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SUMMARY	(ENGLISH)	
	

Whole	genome	sequencing	technologies	have	enabled	the	identification	of	mutations	

implicated	 in	 diseases	 including	 cancer.	 Recently,	 research	 efforts	 to	 compare	 and	

categorize	 mutations,	 genes	 expression	 and	 genomic	 characteristics	 helped	

generating	 literature-curation	 databases.	 A	 large	 number	 of	 databases	 were	

developed	to	address	data	integration	and	standardization	for	human	cancers,	such	as	

Catalogue	 Of	 Somatic	 Mutations	 In	 Cancer	 (COSMIC),	 The	 Cancer	 Genome	 Atlas	

(TCGA),	 International	 Cancer	 Genome	 Consortium,	 Integrative	 Onco	 Genomics	

(IntOGen).		Although	the	identification	of	these	mutations	highlights	“cancer	causative	

genes”,	it	does	not	give	a	detailed	explanation	of	molecular	mechanisms	leading	to	the	

development	 of	 cancer.	 Though,	 understanding	 mechanisms	 leading	 to	 cancer	

development	 and	 progression	 remains	 a	 challenge	 that	 requires	 further	

investigations.	

The	great	majority	of	mutated	genes	are	found	in	liquid	tumors	such	as	leukemia	and	

lymphomas.	 	 In	 the	 first	 part	 of	 this	 study,	 we	 reasoned	 that	 leukemia	 associated	

genes	 could	 be	 extended	 to	 additional	 candidates	 identified	 using	 interactomic	

approaches.		We	used	protein-protein	interaction	(PPI)	mapping	strategies	to	explore	

information	 on	 cancer	 genes	 frequently	 mutated	 in	 Acute	 lymphoblastic	 leukemia	

(ALL).	We	 first	 extracted	mutational	 data	 associated	 to	 ALL,	 and	 used	 interactome	

mapping	 analysis	 for	 literature-curated	 interactions	 and	 yeast	 two-hybrid	

experimental	 data	 in	 order	 to	 identify	 potential	 novel	 target	 genes	 associated	with	

ALL.	 	 We	 highlighted	 mutated	 hub	 proteins	 interconnected	 in	 an	 ALL-cancer	 gene	

products	network	and	 identified	novel	 interacting	partners	that	 link	key	ALL-cancer	

driver	gene	products.	We	identified	EXT1	tumor	suppressor	gene	as	a	novel	common	

interactor	for	NOTCH1	and	FBXW7.	

In	the	second	part	of	this	study,	we	experimentally	validated	EXT1,	as	a	novel	player	

in	the	regulation	of	the	Notch	pathway.		

Our	 study	 thus	 provides	 a	 proof-of-concept	 on	 how	 systematic	 interactome	

approaches	 could	 allow	 identification	 of	 novel	 targeted	 genes	 and	 pathways	

associated	to	human	cancer.	

	



	

RÉSUMÉ	(FRANÇAIS)	
	

Les	 technologies	 de	 séquençage	 de	 génomes	 entiers	 ont	 permis	 l'identification	 de	

mutations	impliquées	dans	des	maladies	comme	le	cancer.	Récemment,	des	efforts	de	

recherche	dans	le	but	de	comparer	et	de	classer	des	mutations,	l'expression	des	gènes	

et	les	caractéristiques	génomiques	ont	aidé	à	construire	des	répertoires	de	données	se	

basant	sur	la	littérature.	Un	grand	nombre	de	bases	de	données	ont	été	développées	

afin	d'intégrer	des	données	sur	les	cancers	humains,	telles	que	COSMIC;	le	catalogue	

des	 mutations	 somatiques	 dans	 le	 cancer,	 	 “The	 Cancer	 Genome	 Atlas”	 (TCGA),	

International	 Cancer	 Genome	 Consortium,	 Integrative	 Genomics	 Onco	 (IntOGen).	

L'identification	de	ces	mutations	permet	une	classification	des	gènes	responsables	des	

cancers,	par	contre	elle	ne	permet	pas	une	compréhension	détaillée	des	mécanismes	

moléculaires	 conduisant	 au	 développement	 du	 cancer.	 Ainsi,	 la	 comprehension	 des	

mécanismes	menant	au	développement	du	cancer	et	sa	progression	reste	un	défi	qui	

nécessite	des	investigations	complémentaires.	

La	 majorité	 des	 gènes	 mutés	 se	 trouvent	 dans	 les	 tumeurs	 liquides	 tels	 que	 la	

leucémie	et	les	lymphomes.	Dans	la	première	partie	de	cette	etude,	nous	avons	soumis	

l’hypothèse	que	l’ensemble	des	gènes	associés	à	la	leucémie	pourrait	être	étendu	pour	

inclure	d’autre	candidats	 identifiés	en	utilisant	une	approches	 interactomique.	Nous	

avons	 utilisé	 des	 stratégies	 de	 cartographie	 des	 réseaux	 d'interaction	 proteines-

protéines	(IPP)	afin	d’explorer	des	informations	sur	les	gènes	du	cancer	fréquemment	

mutés	dans	la	leucémie	lymphoblastique	aiguë	(LLA).	Nous	avons	extrait	les	données	

de	 mutations	 associées	 à	 la	 LLA,	 par	 la	 suite	 nous	 avons	 analysé	 les	 réseaux	 des	

interactions	 extraites	 de	 la	 littérature	 ainsi	 que	 des	 données	 expérimentales	

provenant	 du	 double	 hybride	 en	 levure,	 ceci	 afin	 d'identifier	 de	 nouveaux	 gènes	

potentiellement	 associés	 à	 la	 LLA.	 Nous	 avons	 souligné	 des	 “hubs”	 de	 protéines	

mutées	 et	 interconnectées	 dans	 le	 réseau	 de	 produits	 des	 gènes	 de	 cancer	 liés	 à	 la	

LLA,	 et	 de	 nouveaux	 partenaires	 d'interaction	 qui	 relient	 les	 produits	 des	 gènes	

associés	à	la	LLA.	Nous	avons	identifié	EXT1,	un	gène	suppresseur	de	tumeur,	comme	

étant	un	nouvel	interactant	commun	pour	NOTCH1	et	FBXW7.	

Dans	 la	deuxième	partie	de	cette	étude,	nous	avons	validé	EXT1,	en	tant	que	nouvel	

acteur	dans	la	régulation	de	la	voie	Notch.		



	
	

	

Notre	 etude	 fournit	 ainsi	 une	 preuve	 de	 concept	 démontrant	 que	 l’approche	

interactomique	pourrait	permettre	l’identification	de	nouveaux	gènes	et	des	voies	de	

signalisation	associés	aux	cancers.	
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quelque	 façon	 et	 forme	 que	 ce	 soit	 ou	 d’en	 autoriser	 la	 reproduction	 partielle	 ou	
complète	de	quelque	manière	et	sous	quelque	forme	que	ce	soit.	Toute	photocopie	ou	
reproduction	 sous	 autre	 forme	 est	 donc	 faite	 en	 violation	 de	 la	 dite	 loi	 et	 de	 ses	
modification	ultérieures.	
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INTRODUCTION	
	
	
1.	Analyzing	networks	in	cancer	
	
Cancer	is	a	complex	disease	in	which	various	cellular	processes,	signalling	pathways	

and	 environmental	 influences	 contribute	 to	 the	 development	 and	 the	 expression	 of	

cancer	phenotypes.		Understanding	the	mechanisms	leading	to	cancer,	is	not	fulfilled	

by	 studying	 individual	 components	 in	 isolation,	 but	 requires	 systems	 biology	

approach	to	establish	interactions	between	genes,	proteins	and	cellular	components,	

and	 the	 associations	 of	mutations	 and	 deregulations	 to	 the	 perturbation	 of	 cellular	

processes	 and	 pathways	 implicated	 in	 cancer	 1.	 It	 is	 thus	 important	 to	 analyze	

networks	 in	 cancer,	 where	 biological	 systems	 are	 represented	 and	 described	 as	

networks	 such	 as	 protein-protein	 interactions	 networks	 (PPIs),	 cell	 signalling	

pathways	 networks,	 transcriptional	 regulatory	 networks	 and	 other	 functional	

association	networks.	

The	 development	 of	 high-throughput	 interaction	 assays	 such	 as	 yeast	 two-hybrid	

(Y2H)	and	affinity	purification	coupled	to	mass	spectrometry	(AP-MS),	and	of	curated	

databases	 has	 led	 to	 the	 generation	 of	 large-scale	 interaction	 networks	 for	 a	

considerable	number	of	organisms	2,	3.	Constructing	such	networks	not	only	sheds	the	

light	 on	 the	 complexity	 of	 cellular	 mechanisms	 and	 processes,	 but	 also	 helps	

generating	hypotheses	about	therapeutic	targets	or	deregulated	pathways	in	cancer	4.	

	

1.1.	Types	of	pathways	and	network	analysis	techniques	

The	first	step	to	establishing	network	and	pathway	analyses	 for	cancer	mutations	 is	

defined	by	setting	the	database	resources,	represented	by	a	list	of	genetic	alterations	

in	addition	to	databases	for	pathways	and	network	interactions.	Analysis	techniques	

can	 be	 divided	 into	 three	 major	 approaches	 4.	 The	 first	 is	 the	 “fixed-gene	 set	

enrichment	analysis”	approach,	consisting	in	analyzing	gene	sets	without	considering	

their	 interactions.	 Gene	 lists	 are	 gathered	 from	 literature-curated	 databases	 or	

experimental	 sources,	 and	 using	 different	 tools	 of	 enrichment	 analysis	 leads	 to	

determining	 pathways	 and	 cellular	 processes	 for	 filtered	 gene	 sets.	 The	 second	
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approach	“de	novo	network	construction	and	clustering”	consists	in	analyzing	a	list	of	

mutated	 or	 altered	 genes	 taking	 in	 consideration	 their	 molecular	 and	 functional	

interactions	 provided	 by	 interactomic	 databases	 such	 as	 the	 Biological	 General	

Repository	 for	 Interaction	 Datasets	 BioGrid	 5,	6,	 the	Molecular	 Interaction	 Database	

IntAct	7	and	the	Human	Protein	Reference	Database	HPRD	8.	An	interesting	advantage	

of	 this	 approach	 is	 that	 networks	 are	 expanded	 due	 to	 the	 “guilt	 by	 association”	

concept,	 which	 increases	 the	 complexity	 of	 interactomes	 and	 helps	 providing	

potential	 cancer	 candidate	 genes.	 The	 third	 approach	 is	 “network-based	modeling”,	

that	 have	 been	 applied	 to	map	 signalling	 pathways	 and	 functional	 networks,	which	

helps	 to	 predict	 the	 influences	 of	 deregulation	 and	 perturbations	 in	 cancer.	 An	

example	 of	 this	 approach	 is	 comparative	 analysis	 of	 regulatory	networks	 in	 normal	

and	 disease	 states	 9,	 10.	 A	 graphical	 summary	 of	 the	 three	 major	 approaches	 is	

represented	in	figure	1	indicating	the	goals	and	different	tools	used	in	each	method	4.	

	
Figure	 1:	 Major	 approaches	 to	 pathway	 and	 network	 analysis	 of	 cancer	 data.	 In	 the	
network	diagrams	designated	by	“output”,	red	nodes	represent	genes	whose	activities	
are	increased	(first	and	third	columns)	or	altered	by	mutations	(center	column).	Green	
nodes	are	genes	whose	activities	are	decreased.			Adapted	from	4.	
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1.2.	Protein-protein	interaction	detection	methods	
Protein-protein	 interaction	 (PPI)	 is	 one	 of	 the	 key	 topics	 for	 the	 development	 and	

progress	of	modern	systems	biology.	In	this	part	we	will	introduce	essential	protein-

protein	interaction	detection	methods.		

PPIs	detection	methods	can	be	classified	 into	three	major	categories:	 in	vitro,	in	vivo	

and	in	silico	methods.	

1.2.1.	In	vitro	methods	
Tandem	 affinity	 purification	 (TAP)	 method	 coupled	 with	 mass	 spectrometry.	 This	

method	 is	 based	on	 tagging	proteins	 and	purifying	protein	 complexes	 associated	 to	

the	protein	of	interest.	When	associated	with	mass	spectrometry	analysis,	it	generates	

high	 throughput	data	 for	protein	 interactions.	Analyzing	AP-MS	datasets	 in	order	 to	

derive	 biologically	 meaningful	 information	 from	 protein	 interactions	 remains	

challenging.	A	variety	of	statistical	models	were	developed	to	assess	scoring	methods	

for	dataset	testing	11.	

Protein	 microarrays	 technology	 has	 also	 been	 developed	 to	 study	 biochemical	

activities	 of	 proteins	 and	 their	 interactions	 in	 vitro.	 Three	 types	 of	 protein	

microarrays	 are	 used:	 analytical	 microarrays,	 functional	 microarrays	 and	 reverse	

phase	microarrays	12.	Analytical	microarrays	mostly	use	antibody	microarrays	while	

functional	microarrays	are	composed	of	 full-length	or	protein	domains	chips.	As	 for	

the	 third	 type	 of	 microarrays,	 it	 enables	 the	 protein	 expression	 of	 hundreds	 of	

samples,	 printed	 on	 nitrocellulose	 slides	 to	 be	 interrogated	 simultaneously,	 using	

labeled	 antibodies	 (with	 fluorescent	 detection	 for	 example).	 Reverse	 phase	 protein	

microarrays	 have	 been	 developed	 to	 generate	 a	 functional	 patient-specific	 circuit	

“map”	 of	 the	 cell	 signalling	networks	based	directly	 on	 cellular	 analysis	 of	 a	 biopsy	

specimen	13.	In	other	words,	differential	protein	expression	across	samples	in	a	high	

throughput	manner,	generating	protein	 interaction	and	activation	maps	 that	 lead	 to	

the	 identification	of	critical	nodes	 for	 individualized	or	combinatorial	 target	therapy	
14,	15.	

Using	these	protein-based	microarrays	enables	the	global	observation	of	biochemical	

activities,	 where	 thousands	 of	 proteins	 can	 be	 screened	 for	 different	 types	 of	

interactions.	 These	 methods	 have	 important	 applications	 in	 disease	 marker	

identification	and	pharmaceutical	target	screening	16.		
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Another	 method	 for	 identification	 of	 protein-protein	 interactions	 is	 the	 protein-

fragment	 complementation	 assay	 (PCA),	 providing	 a	 simple	 and	 direct	 method	 to	

studying	PPIs	in	living	cells.	In	this	strategy,	two	proteins	are	fused	to	complementary	

fragments	(fluorescent	protein	or	an	enzyme).	If	these	proteins	interact,	the	reporter	

and	 its	activity	are	reconstituted	17	(figure	2).	This	method	 is	also	applied	on	a	high	

throughput	scale	for	PPIs	detection	18.	

	

1.2.2.	In	vivo	methods	
The	 yeast	 two-hybrid	 system	 is	 a	 powerful	 technique	 for	 studying	PPIs.	 Proteins	 of	

interest	 that	 potentially	 interact	 are	 fused	 independently	 to	 the	 DNA-binding	 and	

transcriptional	 activations	 domains	 of	 the	 Gal4	 transcription	 factor	 of	 yeast.	 This	

technique	is	easily	automated	for	high	throughput	analyses	of	protein	interactions	on	

a	 genome-wide	 scale	 19,	 either	 by	 screening	 open	 reading	 frames	 (ORFs)	 matrices	

such	 as	 the	 human	ORFeome	 20,	 or	 screening	 cDNA	 libraries	 that	 led	 to	 generating	

large	 amounts	 of	 interaction	 data.	 Other	 two-hybrid	 in	 vivo	methods	 such	 as	 the	

mammalian	 protein–protein	 interaction	 trap	 (MAPPIT)	 founded	 on	 type	 I	 cytokine	

signal	transduction	21	(figure	2).		

Other	 used	 techniques,	 such	 as	 bioluminescence	 resonance	 energy	 transfer	 (BRET),	

fluorescence	 resonance	 energy	 transfers	 (FRET),	 and	 bimolecular	 fluorescence	

complementation	 (BiFC),	 require	 extensive	 instrumentation.	 These	 methods	 are	

based	on	visualization	of	protein-protein	interactions	via	light	or	enzymatic	excitation	

of	 fluorescent	 or	 bioluminescent	 proteins.	 These	 methods	 allow	 not	 only	 protein	

localization	 within	 the	 cell	 or	 its	 organelles	 but	 they	 also	 allow	 quantification	 of	

fluorescent	signals	and	discovering	weak	or	strong	interaction	partners	22.	

Synthetic	 lethality	 is	 also	 a	 type	 of	 genetic	 screening,	 enabling	 the	 detection	 of	

functional	 interactions	 rather	 than	 physical	 direct	 interactions.	 It	 is	 based	 on	

producing	mutations	or	deletions	in	genes,	which	are	viable	alone	but	when	combined	

together	can	cause	lethality	23.		

Though	Y2H	and	MS-based	methods	are	the	most	used	for	interaction	detection,	both	

methods	 have	 limitations.	 MS	 is	 less	 accessible	 than	 Y2H	 due	 to	 higher	 cost	 of	

equipment,	but	unlike	 the	Y2H	method,	AP/MS	may	determine	components	of	 large	

proteins	complexes,	even	 if	 these	components	 interact	 indirectly.	On	the	other	hand	

the	 Y2H	 also	 has	 its	 limitations	 concerning	 PPIs	 detection;	 interactions	 involving	
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membrane	 proteins	 or	 proteins	 that	 require	 post-translational	 modifications	 are	

missed.	Thus	both	methods	are	considered	complementary	in	the	type	of	interactions	

they	 detect.	 Recently,	 advance	 made	 in	 AP-MS	 technology	 has	 helped	 increase	 its	

sensitivity	and	robustness	24.		

	
Figure	 2:	 schematic	 representation	 of	 PPI	 detection	 methods.	 Y2H:	 the	 yeast	 two-
hybrid	system	(Y2H)	consisting	of	bait	and	prey	proteins	(represented	by	X	and	Y)	are	
fused	to	the	Gal4	DNA	binding	domain	(DB)	and	the	Gal4	activating	domain	(AD).	When	
fusion	 proteins	 are	 produced	 and	bait	 part	 of	 the	 first	 interact	with	 prey	 part	 of	 the	
second,	transcription	factor	of	the	reporter	gene	occurs.	MAPPIT:	The	bait	protein	is	a	
fusion	with	a	leptin	receptor	(LR),	which	contains	three	Y-to-F	mutations	so	it	is	unable	
to	 activate	 STATs	 spontaneously.	 The	 prey	 fusion	 contains	 a	 domain	 of	 gp130	which	
can	 recruit	 STATs.	 After	 interaction	 of	 the	 bait	 with	 the	 prey,	 Janus	 kinases	 (JAKs)	
phosphorylate	 gp130,	which	 stimulates	 binding	 of	 gp130	with	 the	 STATs.	 The	 STATs	
themselves	are	phosphorylated	by	 the	 JAKs,	which	results	 in	 the	 formation	of	a	STAT	
complex.	 The	 STAT	 complex	 binds	 the	 rat	 PAP1	 promoter	 (rPAP1p)	 and	 activates	
luciferase	 transcription.	 The	 leptin	 receptor	 is	 further	 fused	 with	 the	 extracellular	
domain	 of	 EpoR,	 a	 receptor	 of	 erythropoietin	 (Epo),	 and	 therefore	 LR	 complex	
formation,	 which	 is	 necessary	 to	 make	 the	 association	 with	 the	 JAKs,	 is	 induced	 by	
addition	of	Epo	 21.	PCA:	 schematic	of	 the	protein	complementation	assay.	X	and	Y	are	
bait	 and	 prey	 proteins,	 fused	 to	 inactive	 fragments	 luciferase	 or	 YFP	 proteins.	
Interaction	between	bait	and	prey	results	in	the	reconstitution	of	an	active	form	of	the	
protein	and	detection	of	luciferase	activity	of	YFP	signal	25.	
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1.2.3.	In	silico	methods	
A	variety	 of	 in	silico	methods	 have	 been	developed	 to	 support	 the	 interactions	 that	

have	 been	 detected	 by	 experimental	 approach.	 The	 computational	 methods	 for	 in	

silico	 prediction	 include	 sequence-based	 approaches,	 structure-based	 approaches,	

chromosome	 proximity,	 gene	 fusion,	 in	 silico	 two-hybrid,	 mirror	 tree,	 phylogenetic	

tree,	gene	ontology,	and	gene	expression-based	approaches.	

Structure-based	 method	 aims	 to	 predict	 protein-protein	 interaction	 based	 on	

homology	modeling	methods.	Different	algorithms	were	developed,	such	as	processes	

that	involve	prediction	of	the	binding	interface,	evaluation	of	the	compatibility	of	the	

interface	with	an	interface	coevolution	based	model,	and	evaluation	of	the	confidence	

score	 for	 the	 interaction	 26.	 As	 for	 sequence-based	method,	 it	 depends	 on	 primary	

structure	homology	in	order	to	classify	potential	interacting	27.	Gene	fusions	approach	

relies	on	complete	genome	sequences	to	identify	fusion	events.	In	this	method	certain	

protein	 families	 in	 given	 species	 consist	 of	 fused	domains	 that	 usually	 are	 found	 as	

single	full-length	proteins	in	other	species.	These	fusions	can	predict	either	direct	or	

indirect	 functional	 interactions.	This	method	 can	be	used	 to	predict	protein-protein	

interaction	by	using	information	of	domain	arrangements	in	different	genomes	28.	

