressure (light blue). Right: simulated (full line) and
reference (dashed line) cardiac volumes.
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Figure 12.3: Identification result for pig number 6, after 225 ml fluid administration.
Left: simulated (full lines) and reference (dashed lines) cardiac (black), arterial (red)
and venous (light blue) pressures. The arrow represents vena cava PP measured by the
PiCCO. Right: simulated (full line) and reference (dashed line) cardiac volumes. The
arrow represents SV measured by the PiCCO.
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left ventricular pressure. The simple valve model used in this work cannot repro-
duce such a situation, since the model requires arterial pressure to be lower than
cardiac pressure for the output valve to open (Equation 6.6).

Another source of error is visible in Figure 12.3, where reference mean venous
pressure is always lower than reference cardiac pressure. Such a situation can be
physiological, as the whole right circulation is located between the two points of
measurement, superior vena cava and left ventricle. However, the right circula-
tion is not included in the model, and a venous pressure always lower than the
cardiac pressure prevents cardiac filling. Consequently, for the simulated ven-
tricle to fill, the simulated venous pressure is forced to be higher than reference
cardiac pressure during filling, as in Figure 12.3.

The parameter identification method presented in this work is robust, since it
was able to fit the model to various experimental data, as shown in Table 12.1,
even given the following conditions:
• PiCCO data available or not,
• left atrial/vena cava pressure data available or not,
• vena cava PP data available or not,
• unreliable left ventricular volume data.

This robustness and adaptability to the available data makes the method and this
simplified model serious candidates for application to ICU patient data.

12.3.3 Total Stressed Volume Vs,3 as an Index of Fluid Respon-
siveness

In Section 3.2, three methods were detailed to assess the performance of an index
of fluid responsiveness. This section applies the three method to the computed
value of Vs,3 before each fluid administration. The goal is to investigate whether
Vs,3 could be used as an index of fluid responsiveness.

Linear Regression: Pooled Data

Figure 12.4 shows the relation between relative change in CO after each fluid ad-
ministration and the identified Vs,3 value before the fluid administration, for pigs
number 3 to 8. Pigs number 1 and 2 were excluded from this analysis, because
they received different volumes of fluid, administered at a different rate, as ex-
plained in Section 12.2.1. The correlation coefficient, r, equals −0.35.

As explained in the previous section, pig number 6 presented a pulsus alter-
nans. This condition was associated with the largest MAE and may thus have
impacted the quality of the estimated Vs,3. If pig number 6 is also excluded from
the linear regression analysis, the correlation coefficient becomes −0.50.
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Figure 12.4: Relative change in CO after each 225 ml fluid bolus plotted versus the
identified Vs,3 value before bolus, for pigs number 3 to 8. Data from pig number 6 are
displayed in red. The coloured areas divide the plane along the lines Vs,3 = 145 ml and
relative change in CO = 12 %.

The negative relation means that the higher the Vs,3, the lower the relative
change in CO. This relation was expected, since Vs,3 represents the volume status
of a subject. For instance, a high Vs,3 value means that the subject has a large
intra-vascular blood volume. In this case, a fluid administration is not required
and will probably not be beneficial.

The results presented in this section are similar to those of Maas et al. [32]
for ICU patients, presented in Figure 3.1. As explained in Section 3.5, these au-
thors observed a negative correlation between SBV and relative change in CO
after fluid administrations in ICU patients. In their study, SBV was determined
using 10 sequential 50 ml fluid administrations and local circulatory arrests, a
time-consuming procedure, which may also be harmful if these a priori fluid ad-
ministrations are actually not required.

In contrast, the procedure presented in this chapter does not require a priori
fluid administration or circulatory arrests to compute the Vs,3 value. Furthermore,
it is also based on data available in an ICU. Hence, it is not additionally invasive
and may also be safer.

Linear Regression: Individual Data

It is also interesting to observe that the correlation presented in the previous sec-
tion is even stronger for each animal taken individually. Figures 12.5 and 12.6
show the relation between relative change in CO after each fluid administration
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and the identified Vs,3 value before the fluid administration, for all 8 animals sep-
arately.
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Figure 12.5: Relative change in CO after each 500 ml fluid infusion plotted versus the
identified Vs,3 value before infusion, for pigs number 1 and 2. The numbers in the squares
indicate the sequence of fluid administrations.

Note that the worst correlation (r = −0.37) is again observed for pig number
6, which presented a pulsus alternans. The lower quality of the estimated Vs,3

could explain the weaker relation between Vs,3 and relative change in CO after
fluid administration.

Figures 12.5 and 12.6 also emphasise that neither Vs,3 nor CO changed mono-
tonically during the filling experiments, which can be attributed to the numerous
regulatory mechanisms acting on the CVS. Another possible reason why CO de-
creased after some fluid administrations can be that preload was increased so
much that the heart eventually worked on the descending part of the Frank-
Starling curve, as mentioned in Section 2.3.5.

