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Abstract 
In recent times, the overall interest over Supercritical Fluid Chromatography (SFC) is truly grow-
ing within various domains but especially for pharmaceutical analysis. However, in the best of our 
knowledge modern SFC is not yet applied for drug quality control in the daily routine framework. 
Among the numerous reported SFC methods, none of them could be found to fully satisfy to all 
steps of the analytical method lifecycle. Thereby, the present contribution aims to provide an 
overview of the current and past achievements related to SFC techniques, with a targeted atten-
tion to this lifecycle and its successive steps. The included discussions were therefore structured 
accordingly and emphasizing the analytical method lifecycle in accord with the International Con-
ference on Harmonisation (ICH). Recent and important scientific outputs in the field of analytical 
SFC, as well as instrumental evolution, qualification strategies, method development methodolo-
gies and discussions on the topic of method validation are reviewed. 
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1. Introduction 
The use of supercritical fluid as mobile phase was firstly suggested by Lovelock in 1958 to extend applications 
of gas chromatography to solid or/and ionic compounds [1]. In 1962, while working on the separation of por-
phyrins, Klesper, Corwin and Turner made the first demonstration of Dense Gas Chromatography which is no-
wadays known as Supercritical Fluid Chromatography (SFC) [2] [3]. Since that, this technique faced a quite 
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tortuous existence, mostly overshadowed by HPLC success [4]. Indeed, a few years ago, SFC instruments were 
still suffering from drawbacks such as lack of robustness, poor UV sensitivity and inadequate dynamic range [5] 
that didn’t allow the application of SFC in some areas of interest like e.g. medicines Quality Control (QC). In 
this context, sensitivity and reproducibility were sought by the instruments manufacturers to design more per-
forming SFC instrument. This finally led to the development and marketing of modern SFC instruments in the 
2010’s [6]. Such instruments are addressing the past issues and enable analysis in the Ultra High Performance 
SFC range (UHPSFC) while operated with sub-2 µm particles packed columns [7] [8]. In addition, these modern 
instruments allow benefiting from the valuable advantages of the SFC: 1) orthogonal selectivity with liquid 
chromatography, 2) high chromatographic efficiency, 3) high throughput, 4) compatibility with a large range of 
detectors, 5) short equilibration time, 6) low cost of analysis per sample, 7) low solvent consumption and, 8) low 
waste generation [9]. Moreover, this technique is recognized and well placed as an alternative to LC [6] [10]-[14] 
with a particular advantage to be a useful tool in the framework of green analytical chemistry [4]. However, it 
appears that the overall greenness is not the sole argument leading to the adoption of SFC [15]. In fact, the in-
terest is mostly economic and goes along with the drastic reduction of waste for which handling and treatment 
are expensive [16]. In this case, greenness as safe environment contribution is associated with cheapness and 
both are part of sustainability that takes into account the economic aspects of techniques or processes [17]. 

Given all these progress and advantages, a resurgence of interest was devoted to SFC in the last decade. In-
deed, its applications are expanding inside several domains and especially in the pharmaceutical field where 
numerous researches were published. Thus, SFC was demonstrated to be useful for drug analysis [18]-[29], drug 
discovery [30]-[35], impurity profiling [26] [27] [31] [36]-[39], quantitative applications [40], bioanalysis [41]- 
[48], metabolic/metabolomics studies [49]-[55], chiral separations [56] [57], drug screening and preparative 
purposes at various stages [58]-[60]. However, the interest of SFC is not limited to pharmaceutical applications, 
other fields of application being polymer sciences [61] [62], petroleum industry [63]-[65], food analyses [66]- 
[69], and for various industrial processes [70]-[72]. 

To now, despite this wide range of applications, it appears that the description of the whole lifecycle of a SFC 
method was never published yet. The analytical method lifecycle encompasses the successive steps that analyti-
cal methods have to follow from their development/onset to their routine use. Given that, it is really interesting 
to notice that only few steps of this cycle are successfully achieved for most of the papers related to SFC, which 
somehow may suggest only a very limited routine use of SFC. However, this statement has to be balanced 
with the novelty of the modern SFC instruments and the restrictions of confidentiality in industrial frame-
works [73]. 

This review focuses on the analytical method lifecycle with an attention to pharmaceutical achiral applica-
tions. Considering that routine use is suggested but not reported, method development and method validation 
will be mainly highlighted. By trying to emphasize the key question “is modern SFC ready to pass through the 
whole analytical procedure lifecycle?”, the present contribution aims reviewing the literature in order to over-
view the SFC implementation in the framework of pharmaceutical routine analysis. The discussions will rely on 
the method lifecycle steps as shown in the Figure 1, mainly through the ones leading to potential routine use of 
SFC methods although it is still not described. 