In	silico	 two-hybrid	analysis	 is	based	on	previous	studies	of	 sequence	correlation	 in	

multiple	sequence	alignments	leading	to	the	prediction	of	physical	closeness	between	

residue	pairs	of	pairs	individual	proteins.	The	result	from	this	method	automatically	

indicates	the	possible	physical	interaction	between	the	proteins	29.		

Similarity	 of	 phylogenetic	 tree	 method	 is	 based	 on	 the	 analyzing	 the	 relationship	

between	 protein	 interactions	 and	 co-evolution	 histories	 that	 are	 represented	 by	

phylogenetic	 trees.	 The	mirror	 tree	 approach	 has	 been	 used	 to	 determine	 potential	

interaction	partners	in	large	datasets	of	proteins	and	also	to	better	understand	the	co-

evolution	and	interactions	in	specific	pairs	of	protein	families	30,	31.	

The	 gene	 expression	 approach	 predicts	 interactions	 based	 on	 the	 relationship	

between	 gene	 co-expression	 and	 protein	 interactions.	 It	 consists	 of	 grouping	 genes	

according	 to	 their	 expression	 in	 different	 experimental	 conditions,	 and	 evaluating	

similarities	 between	 expression	 profiles	 32.	 The	 concept	 behind	 this	 method	 is	

explained	by	the	fact	that	genes	belonging	to	common	expression	profiles	more	likely	

interact	with	each	other	than	proteins	encoded	by	gene	from	different	clusters	33.	
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Recent	 technological	 advances	 have	 allowed	 the	 development	 of	 high	 throughput	

interaction	 detection	methods.	 	 	 Despite	 progress	 made	 in	 this	 field,	 each	 of	 these	

experimental	techniques	has	its	own	advantages	and	limitations.	Only	a	combination	

of	different	approaches	that	necessarily	includes	bioinformatics	tools,	will	eventually	

lead	 to	 a	 complete	 characterization	 of	 physiologically	 relevant	 protein-protein	

interactions	in	a	given	cell	or	organism.	

	

1.3.	Protein	interactions	databases	
A	number	of	publicly	available	databases	collect	and	store	protein-protein	interaction	

data	providing	researches	with	access	to	these	curated	datasets.	In	order	to	avoid	the	

duplication	of	the	curation	data	and	enable	data	exchange,	the	International	Molecular	

Exchange	(IMEx)	consortium	was	formed.	In	addition	Proteomics	Standards	Initiative	

-	 Molecular	 Interaction	 (PSI-MI)	 format	 sets	 data	 standards	 in	 order	 to	 specify	 a	

unified	structure	for	sharing	PPIs	34.	There	are	two	types	of	PPIs	databases	based	on	

their	content;	those	containing	data	supported	by	experimental	validation	and	those	

derived	from	 in	silico	predictions	35.We	can	name	several	PPIs	databases	such	as	the	

Biological	 General	 Repository	 for	 Interaction	 Datasets	 (BIOGRID)	 6,	 the	 IntAct	

molecular	 Interaction	 Network	 database	 (IntAct)	 36,	 the	 Human	 Protein	 Reference	

Database	(HPRD)	8,	the	Molecular	INTeraction	database	(MINT)	37,	which	only	report	

experimentally	verified	interactions.	Some	of	the	features	of	these	PPI	databases	are	

represented	table	1.	
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Table	1:	Features	of	human	PPI	databases.	

Database	 Number	
of	 unique	
human	
PPIs	

Number	
of	
proteins	

PPI	data	 Unique	features	 Download	
options	

PSI-MI	
compatibility	

Download	
version		

HPRD	 41327	 30047	 Experimental	 Protein	annotations	are	
included	 (e.g.	 PTMs,	
substrate	 information,	
tissue	 expression,	
disease	 association,	
protein	 complexes,	
subcellular	
localization).	 Signal	
transduction	pathways	

Yes	 Yes	 Release	9	

MINT	 26830	 8762	 Experimental	 PPIs	 for	 other	
organisms,	 non-protein	
interactions	

Yes	 Yes	 2015	

IntAct	 352696	
(includes	
non-
human	
PPIs)	

89310	
(include
s	 non-
human	
proteins
)	

Experimental	 Protein	complexes,	PPIs	
for	 other	 organisms,	
non-protein	
interactions,	 provides	
web	based	applications,	
ProViz	 and	 Hierarch	
View,	 for	 visualization	
of	interactions	

Yes	 Yes	 Release	192	

BioGrid	 288982	 19906	 Experimental	 Genetic	 and	 protein	
interactions	 curated	
from	 the	 primary	
biomedical	 literature	
for	 all	 major	 model	
organism	 species	 and	
humans	

Yes	 Yes	 Release	
3.4.128	

DIP	 7891	 4615	 Experimental	 PPIs	 for	 other	
organisms,	 protein	
complexes	

Yes	 Yes	 Jan-14	

	

1.4.	Protein-protein	interaction	network	management	
Network	 construction	 consists	 of	 establishing	 the	 links	 between	 proteins	 after	

retrieving	 interactomic	 data	 either	 experimentally	 and/or	 computationally	

determined.	 Tools	 such	 as	 Cytoscape	 38	 and	 MEDUSA	 39,	 	 are	 employed	 to	 create	

graphical	 representation	 of	 the	 system	 as	 a	 network	 of	 interactomic	map	 in	which	

proteins	are	represented	by	nodes	and	their	interactions	by	edges	linking	interactors.	

Cytoscape	is	considered	as	the	most	popular	visualization	tool.	One	of	 its	 features	 is	

the	 development	 of	 a	 collection	 of	 plugins	 enabling	 different	 functional	

interpretations	of	the	constructed	networks.	MEDUSA	on	the	other	hand	was	specially	

designed	for	accessing	protein	interaction	data	from	STRING	database.	Networks	can	

be	visualized	 in	different	 layouts:	circular,	hierarchical,	orthogonal	or	random…	One	

of	 the	ways	 to	analyze	essential	nodes	 in	a	 complex	network	 is	 the	 identification	of	

central	 network	 hubs,	 and	 ranking	 elements	 of	 the	 network	 according	 to	 criteria	

defined	for	each	study	40.		Another	approach	is	generation	of	functional	modules	that	
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can	 be	 established	 by	 functional	 annotation	 for	 representing	 biological	 networks,	

according	to	gene	ontologies,	common	pathways,	and	disease	implication	41…	

	

The	availability	of	high-throughput	experimental	data	and	computational	interaction	

prediction	 datasets	 has	 allowed	 construction	 of	 increasingly	 comprehensive	 and	

accurate	 protein-protein	 interaction	 networks.	 As	 we	 have	 seen,	 each	 method	 or	

approach	 has	 its	 strengths	 and	weaknesses;	 therefore	we	 cannot	 define	 a	 “perfect”	

approach.	 Accordingly	 it	 is	 essential	 to	 integrate	 different	 techniques	 and	 define	

criteria	depending	on	the	specificity	and	the	aim	of	each	study.		

	

2.	Analyzing	networks	in	Acute	Lymphoblastic	leukemia	
Acute	 lymphoblastic	 leukemia	 (ALL)	 is	 a	 malignant	 disease	 characterized	 by	 the	

uncontrolled	proliferation	of	immature	lymphocytes.	According	to	the	cell	type	that	is	

affected	it	can	be	divided	into	two	subtypes:	B-cell	ALL	and	T-cell	ALL.	ALL	is	the	most	

common	leukemia	in	pediatrics	accounting	for	80%	in	childhood	leukemia	and	20%	in	

adult	 leukemia.	 	 This	 disease	 is	 characterized	 by	 a	 large	 number	 of	 structural	

chromosomal	abnormalities	and	translocations,	and	rearrangements	(figure	3).	
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Figure	 3:	 Spectrum	 of	 recurring	 chromosomal	 rearrangements	 in	 childhood	 ALL.	
Representation	of	 comment	recurring	numerical	and	structural	genetic	alterations	 in	
childhood	 B-progenitor	 and	 T-lineage	 ALL,	 including	 approximate	 frequencies.	
Alterations	 specific	 to	 T-lineage	 ALL	 are	 shown	 at	 the	 bottom	 of	 the	 pie	 chart	 in	
magenta.	Reviewed	in	Mulligan	2011	42.	

	

The	 Notch	 signalling	 pathway	 plays	 a	 vital	 role	 in	 determination	 of	 the	 fate	 of	

hematopoietic	cells,	it	is	essential	for	the	generation	of	embryonic	hematopoietic	stem	

cells	and	also	in	controlling	T	cell	differentiation.	Numerous	studies	have	shown	that	

in	 mammals,	 the	 4	 Notch	 receptors	 are	 expressed	 in	 hematopoietic	 cells	 but	 at	

different	 stages	 and	 in	 different	 contexts	 of	 differentiation	 43.	 Hematopoietic	

development	starts	in	two	distinct	phases;	the	first	is	the	primitive	hematopoiesis	at	

extra-embryonic	 sites	 initiated	 in	 the	 yolk	 sac	 and	 the	 second	 is	 the	 definitive	

hematopoiesis	in	the	embryo	itself.	The	first	hematopoietic	stem	cells	(HSCs)	appear	

in	the	dorsal	aorta	 in	a	region	called	AGM	(aorta-gonad-mesonephros)	 in	adult	mice	

and	it	is	thought	that	these	cells	might	originate	from	endothelial	cells	even	if	they	are	

first	 detected	 in	 the	 yolk	 sac.	 Notch	 signalling	 promotes	 expansion	 of	 HSCs	 by	

activating	Runx1	expression,	and	also	arterial	specification	through	Gata2	regulation	
44.	
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One	of	the	most	characterized	functions	of	Notch	signalling	is	its	role	in	promoting	T	

cell	 differentiation	 in	 the	 bone	 marrow	 (BM).	 Active	 Notch	 signalling	 involving	

NOTCH1	receptor	and	Dll4	 ligand	 in	early	stages	of	T-cell	development	 is	necessary	

for	 inhibiting	 the	 differentiation	 of	 B-cell	 and	 myeloid	 lineages.	 Notch1	 is	 also	

required	to	promote	transformation	of	early	T	lineage	progenitors	into	progressively	

mature	T	lymphocytes	(figure	4).	In	fact	lymphoid	precursors	lacking	NOTCH1	result	

in	T-cell	defect	in	the	thymus.	

	

Figure	4:	Notch	and	T-cell	development.	Notch1	and	Dll4	interactions	in	the	thymus	are	
absolutely	required	during	early	stages	of	T-cell	development.	ETPs,	double	negative	2	
(DN2)	 and	 DN3a	 cells	 experience	 a	 high	 intensity	 of	 Notch	 signalling.	 Active	 Notch	
signalling	during	 early	 stages	of	T-cell	 development	 leads	 to	 inhibition	of	 both	B-cell	
and	myeloid	lineages.	At	the	β-selection	checkpoint,	Notch	signalling	is	rapidly	turned	
off	 as	 a	 consequence	 of	 preTCR	 signalling.	 Hence,	 double	 positive	 (DP)	 T-cells	
experience	a	 very	 low	 intensity	of	Notch	 signalling.	TSLP:	Thymus-Seeding	Lymphoid	
Progenitors;	ETP:	Early	T	lineage	Progenitor;	DN:	Double	Negative;	DP:	Double	Positive;	
NKT:	NK	T-cell;	nTR:	natural	regulatory	T-cell.	Extracted	from	45.	

Recently,	 advances	made	 in	 genomic	 techniques	 such	 as	whole	 genome	 sequencing,	

genome	 wide	 profiling	 and	 cytogenetic	 methods	 enabled	 the	 identification	 of	

mutations	and	aberrations	in	ALL	patients,	which	led	to	a	better	understanding	of	this	
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disease.	

It	 became	 certain	 that	 Notch	 signalling	 regulates	 hematopoiesis	 at	 different	 levels,	

through	 raging	 from	HSC	 formation	 to	 their	 differentiation	 and	 fate	 decision,	while	

mutations	 in	 the	 receptor	 and	 aberrant	 Notch	 signalling	 were	 also	 linked	 to	

leukemogenesis	 and	hematopoietic	disorders	 such	as	acute	 lymphoblastic	 leukemia.	

Therefore	 it	 has	 been	 the	 subject	 of	 intensive	 research	 to	 better	 understand	 the	

mechanisms	 underlying	 tumorigenesis	 and	 studies	 showed	 increased	 interest	 in	

therapeutic	modulation	of	the	Notch	pathway	in	this	field.			

2.1	B	cell	acute	lymphoblastic	leukemia	

Chromosomal	 rearrangements	 were	 highly	 associated	 to	 B-cell	 ALL,	 with	

hyperdiploidy	 and	 ETV6-RUNX1	 fusion	 representing	 25%	 incidence	 for	 each	

aberration	 among	 other	 types	 of	 genetic	 alterations	 described	 in	 acute	 leukemias.	

Other	 fusions	 were	 also	 found	with	 a	 less	 frequency	 such	 as	MLL	 rearrangements,	

TCF3-PBX1,	 BCR-ABL1	 translocations.	 Observations	 show	 that	 these	 genetic	

alterations	 modify	 the	 normal	 lymphoid	 maturation	 process	 through	 disrupting	

hematopoietic	 transcription	 factors	 or	 activate	 oncogenes	 42.	 Several	 studies	 have	

shown	that	IKFZ	alterations	is	a	hallmark	of	BCR-ABL1	B-ALL	subtype,	and	usually	it	

is	 associated	with	 a	poor	outcome,	 it	was	 also	demonstrated	 that	 in	 almost	50%	of	

BCR-ABL1	ALL	patients,	CRLF2	(encoding	cytokine	receptor	like	factor	2)	expression	

is	disrupted.	CRLF2	was	found	to	be	overexpressed	 in	ALL	patients	accompanied	by	

other	activating	mutations	in	IKAROS	gene,	JAK1	and	JAK2	(janus	kinases),	IL7R	(IL	7	

receptor),	 with	 high	 rates	 of	 relapse	 46.	 As	 previously	 mentioned,	 Notch	 signalling	

might	play	a	role	as	a	tumor	suppressor	or	an	oncogene,	according	to	cell	context	and	

microenviromental	conditions.	In	B-cell	ALL	Notch	signalling	induction	in	B-ALL	cells	

lines	 leads	 to	 cell	 cycle	 arrest	 and	 apoptosis.	 Notch	 receptors	 and	 their	 ligands	 are	

expressed	on	B-ALL	cell	surface.	Levels	of	expression	of	ligands	and	receptors	in	bone	

marrow	mesenshymal	 stromal	 cells	 (MSCs)	 and	 their	 interactions	 are	 important	 in	

leukomegenesis	 of	B-cell	ALL	 and	was	 also	 linked	 to	 chemoresistance	 to	 therapy	 in	

these	patients	47.	

	



	 	 INTRODUCTION	
	

	 13	

2.2.	T-cell	acute	lymphoblastic	leukemia	

T-cell	 ALL	 accounts	 for	 10	 to	 15%	 of	 pediatric	 ALL	 and	 25%	 of	 adult	 ALL	 48.	 It	 is	

characterized	by	diffusion	of	immature	T-cells	through	the	bone	marrow.	In	contrast	

to	 B-lineage	 ALL,	 where	 malignant	 cells	 often	 have	 additional	 specific	 genetic	

abnormalities	 (chromosomal	 rearrangements	 and	 genetic	 fusions),	 which	 have	

significant	 impact	 on	 the	 clinical	 outcome	 of	 the	 disease,	 in	 T-lineage	 ALL	 few	

molecular	 abnormalities	 have	 been	 detected.	 A	 chromosomal	 translocation	

t(7;9)(q34;q34.3)	 involving	 Notch	 gene	 was	 found	 in	 T-ALL	 patients.	 This	

translocation	 fuses	 the	 3’	 portion	 of	 the	 truncated	 form	 of	 Notch1	 TAN1	 on	

chromosome	9	to	the	TCRβ	locus	on	chromosome	7,	but	was	only	found	in	less	than	

1%	 of	 T-ALL	 patients	 49.	 In	 murine	 model,	 transplantation	 of	 bone	 marrow	

progenitors	 expressing	 TAN1,	 develop	 T-cell	 neoplasm	 within	 two	 weeks,	 proving	

that	this	translocation	can	be	causative	for	T-ALL	50.		

Gene	 expression	 profiles	 using	 oligonucleotide	 microarrays	 was	 applied	 to	 T-ALL	

samples	 and	 cell	 lines	 in	 order	 to	 characterize	 immunologic	 markers	 as	 well	 as	

cytogenetic	 and	 molecular	 abnormalities.	 A	 study	 carried	 out	 on	 T-ALL	 patient	

samples,	 showed	 that	 applying	 hierarchical	 clustering	 on	 a	 set	 of	 differentially	

expressed	 genes	 (313	 genes)	 between	 T-ALL	 patients	 reflect	 the	 degree	 of	

differentiation	 of	 leukemic	 cells.	 In	 addition	 gene	 expression	 profiling	 was	 also	

associated	 with	 response	 to	 treatment	 and	 long-term	 outcome	 of	 the	 disease51.	

Consistent	with	these	 findings,	A.	Ferrando	and	T.	Look	established	gene	expression	

profiles	 analysis	 in	 T-ALL	 showing	 that	 different	 oncogenic	 transcription	 factors	

define	 molecularly	 distinct	 groups	 of	 T-ALL,	 which	 are	 characterized	 by	

transcriptional	patterns	 that	 involve	 regulators	of	 cell	 growth,	 apoptosis,	 thymocyte	

development,	 and	 responsiveness	 to	 therapy.	 Using	 gene	 expression	 analysis	 in	 T-

ALL,	they	identified	HOX11	expression	as	an	indicator	of	favorable	prognosis	category	

while	TAL1	 (T-cell	 acute	 lymphocytic	 leukemia	1	protein)	 and	LYL1	 (lymphoblastic	

leukemia	 associated	 hematopoiesis	 regulator	 1)	 showed	 poorer	 outcome	 52.	 These	

examples	 along	with	 other	 studies	 show	 how	 development	 of	microarrays,	 making	

possible	the	analysis	of	T-ALL	on	a	genomic	scale,	has	helped	to	define	the	oncogenic	

pathways	responsible	for	leukemic	transformation	in	this	disease.	
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On	the	other	hand,	mutations	in	different	oncogenes	and	tumor	suppressor	genes	that	

are	 initially	 known	 to	 be	 involved	 in	 the	 deregulation	 of	 mechanisms	 of	 T-cell	

proliferation,	 differentiation	 and	 thymopoiesis	 have	 been	 linked	 to	 T-ALL	

pathogenesis	53.	Among	these	genes	and	mutations,	activating	mutations	of	NOTCH1	

were	found	in	more	than	50%	of	T-ALL	patients	54.	A	large	number	of	Notch	mutations	

were	 limited	 to	 specific	 regions	 of	 the	 protein,	 involving	 the	 heterodimerization	

domain	 and	 leading	 to	 a	 ligand-independent	 constitutive	 activation	 of	 the	 receptor,	

and	also	in	the	N-terminal	PEST	domain	affecting	NOTCH1	stability	and	degradation.	