Accordingly, for pigs number 7 and 8, the use of dobutamine before the final
fluid bolus increased the contractility, and changed the Frank-Starling curve as
shown in Figure 2.11, which explains why the last fluid administration was ef-
fective, while the previous ones were not. This effect was not observed for pig
number 6. All these observations underline the complexity of predicting the ef-
fects of fluid administration and inotropes. These two treatments are often used
together in the management of shock, but selecting between them is difficult [4].

t-Test

As explained in Section 3.2.2, a t-test and a ROC curve require setting a thresh-
old for definition of fluid responsiveness. Maas et al. define a positive response
as a relative change in CO larger than 12 % [32]. According to this definition,
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Figure 12.6: Relative change in CO after each 225 ml fluid bolus plotted versus the
identified Vs,3 value before bolus, for pigs number 3 to 8. The numbers in the squares
indicate the sequence of fluid administrations. The coloured areas divide the plane along
the lines Vs,3 = 145 ml and relative change in CO = 12 %.

10/37 (27 %) of the fluid administrations performed in the present study were as-
sociated with a positive response. This proportion is lower than the 50 % usually
reported for ICU patients [3,6,31]. However, conversely to what happens in ICUs,
the pigs were healthy, except for pigs number 6 and 8, during the experiments.

The mean Vs,3 for cases associated with a positive response (138± 32 ml) and
a negative response (176± 57 ml) are not significantly different (p = 0.088). This
p-value was computed using an unpaired t-test on the combined data from pigs
number 3 to 8. Leaving pig number 6 aside, the means become 140± 34 ml for
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cases where the change in CO > 12 % and 191± 52 ml for cases where the change
in CO ≤ 12 %, and these means are significantly different (p = 0.026).

Receiver-Operator Characteristic Curve

To investigate if a Vs,3 lower than a given threshold could predict a relative change
in CO larger than 12 %, the ROC curve is plotted in Figure 12.7. The best threshold
for Vs,3 was found to be 145 ml and is represented in Figure 12.6. This threshold
was associated with a sensitivity of 0.75 and a specificity of 0.70. The area under
the ROC curve was 0.70. This analysis was conducted only using the combined
data from pigs number 3 to 8, since pigs number 1 and 2 received different vol-
umes of fluid, administered in a different fashion.
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Figure 12.7: ROC curve of Vs,3 as a predictor of a relative change in CO larger than
12 % after fluid administration. The black curve was built using data from pigs number
3 to 8 and the blue one, with data from pigs number 3, 4, 5, 7 and 8.

A second ROC curve is presented in Figure 12.7, obtained by excluding pig
number 6, which presented a pulsus alternans. In this case, the best threshold
remains 145 ml, but is associated with a sensitivity of 0.71 and a specificity of
0.83. The area under the second ROC curve is 0.79. Both results are very good
and will be compared with conventional indices of fluid responsiveness in the
next section.

The imperfect values of sensitivity and specificity can be understood by notic-
ing that the relation between Vs,3 and relative change in CO seems to be subject-
specific. In particular, the slope of the relation between Vs,3 and relative change in
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CO ranges from −0.0014 to −0.0088 ml−1. Maas et al. determined only one SBV
value for each subject, and thus, could not make a similar observation for SBV.

12.3.4 Conventional Indices of Fluid Responsiveness

The commonly used dynamic indices of fluid responsiveness, SVV, PPV and SPV,
were introduced in Section 3.4. These indices have been computed from the mea-
sured left ventricular and aortic pressure data, before each fluid infusion. For
the best comparison with Vs,3, the dynamic indices were computed on five res-
piratory cycles, just before the disconnection of the ventilator described in Sec-
tion 12.2.1. Note that the ventilator had to be connected, since the dynamic in-
dices are based on cardio-pulmonary interactions. The analyses presented in Sec-
tion 12.3.3 for Vs,3 have been reproduced for these indices.

Linear Regression: Pooled Data

Figures 12.8 to 12.10 shows the relation between relative change in CO after each
fluid administration and the values of the dynamic indices SVV, PPV and SPV
before the fluid administration, for pigs number 3, 4, 5, 7 and 8. The data from
pigs number 1 and 2 were excluded from the analysis because fluid was adminis-
tered differently. Pig number 6 was excluded because the pulsus alternans causes
changes in haemodynamic signals that are not linked to mechanical ventilation.
The dynamic indices could thus not be computed for this animal.
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Figure 12.8: Relative change in CO after each 225 ml fluid bolus plotted versus the
computed SVV value before bolus, for pigs number 3, 4, 5, 7 and 8. The coloured areas
divide the plane along the lines SVV = 15.1 % and relative change in CO = 12 %.
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Figure 12.9: Relative change in CO after each 225 ml fluid bolus plotted versus the
computed PPV value before bolus, for pigs number 3, 4, 5, 7 and 8. The coloured areas
divide the plane along the lines PPV = 8.5 % and relative change in CO = 12 %.
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Figure 12.10: Relative change in CO after each 225 ml fluid bolus plotted versus the
computed SPV value before bolus, for pigs number 3, 4, 5, 7 and 8. The coloured areas
divide the plane along the lines SPV = 6.8 % and relative change in CO = 12 %.