2. Prior Knowledge in SFC 
2.1. 30 Years of Global Literature Overview 
The SFC scientific interest growth is correlated with an increasing number of publications as can be seen in the 
Figure 2(a) that provides an overview of the yearly issued papers. Since 2012, the number of publications in-
creased to more than 120 papers per year against circa 80 for the previous decade (2002-2011). Over a 30 years 
period, the cumulative numbers of SFC papers also shows a steady rate of progression (Figure 2(b)). However, 
in the recent years, the rate/slope of progression of SFC literature increased a little, somehow stressing the re-
surgence of interest devoted to the supercritical fluid chromatography. Indeed, on the stacked plot, a larger black 
portion corresponding to the yearly issued papers is observed for the last four years. 

2.2. Particular Literature Overview 
Some important reviews of the field were published by Taylor in 2008 [58], in 2009 [59] and in 2010 [74]. In  
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Figure 1. Simplified analytical procedure lifecycle, proposed in accord to ICH re-
quirements of Quality by Design applied into the pharmaceutical industry [74]. 

 

 
Figure 2. (a) Cumulative number of issued papers yielded by the exact search term 
“supercritical fluid chromatography”, inside Scopus© (25th November 2015); (b) 
Annual progress of SFC’s literature over a 30 years period. 
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these works, the author provides a yearly overview of the literature dedicated to SFC, focusing on various topics 
such as analytical scale SFC for both chiral and achiral, hyphenation with mass-spectrometry, instrumental im-
provements, trends in method development and preparative SFC. In 2012, he also reviewed the different papers 
dealing with the use of water-rich modifiers in SFC [75]. 

In 2011, Guiochon et al. proposed an interesting review dedicated to preparative SFC [60] with more than 500 
references that allowed covering virtually any aspects of the SFC. Indeed, their article discusses many empirical 
and theoretical features of the SFC at both analytical and preparative scale. Very recently, Lesellier & West also 
reviewed the field of SFC, giving critical insights on the characteristics of the achiral analytical SFC as well as 
its broad applicability [9]. They also points out several theoretical features such as the condition of the fluid, the 
dimensions and the properties of the stationary phases, the detectors, the method development… as well as their 
consequences and their interests in modern SFC. 

Kalikova et al. published a review dedicated to chiral analysis in SFC and focused on the papers issued from 
January 2000 to August 2013 [56]. The authors proposed a summary of the different SFC methods employed 
(including columns and analytes) for both preparative and analytical chiral SFC. They also discussed the poten-
tial mechanism leading to some chiral selectivity. Nováková et al. recently presented a tutorial providing a 
guideline and the explanations for the choice and the use of modern UHPSFC equipment [6]. This work based 
on current knowledge allowed examining many specific features of the nowadays SFC among which can be 
cited organic modifier composition, the injection solvent composition, column sizes and the analysis of different 
kind of compounds. Desfontaine et al. recently discussed the experimental conditions and the benefits related to 
the application of modern SFC in the pharmaceutical field [73]. Some special attention was also dedicated to the 
analysis of formulations and biological materials issued from the pharmaceutical field.  

Another review in the field of SFC published by Grand-Guillaume Perrenoud et al. is focused on the intro-
duction of sub-2 µm particles packed columns to SFC [76]. The different thermodynamic aspects and kinetic 
benefits are discussed as well as some recent applications specifically achieved in the Ultra High performance 
range (UHPSFC). The different instruments able to perform in the UHPSFC performance range are also re-
viewed in the same way. The authors also proposed a comprehensive summary of the current knowledge and 
comparisons of LC, SFC, UHPLC and UHSPFC. 

3. Analytical Instrument Qualification in SFC 
3.1. Scientific and Regulatory Context 
The analytical instrument’s qualification is a mandatory assessment of the proper working order of the equip-
ment. It typically involves three levels: 1) Installation Qualification (IQ), 2) Operational Qualification (OQ) and 
3) Performance Qualification (PQ), which assess, document and report the adequacy of the instrument for its in-
tended use [77]. 