Mutational	 Notch	 and	 aberrant	 Notch	 signalling	 in	 T-ALL	 are	 also	 accompanied	 by	

deregulation	 of	 other	 oncogenes	 such	 as	 cMYC,	 E2A-PBX,	 Ikaros	 and	 tumor	

suppressors	like	FBXW7,	PTEN	and	PIK3CA.	Therefore	Notch	mutations	alone	are	not	

sufficient	 for	 disease	 development	 but	 they	 rather	 highly	 contribute	 to	

leukomogenesis	 and	 resistance	 to	 chemotherapeutic	 treatments.	 Gain	 of	 function	

mutations	of	Notch	accompanied	with	mutational	 loss	of	PTEN	 induce	 resistance	 to	

Notch1	 inhibition	 in	 T-cell	 leukemia.	 NOTCH1	 downregulates	 PTEN	 expression	

through	cMYC	and	HES1,	which	could	mediate	an	upregulation	of	PI3K-AKT	signalling	

pathway	in	both	normal	and	leukemic	T-cell	lines	55.	cMYC	is	a	Notch	target	gene	in	T-

ALL.	 It	 has	 been	 shown	 that	when	 overexpressed,	 cMYC	 is	 able	 to	 induce	 T-ALL	 in	

animal	models.	 In	 addition	Notch	 blockade	 using	ϒ-secratase	 inhibitors	GSI,	 lead	 to	

downregulation	of	cMYC	expression	in	different	T-ALL	cell	lines	56.	As	some	data	show	

that	cMYC	is	a	downstream	target	of	Notch	in	T-ALL,	other	studies	demonstrate	that	

cMYC	and	Notch1	can	act	 through	 independent	but	yet	complementary	pathways	 to	

promote	pre-T-cell	transformation	and	thus	expanding	a	pool	of	“high	risk	oncogenic”	

pre-T-cells	 54.	 A	 study	 carried	 out	 on	 T-ALL	 patients,	 showed	 that	 the	 presence	 of	

Notch	 activating	 mutations	 in	 the	 heteodimerization	 and	 PEST	 domains,	 lead	 to	

upregulation	 of	 HES1,	 cMYC,	 Deltex	 downstream	 Notch	 genes.	 In	 addition	 some	 of	

these	 patients	 also	 present	mutations	 in	 the	 FBXW7	 gene,	 associated	with	 a	 higher	

transcriptional	activation	for	NOTCH1	gene	targets,	and	chemotherapy	related	genes	

such	 as	 Bcl-2	 and	MDR1	 57.	 Another	 study	 also	 showed	 that	 in	 some	 cases	 FBXW7	

mutations	in	leukemic	cells	mediate	Notch	pathway	activation,	and	that	mutant	forms	

of	 FBXW7	cannot	bind	 to	 the	 intracellular	 form	of	NOTCH1	 (NICD)	 leading	 to	NICD	

and	MYC	 stabilization	 58.	Mutations	 in	 the	FBXW7	 gene	 are	 found	 in	 15%	 of	 T-ALL	

cases,	 interfering	 also	with	NOTCH1	 proteasomal	 degradation	 58.	 The	 essential	 role	
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that	 Notch	 plays	 in	 T-ALL,	 shown	 by	 several	 studies,	 in	vitro,	 in	 vivo	and	 driven	 by	

analyses	 made	 on	 samples	 from	 leukemic	 patients,	 highlighted	 the	 importance	 of	

Notch	 signalling	 and	 its	 effect	 in	 the	 regulation	 of	 downstream	 Notch	 targets	 and	

other	signalling	pathway,	and	its	potential	in	targeted	therapy	against	ALL.					

	

Figure	5:	The	landscape	of	genetic	alterations	in	T-ALL.	Schematic	representation	of	the	
most	common	genes	targeted	by	chromosomal	translocations,	deletions,	and	mutations	
in	 T-ALL.	 Font	 size	 is	 indicative	 of	 the	 relative	 prevalence	 of	 these	 alterations,	 with	
highly	 prevalent	 targeted	 genes	 shown	 in	 in	 larger	 font	 sizes	 and	 less	 frequently	
altered	loci	shown	in	smaller	font	size.	Adapted	from	59.	

	
2.2.1.	Cross	talk	between	Notch1,	PI3K-AKT-mTOR1	signalling	
pathways	in	T-ALL	
	
2.2.1.1.	Regulation	of	PI3K-AKT	signalling	in	T-ALL	by	Notch1	
PI3K	 phosphorylates	 phosphatidylinositol	 (4,5)-bisphosphate	 (PIP2)	 to	

phosphatidylinositol	(3,4,5)-trisphosphate	(PIP3)	and	facilitates	AKT	activation.	AKT	

binds	 to	 PIP3	 through	 its	 pleckstrin	 homology	 domain	 at	 the	 membrane,	 enabling	

phosphorylation	 of	 AKT	 at	 Thr308	 within	 its	 activation	 loop	 domain	 by	
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phosphoinositide-dependent	kinase	1	 (PDK1).	Additional	phosphorylation	of	AKT	at	

Ser473	within	 its	 hydrophobic	motif	 by	mammalian	 target	 of	 rapamycin	 complex	 2	

(mTOR2	 or	 PDK2)	 results	 in	 full	 activation	 of	 AKT,	 and	 phosphorylation	 of	 its	

substrates	(i.e.,	glycogen	synthase	kinase	3	(GSK3),	 the	FOXO-family	of	 transcription	

factors,	 BAD,	 MDM2,	 and	 TSC2,	 thereby	 promoting	 cell	 growth,	 survival,	 and	

proliferation	60.	

Notch1	plays	an	 important	role	 in	regulating	PI3K-AKT	signalling.	The	 first	study	 to	

prove	that	Notch1	can	activate	PI3K-AKT	pathway	showed	that	Notch	signals	via	the	

Delta-like	1	 ligand	 (Dll1)	 interactions	promoting	 the	 survival	 of	 pre	T-cells	 through	

maintenance	 of	 cell	 size,	 glucose	 uptake	 and	metabolism.	 Furthermore,	 the	 trophic	

effects	of	Notch	signaling	were	mediated	by	the	pathway	of	phosphatidylinositol-3-OH	

kinase	 and	 the	 kinase	 Akt,	 such	 that	 expression	 of	 active	 Akt	 overcame	 the	

requirement	for	Notch	in	β-selection61.	

T-ALL	 cells	 are	 also	 dependent	 on	 Notch1	 and	 AKT	 signalling	 for	 proliferation	 and	

survival.	 The	 link	 between	 Notch1	 and	 activation	 of	 PI3K-AKT	 signalling	 was	

established	by	Palomero	et	al.,	they	showed	that	NOTCH1	regulates	the	expression	of	

PTEN	and	the	activity	of	 the	PI3K-AKT	signaling	pathway	 in	normal	and	 leukemic	T	

cells	55.	Hes1	gene,	one	of	Notch1	transcriptional	targets,	binds	to	Pten	promoter	and	

represses	 its	 activity,	 decreasing	 PTEN	 protein	 levels	 and	 increasing	 AKT	

phosphorylation	 and	 downstream	 signalling	 (figure	 6).	 In	 addition,	 alterations	 of	

PI3K,	 PTEN,	 and	 AKT	 were	 reported	 in	 47,7%	 of	 T-ALL	 cases	 from	 children,	 with	

PTEN	 mutants	 being	 most	 common	 62.	 Several	 studies	 showed	 that	 Notch	 could	

regulate	 PI3K-AKT-mTOR1	 signalling	 at	 multiple	 levels,	 through	 both	 PTEN-

dependent	and	independent	routes.	An	example	is	the	maturation	of	ILR7	leading	to	

activation	 of	 JAK-STAT5	 and	 PI3K	 pathways,	which	 play	 important	 roles	 in	 normal	

hematopoiesis	and	leukemia	63	.	Notch1	can	also	regulate	IGF1R	levels	and	PI3K-AKT	

activity	 in	 T-ALL,	 and	 Notch	 signaling	 is	 required	 to	maintain	 IGF1R	 expression	 at	

high	levels	in	T-ALL	cells	64.	
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Figure	 6:	 Regulation	 of	 PI3K–AKT	 signalling	 in	 T-ALL	 cells	 by	 Notch1.	 The	 signalling	
pathways	 downstream	 of	 Notch1	 that	 converge	 on	 PI3K–AKT	 signaling	 in	 T-ALL	 are	
shown.	The	activated	 form	of	Notch1	 (NICD)	 is	 shown	and	results	 in	net	activation	of	
PI3K–AKT	 signaling	 by	 increasing	 levels	 of	 growth	 factor	 receptors	 [IGF1R	 and	 IL7R	
(IL7Rα	subunit)]	that	recruit	PI3K,	or	by	reducing	PTEN	levels	through	transcriptional	
repression	 of	 the	Pten	 gene	 by	 Hes1.	 Although	 cMyc	 can	 activate	Pten	 transcription,	
Hes1	 repression	 dominates.	 PI3K	 phosphorylates	 PIP2(4,5)	 to	 generate	 PIP3(3,4,5)	
that	recruits	AKT	for	phosphorylation	at	Thr308	by	PDK1	and	Ser473	by	mTOR2.	This	
results	 in	 phosphorylation	 of	 AKT	 substrates	 (GSK3,	 FOXO,	 BAD,	 MDM2,	 TSC2,	 and	
mTOR),	 promoting	 glucose	 metabolism,	 proliferation,	 growth,	 and	 translation,	 but	
impairing	 apoptosis	 and	 autophagy.	 PTEN	 dephosphorylates	 PIP3(3,4,5)	 back	 to	
PIP2(4,5)	to	block	AKT	activation.	NICD	was	reported	to	decrease	PKCθ	and	ROS	levels	
through	 induction	 of	 the	 RUNX3	 transcription	 factor.	 ROS	 promotes	 PTEN	 oxidation	
and	 inactivation.	NICD	might	 also	 contribute	 to	 regulation	of	PTEN	 inactivation	 since	
GSI	treatments	further	increased	PTEN	phosphorylation,	stabilization,	and	inactivation	
by	CK2,	which	suggests	that	NICD	may	play	a	more	active	role	in	regulating	CK2	activity,	
although	 NICD-	 independent	 pathways	 are	 also	 likely	 to	 contribute.	 Either	 of	 these	
pathways	could	influence	PTEN	activity	through	post-translational	modifications.	Loss	
of	 PTEN	 results	 in	 constitutive	 AKT	 activation	 and	 contributes	 to	 GSI-resistance.	
FBXW7	 regulates	 NICD	 stability	 and	 signal	 duration	 but	 has	 also	 been	 suggested	 to	
decrease	AKT	and	mTOR1	levels.	FBXW7	is	subjected	to	 frequent	mutations	 in	T-ALL.	
Notch1	 pathway	 activation	 and/or	 loss	 of	 PTEN	 result	 in	 net	 activation	 of	 PI3K–AKT	
signaling	in	T-ALL	cells	(line	weights	are	proportional	to	the	net	effects	on	signaling).	
Arrows	 denote	 activation	 and	 blunt	 arrows	 repression.	 Dashed	 lines	 denote	
uncharacterized	mechanisms.	Transcription	 factors	(orange),	growth	 factor	receptors	
(white),	 kinases	 (blue),	 phosphatases	 (purple),	 E3-ubiquitin	 ligases	 (MDM2	 and	
FBXW7;	 yellow),	 BAD	 (bgreen),	 TSC1/2	 (white/gray),	 and	 unknown	 negative	
regulatory	 factors	 (red	 dashed	 ovals)	 are	 depicted.	 AKT	 activating	 phosphorylations	
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are	 indicated	 (green	 stars	 with	 “P”)	 while	 phosphorylations	 of	 other	 proteins	 have	
been	omitted	for	simplicity.	Extracted	from	65	.	

	

2.2.1.2.	Notch1	affects	p53,	cMYC	and	PI3K-AKT	pathways	in	T-ALL	
	
Recent	 studies	 suggest	 that	 Notch1	 regulates	 p53	 levels	 and	 activation	 in	 T-ALL.	

Activation	 of	mutant	Notch1	 in	 some	T-ALL	with	 constitutively	 high	 levels	 of	 PI3K-

AKT	 signalling,	 secondary	 to	 loss	or	 inactivation	of	PTEN,	may	 contribute	 to	 loss	of	

p53	via	MDM2	66.	P53	mutations	are	frequent	in	T-ALL	relapse,	but	rarely	mutated	in	

primary	T-ALL.	Induction	of	NICD	in	an	inducible	murine	lymphoma	model	decreased	

ARF	and	p53,	which	is	a	key	mechanism	underlying	the	initiation	of	T-cell	lymphoma	
67.	 cMYC,	 a	 well-characterized	 Notch1	 target	 gene,	 can	 induce	 T-ALL	 in	 mice	 and	

zebrafish.	 However	 Notch1	 is	 oncogenic	 dominant	 over	 cMyc	 in	 T-ALL68.	 Recent	

studies	suggest	 that	activation	of	PI3K-AKT	pathway	downstream	of	Notch1	may	be	

sufficient	to	drive	T-ALL.	PI3K-AKT	can	functionally	replace	Notch1	during	β-seletion.	

MAP	signalling	pathway	and	GSK3β	phosphorylate	cMyc	leading	to	its	ubiquitination	

by	FBXW7	and	its	subsequent	degradation	(figure	7).	Recent	evidence	show	that	post-

transcriptional	deregulation	of	cMyc	via	PTEN	is	a	major	alternative	pathway	of	MYC	

activation	in	T-ALL	69.	
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Figure	7:	Notch1	orchestrates	crosstalk	between	p53,	cMyc,	and	PI3K–AKT	pathways	in	
T-ALL	cells.	ARF	is	a	negative	regulator	of	the	E3-ubiquitin	ligase	MDM2	that	negatively	
regulates	 p53	 levels	 and	 apoptosis.	 Repression	 of	 MDM2	 by	 ARF	 activates	 p53	 and	
induces	 apoptosis.	 NICD	 can	 reduce	ARF	 levels	 and	 p53.	 NICD	 activates	 AKT	 through	
growth	 factor	 receptors	 (i.e.	 IGF1R)	 and	 transcriptional	 repression	 of	 PTEN	by	Hes1.	
AKT	 promotes	 destruction	 of	 p53	 by	 MDM2,	 while	 the	 p53	 protein	 once	 activated,	
promotes	 its	 own	 stability	 by	 increasing	 PTEN	 and	 IGFBP3	 levels	 to	 antagonize	 AKT	
activation.	 Loss	 of	 PTEN	 constitutively	 activates	 AKT	 to	 continually	 block	 p53-	
mediated	apoptosis	and	may	contribute	to	GSI-resistance.	By	reducing	p53	levels,	NICD	
creates	 an	 environment	 for	 activation	 of	 cMyc,	which	 itself	 can	 induce	 p53-mediated	
apoptosis.	Notch1	activates	mTOR1	through	both	cMyc	and	AKT.	Activation	of	mTOR1	
can	reduce	p53	levels	via	eIF4E.	PI3K–AKT–mTOR1	not	only	reduces	p53	levels	but	also	
promotes	 cMyc	 stability	 by	 direct	 phosphorylation	 and	 repression	 of	 GSK3β.	
Phosphorylation	by	both	GSK3β	and	MAPK	are	required	to	mediate	cMyc	degradation	
by	FBXW7,	which	is	frequently	mutated	in	T-ALL.	Line	weights	are	proportional	to	the	
net	 effects	 on	 signaling	 in	 response	 to	 Notch1	 pathway	 activation.	 Arrows	 denote	
activation	 and	blunt	 arrows	denote	 repression.	Dashed	 lines	 denote	 uncharacterized	
mechanisms.	Transcription	 factors	 (orange),	growth	 factor	receptors	 (white),	kinases	
(blue),	 phosphatases	 (purple),	 E3-ubiquitin	 ligases	 (MDM2	 and	 FBXW7;	 yellow),	 ARF	
(brown),	TSC1/2	(white/gray),	eIF4E	(green),	and	unknown	negative	regulatory	factors	
(red	dashed	ovals)	are	depicted.	AKT	activating	phosphorylations	are	indicated	(green	
stars	 with	 “P”),	 while	 phosphorylation	 of	 other	 proteins	 has	 been	 omitted	 for	
simplicity.	Extracted	form	65.	
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2.3.	Therapeutic	approach	in	ALL	
Glucocorticoids	 were	 among	 the	 first	 drugs	 used	 in	 the	 treatment	 of	 acute	

lymphoblastic	 leukemia,	 and	 have	 remained	 essential	 components	 of	 therapy.	

Primary	 genetic	 abnormalities	 of	 leukemic	 cells	 have	 important	 prognostic	

significance	 and	 in	 some	 cases	 they	 are	 associated	with	drug	 resistant.	 The	 current	

chemotherapeutic	 approaches	 in	 ALL	 are	 adapted	 according	 to	 patient’s	 age,	

cytogenetics	and	bone	marrow	response.	Due	 to	 the	differences	 in	drug	 tolerability,	

adult	 and	 paediatric	 ALL	 treatments	 vary	 considerably	 between	 these	 groups.	

Prednisolone,	 vincristine,	 asparaginase,	 and	 daunorubicin	 are	 widely	 used	

medications	in	ALL	treatment	70.		

The	 gene	 expression	 profiles	 of	 leukemia	 cells	 have	 been	 used	 to	 identify	 genes	

related	 to	 the	 intracellular	 disposition	 of	 anti-leukemic	 agent	 in	 vivo	 and	 to	 reveal	

different	sets	of	genes	associated	 to	drug	resistance.	An	 interesting	gene	expression	

patterns	study	 identified	172	gene-probe	sets	as	differentially	expressed	 in	primary	

B-lineage	 leukemia	 cells.	 These	 genes	were	 also	 associated	with	 resistance	 to	 drug	

treatments	(Prednisolone,	vincristine,	asparaginase,	and	daunorubicin).	They	showed	

that	resistance	to	mechanistically	distinct	anti-leukemic	agents	is	associated	with	the	

expression	of	different	functional	groups	of	genes	and	support	the	use	of	combination	

chemotherapy	 for	 cancer	 treatment	 71.	A	 similar	 analysis	 of	 gene	 expression	 in	ALL	

was	 carried	 out	 on	 over	 9600	 genes	 before	 and	 after	 in	 vivo	 treatment	 with	

methoxtrexate	 and	 mercaptopurine	 alone	 or	 in	 combination.	 They	 identified	 124	

genes	 differentially	 expressed	 among	 these	 treatments.	 The	 identified	 set	 included	

genes	related	to	apoptosis,	mismatch	repair,	cell	cycle	control	and	stress	response	72.	

Comparisons	 of	 gene	 expression	 levels	 through	 time	 in	 B-	 ALL	 patients	 showed	

consistent	differences	among	a	set	of	23	genes	at	least	at	two	of	the	three	time	points	

evaluated	and	 the	differences	 in	 the	expression	 levels	of	 IL2RA,	SORT1,	DEFA1,	and	

FLT3	genes	in	at	least	one	of	the	times	studied	were	associated	with	relapse	and/or	B-

ALL-related	death	73.	

	Exploring	 acute	 treatment-induced	 changes	 in	 gene	 expression	 in	 leukemia	 cells	

offers	 new	 insight	 into	 the	differences	 in	 cellular	 response	 to	 individual	 agents	 and	

drug	 combinations.	 Identification	 of	 treatment-induced	 changes	 in	 gene	 expression	

can	 serve	 as	 a	 new	 tool	 for	 assessing	 the	 interaction	 of	 anticancer	 agents	 and	may	

provide	a	basis	for	optimizing	combination	of	chemotherapy.	
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Other	agents	in	the	early	phase	of	clinical	testing	are	being	developed;	including	FLT3	

inhibitors	 74,	 γ-secretase	 inhibitors	 (GSI)	 54,	 proteasome	 inhibitors	 and	 short	

interfering	 RNAs	 75.	 ALL	 treatment	 has	 advanced	 significantly.	 In	 addition	 gene	

profiling	 performed	 in	 T-ALL	 cell	 lines	 showed	 that	 GSI	 treatment	 induce	 gene	

expression	changes	in	239	genes	including	direct	Notch1	targets	such	as	DELTEX	and	

HES1.	Importantly,	this	analysis	also	identified	c-MYC,	a	master	regulator	of	multiple	

biosynthesis	and	metabolic	pathways	76.	Recent	 findings	 in	gene	expression	profiles,	

mutations	 and	 molecular	 characterization	 of	 ALL	 led	 to	 the	 development	 of	 novel	

targeted	 therapies.	 However,	 cure	 is	 often	 challenging	 and	 toxic.	 If	 we	 take	 for	

example	 γ-secretase	 inhibitors	 though	 effective	 in	 some	 cases	 but	 they	 still	 present	

high	 gastrointestinal	 toxicity	 77.	 Another	 example	 is	 bortezomib	 a	 proteasome	

inhibitor	drug	 that	was	 tested	on	ALL	patients	 in	 both	pediatric	 and	 adult	 patients,	

and	showed	infectious	toxicity	 in	some	patients	78.	The	challenge	going	forward	will	

be	 to	 find	 safe	 and	 effective	 combinations	 and	 determine	 where	 in	 the	 treatment	

schema	 these	 agents	 will	 be	 most	 effective	 in	 ALL	 therapy.	 Studies	 in	 the	 field	 of	

therapy	 focus	 on	 the	 effect	 of	 drugs	 on	 prognosis	 and	 relapse	 rather	 than	 gene	

expression	 profiling.	 Therefore,	 comparing	 gene	 expression	 profiling	 for	 leukemic	

patient	 samples	 undergoing	 treatment	 can	 serve	 as	 a	 powerful	 tool	 to	 better	

understand	the	effect	of	these	drugs.		

	
The	 following	 chapters	 focus	 on	 Notch1	 and	 FBXW7,	 two	 connected	 proteins	

frequently	mutated	in	T-ALL.	

	
3.	NOTCH1	network	and	signalling		
	
	
NOTCH1	 was	 described	 for	 the	 first	 time	 in	 1917,	 when	 Thomas	 Hunt	 Morgan	 an	

American	 geneticist	 and	 embryologist,	 described	 a	 strain	 of	 fruit	 flies	 Drosophila	

melanogaster,	with	notches	at	the	margin	of	their	wing	blades	79.	The	Notch	homolog	

in	 human	 was	 described	 in	 the	 mid	 1980’s,	 as	 a	 transmembrane	 receptor	 that	 is	

essential	 in	 a	 highly	 conserved	 signalling	 pathway	 involved	 in	 the	 regulation	 of	

different	 processes	 during	 development	 and	 tissue	 homeostasis	 80.	 The	 first	 time	

NOTCH1	 was	 linked	 to	 human	 cancer	 when	 the	 t(7;	 9)(q34;	 q34.3)	 chromosomal	

translocation	 found	 in	 T-cell	 acute	 lymphoblastic	 leukemia	 (T-ALL)	 was	 sequenced	
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and	 cloned	 81.	 This	 chromosomal	 translocation	 resulted	 in	 an	N-terminal	 truncated	

dominant	 active	 ligand	 -	 independent	 human	 NOTCH1	 receptor	 (TAN1).	 	 It	 wasn’t	

until	years	later	that	studies	showed	that	TAN1	is	causative	for	disease	development	

in	mouse	models	50,	and	later	another	study	showed	that	approximately	50%	of	all	T-

ALL	patients	had	activating	mutations	in	the	human	NOTCH1	gene	54.		