Overall, the correlation coefficients between the dynamic indices and the rel-
ative changes in CO are smaller in absolute value than the one observed for Vs,3,
which was equal to −0.5 for the same animals. In particular, the correlation coef-
ficient for SVV is negative, as shown in Figure 12.8, while it should be positive [6].
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Linear Regression: Individual Data

Table 12.3 shows the correlation coefficients, r, between relative change in CO
and (1) SVV, (2) PPV and (3) SPV. Because they are only two data points for pig 2,
the correlation coefficients are systematically equal to 1 or −1.

As can be seen in Table 12.3, the correlation between change in CO and SVV
is negative in 4/7 cases, while it should be positive [6]. The same observation can
be drawn for the correlations between
• Change in CO and PPV (negative in 3/7 cases),
• Change in CO and SPV (negative in 2/7 cases).

Both of these correlations should also be positive. On the other hand, as shown
in Figures 12.5 and 12.6, change in CO was negatively correlated with Vs,3 in all
cases.

Table 12.3: Correlation coefficients, r, between relative change in CO and (1) SVV, (2) PPV
and (3) SPV.

Pig number 1 2 3 4 5 7 8

SVV 0.04 -1.00 0.94 0.50 -0.76 -0.29 -0.35

PPV -0.74 1.00 -0.87 0.50 -0.37 0.66 0.48

SPV -0.15 1.00 -0.68 0.15 0.14 0.65 0.71

t-Test

Unpaired t-tests were performed to investigate whether the mean d ynamic in-
dices were statistically different for positive and negative responses. The results
are presented in Table 12.4. As shown in this table, the mean values of SVV, PPV
and SPV are very close for positive and negative responses. Consequently, there
is no significant difference between these mean values and no diagnostic accu-
racy greater than 50 % is likely. It is also interesting to mention that the mean
SVV for positive responses is lower than for negative ones, where it should be
higher. In contrast, as previously mentioned, the mean Vs,3 values for positive
and negative responses are significantly different (p = 0.026).

Receiver-Operator Characteristic Curve

The ROC curves for the dynamic indices are plotted in Figures 12.11 to 12.13 and
their features are summarised in Table 12.5.

The best thresholds found for SVV, PPV and SPV are similar to those pre-
sented in the literature. For humans, the reported threshold values are:
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Table 12.4: Results of the t-tests for SVV, PPV and SPV (performed using data from pigs
number 3, 4, 5, 7 and 8).

Index Mean for positive responses Mean for negative responses p

SVV 17.2 % 18.9 % 0.529

PPV 10.2 % 9.3 % 0.428

SPV 3.6 % 3.0 % 0.533

• 9.5 to 16 % for SVV [7, 33, 39, 45, 206],
• 4 to 17 % for PPV [7, 21, 25, 31, 36, 39, 53, 206],
• 8.5 to 9 % for SPV [39, 43].

For pigs, the values are:
• 9.5 % for SVV [207],
• 5 to 15 % for PPV [42, 71, 207].

As mentioned in Section 3.4.4, all these threshold values depend on many factors,
including ventilator settings. They also depend on how fluid responsiveness is
defined, which explains the very large variations.
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Figure 12.11: ROC curve of SVV as a predictor of a relative change in CO larger than
12 % after fluid administration. The curve was built using data from pigs number 3, 4,
5, 7 and 8.

In the present study, the dynamic indices are not able to provide both a sensi-
tivity and a specificity larger than 0.5. Similarly, the area under the ROC curves is
very close to 0.5, making them barely more (even less for SVV) efficient than flip-
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Figure 12.12: ROC curve of PPV as a predictor of a relative change in CO larger than
12 % after fluid administration. The curve was built using data from pigs number 3, 4,
5, 7 and 8.
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Figure 12.13: ROC curve of SPV as a predictor of a relative change in CO larger than
12 % after fluid administration. The curve was built using data from pigs number 3, 4,
5, 7 and 8.

ping a coin to make a decision about fluid administration. This last observation
matches some previously published ICU results [45, 48, 60].
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Table 12.5: Characteristics of the ROC curves for SVV, PPV and SPV. (The ROC curves
were built using data from pigs number 3, 4, 5, 7 and 8.)