This has a particular importance in the field of pharmaceutical industry, which is among the most regulated 
industries in the world due to public health issues. Thus, to guarantee the pharmaceutical quality control (QC), 
several regulatory authorities provide guidelines to maintain and enhance the overall quality of the products [78]. 
Prior to any analytical test, the instrument qualification becomes a mandatory step required by these guidelines 
in order to rely on the analytical data generated. This is even emphasized by the USP [79], which considers that 
a qualified instrument is the cornerstone of the components of data quality. Indeed, to obtain reliable, reproduci-
ble and valuable data, it is necessary to use properly the correct instrument but also to ensure that its perfor-
mances are achieved through qualification while demonstrated them by mean of System Suitability Tests (SSTs) 
on a regular basis. Such requirements are to be done into scientific fields to ensure the reproducibility of data 
provided by the instruments and potential method transfer. 

3.2. The Current Case of SFC 
In the framework of SFC, several documents are reporting the qualification of instruments for highly regulated 
industrial environments. Even if most of these documents have been published for years ago, they are still useful 
and may provide helpful bases for current SFC systems. Anton & Siffrin [80] demonstrated that three packed 
columns SFC systems were tools with suitable performances for drug product and drug substances analysis, 
meeting the 15 years ago “cGMP” (current Good Manufacturing Practices) and ICH (International Conference 



B. Andri et al. 
 

 
79 

on Harmonisation) specifications. The authors also presented general qualification protocols and tables suggest-
ing specifications to meet for method validation according to ICH criteria (LOD, LOQ, Precision, Linearity…). 
The different instruments used to verify those specifications (flow meter, pressure gauge, temperature sensor…) 
are also reviewed in the same way. Another contribution was the observation report made on the high compres-
sibility and the differences in flow rate measured on the instruments, which are able to affect the reproducibility 
of performances while transferring methods. 

In 2011, Sun reported the qualification of SFC instruments for the pharmaceutical product development [81], 
demonstrating the ability of SFC to meet nowadays regulatory requirements. Moreover, as LC inspires modern 
SFC, it is not surprising to notice that several protocols presented in that paper are derived from HPLC qualifi-
cation, e.g. UV detector calibration, injector qualification, temperature monitoring, gradient composition verifi-
cation…. Huber also authored a primer providing guidelines for the qualification of SFC equipment, in accord to 
current regulations (GxP, ISO, FDA, USP…) [82]. The documents aforementioned provide helpful instructions 
to qualify SFC instruments, demonstrating the ability of any modern packed SFC instrument as a potential tool 
suitable for highly regulated environments. Hicks et al. recently updated this work, assessing the performances 
of Waters UPC2 and Agilent 1260-Aurora A5 fusion systems for chiral analysis under GMP industrial environ-
ments [83]. However, unlike previous works, they didn’t propose any specific procedures to qualify/monitor 
performances of nowadays (UHP) SFC systems. 

3.3. Flow Rate Measurement in SFC 
Following the above discussion about SFC instrument qualification for GMP purposes, Sun reported another 
way to evaluate the SFC flow rate [81]. Indeed, due to its nature (compressible, dense, not viscous), SFC mobile 
phase flow rate may render more difficult to measure and thus to qualify compared to classical LC. So, the au-
thors replaced the column by a calibrated sample loop (1 or 5 ml depending on the flow rate), injected acetone 
and performed UV detection. The flow rate is then calculated after the data are acquired. The interest of such 
approach stands in its overall easiness of implementation and the absence of a possible instrumental modifica-
tion. However its limitation is the impossibility to measure the true condition of the flow rate while performing 
an analysis. In this regard, the workgroup of Tarafder & Guiochon [84] highlighted the importance to change the 
flow rates mobile phase measurement and expression. They suggested expressing the flow rate as a mass flow 
rate instead of volumetric flow rate because it remains almost constant in any part of the SFC system, while vo-
lumetric flow rate is subject to variation along the channels of the apparatus. Fluctuations of these parameters 
are mainly explained by high compressibility of the fluid but also, regarding volumetric flow rate, by room 
temperature and instrument’s design. Therefore, the same workgroup issued a second paper [85] always on the 
same topic reporting the adaptation of a Coriolis Flow Meter (CFM) to their SFC instruments (TharSFC, Waters 
UPC2 and Jasco). This adaptation of SFC instrumentation [80] provided on-line accurate measurement of mass 
flow rate. However, the maximal operating pressure of the device (150 bars) imposed the installation of the flow 
meter before the pump, measuring the CO2 consumption. Consequently, the signal recorded was very noisy due 
to the reciprocation of the pump’s piston. Thus, the signal had to be averaged and the flow rate measured was 
found to be lower than the one reported by the instrument’s software. 