	

3.1.	The	Notch	protein	
	

Notch	signalling	is	an	evolutionary	conserved	mechanism	from	Drosophila	to	humans.	

Notch	receptors	are	large	single-pass	proteins,	in	Drosophila,	there	is	only	one	Notch-

encoding	gene	82,	in	C.	elegans,	there	are	two	genes	encoding	for	Notch	(lin-12	and	glp-

1)	 83.	Whilst	 in	mammals,	 there	 are	 four	 Notch	 genes	 encoding	 different	 receptors	

(NOTCH	1-4)	 84.	 The	Notch	 receptors	 are	 composed	 of	 two	 functional	 domains,	 the	

extracellular	 (NEC)	 and	 transmembrane	 (NTM)	 domains.	 The	 extracellular	 domain	

contains	between	29	 to	36	 epidermal	 growth	 factor-like	 repeats	 (ELRs)	 involved	 in	

ligand	binding	followed	by	three	modules	of	LIN-12-Notch	repeats	(NLR)	linked	non-

covalently	 by	 an	 heterodimerization	 domain	 to	 NTM	 85.	 These	 three	 cysteine-rich	

Lin12-Notch	 repeats	 (LNR)	 and	 a	 heterodimerization	 domain	 represent	 a	 region	

called	NRR	for	negative	regulatory	region	playing	a	central	role	in	preventing	receptor	

activation	 in	 the	 absence	 of	 ligands.	 	 The	 NTM	 contains	 a	 RAM	 domain	 for	 RBP-Jk	

associated	module,	linked	by	a	nuclear	localization	sequence	to	seven	Ankyrin	repeats	

domain.	 An	 additional	 nuclear	 localization	 sequence	 links	 the	 ANK	 domain	 to	 a	

transactivation	 domain	 (TAD)	 known	 to	 be	 different	 and	 evolutionarily	 divergent	

among	Notch	orthologs.	TAD	 is	 followed	by	a	PEST	domain	rich	 in	proline,	glutamic	

acid,	serine,	and	threonine	in	the	C-terminus	of	the	NTM,	which	harbors	degradation	

signals	(degrons)	regulating	NICD	stability.	

Although	there	are	broad	variations	in	size	amongst	Notch	family	orthologs,	especially	

relative	to	the	C.	elegans	members,	lin-12	and	glp-1,	several	major	structural	features	

are	 conserved	 amongst	 all	 members	 (figure	 8).	 As	 previously	 mentioned,	 the	

extracellular	 domain	 is	 characterized	 by	 the	 large	 number	 of	 EGF	 repeats,	 which	

number	 varies	 from	 10	 in	 glp-1	 to	 36	 in	 Drosophila	 and	 some	 vertebrate	 Notch	

receptors.	Several	data	suggested	that	the	11th	and	12th	ELRs	in	both	Drosophila	and	

vertebrate	Notch	receptors	play	a	crucial	role	for	being	considered	as	primary	sites	of	
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ligand	 receptor	 interaction.	 On	 the	 other	 hand	 ELRs	 11	 and	 12	 equivalents	 in	 C.	

elegans	extracellular	domain	of	the	receptor	have	not	been	reported	previously	86.		In	

its	intracellular	domain	lie	several	common	features	between	Notch	homologs.	First	is	

the	presence	of	a	cleavage	site	characterized	by	a	conserved	valine	residue	near	the	

intracellular	 side	 of	 the	 transmembrane	 domain.	 All	 Notch	 receptors	 have	 RAM	

domain	 and	 ankyrin	 repeats	 that	 where	 described	 to	 interact	 with	 a	 number	 of	

different	molecules	including	CSL	group	of	transcription	factors	that	are	considered	as	

one	 of	 the	most	 important	 factors.	 The	 TAD	 domain	 is	 the	 least	 conserved	 domain	

amongst	 the	 different	 Notch	 receptors.	 As	 for	 the	 C	 terminal	 region	 it	 is	 well	

conserved	in	Notch	homologs,	harboring	a	PEST	domain	but	with	variable	sequences	

and	lengths.	

	
Figure	 8:	 Structure	 of	 Notch	 proteins.	 Drosophila	 has	 one	 Notch	 receptor	 (dNotch),	
vertebrates	 have	 four	 (NOTCH1–4)	 and	 C.elegans	 have	 two	 (LIN-12	 and	 GLP-1).	 The	
ectodomain	 of	 Notch	 receptors	 contains	 epidermal-growth-factor	 (EGF)-like	 repeats	
and	 a	 cysteine-rich	 Notch/Lin12	 domain	 (LN);	 this	 is	 followed	 by	 a	 transmembrane	
domain,	 the	 RAM	 domain	 and	 six	 ankyrin	 repeats,	 two	 nuclear-localization	 signals	
(NLSs),	 followed	by	 the	 transactivation	domain	 (TAD)	and	a	PEST	 sequence.	NOTCH1	
contains	a	strong	and	NOTCH2	a	weak	transactivation	domain	in	the	cytoplasmic	part	
of	 the	receptor.	They	differ	 in	the	number	of	repeats	(29–36)	but	all	are	much	longer	
than	the	C.	elegans	Notch	proteins	84.	
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After	 being	 synthetized	 in	 the	 endoplasmic	 reticulum,	 the	 full	 length	 NOTCH1	 is	

cleaved	 in	 the	 Golgi	 apparatus	 by	 a	 furine	 like	 convertase	 at	 the	 site	 S1	 in	 the	 HD	

domain,	 resulting	 in	 two	subunits	 (NEC	and	NTM)	 that	 are	 linked	non-covalently	at	

the	HD	domain	all	along	their	migration	through	the	plasma	to	the	cytoplasm	where	

the	receptor	is	represented	as	a	heterodimere	at	the	cell	surface	(figure	9).		

The	canonical	Notch	signalling	pathway	is	initiated	by	the	interaction	between	NOTCH	

transmembrane	receptor	and	the	transmembrane	ligand	present	at	the	surface	of	the	

contacting	 cell	 87,	 this	 binding	 is	 centered	 at	 the	EGF	12	 repeat	 containing	 residues	

that	 coordinate	 Ca2+	 binding	 and	 O-glucosylation	 at	 serine	 458	 and	 serine	 496	

residues	as	well	as	O-fucosylation	at	the	threonine	466	residue.	This	binding	leads	to	

two	successive	proteolytic	cleavages	of	the	receptor.	The	first	cleavage	at	the	S2	site	

located	within	the	negative	regulatory	region	approximately	at	12	amino	acids	before	

the	 transmembrane	domain,	 is	mediated	by	metalloprotease	 of	 the	ADAM	 family	 at	

the	heterodimerization	domain	88,	89,	shedding	the	extracellular	subunit	and	triggering	

the	 S3	 cleavage	 at	 the	 transmembrane	 domain	 by	 the	 γ-secretase	 multiprotein	

enzyme	complex	90-92,	releasing	NICD	to	translocate	to	the	nucleus	where	it	assembles	

into	a	transcriptional	activation	complex	93.	
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Figure	 9:	 Canonical	 Notch	 signalling	 pathway.	 The	 Notch	 protein	 is	 syntheized	 as	 a	
precursor	 for	 that	 is	 cleaved	 by	 furin-like	 convertase	 (S1	 cleavage)	 to	 generate	 the	
mature	 receptor,	 which	 is	 composed	 of	 two	 subunits	 that	 are	 held	 together	 by	 non-
covalent	 interactions.	 On	 binding	 to	 the	 Notch	 receptor,	 the	 ligand	 induces	 a	
conformational	 change,	 exposing	 the	 S2	 cleavage	 site	 in	 the	 extracellular	 domain	 of	
Notch	to	the	metalloproteinase	tumor	necrosis	factor-α-converting	enzyme	(TACE	also	
known	as	ADAM).	Following	S2	cleavage,	Notch	undergoes	a	third	cleavage	(S3)	that	is	
mediated	by	the	presenilin-γ-secratase	complex.	The	S3	cleavage	results	in	the	release	
of	the	active	NICD	from	the	plasma	membrane	ad	the	subsequent	translocation	into	the	
nucleus	and	activation	of	transcription	of	target	genes.	Adapted	from	84.	

	

3.2.	Notch	ligands	

3.2.1.	Canonical	ligands	
Notch	 ligands	 can	 be	 divided	 into	 several	 groups	 according	 to	 their	 domain	

composition.	Based	on	their	homology	to	the	Drosophila	Delta	and	Serrate	ligands,	in	

mammals	 there	 are	 five	 canonical	 ligands	 of	 the	 delta-serrate-lag2	 type	 (DSL)	

classified	 as	 either	 Delta-like	 (Dll1,	 Dll3	 and	 Dll4)	 or	 serrate-like	 (Jagged1	 and	

jagged2)	 94.	 Notch	 ligands	 are	 type	 I	 transmembrane	 proteins,	 composed	 of	 an	

intracellular	 (ICD)	 and	 extracellular	 (ECD)	 domains.	 ECD	 contains	 DSL	 domain	
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followed	by	EGF	repeats	both	calcium	and	non-calcium	binding.	The	DSL	domain	with	

the	first	two	EGF	repeats	and	the	Delta	and	OSM-11-like	proteins	(DOS)	are	essential	

sites	for	ligand	binding	to	Notch	receptor.	While	these	ligands	have	several	conserved	

domains	 features	 in	 their	 extracellular	 domain	 (according	 to	 their	 sequence	

alignments	and	function),	the	intracellular	domain	lacks	notable	sequence	homology.	

Some	 of	 DSL	 ligands	 contain	 a	 carboxy-terminal	 PSD-95/Dlg/ZO-1-ligand	 (PDZL)	

motif,	 the	 role	 of	 this	 motif	 have	 been	 linked	 to	 interaction	 with	 the	 cytoskeleton	

rather	 than	 to	 the	 notch	 signalling	 (figure	 10).	 It	 has	 also	 been	 shown	 that	 the	

cytoplasmic	 tail	 of	 these	 ligands	 contains	 several	 lysine	 residues	 representing	

potential	ubiquitination	sites	targeted	by	the	E3	ubiquitin	ligase	(Mind-Bomb	1	and	2	

and	Neuralized	 1	 and	 2	 in	mammals)	 leading	 to	 the	 subsequent	 endocytosis	 of	 the	

ligand	95.		Canonical	ligands	have	been	well	defined	for	activating	the	Notch	signalling	

by	 cell-to-cell	 contact	 in	 trans	 as	 described	 previously.	 On	 the	 other	 hand	 these	

ligands	have	been	described	for	their	role	in	cis	 inhibition	in	Notch	signalling.	 	Some	

data	indicate	that	trans	activation	or	cis	inhibition	implies	competitive	mechanisms	at	

the	receptor-ligand	interaction	level,	with	a	high	threshold	required	for	cis	inhibition	
96,	and	that	the	cis	effect	is	more	likely	to	prevent	the	shedding	of	Notch	ecto-domain	

by	an	interaction	mediated	by	the	EGF	repeats	10-12	of	the	receptor	97.	
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Figure	10:	Structural	domains	of	canonical	 ligands.	The	domain	organization	of	Notch	
DSL-family	 ligands	 from	D.melanogaster,	 vertebrates	 and	 C.elegans	as	 indicated.	 The	
extracellular	domains	of	canonical	 ligands	are	characterized	by	the	presence	of	an	N-
terminal	 (NT)	domain	 followed	by	a	Delta/Serrate/LAG-2	 (DSL)	domain	and	multiple	
tandemly	 arranged	 Epidermal	 Growth	 Factor	 (EGF)-like	 repeats.	 The	 DSL	 domain	
together	 with	 the	 flanking	 NT	 domain	 and	 the	 first	 two	 EGF	 repeats	 containing	 the	
Delta	and	OSM-11-like	proteins	(DOS)	motif	are	required	for	canonical	ligands	to	bind	
Notch.	The	NT	domain	of	vertebrate	and	Drosophila	ligands	is	subdivided	into	a	region	
containing	 six	 conserved	 cysteine	 residues,	 N1	 and	 a	 cysteine-	 free	 region,	 N2.	
Serrate/Jagged	ligands	contain	an	additional	cysteine-rich	region	not	present	in	Delta-
like	 ligands.	 The	 intracellular	 domains	 of	 some	 canonical	 ligands	 contain	 a	 carboxy-
terminal	PSD-95/Dlg/ZO-1-ligand	(PDZL)	motif	that	plays	a	role	independent	of	Notch	
signaling.	 C.	 elegans	 DSL	 ligands	 lack	 a	 DOS	 motif.	 Dll3	 is	 the	 most	 structurally	
divergent	 vertebrate	 DSL	 ligand	 and	 lacks	 structural	 features	 required	 by	 other	 DSL	
ligands	to	bind	and	activate	Notch.	Adapted	from	94.	

The	 levels	 of	 expression	 of	 Notch	 receptors	 and	 ligands	 on	 interacting	 cells	 define	

signalling	polarity	 that	 is	highly	 regulated	 temporally	depending	on	 cellular	 context	

and	timing	during	development.	Several	studies	show	that	deregulation	of	either	the	

receptor	 or	 the	 ligand	 is	 associated	 with	 disease	 development.	 In	 humans,	

haploinsufficiency	 in	 Notch1	 is	 implicated	 in	 an	 aortic	 valve	 disease	 98,	 while	

haploinsufficiency	 of	 either	Notch2	or	 Jagged1	 is	 associated	with	Alagille	 syndrome	
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(AGS)	 which	 is	 a	 dominant,	 multisystem	 disorder	 defined	 clinically	 by	 hepatic	 bile	

duct	paucity	and	cholestasis	in	association	with	cardiac,	skeletal,	and	ophthalmologic	

manifestations.	 Ninety	 four	 percent	 of	 patients	 clinically	 diagnosed	 of	 AGS	 have	

mutations	 in	 Jagged1	 ligand	 99.	 In	 addition	 to	 trans	 interaction	 between	Notch	 and	

ligands	 that	 activates	 the	 signalling	mechanism,	 cis	 interaction	 between	 ligand	 and	

receptor	 within	 the	 same	 cell	 also	 occur	 and	 limits	 the	 levels	 of	 activation	 by	

inhibiting	 Notch	 signalling	 through	 the	 process	 defined	 as	 cis-inhibition	 thus	

restricting	 Notch	 activation	 to	 signal-receiving	 cells	 100.	 Therefore	 it	 became	

important	 to	 understand	 the	 mechanism	 of	 cis-inhibition	 and	 the	 factors	 that	

contribute	 to	 the	 regulation	of	cis	 or	 trans	 interaction	between	 ligand	and	 receptor.	

Two	 different	 hypotheses	 have	 been	 proposed	 for	 this	 mechanism,	 Cordle	 et	 al.	

assume	that	interaction	sites	for	both	cis	and	trans	inhibition	overlap	101,	while	other	

define	 specific	 EGF	 repeats	 for	 each	 type	 of	 interaction.	 Though	 cis	 and	 trans-

interaction	binding	sites	with	Notch	might	overlap,	but	only	trans-ligand	interactions	

activate	Notch	and	induce	proteolytic	cleavage	due	to	conformational	changes	of	the	

receptor	 at	 the	 cell	 surface	 102.	 Several	 data	 support	 that	 ligand	 inhibition	 can	 take	

place	as	a	cis-	inhibitory	effect	acting	by	preventing	a	step	before	Notch	ecto-domain	

shedding	and	involves	an	interaction	mediated	by	Notch	EGF	repeats	10-12	97,	101.	

3.2.2.	Non-canonical	ligands	

In	 addition	 to	 DSL	 ligands	 known	 as	 the	 canonical	 ligands	 of	 Notch,	 non-canonical	

ligands	lacking	the	DSL	domain	have	been	identified.	This	category	of	Notch	ligands	is	

divided	 into	 3	 subclasses:	 integral	 membrane-bound,	 GPI-linked	 membrane	 bound	

and	secreted	ligands.	

3.2.2.1.	Membrane-bound	non-canonical	ligands	

The	 first	 non-canonical	 ligand	 identified	 was	 delta	 like	 1	 (DLK1).	 This	 ligand	

represents	similarities	in	structure	with	delta	like	ligands;	DLK1	is	cleaved	by	ADAM	

metalloprotease	 and	 negatively	 regulated	 by	 Notch.	 The	 role	 of	 DLK1	 was	 more	

evident	in	cis-inhibition	of	Notch	signalling,	and	it	was	described	as	an	antagonist	of	

DSL	ligands	for	Notch	binding	and	also	decreases	expression	of	Hes1	103.		
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Delta/Notch	 like	EGF	 related	 receptor	 (DNER)	 is	 another	 integral	membrane	bound	

Notch	ligand	lacking	DSL	domain,	and	similar	to	DLK1	it	contains	EGF	repeats.	DNER	

binds	 the	 Notch	 receptor	 in	 trans,	 and	 activates	 γ-secretase	 and	 Deltex-dependent	

Notch	 signalling	 thus	 promoting	 neuron-glial	 interaction	 and	 leading	 to	

morphological	differentiation	in	the	central	nervous	system	(CNS)	104.	

In	2007	Krictsov	et	al.	identified	a	novel	DSL	ligand	like	protein	called	Jedi	(for	Jagged	

and	 Delta	 protein	 (Jedi)),	 coding	 for	 a	 transmembrane	 protein	 containing	 multiple	

EGF	 repeats,	 and	 expressed	 in	 early	 hematopoietic	 cells.	 They	 demonstrated	 that	

soluble	 form	of	 Jedi	 inhibits	Notch	 signalling,	 in	 a	 similar	manner	 to	 that	 of	 soluble	

Jagged1,	 but	 there	 has	 been	 no	 proof	 that	 demonstrates	 the	 direct	 interaction	

between	Jedi	and	Notch	receptors	105.	

3.2.2.2.	Membrane	–bound	GPI-linked	non-canonical	ligands	
The	 identified	 Glycosylphosphatidilinositol	 linked	 neural	 cell	 recognition	molecules	

are	 the	 F3/contactin1	 and	 NB3/contactin6.	 F3/contactin1	 interacts	 with	 Notch	

receptor	and	induces	its	cleavage	and	nuclear	translocation	promoting	maturation	of	

oligodendrocytes.	 NB3/contactin6	 promotes	 neural	 progenitor	 cell	 differentiation	

into	 oligodendroctes	 by	 activating	 the	 Notch	 signalling	 pathway.	 It	 has	 been	

demonstrated	that	both	GPI-linked	 ligands	promote	Notch/DTX1	signalling	pathway	
106,	107.	

	

3.2.2.3.	Secreted	non-canonical	ligands	
In	Drosophila	melanogaster	 two	secreted	ligands	were	identified:	Scabrous	(Sca)	and	

Wingless	(Wn)	the	fly	ortholog	of	mammalian	Wnt	proteins.	Sca	and	Wn	both	activate	

Notch	 signalling	 by	 trans-binding	 to	 the	 receptor.	 In	C.Elegans	 five	 secreted	 ligands	

lacking	DSL	domain	have	been	identified:	OSM11,	OSM7,	DOS1,	DOS2	and	DOS3.	They	

all	contain	DOS	motif	(Delta	and	OSM-11)	that	is	conserved	across	species	and	found	

in	canonical	Notch	ligands	and	overlapping	the	EGF	motifs.	Interaction	between	Lin12	

and	 OSM11	 was	 detected	 in	 yeast	 two-hybrid	 but	 no	 other	 evidence	 showed	 that	

Notch	directly	 interacts	with	OSM.	On	the	other	hand,	 the	effect	of	OSM11	on	Notch	

signalling	was	demonstrated	in	C.elegans,	during	vulval	development	108.	
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In	 vertebrate	 five	 putative	 secreted	 non-canonical	 ligands	 have	 been	 identified:	

Connective	 Tissue	 Growth	 Factor/cysteine	 rich	 61/Nephroblastoma	 Overexpressed	

Gene	 family	member,	 CCN3/NOV	 109,	 the	microfibril	 associated	 glycoprotein	 family	

(MAGP1	and	MAGP2),	thrombospondin	2	(TSP2),	Y	box	protein	1	(YB1)	and	finally	the	

EGF	like	domain	7	(EGFL7).	These	ligands	interact	with	Notch	receptors,	inducing	the	

activation	of	Notch	signalling	in	different	cellular	contexts.	CCN3,	MAPG1,	MAPG2	and	

TSP2	 enhance	 Notch	 signalling	 induced	 by	 DSL	 ligands	 when	 exposed	 to	 Notch	

receptors	or	co-expressed	 in	the	same	cell	 110-112.	YB1,	a	cold	shock	protein	binds	to	

Notch3,	 activates	 its	 nuclear	 translocation	 followed	 by	 an	 upregulation	 of	 its	 target	

genes	113.	EGFL7	was	found	to	be	expressed	in	neural	stem	cells	(NSCs)	where	it	binds	

to	a	region	in	Notch	involved	in	ligand-mediated	receptor	activation,	thus	acting	as	an	

antagonist	 of	 Notch	 signalling	 and	 regulating	 their	 proliferation	 and	 differentiation	
114.	 It	 has	 been	 also	 demonstrated	 for	 the	 majority	 of	 these	 ligands,	 that	 the	

interaction	 with	 the	 receptor	 activates	 CSL	 dependent	 reporter	 constructs	 in	 a	 γ-

secretase	dependent	manner.	