Index Threshold Sensitivity Specificity Area under ROC

SVV 15.1 % 0.71 0.39 0.36

PPV 8.5 % 0.86 0.50 0.58

SPV 6.8 % 0.29 1.00 0.54

A possible explanation for the inefficiency of dynamic indices in this diagnos-
tic use is that the way fluid administration was performed in pigs number 3 to 8
is different from the way fluid administrations are performed in an ICU. As pre-
viously mentioned, pigs number 3 to 8 received 225 ml fluid boluses, injected in
approximately two minutes. In the ICU, fluid administration is performed using
continuous infusions, typically 500 ml in 30 minutes, as was done for pigs num-
ber 1 and 2. The low volume of fluid administered to pigs number 3 to 8 could
explain that some animals did not respond to filling, while they would have if
a larger volume had been administered. However, even when considering only
the results for pigs number 1 and 2 in Table 12.3, discrepancies are still present
for SVV, PPV and SPV.

12.4 Summary

This chapter presented a method to compute the Vs,3 parameter of the three-
chamber model. This index was identified by adjusting the parameters of the
three-chamber model to data from vascular filling experiments in pigs. The iden-
tified Vs,3 value presented a consistent association with the relative change in CO
after fluid administration, as expected from the Frank-Starling mechanism and
from the results of a previous study. In contrast, the clinically accepted indices,
SVV, PPV and SPV, did not predict the change in CO after each fluid infusion. Im-
portantly, the method developed in this chapter can be applied to humans, since
it does not require a priori fluid infusions and the data required for parameter
identification can be obtained in an ICU.
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Chapter 13

Conclusions

Vascular filling is one of the most frequent and important interventions perfor-
med in the intensive care unit (ICU). It aims to increase cardiac output (CO) by
increasing the quantity of fluid in the vasculature. However, vascular filling ther-
apy is only effective in 50 % of cases, the rest of the fluid administrations being
ineffective and potentially harmful, as an excess of fluid can cause pulmonary
oedema, right ventricular dysfunction or haemodilution. Clinicians thus need
robust, readily available indices to decide whether to perform vascular filling.

Currently, there exist two main types of indices to guide vascular filling. Static
indices are measurements of cardiac pressures and volumes, which are assumed
to represent the loading conditions of the heart. These indices have been re-
peatedly proven inaccurate during the last decade. Dynamic indices capture the
amplitude of changes in cardiac pressures and volumes caused by mechanical
ventilation and other external influences. Dynamic indices are superior to static
indices, but are difficult to implement clinically.

This thesis aimed to improve the prediction of the response to vascular filling
using a different approach, based on mathematical models of the cardio-vascular
system (CVS). More specifically, the three goals of this thesis, as stated in the
introduction, were:

• To develop simple models of the CVS usable in the ICU,
• To demonstrate that the parameters of these models can be identified from

readily available ICU data, proving structural and practical identifiability,
• To verify the models using clinical data, to predict the response to vascular

filling.

The present section summarises the content of this thesis and shows how these
three goals were reached.
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13.1 Summary

Chapter 2 first briefly presented the anatomy of the CVS. The physiology of this
system was then described more extensively, including an overview of the heart’s
behaviour and the usual evolution of pressures and volumes during a cardiac cy-
cle. Pressures and volumes play a major role in investigating the cardiac function
and vascular state. Several indices based on pressures and volumes were de-
fined, including CO. All these indices are constantly used in ICUs to investigate
a patient’s state. Finally, as CO is the most important of these indices, its four
determinants, preload, afterload, contractility and heart rate, were discussed.

Vascular filling is also tightly linked to CO. As explained in Chapter 3, the
goal of this therapy is to increase CO through an intravenous administration of
fluid. However, because the effects of this therapy are uncertain and potentially
harmful, there is a need for indices that predict the response to vascular filling, or
fluid responsiveness. Prediction of fluid responsiveness can be of two types:

• Quantitative, meaning the index will predict by how much CO will change
after vascular filling,
• Qualitative, meaning the index will predict if CO will change by more than

a pre-defined threshold.

Static indices of fluid responsiveness are similar to the pressure and volume-
based indices introduced in Chapter 2. These indices have repeatedly been proven
to be poor predictors of the response to vascular filling. Dynamic indices were
introduced in 2000 based on changes of the static indices caused by external in-
fluences, for instance, mechanical ventilation. They suffer many limitations, be-
cause of the numerous physiological variables influencing their values. Finally,
total stressed blood volume (SBV) was introduced as another potential index.
However, it cannot easily be measured in an ICU using current techniques.