This observation was also made by Enmark et al. [86] while using the same kind of CFM to monitor the mo-
bile phase flow, thus corroborating the statement of Tarafder et al. Although these results are coherent, the im-
plementation of a pulsation damper between the flow meter and the pump could be required to avoid noisy sig-
nal and data treatment. However, this flow meter should be verified through qualification especially to evaluate 
the potential bias induced by the pulsations of the pump or leaks in the various connections. 

Moreover, in GMP frameworks, re-qualification (IQ, OQ, PQ) of the instrument must be performed after such 
modification of the instrument. 

4. Method Development 
4.1. Quality by Testing and Quality by Design 
Method development takes place at the onset of the lifecycle of analytical methods. During this step, analysts 
have to answer to a given analytical problem (e.g. separation of two compounds, identification of compounds…), 
while dealing with constraints and requirements (e.g. matrix effect and composition, runtime reduction, sample 
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degradation, limit of detection...). 
Nowadays, two major trends are applied to methods development in analytical sciences: Quality by Testing 

(QbT) and the recently introduced Quality by Design (QbD) methodology. These two strategies have opposite 
approaches of the analytical problem, being respectively univariate and multivariate strategies. Indeed, the QbT 
is the common “trial and errors” methodology that was employed by almost all the analysts for years as con-
firmed by numerous published examples of SFC methods. This terminology was introduced in order to reference 
what was not QbD which strategy focuses on the quality of the final product since the onset of its development, 
using chemometric tools and taking into account risk management. 

4.2. QbT Methodology and SFC 
In the context of QbT approach, a set of “standard” starting conditions is usually employed for SFC method de-
velopment. For instance, most back-pressure regulators are typically set to 130 - 150 bars, while column tem-
perature is usually set to 40˚C [6] [9]. Obviously, these values are set to match the supercritical parameters of 
neat carbon dioxide (73.8 bars and 31.1˚C) and lower compressibility of the fluid. In addition, the other usually 
screened method parameters are the column chemistry, flow rate, density (pressure and temperature), composi-
tion of the mobile phase (organic modifier and/or additives) and the elution mode (isocratic or gradient mode). 
Afterwards, these factors are individually tested targeting an achievement during the method development, 
which may reveal itself tedious due to the interdependence of parameters (pressure, temperature, mobile phase 
composition…). Generally, the experiments stopped when the observed chromatograms are satisfying (e.g. an 
adequate separation of the peaks, an acceptable run time, a correct peak shape...). Unfortunately, in this case on-
ly a limited knowledge is gained on the method, making difficult to exactly know any possible failures or poten-
tial improvements of the analytical method. Indeed, small modifications to parameters may greatly affect the 
quality of the results. So, with univariate methodology, a satisfactory compromise may be hard to really set up, 
potentially leading to lengthy method developments. In addition, robustness of the method has to be assessed at 
the end of the development process and prior method validation, thus even requiring additional experiments. 

On the contrary, the QbD strategy offers an interesting improvement over the traditional QbT approach since 
the knowledge gained during the experiments process allows predicting optimal parameters of the analytical 
method. Moreover, the confidence in observed responses is greater and the overall number of experiments may 
be lowered including both development and robustness. However, since the implementation of the traditional 
QbT strategy is much easier/intuitive than the multivariate QbD methodology, it is still widely employed for the 
scouting of experimental parameters at the origin of method development. For instance, Alexander et al. used a 
supplementary quaternary HPLC pump to directly generate different mobile phase modifiers [24]. This pump 
was located upstream of the binary SFC pump, which was then fed with a large panel of modifiers (binary and 
ternary mixtures of methanol and additives). This implementation allowed higher flexibility, accuracy and 
productivity while scouting for SFC organic modifiers. 

In the same way Xia et al. went one step further by developing an autoblender for their UHPSFC equipment 
[87]. This team adapted a computer controlled multi-position proportioning valve on the modifier pump. This 
device allowed them to easily obtain mixtures of modifiers and additives, overcoming the issues (mainly time 
and solvent consumption) related to the binary design (a pump for carbon dioxide and B pump for one pre- 
mixed blend of solvent at a time) of SFC pumps. 