	

3.3.	Notch	transcriptional	regulation	

3.3.1.	NICD-CSL-MAML	ternary	complex	
Following	Notch	activation	and	cleavages,	NICD	translocates	to	the	nucleus,	where	it	

activates	the	transcription	of	several	target	genes.	NICD	cannot	bind	directly	to	DNA;	

it	 acts	 through	CSL	 transcription	 factor,	 enabling	Notch	 to	 regulate	 gene	expression	

and	transcription.	CSL	is	for	CBF1	(C-promoter	binding	factor1),	RBP-jk/Su(H)/Lag-1	

in	mammals/Drosophila/C.	elegans),	it	is	composed	of	three	domains:	N-terminal	Rel	

homology	 domain	 (NTD),	 a	 central	 beta-trefoil	 domain	 (BTD)	 and	 a	 C-terminal	 Rel	

homology	domain	 (CTD)	 115.	 CSL	protein	binds	 to	 the	DNA	 target	 gene	 regions	 that	

was	 identified	5’-CGTGGGAA-3’	 116.	 In	 the	absence	of	NICD,	RBP-jk	 forms	a	 complex	

with	 co-repressor	 proteins	 such	 as	 SMRT	 (silencing	 mediator	 retinoid	 and	 thyroid	

receptors),	 N-coR	 (nuclear	 co-repressor),	 CBF1-interacting	 co-repressor	 associated	

with	 histone	 deacethylase	 1	 (HDAC1),	 which	 prevents	 chromatin	 transcriptional	

activation.	 SHARP	 (SMRT	and	HDAC	associated	 repressor	protein)	 interacts	directly	

with	RBP-jk	and	with	other	co-repressors	such	as	SMRT/N-coR	via	a	highly	conserved	

sequence	 in	 its	 SPOC-domain	 also	 called	 SHARP	 repression	 domain	 (SHARP-RD)	 at	

the	C-terminus	end	of	the	protein	117.	SHARP	plays	a	central	role	by	interacting	with	



	 	 INTRODUCTION	
	

	 31	

two	 different	 co-repressing	 complexes.	 It	 recruits	 CtIP/CtBP	 (C-terminal	 binding	

protein/C-terminal	interacting	protein)	or	ETO	in	addition	to	other	co-repressors	and	

histone	modifying	enzymes	(HDAC)	117,	118	(figure	11).	 It	was	also	demonstrated	that	

SHARP	 recruits	 HDAC/SMART/SKIP	 containing	 complex	 119.	 SKIP	 (Ski-interacting	

protein)	 that	 was	 originally	 identified	 in	 a	 yeast	 two	 hybrid	 screen	 and	 CIR	 (CBF1	

interacting	 co-repressor)	 are	 both	 direct	 RBP-j	 binding	 proteins,	 they	 bridge	

interactions	between	the	transcription	factor	and	other	co-repressors.	Some	data	also	

demonstrated	 their	 role	 in	 mediating	 the	 interaction	 between	 Notch	 and	 CBF1	

suggesting	 that	 they	 might	 also	 play	 a	 role	 as	 co-ativators	 120,	 121.	 When	 Notch	 is	

activated,	NICD	recruits	co-activators,	displacing	co-repressors	and	forming	a	ternary	

protein	complex	SBF-NICD-MAM	bound	to	DNA	promoter	region	122,	where	the	BTD	

domain	of	CSL	interacts	with	the	RAM	domain	of	NICD	but	only	weakly	with	the	ANK	

domain	via	its	CTD	123,	and	MAM	interacts	directly	with	NICD	via	the	ANKyrin	repeats	

and	also	with	other	co-activators,	like	CBP/p300	(histone	acetyltranferase)	through	a	

transactivation	 domain	 TAD1	 in	 the	 C-term	 of	 Mastermind.	 P/CAF	 and	 GCN5,	 are	

conserved	histone	acetyltransferases,	that	were	described	for	their	role	in	the	RBP-jk-

mediated	 transactivation	 by	 NICD,	 interact	 through	 their	 N-terminal	 regions	 with	

activated	Notch	124.	Other	factors	are	recruited	by	this	ternary	complex	such	as	SKIP	

which	 is	 thought	 to	 displace	 co-repressors,	 and	 recruits	 kinases	 that	 specifically	

phosphorylate	 NICD	 in	 order	 to	 be	 later	 targeted	 by	 FBXW7	 for	 subsequent	

proteosomal	degradation121.		

	



	 	 INTRODUCTION	
	

	

	
Figure	 11:	 Activation	 and	 repression	 complexes	 regulation	 transcription	 of	 Notch	
target	genes.	In	the	absence	of	activated	Notch	signalling,	the	DNA-binding	protein	RBP-
J	 recruits	 co-repressor	 complexes	 to	 represses	 transcription	 of	 Notch	 target	 genes	
(upper	 panel).	 Activation	 of	 Notch	 target	 genes:	 upon	 Notch	 ligand	 binding	 and	
cleavage,	 activated	 NICD	 interacts	 with	 RBP-J	 and	 recruits	 a	 co-activator	 complex	
composed	 of	 Mastermind	 (MAML-1)	 and	 other	 chromatin	 modifying	 transcription	
factors	 resulting	 in	 the	 transcriptional	activation	of	Notch	 target	genes	 (lower	panel)	
reviewed	in	125.	

Crystallization	of	 the	NICD-CSL-MAML1	ternary	complex	bound	to	DNA	has	enabled	

the	characterization	of	this	complex	and	its	structure.	Structures	were	determined	for	

for	 C.	 elegans	 and	 human	 orthologous	 proteins.	 In	 general,	 theses	 complexes	 show	

high	 similarity	 among	 species,	 which	 highlights	 the	 function	 and	 fold	 conservation	

throughout	evolution.	CSL	bridges	the	interaction	between	NICD,	MAML	and	the	DNA.	

The	structures	show	that	Mastermind	adopts	a	strikingly	bent	helical	conformation;	

with	 its	N-terminal	helical	 region	 forming	a	 tripartite	complex	with	ankyrin	repeats	

3–7	of	NICD	and	the	CTD	of	CSL,	while	 the	C-terminal	helix	of	Mastermind	 interacts	

with	 the	 NTD	 of	 CSL.	 With	 the	 exception	 of	 the	 first	 ankyrin	 repeat	 becoming	
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structurally	 ordered	 in	 the	 ternary	 complex,	 the	 overall	 structure	 of	 NICD	 ANK	 is	

unchanged	upon	complex	formation.	 In	the	CSL–NICD–Mastermind	ternary	complex,	

the	interactions	of	CSL	with	DNA	and	the	overall	conformation	of	DNA	are	maintained	

in	both	ternary	complexes	compared	to	the	 isolated	structure	of	CSL	bound	to	DNA,	

suggesting	that,	in	general,	DNA	binding	is	not	affected	by	ternary	complex	formation	
126, 127 (figure	12).	

	
Figure	 12:	 The	 CSL–NICD–Mastermind	 ternary	 complex	 bound	 to	 DNA.	 (a)	 Ribbon	
diagram	of	the	ternary	complex	bound	to	DNA	for	worm	components	(PDB	code	2FO1).	
CSL	 domains:	 NTD,	 BTD	 and	 CTD	 are	 colored	 cyan,	 green	 and	 orange,	 respectively.	
Notch	 ANK	 and	 RAM	 are	 colored	 blue	 and	 red,	 respectively.	 Mastermind	 (MM)	 is	
colored	 yellow.	 Approximately	 1808	 views	 are	 shown.	 (b)	 Ribbon	 diagram	 of	 CSL–
NICD–Mastermind	 ternary	 complex	 structure	 bound	 to	DNA	 for	 the	 human	 proteins	
(PDB	code	2F8X).	Domain	coloring	and	views	are	similar	to	(a).	Extracted	from	126. 

	

Crystallization	have	revealed	some	of	 the	molecular	details	of	 this	 trimeric	complex,	

but	 the	 molecular	 events	 leading	 to	 the	 assembly	 of	 this	 transcriptional	 activation	

complex	 requires	 further	 investigations.	 Data	 from	 different	 studies	 showed	 that	

NICD	multimerization	 is	 an	 initial	 step	 in	 the	 complex	 assembly.	 Subsequently,	 the	

NICD	multimer	 forms	 a	 complex	with	 Skip,	 thus	 providing	 a	 docking	 site	 to	 recruit	
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Maml1	 and	 forming	 a	 preactivation	 complex.	 The	 interaction	 between	 the	

preactivation	complex	and	CSL	results	in	the	loading	of	NICD	and	Maml1	onto	CSL	to	

form	 the	 transcriptional	 activation	 complex	 on	 DNA.	 This	 observation	 does	 not	

exclude	 that	 Notch	 is	 also	 present	 as	 a	 monomer	 in	 the	 activation	 complex	 as	

described	 previously.	 In	 fact	 data	 suggest	 that	Maml1	 either	 facilitates	 or	 stabilizes	

the	 interaction	 between	 NICD	 and	 CSL,	 and	 the	 combination	 of	 these	 interactions	

helps	converting	NICD	multimers	to	monomers	 in	 the	presence	of	Maml1	128	(figure	

13).	 An	 important	 study	 carried	 out	 by	 Nam	 et.al	 have	 described	 a	 cooperative	

assembly	of	higher-order	Notch	complexes	implicated	in	the	activation	of	some	Notch	

target	genes	such	as	HES1	that	contains	in	its	promoter	region	dual	“sequence-paired”	

binding	sites	called	SPSs.	SPS	consists	of	two	CSL-binding	sites	oriented	head	to	head	

and	 typically	 separated	 by	 16	 or	 17	 nucleotides.	 	 They	 have	 demonstrated	 that	

assembled	Notch	transcriptional	activating	complexes	dimerize	on	SPSs,	and	that	this	

dimerization	 requires	 both	 CSL	 and	 MAML.	 It	 is	 depends	 on	 ANK-ANK	 interaction	

occurring	 through	 conserved	 residues	 of	 this	 domain	 and	 proper	 spacing	 and	

orientation	of	CSL-binding	sites	129.	

	
Figure	13:	Model	of	assembly	of	Notch	activation	complex.	Monomers	associate	to	form	
multimers,	 SKIP	binds	 to	NICD	dimer,	 and	next	MAML1	 is	 recruited	 to	 the	NICD-Skip	
complex	 forming	the	preactivation	complex.	The	 intermediate	complex	 interacts	with	
Co-repressors	(CoR)	leading	to	the	recruitment	of	NICD	monomer	and	MAML	into	CSL-
DNA,	 generating	 therefore	 the	 Notch	 activation	 complex	 and	 releasing	 the	 unbound	
NICD	monomer	along	with	Skip	and	corepressors	128.	
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3.3.2.	NOTCH1	target	genes	

3.3.2.1.	HES	and	HERP	genes	
Notch	 regulates	 the	 transcription	 of	 several	 target	 genes,	 activation	 of	Notch	 at	 the	

surface	 followed	 by	 the	 formation	 of	 the	 NICD-RBPj-k	 complex	 leads	 to	 an	

upregulation	 of	 the	 expression	 of	 primary	 target	 genes.	 The	 most	 known	 are	 the	

HES/E(spl)	 (for	 Enhancer	 of	 split	 in	 Drosophila).	 Several	 studies	 have	 provided	

evidence	 showing	 that	 these	 genes	 are	 direct	Notch	 targets,	 including	promoters	 of	

Hes1,	Hes5	and	Hes7	as	well	as	Hey1,	Hey2	and	HeyL	(subfamily	of	Hes,	related	with	

YRPW	 motif).	 Hes	 and	 Hey	 proteins	 are	 helix-loop-helix	 transcription	 factors	 that	

function	as	 transcriptional	repressors	 130.	Other	effectors	of	 the	Notch	signalling	are	

bHLH	 family	 that	 has	 been	 isolated	 and	 named	 as	

Hey/Hesr/HRT/CHF/gridlock/HERP	 (hereafter	HERP	or	HES	 related	proteins).	This	

family	also	 functions	as	 transcriptional	repressors,	but	employs	different	repression	

mechanisms	 than	 HES	 131.	 bHLH	 family	 are	 classified	 into	 several	 groups.	 Class	 A	

proteins	that	are	transcriptional	activators	such	as	MyoD	and	Mash1,	class	B	proteins	

are	 leucin	zipper	proteins	such	as	Myc	and	Max.	Class	C	proteins	are	transcriptional	

repressors	HES	and	HERP	proteins.	HES	proteins	are	characterized	by	the	presence	of	

a	 conserved	proline	residue	at	a	 specific	 site	 in	 their	basic	domain,	as	 for	 the	HERP	

family	has	a	conserved	glycine	at	the	corresponding	position.	All	HES	family	members	

share	a	WRPW	motif	 in	 the	C-terminus	whereas	HERP	family	has	YRPW	motif.	Both	

HES	 and	 HERP	 families	 contain	 bHLH	 domain,	 and	 another	 domain,	 termed	 the	

Orange	 (or	 helix3-	 helix4)	 in	 the	 corresponding	 regions	 carboxy-terminus	 to	 bHLH	

region.	Although	both	families	have	closely-related	motifs	and	domains,	they	seem	to	

employ	 different	 mechanisms	 for	 transcriptional	 repression.	 Three	 different	

mechanisms	of	repression	were	described	for	HES	proteins;	(1)	an	active	repression	

where	HES	homodimer	binds	DNA	and	interacts	with	proteins	repressors	(Groucho	in	

Drosophila	 TLE	 ortholog	 in	 mammals)	 then	 recruits	 histone	 deacethylase	 proteins	

that	 can	 alter	 chromatin	 structure	 and	 repress	 gene	 transcription.	 (2)	 Passive	

repression	 where	 HES	 protein	 can	 form	 heterodimer	 with	 other	 HES	 activating	

proteins	 (such	as	MyoD)	disrupting	 the	 formation	of	 functional	heterodimers.	 (3)	A	

mechanism	mediated	by	the	orange	domain/helix3-helix4	that	recruits	co-repressors	

or	stabilizes	the	WRPW-mediated	repression	132.	HERP	proteins	associate	with	N-CoR,	

they	 can	 recruit	 other	 repressor	 complexes	 such	 as	 Sin3/HDAC.	 In	 addition	passive	
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repression	mechanism	have	also	been	suggested	for	the	HERP	family	133.		

Regulation	 of	 HERP	 and	 HES	 by	 Notch	 signalling	 is	 essential	 for	 different	

developmental	 processes	 including	 angiogenesis,	 somitogenesis	 myogenesis	 and	

gliogenesis	134.		

3.3.2.2.	Other	Notch	target	genes	

Members	of	the	bHLH	family	were	identified	as	primary	targets	of	Notch,	but	this	fact	

does	 not	 exclude	 that	 Notch	 targets	 a	 large	 number	 of	 effectors	 as	 it	 has	 been	

demonstrated	 by	 several	 studies.	 Notch1	 exerts	 its	 multiple	 effects	 by	 specifically	

regulating	 the	 expression	 of	 genes	 depending	 on	 cellular	 context.	 As	 an	 example,	

genome-wide	transcriptome	analyses	of	Notch1-induced	genes	 in	murine	ESC	under	

different	 cell	 extrinsic	 cues	 and	 in	mesodermal	 cells	 revealed	 that	 Notch	 signalling	

regulates	 the	expression	of	numerous	genes	playing	key	roles	 in	cell	differentiation,	

cell	 cycle	 control	 and	 apoptosis.	 Meier-Stiegen	 et.al	 identified	 specific	 Notch	 target	

genes	 using	 genome	wide	 gene	 expression	 arrays,	with	 465	 transcripts	 that	 can	 be	

differentially	 expressed	 due	 to	Notch1	 induction	 in	 different	 conditions.	 They	were	

able	to	validate	transcription	factor	Sox9,	Pax6,	Runx1,	Myf5	and	Id	proteins	as	direct	

Notch1	 targets	 that	 are	 critically	 involved	 in	 lineage	 decisions	 in	 the	 absence	 of	

protein	synthesis	135.	

	Notch	promotes	proliferation	via	 regulating	 the	 transcription	of	Cyclin-D	and	CDK5	

and	 can	 directly	 control	 apoptosis	 effector	 genes	 such	 as	 bcl2.	 It	 was	 also	

demonstrated	 that	 Notch	 regulates	 the	 expression	 of	 Deltex,	 a	 ubiquitin	 ligase	 that	

regulates	 Notch1	 trafficking	 and	 TCR	 in	 T	 cells	 136.	 NRARP	 (for	 Notch-regulating	

ANKyrin	 repeats	protein)	 a	negative	 regulator	of	Notch	 is	 also	one	of	Notch	 targets	

regulated	 through	 DLL4/Notch	 signalling.	 NRARP	 is	 implicated	 in	 the	 cross	 talk	

between	 Notch	 and	 Wnt	 signalling	 in	 endothelial	 cells	 to	 control	 stability	 of	 new	

vessel	connections	in	mouse	and	zebrafish	137.	

Notch	also	regulates	its	own	expression;	it	can	directly	bind	autoregulatory	CSL	sites	

in	Notch	locus	increasing	its	own	expression	138.	

ChIP	on	chip	analysis	combined	with	gene	profiling	data,	enabled	the	identification	of	

NOTCH1	direct	target	genes	regulating	cell	growth	genes	and	T	cell	transformation.	In	



	 	 INTRODUCTION	
	

	 37	

this	study	c-MYC	was	identified	as	a	direct	target	gene	regulated	by	NOTCH1,	and	this	

interaction	is	part	of	a	feed-forward-loop	transcriptional	regulatory	motif	implicated	

in	 the	 leukemic	 cell	 growth	 where	 some	 of	 c-MYC	 and	 NOTCH1-regulated	 genes	

overlap	56,	76.		

Now	 it	 became	 evident	 that	 Notch	 directly	 regulates	 expression	 of	 genes	 encoding	

proteins	that	implement	variable	cellular	functions	depending	on	cellular	context.	 In	

fact	as	previously	described,	systematic	studies	of	Notch	targets	have	revealed	several	

regulatory	motifs	controlled	by	notch	and	linked	to	other	signalling	pathways.		

	

3.4.	Post-translational	modifications	in	Notch	signalling	
	

Notch	signalling	is	highly	dependent	of	the	ligand-receptor	interaction	related	to	the	

expression	of	these	two	components	at	the	cell	surface.		Both	ligand	and	receptor	are	

subject	to	post-translational	modifications	such	as	glycosylation	and	ubiquitination.	

	

3.4.1.	Glycosylation	
Notch	 receptors	 and	 ligands	 both	 undergo	 glycosylation,	 their	 correspondent	

extracellular	domains	are	modified	by	a	variety	of	glycans	that	can	regulate	aspects	of	

Notch	signalling	and	activation.	Several	mutations	reported	in	enzymes	that	regulate	

the	 glycosylation	 mechanisms	 are	 associated	 with	 Notch	 signalling	 disruption	 and	

deregulation.	

After	 being	 translated	 in	 the	 Golgi,	 Notch	 protein	 is	 fucosylated	 by	 a	 GDP	 fucose	

protein	 O-fucosyltransferase	 (Ofut-1	 in	 Drosophila	 and	 Pofut1	 in	mammals)	 within	

EGF	repeats	of	the	ECD	to	a	serine	or	threonine	residue,	facilitating	the	proper	folding	

of	 the	protein	 in	 the	endoplasmic	 reticulum	 (ER).	 Subsequent	 to	 the	O-fucosylation,	

the	EGF	O-linked	 fucose	chain	 is	elongated	by	the	glycosyltransferase,	Fringe,	which	

attaches	 N-acetylglucosamine	 (GlcNAc)	 in	 a	 β1,3	 linkage	 139.	 Fringe	 is	 a	

glycosyltransferase	 which	 transfers	 N-acetylglucosamine	 (GlcNAc)	 to	 fucose	 on	 the	

EGF	repeats	of	Notch,	it	was	first	discovered	in	Drosophila	140,	where	it	can	modulate	

dorsal-ventral	cell	interactions	in	the	developing	wing	by	modulating	the	response	of	

Notch	 to	 its	 ligands	 and	 later	 on	mammalian	 homologues	 were	 identified:	 Lunatic,	

Manic	an	Radical	Fringe141.	Mammalian	Fringe	might	have	different	catalytic	activities,	
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it	 has	 been	 shown	 in	 different	 animal	 models	 (mice,	 zebrafish…)	 that	 they	 are	

differentially	expressed	according	to	cellular	context	141,	142.	Modifications	induced	by	

Fringe	 contribute	 to	 the	 receptor-ligand	 binding	 interaction	 143,	 it	 has	 also	 been	

demonstrated	that	reduced	levels	of	O-linked	fucose	decrease	Notch	activation,	which	

highlights	their	role	in	modulating	Notch	activation.	On	the	other	hand	some	studies	

showed	 that	 a	 normal	 Notch	 activation	 is	 also	 possible	 in	 the	 absence	 of	 Fringe	

proteins,	supporting	the	hypothesis	that	fucosylation	and	glycosylation	are	important	

in	modulating	the	signal	strength	but	not	obligatory	in	the	notch	pathway	activation.	