Building on the physiology concepts introduced in Chapter 2, Chapters 4 pre-
sented very simple ways of modelling the passive elements of the CVS. These
elements were modelled using relations between pressures and volumes, which
are the most important variables to describe the functioning of the CVS. Resis-
tance elements are tubes through which blood flows following a pressure differ-
ence. Valves are non-linear tubes through which blood is only allowed to flow
in one direction. Chambers are able to store blood, causing a pressure increase.
Finally, the continuity equation was introduced. For closed-loop CVS models,
this equation states that blood volume equal to a constant, which represents the
model-based equivalent of SBV.

Chapter 5 described different ways of modelling the most important anatom-
ical parts of the CVS: ventricles and atria. The ventricles have been described
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using two main approaches: the time-varying elastance theory and multi-scale
models, based on a description of cardiac muscle units. The application of the
time-varying elastance theory to the atria is very uncertain. Consequently, mod-
elling the atria should be done using multi-scale models.

Using the building blocks developed in Chapters 4 and 5, a first simple model
of the CVS was built, containing three chambers representing the heart, the arter-
ies and the veins. A second model was also introduced, containing six chambers
representing the left and right ventricles, and the systemic and pulmonary arter-
ies and veins. The development of these models represents the achievement of
the first goal of this thesis. The models were developed under several hypothe-
ses, which were discussed and justified. These hypotheses result in the low num-
ber of parameters, which thus have the potential to be identified from the limited
amounts of data available. Finally, simulations of the two models were performed
to verify they produced results consistent with physiological measurements.

The next step was to identify the parameters of the two models from data
available in the ICU. Chapter 7 explained what kind of data can be obtained in
the ICU and the sensors and techniques to obtain such data: pressure catheters,
pulmonary artery catheter, thermodilution and PiCCO. Because the models de-
veloped in this work first need to be validated, experimental data was also de-
scribed, along with corresponding sensors and techniques, such as the pressure-
volume catheter.

Chapter 8 presented a demonstration that parameter identification in the de-
veloped CVS models is impossible when using only pressure or volume data.
More importantly, Chapter 8 also showed that that all parameters of the three-
chamber CVS model could theoretically be identified from signals available in an
ICU: arterial pressure, venous pressure and stroke volume (SV). The demonstra-
tion can be extended to the six-chamber CVS model, provided that measurements
from pulmonary arterial and venous pressures are also available. Such a require-
ment can be met in an ICU by using a pulmonary artery catheter. Thanks to this
demonstration, the second goal of this thesis was also reached.

Data available in the ICU are often limited to beat-to-beat indices, such as
ranges and means of pressure or volume signals. Consequently, the information
contained in the data is not infinite, as typically assumed in the demonstrations
of identifiability, and as presented in Chapter 8. Chapter 9 introduced tools to in-
vestigate the practical consequences of the limited amount of data. For instance,
a sensitivity analysis enabled investigation of the magnitude of a parameter’s ef-
fect on the simulations. A correlation analysis enabled detection of whether two
parameters have similar influences on the simulations. If so, these two param-
eters will not be practically identifiable together. The subset selection algorithm
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presented combines these two approaches and excludes parameters that cannot
readily be practically identified. Finally, as parameter identification is an iterative
process, formulae were developed to provide precise initial values of the model
parameters, which in turn reduces computational time and effort.

Several iterative methods exist to perform parameter identification. In Chap-
ter 10, seven of these methods were introduced and compared. The proportional
method was given particular focus, as it was specifically designed for parame-
ter identification in this type of CVS models. The seven parameter identification
methods were compared using the three-chamber model on two types of data:
• In silico data generated by the model,
• Actual experimental data.

Overall, it was shown that parameter identification in the three-chamber model
can be performed rapidly from ICU data.

Chapter 11 presented a first example of parameter identification on the six-
chamber model. Special attention was paid to the model-based equivalent of
SBV, denoted Vs,6, as this parameter is a potential physiological, model-based in-
dex of fluid responsiveness. This parameter was shown to dictate the model’s be-
haviour when preload and afterload are changing. Using experimental data from
such a situation, this parameter could be identified based on the methodology in-
troduced in the previous chapters. The model provided good fit to experimental
data, thus providing the first validation the six-chamber model in a situation of
changing determinants of CO.

In the last chapter, Chapter 12, parameters of the three-chamber model were
identified from experimental data recorded during vascular filling experiments.
The three-chamber model, despite its simplicity, was shown to be able to repro-
duce the diversity of experimental data. More importantly, the model-based ver-
sion of SBV, denoted Vs,3, showed a consistent association with the change in CO
after vascular filling, making it a first model-based index of fluid responsiveness.
In addition, when computing the predictive power of the conventional dynamic
indices of fluid responsiveness, all these dynamic indices performed poorly. In
conclusion, the three-chamber model can be combined with data available in the
ICU to provide an index of the response to vascular filling, thus meeting the third
and final goal of this thesis.