4.3. QbD Methodology and SFC 
As described above, the other strategy applied to the analytical method development is the Quality by Design. 
The Food and Drug Administration (FDA) introduced this strategy for the development and manufacturing of 
new pharmaceutical product. This evolution came from the recognition that testing final products is not suffi-
cient to raise its quality [88]. Upon this, the International Conference on Harmonization (ICH) has soon adopted 
the QbD for the pharmaceutical industry. In this regard, Borman et al. reported the analogies between manufac-
turing process and analytical method, which enhance the use of a QbD approach for analytical method develop-
ment [89]. 

The QbD is defined by ICH as “A systematic approach to development that begins with predefined objectives 
and emphasizes product and process understanding and process control, based on sound science and quality 
risk management” [90]. Thus, QbD enables the establishment of a Design Space (DS), which for analytical me-
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thod is defined as “The multidimensional space which includes any combination of the variables that have been 
demonstrated to provide assurance of quality of the data produced by the method” [91]. According to its defini-
tion, the DS can be represented in Figure 3 as a subspace of the experimental domain in which the quality of the 
method has been proved with a defined probability, i.e. a zone of robustness [90] [91]. In this way, ICH affirms: 
“working within the design space is not considered as a change to the procedure” [90]. According to this asser-
tion, the experiments performed outside of the DS may be likely to provide significant changes in the overall 
quality offered by the method. In accord with several authors, Rozet et al. suggested the appellation of Method 
Operable Design Region (MODR), while referring to DS. This suggests that MODR is in close relationship with 
the analytical procedure in light with its definition that is “multivariate range of values of operating parameters 
where the analytical method provides quality outputs with adequate probability [92]”. Notice that operating pa-
rameters also called operating factors may be controllable analytically. 

Given the multivariate considerations of the DS/MODR, its construction benefits from experimental data ob-
tained from the use of the Design of Experiments (DoE). The application of DoE in analytical chemistry is a ra-
ther known practice and is associated with significant benefits, allowing great understanding of the procedure 
from a minimum of experiments [93]. Indeed, the use of the DoE allows the identification and characterization 
of the key parameters ruling the method investigated. These parameters are the factors that impact the most on 
the separation quality. In addition, if uncertainty related to the process is taken into account when performing the 
DoE, this allows robust optimization of the method within the same step [94]. So, thanks to robust optimization, 
further robustness assessment is no longer required. Thereby, this strategy allows significant savings in time and 
resources. Another cornerstone of the QbD approach is the consideration of the Critical Quality Attributes 
(CQAs) that are defined by ICH as “physical, chemical, biological or microbiological property or characteristics 
that should be within an appropriate limit, range, or distribution to ensure the desired product quality” [90]. In 
chromatography, a CQA might be the separation between two peaks often of interest [95], the analysis time [96], 
a peak efficiency… These attributes are representatives of quality and must satisfy to the corresponding accep-
tance limits previously defined. Ideally, these CQAs are representative of the multiple conditions being included 
in the DS so as to be characterized as robust CQAs [97]. 

 

 
Figure 3. Probability surfaces for e.g. the separation of two peaks forming a critical pair. The 
Design Space is located in the white zone on the upper left of the map. It may be observed that 
using a back-pressure and a temperature of 135 bars and 55˚C respectively, it exists a quality 
level of at least 82% to e.g. separate the two peaks, meaning that a mobile phase of lower den-
sity favours this separation. 
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It is also useful to know that the conversion of QbT methodology to QbD philosophy is possible. It obviously 
involves some experiments but still lesser than a complete QbD development. In this case, the older analytical 
method may serve as a basic starting point for a new method development/optimization. Thereby, it doesn’t cost 
much effort to convert methods from QbT to QbD. Even more if the benefits associated to QbD are considered. 
This case was recently reported and discussed by Hubert et al. in the framework of HPLC [95] and could be ap-
plicable to the case of SFC. 

Concerning the field of SFC, to the best of our knowledge, it appears that only Dispas and co-workers re-
ported the development of SFC method in agreement with ICH Q8 (R2) guidelines [90]. They demonstrated its 
ability to separate very polar compounds within only 66 experiments [96] while including both the experimental 
parameters screening and the optimization designs of the method. In addition, such an achievement is a proof of 
the relevance of the QbD in the framework of SFC, especially since the separation of very polar compounds is 
often considered as a “worst case” for SFC [75]. In a recent article, the same work team demonstrated the trans-
fer of a robust SFC method between two laboratories and two different brands SFC instruments [94]. It appeared 
that the transfer between two SFC instruments that had different designs and two columns with different par-
ticles sizes was possible without significant changes in terms of selectivity. These successful outcomes pointed 
out the robustness of the method in one hand, and also emphasized the benefits provided by robust method op-
timization in another hand. In SFC, these two aspects are even more important because the instrument design 
and the particle size are recognized to greatly impact on the density of the fluid, which may lead to changes in 
retention and/or selectivity. By focusing on these two aspects, this recent work highlighted that robust method 
optimization is a really helpful strategy applicable to SFC. Furthermore, while keeping in mind the analytical 
method lifecycle, the following benefits appears as really valuable to speed up the cycle leading to routine ap-
plication: enhanced knowledge of the method and eased transfer of the method between laboratories… 