Transfer	 of	 fucose	 residues	 to	 the	 extracellular	 domain	 of	 Notch	 is	 catalyzed	 by	O-

fucosyltransferase	encoded	by	Ofut1	gene	 in	Drosophila	and	 the	Pofut1	homologous	

gene	 in	mammals.	 This	 enzyme	 transfers	 fucose	 to	 serine	 or	 threonine	 amino	 acid	

residues	 in	 the	 EGF	 repeats	 144.	O-fucosyltransferase	 and	 Fringe	 also	modify	 Notch	

ligands,	Delta	and	Serrate	in	Drosophila	and	mammals	145.		

In	 addition	 to	 O-fucose	 glycans,	 O-glucose	 glycans	 were	 also	 discovered.	 O-glucose	

glycans	are	catalyzed	by	O-glucosyltransferases,	this	enzyme	in	encoded	by	rumi	gene	
146,	 and	 elongation	 of	O-glucose	 residues	 is	 possible	 by	 addition	 of	 xylose	 residues	

through	the	function	specific	xylostransferases,	for	example	both	Notch1	and	Notch2	

are	 extended	 by	 the	 addition	 of	 one	 or	 two	 xylose	 residues.	 In	 fact	 it	 has	 been	

demonstrated	 that	 Rumi	 is	 required	 for	 both	 Drosophila	 and	 mammalian	 Notch	

signaling	at	a	step	downstream	of	ligand	binding	142.	

Another	 modification	 that	 has	 been	 identified	 is	 the	 presence	 of	 O-GLcNAc	 in	 the	

intracellular	domain	of	Notch,	and	surprisingly	for	the	first	time	as	a	modification	in	

the	 extracellular	 of	 Notch	 receptors	 147.	 These	modifications	 by	 glycosylation	 occur	

during	transit	through	the	endoplasmic	reticulum	(ER)	and	Golgi	apparatus	where	the	

glycosylation	 machinery	 adds	 glycans	 progressively	 by	 the	 corresponding	

glycosyltransferases.	
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Table	2:	Mammalian	glycosyltransferases	that	preferentially	modify	EGF	repeats.	
Extracted	from	Hideyuki	et	al.	148.	

Gene	
Acceptor	
substrate	 Donor	substrate	

Subcellular	
localization	 Effect	on	Notch	

POFUT1/Ofut1	 EGF	 GDP-Fuc	 ER	 Essential	
Lunatic	fringe	 Fuc-EGF	 UDP-GlcNAc	 Golgi	 Notch	activation	
Manic	fringe	 Fuc-EGF	 UDP-GlcNAc	 Golgi	 Notch	activation	
Radical	fringe	 Fuc-EGF	 UDP-GlcNAc	 Golgi	 Notch	activation	

POGLUT1/Rumi	 EGF	
UDP-Glc	UDP-
Xyla	 ER	 Essential	

GXYLT1	 Glc-EGF	 UDP-Xyl	 Unknown	 Inhibitory	
GXYLT2	 Glc-EGF	 UDP-Xyl	 Unknown	 Inhibitory	
XXYLT1	 Xyl-Glc-EGF	 UDP-Xyl	 ER	 Inhibitory	
EOGT1	 EGF	 UDP-GlcNAc	 ER	 ?	
	

Defects	in	Notch-related	glycosylation	caused	by	mutations	found	in	the	enzymes	that	

regulate	 this	 mechanism,	 have	 been	 associated	 to	 human	 diseases	 and	 cancer.	

Mutations	 in	 POFUT1	 cause	 Dowling-Degos	 disease	 (DDD),	 an	 autosomal-dominant	

genodermatosis	characterized	by	reticular	pigmented	anomaly.	In	fact	loss	of	function	

of	pofut1	influences	the	process	of	melanin	synthesis,	and	knock	down	of	Pofut1	was	

shown	 to	 downregulate	 the	 expression	 of	 NOTCH1,	 NOTCH2	 and	 HES1	 in	 HaCat	

human	keratinocyte	cells	149.		

In	 prostate	 cancer,	 elevated	 Notch	 ligand	 and	 receptor	 expression	 have	 been	

associated	 to	 an	 aggressive	 form	of	 this	 tumor,	 and	 a	 recent	 study	 have	 reported	 a	

critical	 role	 for	 Lunatic	 Fringe	 (lfng).	 Lfng	 may	 function	 as	 a	 tumor	 suppressor	

through	modulation	of	Notch	signalling	150.	Lfng	deficiency	was	also	reported	in	basal-

like	 breast	 cancer,	 promoting	 an	 accumulation	 of	 Notch	 intracellular	 domain	

fragments,	with	an	increased	expression	of	proliferation-associated	Notch	targets	151.		

Overexpression	of	some	glycosyltransferases	was	found	in	different	types	of	cancers.	

POFUT1	 is	upregulated	 is	brain	 tumor	 152	and	colorectal	 cancer	 153	and	POGLUT1	 is	

overexpressed	 in	T	 cell	 acute	 lymphoblastic	 leukemia	 154.	The	effect	 of	 changes	 and	

deregulation	of	glycosylation	on	Notch	signalling	and	function	has	became	more	clear	

and	 evident	 but	 the	 mechanisms	 by	 which	 these	 mutations	 affect	 their	 substrate	

remain	unclear.	
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3.4.2.	Phosphorylation	

Notch1	 contains	 multiple	 conserved	 cyclin-dependent	 kinase	 phosphorylation	 sites	

within	 the	 TAD	 and	 PEST	 domains.	 Serine	 residues	within	 either	 the	 TAD	 or	 PEST	

domains	 phosphorylated	 by	 CDK8,	 point	 mutations	 within	 these	 motifs	 prevent	

hyperphosphorylation	 by	 the	 CDK8	 and	 lead	 to	 NICD	 stabilization	 in	 vivo.	 CDK8	

complex	 associates	 with	 MAM	 through	 its	 catalytic	 domain,	 leading	 also	 to	 the	

phosphorylation	 of	 P300,	 thus	 suggesting	 that	 this	 regulation	 occurs	 when	 NICD	

activation	transcriptional	complex	is	bound	to	DNA	and	more	specifically	to	the	HES1	

promoter	155.	CDK3	and	CDK19	kinases	also	phosphorylate	NICD	within	the	consensus	

motif	 known	 as	 the	 Cdc4	 phosphodegron,	 which	 is	 shared	 by	 most	 substrates	 of	

FBXW7	 ubiquitin	 ligase	 156.	 NOTCH1	 stability	 is	 also	 regulated	 by	 GSK3β,	 the	

serine/threonine	 kinase,	 that	 phosphorylates	 the	 intracellular	 NICD	within	 its	 TAD	

domain	157,	158.	ILK,	an	integrin-linked	kinase	phosphorylates	mouse	Notch1	leading	to	

down-regulation	of	NICD	protein	stability	159.	Phosphorylation	can	also	occur	in	other	

domains.	AkT1	can	inhibit	Notch1	transcriptional	regulation	through	promoting	NICD	

hyper-phosphorylation	 (ankyrin	 domain)	 and	 disrupting	 its	 translocation	 160.The	

Casein	Kinase	 2	 (CK2),	 a	 ubiquitous	 kinase,	 can	 target	NICD	 for	 phosphorylation	 at	

serine	 residue	 (ser	1901)	within	 its	 ankyrin	domain.	Phosphorylation	of	 this	 amino	

acid	motif	generates	a	second	phosphorylation	at	threonine	in	position	1898	resulting	

in	a	decreased	binding	of	 the	Notch-Mastermind-CSL	complex	 to	DNA	and	therefore	

lower	transcriptional	activity	161.		

Different	 studies	 show	 that	 NICD	 phosphorylation	 modification	 is	 critical	 for	

enzymatic	 activation	 (such	 as	 ubiquitination),	 complex	 formation,	 degradation	 and	

subcellular	 localization	 162.	 Therefore	 proving	 that	 this	 phosphorylation	 is	 essential	

for	 the	 regulation	 of	NICD	 transcriptional	 activity,	which	 requires	 precise	 and	 tight	

regulation	of	this	mechanism.	
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3.4.3.	Ubiquitination	

3.4.3.1.	Ubiquitination	mechanism	
Ubiquitination	 is	 a	 post-translational	 modification	 essential	 for	 proteasomal	

degradation,	 which	 is	 the	 main	 degradation	 path	 in	 eukaryotes.	 Ubiquitination	

controls	several	cellular	processes	via	degradation.	Ubiquitination	is	carried	out	by	a	

three-step	process	that	starts	by	an	activation	step,	followed	by	conjugation	and	ends	

by	 the	 ligation	 step.	 Ubiquitin	 is	 a	 small	 protein	 consisting	 of	 only	 76	 amino	 acid	

polypeptide	of	8,5	Kda,	it	is	highly	conserved	from	yeast	to	human.	This	modification	

was	 initially	 linked	 to	 protein	 half-life	 since	 ubiquitinated	 proteins	 undergo	

proteosomal	ATP-dependent	degradation.	Ubiquitin	is	added	from	its	C-terminus	to	a	

lysine	residue	of	a	substrate,	due	to	the	contribution	of	a	set	of	three	enzymes;	an	E1	

ubiquitin	activating	enzyme	that	binds	the	ubiquitin	via	a	thioesther	bond	in	an	ATP-

dependent	manner,	than	carries	the	ubiquitin	to	an	E3	ubiquitin-conjugating	enzyme.	

The	final	step	is	performed	by	the	E3	ubiquitin	ligase	that	binds	both	the	charged	E2	

enzyme	and	the	substrate	 facilitating	their	binding	to	the	ubiquitin	(figure	14).	Only	

two	E1	enzymes	are	found	in	humans,	and	37	E2	enzymes	while	a	wide	range	of	E3	

enzymes	 were	 identified	 accounting	 for	 more	 than	 600	 encoded	 by	 the	 human	

genome.	 Ubiquitination	 is	 a	 reversible	 process	 therefore	 deubiquitinases	were	 also	

identified	with	a	number	of	≈85	enzymes	in	humans	163.	

Different	 forms	 of	 ubiquitination	were	 described,	 according	 to	 the	 number	 and	 the	

type	of	ubiquitin	display	on	amino	acids	within	the	substrate.	Monoubiquitination	is	

adding	one	ubiquitin	to	a	substrate,	while	multi-monoubiquitination	is	the	addition	of	

several	ubiquitin	moieties	each	on	a	single	lysine	residue	of	the	targeted	protein.	An	

important	characteristic	of	ubiquitin	is	that	it	contains	seven	lysine	residues	that	are	

also	 subjected	 for	 subsequent	 ubiquitination,	 serving	 as	 substrates	 for	

polyubiquitination.	 Several	 studies	 were	 conducted	 on	 ubiquitin	 structure	 and	

complexity,	 more	 specifically	 on	 the	 role	 of	 lysine	 residues	 in	 determining	 the	

specificity	 towards	 substrate	 recognition	 and	 protein	 processing.	 Ubiquitination	

through	lys48	is	essential	for	polyubiquitination	targeted	by	proteosomal	degradation	

(lys63	can	also	act	as	a	proteasomal	signal),	while	monoubiquitination	through	lys6	is	

involved	 in	 DNA	 repair.	 Lysosomal	 degradation	 and	 protein	 recycling	 also	 require	
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ubiquitination	and	more	precisely	multi-monoubiquitination	through	lys29,	allowing	

endosomal	sorting	of	targeted	proteins	through	ESCRT	machinery	(endosomal	sorting	

complex	 required	 for	 transport).	 Interestingly,	 proteins	 involved	 in	 these	 processes	

employ	 highly	 specific	 ubiquitin-binding	 domains,	 which	 recognize	 specific	 Lysine	

residues	and	ubiquitin	chain	types	specifically	regulating	different	aspects	of	cellular	

biology	164.	

	

	
Figure	 14:	 Ubiquitination	 mechanism.	 The	 ubiquitination	 cascade	 begins	 with	 ATP-
dependent	 charging	 of	 the	 E1	 enzyme	 and	 results	 in	 formation	 of	 a	 thioester	 bond	
between	 the	 ubiquitin	 C	 terminus	 and	 the	 E1	 active	 site	 cysteine.	 Ubiquitin	 is	
transferred	 to	 the	 E2	 active	 site	 cysteine	 in	 a	 transthioesterification	 reaction.	 An	 E3	
ligase	 catalyzes	 transfer	 of	 the	 ubiquitin	 from	 the	 active	 site	 cysteine	 of	 the	 E2	 to	 a	
primary	amine	on	a	lysine	side	chain	or	protein	N	terminus.	There	are	three	classes	of	
E3	 ligases:	RING	E3s,	which	bind	 to	both	E2~Ub	 thioester	 and	 substrate	 and	 catalyze	
attack	of	the	substrate	lysine	on	the	thioester,	and	HECT	and	RBR	E3s,	which	both	have	
active	 site	 cysteines	 and	 catalyze	 substrate	 ubiquitination	 in	 a	 two-step	 reaction	
involving	 formation	of	a	 thioester	with	 the	HECT	or	RBR	E3	 followed	by	attack	of	 the	
substrate	 lysine	 or	 N	 terminus	 on	 the	 E3~Ub	 thioester	 to	 form	 an	 isopeptide	 (or	
peptide)	 linkage	 between	 the	 ubiquitin	 C	 terminus	 and	 lysine	 (or	 the	 protein	 N	
terminus).	Adapted	from	165.	
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3.4.3.2.	Ubiquitination	in	the	Notch	signalling	pathway		
Ubiquitination	of	Notch	and	its	 ligands	plays	an	important	role	 in	modulating	 ligand	

endocytosis,	 their	 level	 of	 expression	 at	 the	 cell	 surface	 and	 in	 regulating	 Notch	

stability	and	degradation.		

Multiple	lysine	residues	serve	as	potential	ubiquitination	sites	in	DSL	domain	of	Notch	

ligands,	and	they	are	targeted	by	E3	ubiquitin	ligases	Minbomb	(Mb)	and	Neuralized	

(Neur)	 in	 both	 human	 and	 Drosophila.	 Ubiquitination	 is	 important	 for	 generating	

active	 ligand	 via	 endocytosis	 where	 several	 mechanisms	 have	 been	 described.	 The	

ubiquitinited	 ligand	 can	 be	 internalized	 by	 endocytosis	 in	 sorting	 or	 recycling	

endosomes	to	be	later	expressed	at	cell	surface	as	active	ligands.	Ubiquitination	may	

also	occur	after	ligand	binding	to	Notch,	leading	to	endocytosis	of	both	the	ligand	and	

Notch	 extracellular	 domain	 in	 a	 Clathrin-coated	 endocytic	 structure	 166.	 The	 pulling	

force	 resulting	 from	 this	 mechanism	 helps	 exposing	 the	 S2	 site	 to	metalloprotease	

complex,	and	subsequent	cleavage	releases	NICD	in	the	cell	85.	

Ubiquitination	 of	 the	 receptor	 occurs	 in	 two	 different	 contexts;	 the	 first	 is	 during	

receptor	endocytosis	and	the	second	in	Notch	proteosomal	degradation.		

Unliganded	 Notch	 receptor	 in	 endocytosed	 into	 rab5	 and	 endocytic	 syntaxin	

avalanche	 containing	 compartiments,	 where	 Notch	 is	 either	 recycled	 back	 to	 cell	

surface	or	directed	for	lysosomal	degradation.	In	early	endosomes,	full	length	Notch	is	

targeted	by	the	RING	finger	E3	ubiquitin	 ligases:	Deltex	(Dx)	and	Nedd4	and/or	Cbl.	

Ubiquitinated	 Notch	 is	 sorted	 into	 multivascular	 bodies	 or	 lysosomes	 by	 ESCRT	

components	 (Endosomal	 Sorting	 Complex	 Required	 for	 Transport)	 for	 subsequent	

degradation.	Throughout	 this	phase,	 an	activation	of	Notch	 can	occur	 in	endosomes	

where	V-ATpase	are	thought	to	play	a	role	in	endosomal	acidification	required	for	γ-

secretase	 dependent	 cleavage	 166.	 Another	 E3	 ubiquitin	 ligase	 target	 Notch,	 it	 is	

FBXW7	 (WD40-repeat	 containing	 F-Box	 protein	 component	 of	 an	 Skp1/Cul1/F-box	

protein-	 Rbx1-type	 ubiquitin	 ligase)	 promoting	 its	 proteosomal	 degradation	 (figure	

15).	While	previously	reported	E3	ligase	Dx	and	Nedd4	target	NECD,	FBXW7	targets	

NICD.	 	 It	 has	been	also	demonstrated	 that	 Itch,	 another	E3	 ligase	 that	ubiquitinates	

NICD,	negatively	regulates	Notch	mediated	signalling	167.	
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Figure	 15:	 Ubiquitination	 of	 Notch	 receptor	 and	 ligands	 at	 different	 stages	 of	 Notch	
signalling.	 Prior	 to	 Notch	 engagement,	 ligand	 ubiquitination	 by	Mib	 and	 endocytosis	
allows	ligand	to	enter	the	recycling	endosomes	(RE)	where	it	is	processed	into	an	active	
ligand.	 Alternatively	 ligand	 binding	 to	 Notch	 may	 induce	 ligand	 ubiquitination	 for	
recruitment	 of	 epsin	 to	 orchestrate	 the	 formation	 of	 a	 clathrin-coated	 endocytic	
structure	specialized	in	force	generation	to	pull	the	non-covalent	heterodimeric	Notch	
apart.	 Notch	 activation	 and	 signalling	 at	 the	 cell	 surface	 is	 terminated	 by	
phosphorylation	 of	 the	 PEST	 domain	 and	 in	 the	 NICD	 followed	 by	 ubiquitination	 by	
FBXW7	 and	 proteasomal	 degradation.	 The	 non-activated	 Notch	 receptor	 is	
constitutively	internalized	and	then	ubiquitinated	by	Itch	the	E3	ubiquitin	ligase	to	be	
addressed	to	lysosomal	degradation.	Adapted	from	168.	

	
3.4.3.2.1.	Ubiquitination	and	NICD	stability	
	
Ubiquitination	of	Notch	was	first	identified	as	a	process	regulating	Notch	stability,	and	

levels	of	expression	of	the	intracellular	Notch	by	leading	to	proteasomal	degradation.	

The	PEST	domain	present	 in	 the	C-terminus	 of	 the	 intracellular	 domain	 of	Notch	 is	

essential	 for	 stability	 of	 the	 protein.	 This	 domain	 is	 subject	 to	 ubiquitination	 by	 E3	

ubiquitin	 ligase	 FBXW7	 in	mammals	 169,	170,	 SEL-10	 in	C.elegans	 and	 Archipelago	 in	

Drosophila.	 The	 CyclinC/CDK8	 complex	 is	 recruited	 by	 MAML	 and	 phosphorylates	

Notch1	 in	 the	TAD	and	PEST	domains.	The	C-terminal	domain	of	 the	NICD	contains	
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multiple	 conserved	 cyclin-dependent	 kinase	 phosphorylation	 sites	 that	 can	 be	

phosphorylated	 by	 CycC:CDK8	 in	 vitro.	 A	 study	 showed	 that	 mutation	 of	 Serine	

residues	 within	 either	 the	 TAD	 or	 PEST	 domains	 of	 the	 NICD	 can	 stabilize	 the	

protein155.	Nuclear	Notch	can	also	be	phosphorylated	by	GSK3β.	It	was	demonstrated	

that	 Notch2	 interacts	 with	 GSK3β	 in	 vitro	 and	 in	 vivo,	 and	 phosphorylates	 specific	

threonine	 and	 serine	 residues	 in	 the	 serine	 threonine	 rich	 region	 located	 in	 the	 C-

terminal	of	the	ankyrin	repeats,	and	regulates	negatively	NICD	transcriptional	activity.	

Though	phosphorylated	forms	of	Notch	interact	with	FBXW7	for	degradation,	GSK3β	

mediated	 phosphorylation	 seems	 to	 regulate	 Notch	 by	 a	 different	 mechanism	 and	

does	not	 lead	to	 its	subsequent	degradation	157.	GSK3β	is	also	able	to	phosphorylate	

Notch1	 and	 enhances	 NICD1	 stability	 158,	 and	 could	 also	 up-regulate	 NICD	

transcriptional	activity	by	enhancing	 its	nuclear	 localization	171.	When	FBXW7	binds	

the	phosphorylated	residues	 in	the	PEST	domain	of	Notch,	NICD	is	degraded	via	the	

proteasome.	