13.2 Main Findings

While the previous section summarised the sequence of developments made in
this thesis, the present section summarises the main findings and achievements.
First, this thesis provided a first demonstration of the structural identifiability of a
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typical, lumped CVS model. Such a demonstration is a prerequisite for parameter
identification, as it proves that the process theoretically has a unique solution. Im-
portantly, the complexity of most CVS models in the literature means they have
not been shown to be structurally identifiable before performing parameter iden-
tification. Hence, this unique contribution provides a solid theoretical foundation
and can be generalised to many similar physiological models.

According to the previously presented demonstration, the three-chamber CVS
model developed in this thesis can be identified from data typically available in
an ICU: SV, and systemic arterial and venous pressures. The six-chamber CVS
model, as it represents the pulmonary circulation, requires additional informa-
tion from that circulation to be identifiable. The required additional data, arte-
rial and venous pulmonary pressures, can be obtained using an invasive sensor,
the pulmonary artery catheter. Consequently, the three-chamber model is more
suited for regular use in an ICU, and is thus a new, more practical minimal model
for CVS monitoring and management.

As previously mentioned, this thesis also presented a first quantitative vali-
dation of the six-chamber CVS model in conditions of varying preload and af-
terload. Most CVS models presented in the literature are simulated in constant
conditions of preload and afterload. However, as detailed in Section 3, in real life,
preload and afterload are not constant, and more importantly change in typical
ICU conditions. Showing that the studied CVS model can be used in varying
conditions typical of the need for circulatory management, is thus a major result,
since these models are to be used for prediction.

Finally, as previously emphasised, the model-based analogue of SBV, Vs,3, was
computed using the three-chamber model on experimental data during vascular
filling. This parameter showed a consistent association with the relative change
in CO after vascular filling, for eight animals in different states, with different
measurements available. Equally important, the conventional indices of fluid
responsiveness, such as SVV, PPV and SPV showed a very weak efficiency in
predicting the response to vascular filling. Therefore, the need for model-based
indices, such as Vs,3, is strengthened.

13.3 Future Work

The work presented in this thesis yet has to be validated in humans. The method
was designed with this application in mind. Since it does not require a priori fluid
infusions and the data required for parameter identification can be obtained in
an ICU, the method is readily applicable to humans. A retrospective analysis of
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human data from previously performed fluid administrations is planned in the
near future.

As shown in this thesis, a low value of the model parameter Vs,3 can be con-
sidered as a sign of a positive response to vascular filling. It would be useful to
investigate the physiological mechanisms causing a low identified value of Vs,3

and their link to the change in CO after vascular filling. Such an investigation
would allow a deeper understanding of the body’s reaction to vascular filling,
and would also potentially improve the quality of the model’s prediction, even if
it is already very good.

Finally, more reliable measurement of CO is highly needed in the ICU. Cur-
rently, CO can be measured only intermittently using echocardiography or ther-
modilution, as explained in Chapter 7. The continuous estimate of CO provided
by the PiCCO and similar devices is only valid as long as there are no major
haemodynamic changes. However, as repeatedly stated in this thesis, the effi-
ciency of vascular filling is assessed through its effect on the measured CO. A
more reliable measurement of CO would allow knowing with certainty if vas-
cular filling was successful or not. In the particular context of the methods de-
veloped in this work, CO has been shown to be an essential measurement for
parameter identification of CVS models. Since it often is the only volume-related
piece of information, an unreliable CO value could have serious consequences on
the identified parameter values.
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Appendix A

Demonstration of Structural
Identifiability from the Fourth
Output Set

In this appendix, identifiability of the three-chamber model is demonstrated from
a further reduced output set. To do so, a simplifying hypothesis is necessary,
assuming values of the valve resistances are known. Thus, Ri and Ro are assumed
known and are not part of the parameter vector. The reduced output set, y4, used
here, contains:

• arterial pressure, Pa(t),
• integral of the ejected flow during one cardiac period,

∫ T
0 Qo(t) dt.

In particular, this output set does not contain venous pressure. The driver func-
tion e(t) is still assumed known.

A.1 During Ejection

The reasoning presented in Section 8.3.4 to obtain Equation 8.26 expressing Eh in
terms of Pa(t), e(t) and

∫ T
0 Qo(t) dt can be repeated here, since all these quantities

are known. Cardiac elastance Eh is thus identifiable using Equation 8.26.

During ejection, cardiac pressure is higher than arterial pressure, Ph(t) >

Pa(t), and venous pressure, Ph(t) > Pv(t). Consequently, the combination of
Equations 6.5, 6.6 and 6.7 can be written:

dVs,h(t)
dt

= −Ph(t)− Pa(t)
Ro

(A.1)
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Combining this equation with Equation 6.3 gives:

dVs,h(t)
dt

= −Ehe(t)Vs,h(t)− Pa(t)
Ro

. (A.2)

Since Pa(t), Eh, e(t) and Ro are known, this linear differential equation with vari-
able coefficients can be solved for Vs,h(t) during cardiac ejection. The initial con-
dition required for solving is obtained from Equation 8.18. Once Vs,h(t) is known,
Ph(t) during ejection can be computed using Equation 6.3. It will be used further
in the demonstration.