4.4. Method Development and SFC 
Nowadays, great interests are devoted to analytical SFC method developments. Indeed, the development of the 
analytical method is an important step, which may require significant amount of time and condition the me-
thod’s life. So, it is worth to mention several examples of development and/or optimization using DoE and re-
sponse surface methodology without considering QbT and QbD as such [12] [94] [96] [98]-[102]. In this way, 
these papers report the use of factorial (full or fractional) and Box-Behnken experimental designs in SFC. These 
designs allowed development of the analytical methods, the optimization of hyphenation of SFC to MS detector 
or the study of the impact of experimental parameters. 

Recently, several authors suggested different ways to perform the SFC method development. For example 
generic method development was proposed by De Klerck et al. to fasten the method development of (UHP) SFC 
chiral analysis [57], Delahaye et al. reported the application of stationary phase optimized selectivity predictions 
for isocratic SFC separations [103], by demonstrating the applicability of this tool to predict the retention of so-
lutes on different columns under isopycnic conditions.  

We can mention that De Pauw et al. also theoretically investigated the benefits of constant pressure against 
constant flow rate gradient elution [104]. So, they developed a model of the density of the fluid during gradient 
elution. Simulating constant pressure analysis, this model predicted up to 40% of time saving while compared to 
constant flow gradient elution. This observation is mainly due to higher mobile phase velocity at the onset of the 
gradient when low modifier concentrations are used. So, at that moment, the reduced viscosity of the fluid re-
quires the use of higher flow rates to maintain constant pressure in the system. This approach, derived from lat-
est developments in HPLC, is promising faster SFC analysis but the selectivity may be affected by the higher 
constant density of the fluid. So, constant pressure gradient elution must be difficult to apply to compounds/se- 
paration impacted by the mobile phase density (e.g. apolar compounds on silica based stationary phase). 

5. Method Validation 
5.1. Method Validation in the Field of SFC 
As a result of the past technical issues of SFC, a review of the literature revealed that only a limited number of 
papers dealing with method validation. It also appears that most of the nowadays applications of SFC are essen-
tially qualitative or preparative and only a few are quantitative [60] [105] [106]. It seems that SFC methods are 
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easily scaled-up from analytical to preparative scale [107]-[109]. So, in this case, it would be reasonable to con-
sider that a validation step is not mandatory for preparative purposes. 

Many efforts were devoted to improve robustness and sensitivity of the SFC equipments [4] [27] [42] [110] 
[111]. As a result, very low quantification levels were reached for example 0.05% of the active ingredient— 
matching ICH requirements—for traces analysis of organic impurities. However, taking into account its sensi-
tivity, some authors described a lower sensibility in SFC-UV while compared to HPLC/UHPLC [36] [40] and 
recommend the use of more concentrated samples [38]. This suggestion may be actually impossible to apply if 
products are available in limited quantities (e.g. some specified impurities) and/or poorly soluble in the injection 
solvents. So, in the case of SFC, the observation of only a few validated methods is not a real surprise. However, 
the situation is changing and quantitative capabilities of the technique are challenged in the various areas where 
SFC is currently applied [10] [13] [23] [36] [40] [47] [48] [105] [106] [112]-[114]. 

5.2. Validated SFC Methods 
In the field of SFC, as well as in other analytical fields, it appears that some works reported results without ac-
tual conclusions on the method’s validity while dealing with methods validation. Furthermore, only limited dis-
cussion was proposed, stressing the current lack of consensus regarding acceptance criteria [40]. 