3.4.3.2.2.	Ubiquitination	of	Notch	at	the	cell	surface	

At	the	cell	surface	Notch	is	activated	by	ligands	and	the	receptor	will	undergo	a	series	

of	proteolytic	cleavages.	Notch	quantity	is	highly	regulated	at	the	cell	surface;	it	has	a	

limited	half-life	and	is	constantly	internalized,	recycled	or	degraded	via	the	lysosome.	

Notch	receptor	and	its	ligand	can	also	be	internalized	into	endocytic	vesicles.	It	can	be	

cleaved	by	γ-secretase	 in	the	cytoplasm	releasing	NICD	to	the	nucleus.	But	normally	

after	 internalization,	 Notch	 is	 recycled	 back	 to	 the	 membrane	 or	 degraded.	

Ubiquitination	plays	an	 important	role	 in	 the	regulation	of	Notch	at	 the	cell	 surface.	

Non-activated	Notch	receptor	is	constitutively	internalized;	Itch/AIP4	the	mammalian	

E3	 ubiquitin	 ligase	 targets	 Notch	 for	 ubiquitination	 and	 promotes	 its	 lysosomal	

degradation	172.	In	Drosophila	Su(dx)	performs	the	same	function	as	mammalian	Itch	

and	 regulates	 endosomal	 sorting	 of	 Notch	 173.	 Itch	 seems	 to	 bind	 Notch	 indirectly	

through	 interacting	with	other	protein	 factors	such	as	Numb	that	 interacts	with	 the	

cytosolic	HECT	domain	containing	of	this	E3	ligase	and	acts	cooperatively	with	Itch	to	

promote	ubiquitination	of	membrane-tethered	Notch1	174.	The	RING	finger	containing	

E3	ligase	c-Cbl	also	regulates	the	ubiquitination	of	membrane-bound	Notch1	and	has	

been	reported	to	result	in	lysosomal	degradation	of	Notch1 175. 
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Another	 E3	 ubiquitin	 ligase	 in	 the	 Notch	 signalling	 is	 Deltex,	 which	 interacts	 with	

different	 factors	 to	 promote	 Notch	 degradation	 such	 Itch	 described	 previously	 and	

with	 deubiquitinases	 DUB	 for	 Notch	 activation.	 The	 deubiquitinating	 enzyme	 eIF3f	

interacts	 with	 deltex,	 before	 Notch	 enters	 the	 nucleus	 in	 order	 to	 perform	 its	

transcriptional	functions.	It	is	more	likely	that	eIF3f	interacts	with	monoubiquitinated	

NotchΔE	 in	 the	 endocytic	 pathway	 thus	 serving	 as	 a	 scaffolding	 protein	 enabling	

Notch	trafficking	and	modifications,	and	eventually	Notch	signalling 176 (figure	16). 

	

Figure	16:	Structure	of	E3	ubiquitin	ligase	for	Notch	receptor	(a)	or	DSL	ligands	(b).	
HECT:	homologous	to	E6-AP	Carboxy	Terminus;	RING:	Really	Interesting	New	Gene;	
NHR:	Neuralized	Homology	Repeat;	Mib:	Mindbobo;	Herc2:	HECT	domain	and	RCC1	
domain	protein	2.	Adapted	from	177.	

 

3.4.3.2.3.	Ligand	ubiquitination	
Ubiquitination	 process	 is	 not	 exclusive	 for	 Notch	 receptors,	 it	 also	 controls	 the	

regulation	of	expression	of	the	ligands	as	well.	

Two	 distinct	 RING-containing	 E3	 ligases,	 Neuralized	 (Neur)	 and	Mind	 bomb	 (Mib),	

interact	 with	 DSL	 ligands,	 promoting	 their	 ubiquitination	 and	 enhance	 their	
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endocytosis.	 Ubiquitination	 of	 ligands	 is	 required	 for	 transendocytosis	 and	 ligand	

recycling	at	the	cell	surface;	two	phenomena	necessary	for	Notch	activation	through	

its	ligands.	

	

Transendocytosis	and	ligand	recycling	

Upon	 receptor-ligand	 interaction,	 a	 proteolytic	 cleavage	 is	 produced	 and	 Notch	 is	

released	 in	 the	 cytoplasm	of	 the	 signal-receiving	 cell,	while	 the	 ligand	expressed	on	

the	 surface	 of	 the	 signal-sending	 cell	 is	 internalized.	 In	 fact,	 in	 the	 absence	 of	

endocytocis,	 DSL	 ligands	 accumulate	 at	 the	 cell	 surface,	 unable	 to	 activate	 Notch.	

Moreover	 mechanical	 forces	 generated	 during	 DSL	 ligand	 endocytosis	 function	 to	

physically	 dissociate	 Notch,	 and	 that	 dissociation	 is	 a	 necessary	 step	 in	 Notch	

activation166.	In	some	of	the	endocytic	events,	monoubiquitinated	DSL	ligands	require	

the	presence	of	Epsin	a	conserved	clathrin-interacting	endocytic	adaptor.	Epsin	binds	

phosphatidylinositol	4,5-biphosphate	 (PIP2),	 inserts	 into	 the	plasma	membrane	and	

induces	 membrane	 curvature.	 Then	 the	 epsin	 C-terminus	 recruits	 clathrin	 directly	

and	 also	 AP-2	 and/or	 Eps15	 to	 eventually	 promote	 clathrin-dependent	 ligand	

endocytosis	178,	179.	One	of	the	hypotheses	proposed	for	DSL	ligand	in	the	regulation	of	

Notch	 signalling	 is	 that	 internalization	 of	 the	 ligand	 and	 their	 entry	 into	 coated	

vesicles	 in	 the	 signal-sending	 cell	 is	 an	 essential	 process	 leading	 to	 shedding	 of	 the	

extracellular	 Notch,	 thus	 enabling	 its	 cleavage	 and	 release	 in	 the	 cell	 180.	 Another	

hypothesis	 focuses	more	on	events	 that	 take	place	after	 the	 ligands	are	 internalized	

where	several	enzymatic	processes	occur	in	order	to	recycle	active	ligands	to	the	cell	

surface	181.	 

In	the	absence	of	Notch,	DSL	 ligands	undergo	endocytosis,	 it	was	demonstrated	that	

delta	 ligand	 was	 concentrated	 in	 recycling	 endosomes	 during	 specific	 steps	 of	 cell	

determination	 in	 Drosophila	 182.	 Rab5	 and	 Rab11	 colocalize	 with	 internalized	 DSL	

ligands.	Rab	GTPases	are	associated	with	distinct	cellular	compartments	and	function	

as	 specific	 regulators	of	 intracellular	 transport,	 in	 the	endocytic	pathway.	Moreover	

loss	of	Rab11	induce	deregulation	of	and	loss	of	DSL	ligand	activity	182.	

Recycling	 of	 the	 ligands	 before	 they	 interact	 with	 Notch	 is	 an	 important	 step	 for	

proper	signalling.	After	their	endocytosis,	ligands	such	as	Dll1	and	Dll4	undergo	mono	

or	multi-ubiquitination.	 It	was	demonstrated	 for	Dll1	 that	ubiquitination	 is	essential	
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for	Dll1	 recycling	 and	 that	 recycling	 is	 required	 to	 acquire	 affinity	 for	 the	 receptor.	

Dll1	 mutant	 (Dll1K17R)	 is	 endocytosed	 but	 is	 unable	 to	 signal,	 this	 observation	 is	

explained	 by	 the	 lack	 or	 absence	 of	 ubiquitination	 of	 this	 mutant.	 However	 the	

chimeric	 ligand	 Dll1–3,	 although	 not	 ubiquitinated,	 was	 able	 to	 recycle	 to	 the	 cell	

surface,	indicating	that	an	unknown	signal	present	in	the	intracellular	domain	of	Dll3	

can	avoid	the	necessity	for	ubiquitination.	On	the	other	hand,	this	molecule	is	unable	

to	 signal.	 These	 data	 prove	 that	 ubiquitination	process	 is	 indeed	necessary	 for	Dll1	

recycling	and	Notch	activation	183.	

Notch1	 signalling	 and	 activation	 by	 the	 Dll4	 ligand	 is	 crucial	 in	 intrathymic	 T	 cell	

development.	Dll4	function	depends	on	a	combination	of	several	factors	that	involve	

interaction	 with	 the	 ubiquitin	 ligase	 Mib1	 for	 ubiquitination,	 internalization	 and	

recycling	 back	 to	 the	 cell	 surface	 for	 effective	 Notch	 signalling	 and	 therefore	

supporting	 T	 cell	 development	 and	 inhibiting	 B	 cell	 development.	 In	 contrast	 with	

Dll1,	Dll4	are	excluded	from	lipid	rafts	in	order	to	be	recycled	184.	Though	they	might	

differ	 in	 their	 specific	 localization	 or	 the	 factors	 contributing	 to	 their	 subsequent	

recycling	and	maturation,	all	data	point	at	the	necessity	of	ubiquitination	during	this	

process.		

Ubiquitination	events	occur	at	different	levels	of	Notch	signalling.	Recent	studies	have	

identified	 several	 new	 regulators	 in	 the	 ubiquitination	 and	 deubiquitination	

mechanisms,	 raging	 from	 degradation	 to	 regulation	 of	 membrane	 trafficking	 and	

affecting	the	developmental	control	of	the	signalling	activities	of	both	Notch	receptors	

and	their	ligands.	

3.4.3.2.4.	E3	ubiquitin	ligases	
	In	this	part,	we	will	discuss	more	in	detail	E3	ubiquitin	ligases	and	more	specifically	

FBXW7	 protein.	 As	 previously	mentioned,	 E3	 ligases	 carry	 out	 the	 final	 step	 in	 the	

ubiquitination	cascade,	catalyzing	transfer	of	ubiquitin	from	an	E2	enzyme	to	form	a	

covalent	bond	with	a	substrate	 lysine.	Three	distinct	classes	of	E3	 ligases	have	been	

identified	 the	 family	 of	 RING	 finger	 E3s,	 homolog	 to	 the	 E6AP	 carboxy	 terminus	

(HECT)	domain	 family	and	 the	Ring-between-Ring	 (RBR)	 family.	The	great	diversity	

found	 among	 these	 ligases	 is	 due	 to	 their	 specificity	 toward	 their	 targets,	 therefore	
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each	 class	 is	 also	 characterized	by	 their	 conserved	domains	 and	 the	mechanisms	of	

ubiquitin	transfer	from	E2	enzymes	to	the	substrate	185.	

Ring	 E3	 enzymes	 catalyze	 ubiquitin	 transfer	 process,	 the	 E2	 binding	 domain	 of	 the	

Ring	 domain	 binds	 the	 E2	 enzyme	 through	 its	 N-terminus,	 and	 it	 also	 contains	

additional	 domains	 required	 for	 substrate	 recognition	 and	 its	 subsequent	

ubiquitination.	 Ring	 E3s	 can	 act	 as	 monomers,	 dimers	 or	 even	 multisubunit	

complexes.	 An	 interesting	 superfamily	 of	 the	 Ring	 E3	 ligases,	 that	 function	 as	

complexes	are	the	Cullin	Ring	ligases	superfamily,	consisting	of	multi-subunit	proteins	

containing	 the	 cullin	protein,	 a	Ring-box	protein,	 and	an	F-Box	protein	essential	 for	

binding	 the	 substrate.	 The	 RING	 E3	 act	 as	 scaffold	 that	 brings	 E2	 and	 substrate	

together,	 on	 the	 other	 hand	 it	 was	 suggested	 that	 RING	 finger	 domains	 can	 also	

allosterically	 modify	 and	 activate	 E2	 enzymes	 186.	 HECT	 E3	 ligases	 catalyze	 the	

transfer	reaction	 in	a	 two-step	process	of	what	 is	called	a	direct	ubiquitination.	The	

first	step	is	the	transfer	of	the	ubiquitin	from	the	E2	conjugating	enzyme	to	the	HECT-

domain	E3	 ligase,	and	next	 this	ubiquitin	residue	 is	 transferred	from	the	cysteine	 in	

the	E2	active	site	to	the	lysine	residue	of	the	substrate	187.	The	HECT	domain	consists	

of	 two	 lobes;	 one	 in	 the	 N-terminal	 lobe	 interacting	 with	 the	 E2	 enzyme	 and	 the	

second	 C-terminal	 lobe	 that	 contains	 the	 cysteine	 residue	 that	 forms	 a	 catalytic	

intermediate	with	 the	ubiquitin	moiety.	During	ubiquitin	 transfer	 the	HECT	domain	

undergoes	 conformational	 changes	 due	 to	 the	 flexible	 region	 separating	 the	 lobes,	

thus	allowing	the	ubiquitin	transfer	from	the	E2	enzyme	to	the	substrate	188.	The	RBR	

(Ring-between-Ring)-domain	E3	ligases	contain	two	Ring	domains	(Ring1	and	Ring2)	

separated	by	a	conserved	domain	called	the	IBR	domain	(InBetween	Ring),	they	also	

share	 features	 with	 HECT	 domain	 ubiquitination	 mechanism	 directly	 catalyzing	

ubiquitin	 transfer	 an	 intrinsic	 cysteine	 present	 in	 the	 Ring	 2	 domain,	 while	 Ring1	

domain	 helps	 recruiting	 thioester-bound	 E2	 enzymes.	 This	 class	 of	 E3	 ligases	 is	

characterized	by	having	an	auto-inhibition	mechanism	that	modulates	ubiquitination	

activity,	and	by	combining	aspects	of	both	Ring	and	HECT	E3	ligases	function	189.	The	

resemblance	with	HECT	relies	in	the	mechanism,	by	which	Ring1	domain	binds	to	E2-

ubiquitin	via	a	cysteinyl-thiol	within	the	same	E3	protein.		
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3.4.3.2.5.	F	box	proteins	
The	SCF	(SKP1-CUL1-FBP)	family	belongs	to	the	Cullin	dependent	ligases	(CDL)	family	

that	 has	 been	well	 characterized.	 In	 this	 complex,	 SKP1	 (S-phase-kinase	 associated	

protein	1)	interacts	with	the	Cul1	proteins	functioning	as	a	scaffold	protein	that	sorts	

the	 proteins	 destined	 for	 degradation.	 Cul1	 is	 also	 bond	 to	 the	 RING-finger	 protein	

(Rbx1),	and	to	the	ubiquitin	conjugating	enzyme	(UBC)	and	to	one	of	the	FBPs.	FBPs	

confer	 to	 the	 targeted	 substrates.	 Originally	 Skip1	was	 found	 to	 be	 essential	 to	 for	

interaction	with	 several	 proteins	 such	 as	Cdc4	 and	 cyclin	 F	 via	 their	 40	 amino	 acid	

domain	 that	 was	 later	 found	 to	 be	 a	 conserved	 domain	 characterizing	 the	 F-box	

proteins	190.		

Mammalian	 F-box	 proteins	 are	 classified	 into	 three	 groups	 according	 to	 their	

substrate-binding	domain.	We	recognize	the	FBW	(F-box	and	WD40	repeats),	the	FBL	

(F-box	and	Leucine-rich	repeat)	and	the	FBX	that	do	not	have	either	a	WD	domain	or	a	

Leucine	 rich	 repeat.	 FBX	 class	 rather	 contains	 protein-protein	 interaction	 domains	

such	as	zinc-finger,	proline	–rich	domain…	FBPs	recognition	of	 their	substrate	often	

requires	 specific	 post-translational	 modifications	 such	 as	 phosphorylation,	

glycosylation,	methylation,	acetylation	and	so	on.	In	2004	Cardozo	et	al.	reviewed	the	

SCF	 ubiquitin	 ligases,	 the	 mechanism	 of	 this	 protein	 complex	 was	 described	 and	

compared	 to	 the	 mechanism	 known	 for	 typical	 enzymes.	 Therefore	 in	 the	 SCF	

complex,	the	ubiquitin	is	transferred	instead	of	what	is	usually	a	small	chemical	group	

for	other	protein	 enzymes.	The	 activated	E2	 conjugating	 enzyme	 can	be	 considered	

like	the	key	catalytic	residue	of	the	enzyme,	whereas	the	entire	FBP	plays	the	role	of	

the	substrate	binding	domain	in	the	enzymatic	complex	191.	

As	 previously	 mentioned,	 the	 F-box	 proteins	 class	 consists	 of	 a	 wide	 variety	 of	

proteins,	 due	 to	 their	 role	 as	 the	 substrate-recognizing	 subunits	 of	 the	 SCF	 E3	

complex.		In	the	human	genome,	the	F-box	proteins	account	for	≈70	proteins,	the	most	

well	known	among	them	are	FBXW7,	Skp2	and	β-TrCP.		

A	 single	 F-box	 protein	 can	 target	 several	 proteins,	 for	 example	NOTCH1,	 cMYC	 and	

cJUN	 are	 targeted	 by	 FBXW7	 for	 ubiquitination	 and	 subsequent	 proteasomal	

degradation,	on	the	other	hand	a	protein	can	be	a	target	of	different	F-box	proteins,	

for	instance	CyclinE	can	be	recognized	by	FBXW7	and	Skp2	192.	
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3.4.3.2.6.	FBXW7	E3	ubiquitin	ligase	
FBXW7	is	 the	substrate	recognition	unit	of	 the	conserved	SCF	E3	ubiquitin	 ligase	as	

previously	described.	FBXW7	gene	was	originally	found	in	yeast,	it	is	called	Cdc4,	its	

role	was	described	in	the	control	of	the	cell–cycle-regulated	disposal	of	Sic1	protein;	

an	 inhibitor	 the	 cyclin-dependent	 kinase	 (CDK).	 Cdc4	 binds	 specifically	 to	

phosphorylated	residues	of	their	substrates,	also	known	as	phospho-degrons.	FBXW7	

is	 the	human	Cdc4	orthologue,	 it	was	also	demonstrated	 that	 in	human,	 it	 catalyzes	

the	phosphorylation-dependent	ubiquitination	of	cyclin	E	193.	In	addition,	the	fly	Cdc4	

orthologue	AGO	also	regulates	cyclin	E	in	Drosophila	melanogaster	194.		

In	 the	 human	 genome,	 FBWX7	 gene	 encodes	 for	 three	 protein	 isoforms:	 FBW7α,	

FBXW7β	and	FBXW7γ,	 that	are	produced	by	alternative	splicing	and	that	 localize	 to	

the	nucleoplasm,	cytoplasm,	and	nucleolus,	respectively.	Several	studies	have	focused	

on	 defining	 exon-specific	 localization	 characteristics,	 and	 they	 demonstrated	 that	

FBXW7	 proteins	 comprise	 a	 common	 region	 containing	 three	 basic	 domains	 (BDs).		

FBXW7α	 and	 FBXW7β	 both	 contain	 in	 their	 common	 region,	 localized	 at	 the	 N-

terminus	 of	 the	 protein,	 a	 nuclear	 localization	 signal	 (NLS).	 FBXW7α	 contains	 a	

second	NLS,	 and	 it	was	 revealed	 that	 both	 NLSs	 are	 required	 for	 its	 nucleoplasmic	

localization.	 Whereas	 FBXW7β	 contains	 a	 putative	 hydrophobic	 transmembrane	

domain,	within	 its	exon-specific	 region	 in	 the	N-terminus,	 that	was	associated	 to	 its	

cytoplasmic	 localization	195.	The	α	 isoform	of	FBXW7	constitutes	 the	most	abundant	

and	 major	 isoform	 of	 cellular	 FBXW7,	 and	 data	 also	 suggest	 that	 FBXW7α	 is	

responsible	 for	 cMYC	 and	 Cyclin	 E	 degradation	whereas	Notch	 is	 targeted	 by	 the	 β	

isoform	196.	

	

3.4.3.2.7.	FBXW7	substrates	
FBXW7	 has	 pivotal	 roles	 in	 cell	 division,	 growth,	 and	 differentiation	 by	 targeting	

several	 proteins.	 Approximately	 20	 substrates	 are	 known	 to	 be	 targets	 of	 FBXW7;	

amongst	 them	 the	most	 studied	 are	 the	 oncoproteins	 c-Myc,	 Notch1,	 Notch4,	 c-Jun,	

and	cyclin	E	that	are	targeted	by	FBXW7	for	degradation.	FBXW7	binds	substrates	at	

specific	conserved	phosphorylated	motifs,	known	as	the	Cdc4	phosphodegrons	(CPD).	

It	 has	 also	 been	 demonstrated	 that	 FBXW7	 acts	 as	 a	 dimer,	 and	 that	 dimerization	
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enables	binding	modes	in	order	to	establish	specificity	toward	its	substrate	197.	Data	

also	 suggest	 that	 dimerization	 regulates	 FBXW7	 stability	 and	 autoubiquitylation,	 in	

fact	 FBXW7	 is	 also	 subject	 to	 post-translational	 modifications,	 including	

phosphorylation	 at	 Ser205	 and	 subsequent	 isomerization	 by	 Pin1	 leading	 to	

autocatalytic	 ubiquitination	 of	 FBXW7	 198.	 Though	 FBXW7	 turnover	 is	 largely	

mediated	 by	 phosphorylation	 through	 autocatalytic	 ubiquitination,	 it	 is	 also	

controlled	by	deubiquitinases	such	as	Usp28.	Usp28	deubiquitinase	forms	a	complex	

with	FBXW7	and	antagonizes	 substrate	ubiquitination	 such	as	C-Myc,	 and	C-Jun	 199.	