During ejection, the combination of Equations 6.4, 6.6 and 6.8 gives:

dVs,a(t)
dt

=
Ph(t)− Pa(t)

Ro
− Pa(t)− Pv(t)

Rc
. (A.3)

Multiplying both sides of this equation by Ea and using the fact that Pa(t) =

EaVs,a(t) yields:

dPa(t)
dt

=
Ea

Ro
[Ph(t)− Pa(t)]−

Ea

Rc
[Pa(t)− Pv(t)]. (A.4)

Differentiating this equation with respect to time then results in:

d2Pa(t)
dt2 =

Ea

Ro

[
dPh(t)

dt
− dPa(t)

dt

]
− Ea

Rc

[
dPa(t)

dt
− dPv(t)

dt

]
. (A.5)

Then, taking into account the fact that Ph(t) > Pv(t) during ejection, Equa-
tions 6.2, 6.4, 6.5 and 6.9 can be used to substitute dPv(t)/dt:

d2Pa(t)
dt2 =

Ea

Ro

[
dPh(t)

dt
− dPa(t)

dt

]
− Ea

Rc

{
dPa(t)

dt
− Ev

Rc
[Pa(t)− Pv(t)]

}
. (A.6)

The same two steps can be repeated twice to obtain the following two equa-
tions:

d3Pa(t)
dt3 =

Ea

Ro

[
d2Ph(t)

dt2 − d2Pa(t)
dt2

]
− Ea

Rc

d2Pa(t)
dt2

+
EaEv

R2
c

{
dPa(t)

dt
− Ev

Rc
[Pa(t)− Pv(t)]

}
. (A.7)
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A.2. During Systole

d4Pa(t)
dt4 =

Ea

Ro

[
d3Ph(t)

dt3 − d3Pa(t)
dt3

]
− Ea

Rc

d3Pa(t)
dt3

+
EaEv

R2
c

d2Pa(t)
dt2

− EaE2
v

R3
c

{
dPa(t)

dt
− Ev

Rc
[Pa(t)− Pv(t)]

}
. (A.8)

The algebraic system formed by Equations A.4, A.6, A.7 and A.8 has four
equations and four unknowns, Pv(t), Rc, Ea and Ev, since Pa(t) and Ph(t) are
known. Solving this system with a symbolic computation software (Mathematica
Version 8.0, Wolfram Research Inc., Champaign, IL) shows that it has a unique
solution for all t. This outcome, in turn, guarantees the identifiability of the three
parameters Rc, Ea and Ev. It also provides the time course of Pv(t) during ejection.

A.2 During Systole

During systole, which encompasses isovolumic contraction and ejection, the in-
put valve is closed. Hence, Qi(t) = 0. Combining Equations 6.2, 6.4 and 6.9
during this period gives:

dVs,v(t)
dt

=
Pa(t)− EvVs,v(t)

Rc
. (A.9)

This linear differential equation with variable coefficients can be solved for Vs,v(t),
since Pa(t), Ev and Rc are now known.

To obtain the required initial condition, a series of further manipulations needs
to be performed. First, at the time of input valve closing, tEF, venous pressure
equals cardiac pressure:

Pv(tEF) = Ph(tEF). (A.10)

Using Equations 6.2 and 6.3 then yields:

EvVs,v(tEF) = Ehe(tEF)Vs,h(tEF) (A.11)

⇔ Vs,v(tEF) =
Eh

Ev
e(tEF)Vs,h(tEF). (A.12)
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Using the fact that cardiac volume does not change between input valve closing
and output valve opening, Vs,h(tEF) = Vs,h(tBE), Equation A.12 becomes:

Vs,v(tEF) =
Eh

Ev
e(tEF)Vs,h(tBE). (A.13)

Equations 8.18 and A.13 can be combined to obtain the needed initial condition:

Vs,v(tEF) =
Pa(tBE)e(tEF)

Eve(tBE)
. (A.14)

Finally, since Vs,h(t), Pa(t), Vs,v(t) are available during ejection, Vs,3 can be
computed from its definition, Equation 6.11:

Vs,3 = Vs,h(t) +
Pa(t)

Ea
+ Vs,v(t). (A.15)

The 5 model parameters of interest can thus be computed from the restricted
set of model outputs y4. The analysis presented in this section is summarised in
Table A.1 for clarity.

Table A.1: Summary of the demonstration of structural identifiability of the three-chamber
CVS model from the fourth output set, y4, with known values of the valve resistances.