Desai et al. reported the validation of an SFC method on drug tablets. However, concerns should be made 
about the relative standard deviation (RSD) values obtained between intra and inter-days precision for some 
concentration levels, intra-series values being higher than inter-series ones. On another note, the authors showed, 
by means of a Student t-test, that there was no significant difference between the results obtained with the SFC 
and the HPLC method. In such manner, they concluded on the adequacy of the SFC for the quality control of 
marketed drugs. Méjean et al. also reported the validation of the quantification of retinoid compounds [114]. 
However in this case, the reproducibility was considered to be satisfying by the authors, in spite of quite high 
RSD values. This is even more concerning because the RSD is generally around 5%, while the specification for 
a finished drug product lies within 95% - 105% of the API. So, it should be difficult to use this method to ade-
quately appreciate the quality of the pharmaceutical product. In the case of retinoid, the authors mentioned that 
sensitivity wasn't an issue, which in the framework of SFC-UV, is a rare statement. This is although not surpris-
ing given the chemical structure of the compounds, which provides high UV absorption. 

Alexander et al. also described a method for the impurity profiling of pharmaceutical compounds [27]. Even 
if validation was not the purpose of the work, some of the validation criteria were assessed in order to prove the 
ability of that method to quantify impurities. This is compliant with the ICH Q2 (R1) definition of method vali-
dation that stipulates, “The objective of validation of an analytical procedure is to demonstrate that it is suitable 
for its intended purpose”. However, considering some of the results published, the RSD values associated to the 
area of some impurities were found somewhat quite high (>10%) but acceptable for drug substance assay [80]. 
This observation may be related to the small amount of the impurity (<0.1% of the active) or the difficulty to to-
tally separate some impurities. 

Though the early situation mentioned in paragraph 5.1, the first “SFC-Validation paper”, published in 2001 
[115], highlights the robustness issue. Indeed, triplicate injection of the same solution yielded high fluctuation of 
peak area across two series. The worst case is a RSD value going from 0.3% to 6.67% during the second series. 
Regarding these figure cases, it is obvious that the error was too high to allow drug analysis in a daily routine 
framework. A posteriori, a significant part of the problem is supposed to be related to the injection sequence [5] 
[116]. In this case, the use of an internal standard, in a GC-like fashion, should have lowered the error generated 
during the injection. 

On another note, some methods determining chiral compounds were also subjected to limited validation. 
However, in the case of chiral compounds, it often appears that the validation targeted some molecules or the 
assessment of some validation criteria. In this regard, Xiang et al. reported the chiral separation of 9 amide drugs 
[117]. In spite of that, the validation was performed for scarcely one of those compounds. Moreover, only the 
linearity, reproducibility and Limit of Quantification (LOQ) were assessed. In the same way, Wang et al. only 
described and discussed the orthogonality of the SFC method in comparison to current RP-LC method [36]. For 
that purpose, selectivity of the method was the main criteria considered in the work. Some other validation crite-
ria were claimed as assessed but unfortunately they were reported with limited details. Marley et al. recently re-
ported a analytical method for the determination of R-timolol in pharmaceutical forms [10]. The method preci-
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sion was evaluated at repeatability and intermediate precision levels with 3 different standards solutions daily 
upon two trial days, each solution being injected and measured six times to comply with ICH Q2 (R1) guideline. 
Also according to that guideline, accuracy was assessed on the basis of 6 determinations at 100% of the test 
concentration (1.0% of R-timolol regarding to S-timolol) in presence of S-timolol at the same concentration (1.0% 
too) as bracketing standard. This allowed the validation of the quantitative impurity assay, meeting the specifi-
cations described by the European Pharmacopeia (max 1.0% of R-timolol in the presence of S-timolol). In the 
same way, Mukherjee also reported the chiral separation of a compound that is still under its early development 
step [118]. The author assessed several validation criteria in harmony to ICH and FDA guidelines. However, for 
intra-days repeatability assay, high RSD values of 9% were reported for some concentration levels. Moreover, 
improper evaluation of inter-days accuracy is stated (mean value of intra-days values…). 

Recently, Nováková et al. reported the assessment of LOD, LOQ and linearity while screening for doping 
agent in UHPSFC-MS/MS [47] [48]. They also described quantitative analysis and method validation of topical 
formulations containing oestrogens. Indeed, the authors described the validation criteria according to ICH Q2 
(R1) guideline, also suggesting routine use of their method for the determination of oestrogen steroids in real 
samples. Ganzera also reported the use of UHPSFC for the determination of isoflavone in dietary supplements 
[106]. The performances of the method were also evaluated according to ICH guidelines. Though the author 
didn’t present much of the development output, its method shows interesting features (accuracy, inter & in-
tra-day precision…) and is able to separate isoflavones from different vegetal matrix such as herbal products. 