Parameter Corresponding equation(s)

Ro Known

Ri Known

Eh 8.26

Rc A.4, A.6, A.7 and A.8

Ev A.4, A.6, A.7 and A.8

Ea A.4, A.6, A.7 and A.8

Vs,3 A.15
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Appendix B

Investigation of the Proportionality
Relation Between RMV and ∆VLV

The present appendix investigates the inverse proportionality relation between
RMV and ∆VLV. This relation is one of the fundamental hypotheses of Hann et al.’s
proportional method [113]. As previously explained, the proportional method
was specifically developed for parameter identification in the six-chamber CVS
model.

In the six-chamber model, during filling, the change of left ventricular stressed
volume is given by Equations 6.19, 6.23 and 6.27:

dVs,LV(t)
dt

=
PPV − ELVeLV(t)Vs,LV(t)

RMV
. (B.1)

As mentioned in Section 10.2.1, the proportional method was developed for a
version of the six-chamber CVS model in which venous pressures are constant.
Hence, PPV is a constant in Equation B.1. Thanks to PPV being constant, Equation
B.1 can be solved exactly:

Vs,LV(t) =
[

Vs,LV(tBF) +

PPV

RMV

∫ t

tBF

exp
(

ELV

RMV
E(u)

)
du
]

exp
(
− ELV

RMV
E(t)

)
(B.2)

where tBF denotes the beginning of filling and E is the indefinite integral of eLV:

E(t) =
∫ t

tBF

eLV(v) dv. (B.3)
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Equation B.2 allows to compute the volume at the end of filling (at t = tEF):

Vs,LV(tEF) =

[
Vs,LV(tBF) +

PPV

RMV

∫ tEF

tBF

exp
(

ELV

RMV
E(u)

)
du
]

exp
(
− ELV

RMV
E(tEF)

)
. (B.4)

By definition, ∆VLV is equal to the difference between Vs,LV(tEF) and Vs,LV(tBF):

∆VLV = Vs,LV(tEF)−Vs,LV(tBF)

=

[
Vs,LV(tBF) +

PPV

RMV

∫ tEF

tBF

exp
(

ELV

RMV
E(u)

)
du
]

exp
(
− ELV

RMV
E(tEF)

)
−Vs,LV(tBF). (B.5)

To investigate the proportionality relation between ∆VLV and RMV, one needs to
compute

∂∆VLV

∂RMV
=− PPV

R2
MV

[∫ tEF

tBF

exp
(

ELV

RMV
E(u)

)
du
]

exp
(
− ELV

RMV
E(tEF)

)
− ELVPPV

R3
MV

[∫ tEF

tBF

exp
(

ELV

RMV
E(u)

)
E(u) du

]
exp

(
− ELV

RMV
E(tEF)

)
+

ELV

R2
MV
E(tEF)Vs,LV(tEF) (B.6)

where the last term has been simplified using Equation B.4. Using the same equa-
tion, the first term can also be simplified:

∂∆VLV

∂RMV
=− Vs,LV(tEF)

RMV
+

Vs,LV(tBF)

RMV
exp

(
− ELV

RMV
E(tEF)

)
− ELVPPV

R3
MV

[∫ tEF

tBF

exp
(

ELV

RMV
E(u)

)
E(u) du

]
exp

(
− ELV

RMV
E(tEF)

)
+

ELV

R2
MV
E(tEF)Vs,LV(tEF). (B.7)

Grouping terms gives:

∂∆VLV

∂RMV
=

Vs,LV(tEF)

RMV

(
ELV

RMV
E(tEF) − 1

)
+ exp

(
− ELV

RMV
E(tEF)

)[
Vs,LV(tBF)

RMV
−

ELVPPV

R3
MV

∫ tEF

tBF

exp
(

ELV

RMV
E(u)

)
E(u) du

]
(B.8)
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As inspection of the previous expression reveals, there is no guarantee that this
derivative is positive for all values of the parameters. Figure B.1 presents a nu-
merical evaluation of Equation B.8 with the following values, extracted from Fig-
ure 2.9 and Table 11.3:
• Vs,LV(tBF) = 50 ml,
• Vs,LV(tEF) = 130 ml,
• RMV = 0.025, 0.05 and 0.1 mmHg s/ml,
• ELV ranging from 1.4 to 2.4 mmHg/ml,
• ELV = exp(−60((t mod 0.5)− 0.25)2),
• tBF = −0.1 s,
• tEF = 0.1 s,
• PPV = 5 mmHg.

Figure B.1 confirms that the derivative ∂∆VLV/∂RMV is not always negative, de-
pending on the values of the quantities listed above. Therefore, the hypothesis of
an inverse relation between ∆VLV and RMV does not always hold.
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Figure B.1: Curves of ∂∆VLV/∂RMV for different values of the parameters ELV and RMV.
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