5.3. Application of the Total Error Approach to SFC Methods 
Recently, Dispas et al. published a paper reporting fully validated UHPSFC and UHPLC methods for the analy-
sis of amoxicillin powder in capsules [40]. They also demonstrated the potential of UHPSFC as a reproducible 
and quantitative technique, in contrast with outcomes in some reports [119]. Moreover, Dispas et al. showed the 
interests of applying robust optimization strategy and total error approach for method validation [120]-[123], 
which consequently allowed them to rapidly develop and safely validate the UHPLC and UHSFC methods. Ob-
viously, from an industrial perspective (where high throughput is important) this demonstration is highly valuable. 

6. Outcomes and Perspectives 
An increasing number of publications and communications highlight the current renaissance of SFC as can be 
retained from the novel SFC fundamental works and the applicative demonstrations currently found in the no-
wadays-scientific literatures. 

In the present contribution, SFC papers were reviewed while keeping in mind the lifecycle of an analytical 
method. Thereby many evidences highlighted the capabilities of the SFC to support various steps of this life-
cycle. In this regard, the SFC proved being able to fulfill the current pharmaceutical requirements such as Euro-
pean Medicine Agency (EMA), GxP and ICH. Moreover, it appeared that few documents suggesting procedures 
and specifications for the qualification of the SFC instruments were readily available in the literature. 

Concerning the question of analytical method development, it seems that the empirical QbT approach is still 
predominantly used to find suitable analytical conditions of a method. However, the QbD approach was recently 
demonstrated to be successful and helpful for the development of analytical method (SFC method included), 
providing real advantages over the empirical methodologies. Recently, several examples of method development 
by means of DoE were also described. Though it’s not the most common strategy, this observation marks a clear 
evolution in the way that chromatographic methods are developed and optimized. 

Along with the instrumental improvements, the quantification of compounds by means of the SFC is under-
going a growing interest among the analysts. In this regard, the modern SFC proved to be a quantitative instru-
ment suitable for the highly regulated environments of the pharmaceutical industry. Thus, it is not surprising to 
observe an increasing number of reports related to its quantitative capabilities. Considering this, the observation 
of partial method validation (e.g. assessing only a few criteria), inconsistent results (e.g. high RSD values) and 
improper manipulations (e.g. non independent validation standards) are lowering the quality of the validated 
method. In this sense, many efforts should be done to render the results presented more consistent and reliable. 
So, the regulatory authorities should also propose acceptance guidelines of the already established validation 
criteria. Indeed, if no references are defined, anyone may appreciate on its own results of the validation. Moreo-
ver, there is no official basis for a discussion on the results and performances yielded by the method. In this 
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sense, the method validation based on total error and accuracy profile as a decision tool is a valuable approach. 
Indeed, it allows the assessment and the conclusion of the validity (or not) of the analytical method, thus pro-
viding a useful basis for further discussions. 

Concerning the robustness testing, it appears that only a few examples are available from the writings [124]. 
This may be related to the global lack of robustness previously associated to the technique. However, given the 
fact that improved instruments are available in the market, it would be really interesting to update these scientif-
ic studies. 

To the best of our knowledge, the review of the SFC documents also pointed out that the transfer and routine 
use of an analytical SFC method are not yet reported in the scientific literature. Hopefully, thanks to modern in-
strument and the fact that SFC is commonly agreed as a good alternative of the Normal Phase HPLC (NP-HPLC) 
[10] [27], the figure may change soon. Indeed, due to the advantages of SFC over the NP-HPLC, it is reasonable 
to think that some analytical applications are on the way of being switched from NP-HPLC to SFC. In addition, 
the SFC was compared several times with other techniques such as RP-HPLC or UHPLC [27] [29] [40], being 
considered as references in the pharmaceutical industry. It thereby appears that the SFC, although a bit less ver-
satile and sensitive than the latter [8] [18] [29], didn’t exclude from these comparison.  

From another point of view, the SFC is to date included in the framework of green analytical chemistry [4]. 
Considering this and the amount of works dedicated to the technique, it wouldn’t be objective to present SFC 
only as a “green analytical tool”. Indeed, SFC is now considered as a truly mature technique, which is comple-
mentary to gas chromatography and liquid chromatography [19] [32] [51] [58] [60] [107]. 

The review of the scientific literature permitted to assess the situation of the SFC. It was pointed out that still 
significant works remain to be done [9]. In addition, this review permitted to evidence several achievements al-
ready made as well as some current trends. Thus at the moment, it is reasonable to claim that an analytical SFC 
method has never ever been closer to accomplish the complete lifecycle of analytical method. 
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