Usp28	 antagonizes	 both	 substrate	 targeting	 and	 autocatalytic	 ubiquitination	 by	

FBXW7,	and	this	model	for	dual	regulation	of	FBXW7	was	found	to	be	a	tissue	specific	

mechanism	200.	

The	 question	 whether	 FBXW7	 isoforms	 recognize	 specifically	 their	 substrates	

remains	unclear.	Most	studies	used	overexpression	approaches	in	order	to	clarify	this	

issue,	 but	 only	 few	 isoform-specific	 functions	 have	 been	 described.	 It	 has	 been	

demonstrated	 that	 FBXW7γ	 regulates	 of	 c-Myc	 nucleolar	 regulation,	while	 FBXW7α	

recruits	Pin1	leading	to	its	isomerization	thus	promoting	cyclin	E	degradation.	Using	a	

gene-targeting	approach	and	specific	isoform	knock	out	in	cell	 lines,	 it	has	also	been	

shown	FBXW7α	isoform	is	largely	responsible	for	Cyclin	E	degradation,	but	targeting	

Cyclin	E	can	also	be	carried	out	by	FBXW7γ	and	FBXW7β	in	other	cellular	contexts	201.	

A	 recent	 study	 revealed	 that	 isoform-specific	 FBXW7	 ubiquitination	 mediates	

differential	 regulation	 of	 PGC-1α;	 a	member	 of	 the	 PPARγ	 (Perixosome	 proliferator	

activated	receptor	gamma)	coactivators-1	family,	that	functions	as	transcriptional	co-

regulator.	 They	 observed	 that	 while	 FBXW7β	 promotes	 PGC-1α	 ubiquitination	 and	

proteasomal	degradation,	FBXW7α	stabilizes	PGC-1α	202.	Despite	data	showing	that	in	

different	cellular	contexts,	FBXW7s	can	somehow	target	their	substrate	in	an	isoform-

specific	 manner,	 the	 evidence	 remains	 controversial	 and	 requires	 further	

investigation,	 in	 order	 to	 better	 understand	 the	 mechanisms	 involved	 in	 substrate	

recognition	and	specificity	for	different	FBXW7	isoforms.	

C-MYC,	a	target	of	FBXW7,	functions	as	transcription	factor	regulating	transcription	of	

several	 target	 genes,	 it	 has	 an	 important	 role	 in	 cell	 cycle	 progression,	 cellular	

transformation	 and	 apoptosis.	 Deregulation	 of	MYC	 expression	 and	 gene	mutations	

have	been	associated	to	several	types	of	cancer	such	as	hematopoietic	tumors.	C-MYC	
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protein’s	 abundance	 are	 regulated	 by	 levels	 of	 degradation	 of	 the	 protein,	 and	

phosphorylation	 of	 c-Myc	 on	 threonine-58	by	GSK3	 regulates	 its	 binding	 to	 FBXW7	

(like	 Cyclin	 E	 phosphorylation	 at	 T380),	 as	 well	 as	 FBXW7-mediated	 c-MYC	

degradation	and	ubiquitination	203,	204.	

Another	 target	 is	C-jun,	 a	 transcription	 factor	and	an	oncoprotein,	 implicated	 in	 the	

regulation	 of	many	 cellular	 processes	 such	 as	 proliferation,	 transformation	 and	 cell	

death.	It	is	a	component	of	the	activator	protein-1	(AP1)	transcription	factor	complex.	

Deregulation	of	C-jun	has	been	reported	in	many	types	of	cancer.	It	is	known	to	be	a	

highly	unstable	oncoprotein	that	needs	to	be	tightly	regulated	on	both	transcriptional	

and	post-translational	levels.	C-jun	can	be	stabilized	once	it	 is	phosphorylated	at	the	

N-terminus	 by	 C-jun	 N-terminal	 kinases	 (JNKs)	 or	 other	 protein	 kinases.	 This	

phosphorylation	 decreases	 C-jun	 ubiquitination	 and	 degradation205.	 C-jun	

ubiquitination	 is	 carried	 out	 by	 FBXW7	 in	 a	 GSK3	 phosphorylation-dependent	

manner.	Phosphorylation	of	amino	acid	residues	at	positions	239	and	243	is	required	

for	FBXW7	recognition206.	Ubiquitin	dependent	degradation	can	also	be	promoted	by	

CSK-dependent	phosphorylation	(CSK	a	protein	tyrosine	kinase)	207.	C-jun	can	also	be	

recognized	 by	 other	 ubiquitin	 ligases	 such	 as	 Itch	 and	 COP1,	 in	 a	 phosphorylation-

independent	manner,	inducing	its	ubiquitination	and	degradation	208.	

CyclinE	 is	 also	among	 the	FBXW7	 targets.	CyclinE	binds	CDK2	 the	 cyclin-dependent	

kinase	 subunit	 that	 is	 implicated	 in	 the	 regulation	 of	 cell	 cycle	 processes	 and	 cell	

division.	The	role	of	CyclinE	is	not	limited	to	CDK2	activation;	it	is	also	implicated	in	

CDK2-independent	regulation.	In	a	CDK2	dependent	context,	degradation	of	Cyclin	E	

is	mediated	by	the	SCF	FBXW7complex	that	recognize	phosphorylated	degrons	upon	

the	substrate.	Cyclin	E	contains	two	CDPs:	a	C-terminal	degron	at	threonine	380	and	

an	N-terminal	 degron	 at	 threonine	 62.	 These	 residues	 are	 phosphorylated	 by	GSK3	

and	CDK2	leading	to	subsequent	binding	and	ubiquitination	by	FBXW7	209.		

	

3.4.3.2.8.	FBXW7	a	tumor	suppressor	protein	
FBXW7	 is	 considered	 as	 a	 tumor	 suppressor	 protein	 due	 to	 the	 fact	 that	 it	 targets	

several	 oncoproteins,	 therefore	 regulates	 their	 levels	 of	 expression	 and	 stability	 via	

ubiquitination	and	subsequent	degradation.	Many	studies	have	reported	mutations	in	

FBXW7	 in	 different	 types	 of	 cancer.	 The	 majority	 of	 these	 mutations	 are	 point	
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mutations	 resulting	 in	 amino-acid	 substitutions	 within	 the	 WD40	 repeats	 and	

consequent	disruption	of	substrate	binding.	Nonsense	mutations	were	also	identified	

resulting	 in	 the	production	of	 truncated	 forms	of	FBXW7.	These	mutations	 lead	to	a	

deregulation	 or	 loss	 of	 function	 of	 FBXW7	 promoting	 an	 accumulation	 of	 FBXW7	

substrates210.		

FBXW7	is	required	for	normal	stem	cells	maintenance,	for	hematopoietic,	neural	and	

intestinal	stem	cells	(HSCs,	NSCs	and	ISCs),	and	for	the	proper	regulation	of	cell	cycle	

progression	and	balance	between	differentiation	and	self-renewal.	Absence	of	FBXW7	

in	HSCs	leads	to	an	accumulation	of	cMYC	inducing	the	re-entry	of	HSCs	in	the	cycle.	In	

a	 P53-downregulated	 context,	 this	 accumulation	 leads	 to	 the	 development	 of	 T-cell	

malignancies.	On	the	other	hand,	NSCs	deficient	for	FBXW7	accumulate	Notch1,	c-JUN	

but	not	cMYC	and	represent	higher	proliferation	rate	than	normal	HSCs	in	addition	to	

morphological	 abnormality	 in	 the	 brain	 211	(figure	 17).	 FBXW7	 deregulation	 is	 also	

implicated	 in	 promoting	 proliferation	 and	maintenance	 of	 cancer	 stem	 cells	 (CSCs)	

also	known	as	cancer	initiating	cells	(CICs).	CICs	are	characterized	by	their	ability	to	

self-renew	 and	 proliferate	 and	 their	 ability	 to	 initiate	 cancer	 as	 indicated	 by	 their	

name.	After	cancer	therapies,	CICs	may	be	latent	but	can	reemerge	at	interruption	of	

treatment	 gaining	 also	 resistance	 to	 therapy	 212.	 FBXW7	 plays	 a	 pivotal	 role	 in	

maintenance	 of	 quiescence	 in	 leukemia-initiating	 cells	 (LICs)	 of	 chronic	 myeloid	

leukemia.	 It	 has	 been	 demonstrated	 that	 FBXW7	 ablation	 in	 LICs	 results	 in	

deregulated	activation	of	c-Myc	and	impaired	maintenance	of	quiescence	followed	by	

p53-dependent	apoptosis.	LICs	were	found	to	be	more	sensitive	to	FBXW7	deficiency	

than	are	HSCs,	suggesting	their	potential	role	as	therapeutic	targets	213,	214.	

An	extensive	genetic	analysis	of	FBXW7	was	carried	out	in	primary	human	tumors	of	

diverse	 tissue	origin	 in	order	 to	determine	FBXW7’s	 role	 as	 a	 tumor	 suppressor.	 In	

this	study	they	generated	data	from	534	primary	tumor	specimens	tested	in	addition	

to	data	previously	reported	on	FBXW7	(total	of	1554	specimens)	and	they	found	that	

FBXW7	 is	 mutated	 in	 a	 variety	 of	 human	 tumor	 types	 with	 an	 overall	 mutation	

frequency	of	 6%.	The	highest	 frequencies	 of	mutations	were	observed	 in	 tumors	of	

the	bile	duct	(cholangio-	carcinomas,	35%),	blood	(T-cell	acute	lymphocytic	leukemia,	

31%),	 colon	 (9%),	 endometrium	 (9%),	 and	 stomach	 (6%).	 Furthermore,	 they	 show	

that	 expression	of	 an	FBXW7	mutant	 corresponding	 to	one	of	 the	major	mutational	

hotspots	 in	primary	 tumors	 interferes	with	wild-type	FBXW7	 function,	 suggesting	a	
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potential	dominant	negative	mechanism	of	FBXW7	inactivation	215.  

	

	
Figure	17:	FBXW7	is	required	for	maintenance	of	normal	stem	cells.	Fbxw7	ablation	in	
HSCs	results	in	the	accumulation	of	c-Myc	and	consequent	re-entry	of	the	cells	into	the	
cell	cycle.	The	cycling	HSCs	are	then	subject	to	apoptosis	as	a	result	of	p53	activation,	
leading	to	the	development	of	pancytopenia.	In	the	absence	of	p53	induction,	the	
Fbxw7-deficient	HSCs	eventually	give	rise	to	leukemia.	On	the	other	hand,	loss	of	
Fbxw7	in	NSCs	results	in	Notch	accumulation,	with	the	consequent	imbalance	between	
self-renewal	and	differentiation	in	these	cells,	leading	to	aberrant	brain	development.	
Reviewed	in	Takeishi	et	al.	211.	

	

Inactivating	 FBXW7	 mutations	 were	 identified	 in	 a	 large	 fraction	 of	 human	 T-ALL	

lines	 and	primary	 leukemias.	 FBXW7	mutation	were	 identified	 in	40%	of	human	T-

ALL	cell	line	and	16%	of	primary	leukemias	where	FBXW7	ability	to	interact	with	its	

targets	 (NOTCH1,	 cMYC	 and	 cyclin	 E)	 was	 abolished.	 The	 majority	 of	 the	 FBXW7	

mutations	were	present	during	relapse,	and	 they	were	associated	with	NOTCH1	HD	

mutations.	 Interestingly,	most	 of	 the	T-ALL	 lines	 harboring	 FBXW7	mutations	were	

resistant	to	γ-secretase	inhibitor	treatment	and	this	resistance	appeared	to	be	related	

to	the	stabilization	of	the	c-Myc	protein	216.		

	Hotspot	 mutation	 sites	 were	 identified	 and	 associated	 to	 cancer	 phenotypes.	 The	

catalogue	 of	 somatic	 mutations	 in	 cancer	 database	 (COSMIC)	 have	 reported	 496	

mutation	 in	 FBXW7,	 where	 half	 of	 these	 mutations	 were	 identified	 as	 missense	
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mutations	 affecting	 residues	 in	 the	 β-propellor	 structure	within	 the	WD40	 repeats,	

thus	 altering	 substrate	 binding	 to	 the	 E3	 ligase.	 These	 changes	 affected	 more	

specifically	 arginine	 residues	 465,	 479	 and	 505	 with	 a	 majority	 being	 monoallelic	

mutations.	 In	 a	 recent	 study,	 they	 demonstrated	 that	 an	 FBXW7	 propellor	 tip	

mutation	at	the	arginine	residue	482	which	is	a	site	homologous	the	479	amino	acid	

residue,	directly	promotes	intestinal	tumorigenesis	in	mouse	models	217.	

Epigenetic	 inactivation	 of	 FBXW7	 through	 promoter	 hypermethylation	 is	 an	

important	factor	that	can	occur	during	tumorigenesis.	Significantly,	 in	breast	cancer,	

methylation	 of	 FBXW7/hCDC4-β	 is	 related	 to	 favorable	 prognosis	 despite	 its	

association	with	 poorly	 differentiated	 tumors,	 and	 CpG-methylation	 correlates	with	

loss	 of	 FBXW7/hCDC4-β	 expression	 in	 tumor	 cell	 lines218.	 In	 another	 context,	 P53-

dependent	 loss	of	FBXW7	was	 linked	 to	genetic	 instability	 in	 cancer	mouse	models,	

through	 a	 mechanism	 that	 might	 involve	 the	 activation	 of	 AURORA	 kinase,	 an	

identified	substrate	of	FBXW7	ligase	219.	

A	 large	 number	 of	 studies	 have	 focused	 on	 the	 role	 of	 FBXW7	 in	 cancer	 and	 how	

regulation	of	ubiquitination	and	 its	 function	can	be	crucial	 in	promoting	cancer	and	

tumorigenesis.	 Data	 provide	 evidence	 on	 FBXW7	 as	 a	 critical	 tumor	 suppressor	

mutated	 and	 inactivated	 in	 melanoma,	 leukemia,	 colon	 cancer,	 breast	 cancer	 and	

other	types	of	tumors,	resulting	in	sustained	activation	and	upregulation	of	its	known	

substrates	that	are	also	implicated	and	linked	to	several	signalling	pathways	such	as	

the	 Notch	 pathway,	 mTOR	 pathway…These	 findings	 render	 FBXW7	 targeting	 in	

cancer	 a	 promising	 therapeutic	 strategy	 that	 can	 be	 largely	 investigated	 in	 these	

contexts.	

	 	

3.4.3.2.9.	NOTCH1	FBXW7-dependent	degradation	
	The	 link	 between	 NOTCH1	 protein	 stability	 and	 FBXW7	 is	 established	 and	 well	

characterized.	 It	 became	 clear	 that	 FBXW7	 regulates	 NICD	 degradation	 through	

proteosomal	degradation	170.	It	was	demonstrated	that	Fbxw7-mediated	degradation	

is	 primarily	 responsible	 for	 the	 regulation	 of	 Notch	 stability	 during	 neural	

development	 220.	 Notch1	 PEST	 domain	 is	 known	 to	 be	 important	 for	 NICD/FBXW7	

interaction,	in	fact	a	potential	phosphodegron	is	present	within	the	PEST	domain	and	

contains	 a	 conserved	 threonine	 residue	 (T2512),	which	 is	 central	 to	 the	 binding	 of	
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FBXW7	 to	 NOTCH1	 221,	 a	 study	 showed	 that	 NOTCH	 T2512A	 mutant	 represents	

increased	stability	and	decreased	binding	to	FBXW7	58.		

The	 C-terminal	 domain	 of	 the	 NICD	 contains	 multiple	 conserved	 cyclin-dependent	

kinase	 phosphorylation	 sites	 that	 can	 be	 phosphorylated	 by	 CycC:CDK8.	 MAM	

interacts	 directly	 with	 the	 catalytic	 subunit	 of	 the	 CycC:CDK8	 complex,	 and	 CDK8	

directly	 targets	 serine	 residues	 in	 the	 PEST	 motif	 that	 control	 NICD	

hyperphosphorylation	 and	 turnover,	 mediated	 by	 FBXW7	 PEST-dependent	

degradation	 155.	 Moreover	 NICD	 is	 phosphorylated	 by	 GSK3β	 that	 regulates	 its	

proteasomal-dependent	degradation	155.	

	

3.5.	NOTCH1	protein-protein	interactions	

When	we	look	through	STRING	database	for	NOTCH1	protein-protein	interactions,	we	

identify	ten	interconnected	proteins	in	the	NOTCH1	network	(figure	18).	Among	these	

proteins	 RBPJ	 and	 MAML1	 that	 are	 part	 of	 NICD	 transcriptional	 complex	 in	 the	

nucleus.	 ADAM17,	 a	 metalloprotease	 responsible	 for	 NOTCH1	 cleavage	 at	 the	 cell	

surface	 independent	of	 ligand	induced	activation.	We	can	also	add	ADAM10	another	

enzyme	required	for	receptor	activation	but	in	another	ligand	–dependent	context	222.	

PSEN1,	 the	 catalytic	 subunit	 of	 γ-secretase	 also	 interacts	 with	 notch	 and	 has	 been	

shown	to	play	an	important	role	in	the	proteolytic	processing	of	NOTCH1	223.		STRING	

list	 includes	 FBXW7	 and	 DTX1	 ubiquitin	 ligases	 that	 are	 both	 known	 for	 direct	

physical	interaction	with	NOTCH1	and	inducing	its	proteasome-mediated	degradation	
221,	 224.	 NUMB	 promotes	 NOTCH1	 ubiquitination	 and	 proteasomal	 degradation	 of	

NICD,	 described	 also	 as	 an	 inhibitor	 of	 Notch	 pathway	 225,	 226.The	 polyubiquitin	 C	

protein	 encoded	 by	 UBC	 gene,	 is	 among	 the	 reported	 interactors.	 As	 we	 have	

explained	previously,	ubiquitination	is	an	essential	post-translational	modification	in	

the	 regulation	 of	 the	 Notch	 signalling,	 and	 NOTCH1	 can	 undergo	 ubiquitination	 at	

different	stages	of	its	signalling	process	through	a	variety	of	ubiquitin	enzymes	169,	227,	

228.	 The	 last	 two	 proteins	 listed	 are	 HEY1	 and	 HEY2	 from	 Hey	 family	 of	 bHLH	

transcription	 factors	 that	 are	 direct	 targets	 of	 Notch	 signaling.	 Hey1	 and	 Hey2	 are	

essential	 mediators	 of	 Notch	 functions	 in	 blood	 vessel	 morphogenesis	 229.	 The	 list	

provided	 by	 STRING	 database	 is	 limited,	 we	 have	 discussed	 in	 the	 previous	 parts	

different	aspects	of	the	Notch	signalling	pathway	and	thus	a	wide	variety	of	proteins	
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interact	with	NOTCH1.	Among	 them	 ligands	 of	 delta	 and	 serrate	which	 activate	 the	

receptor	 at	 the	 cell	 surface,	 different	 enzymes	 involved	 in	 post-translational	

modifications:	POFUT1,	POGLUT	glycosyltransferases	 that	preferentially	modify	EGF	

repeats	 of	 NOTCH1;	 kinases	 (CDK2,	 CDK19,	 CDK8…)	 and	 ubiquitin	 ligases	 (FBXW7,	

DELTEX,	 Itch…).	Yatim	et	al.	 established	 the	NOTCH1	nuclear	 interactome	 in	T-ALL,	

and	 showed	 that	 beyond	 the	 NICD-CSL-MAML1	 activation	 complex,	 NOTCH1	

associates	 a	 multifunctional	 complex	 containing	 DNA-binding	 partners,	

transcriptional	 coactivators	 and	 corepressors	 acting	 at	 different	 stages	 of	 the	

transcription	activation	process	230.	

	

Figure	 18:	 Notch1	 protein	 interaction	 network	 extracted	 from	 STRING	 database.	
Colored	nodes	 represent	proteins	 that	are	directly	 linked	 to	Notch1.	Edges	 represent	
predicted	 functional	 links.	 Edge	width	 is	 proportional	 to	 the	 number	 of	 evidence	 for	
these	interactions	(consisting	of:	databases,	experiments,	textmining	and	homology).	
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AIM	OF	THE	WORK	
	
The	 first	 aim	 of	 this	 thesis	 was	 to	 establish	 a	 comprehensive	 interactomic	 map	 of	

proteins	 that	 are	 associated	 to	 acute	 lymphoblastic	 leukemia	 (ALL)	 using	 high-

throughput	 experimental	 techniques	 and	 bioinformatics	 methods,	 to	 identify	

unexplored	axes	to	better	understand	ALL.		

This	interactomic	approach	enabled	us	to	define	important	proteins	hubs	for	proteins	

and	pathways	known	to	be	linked	to	ALL,	but	also	new	molecular	determinants	that	

can	be	potentially	linked	to	ALL.		

Then,	 the	 second	 aim	 of	 the	 project	 was	 to	 characterize	 the	 functional	 interplay	

between	 EXT1,	 NOTCH1	 and	 FBXW7	 as	 a	 proof	 of	 our	 concept	 for	 combining	

interactome	analysis	and	bioinformatics	tools.	
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RESULTS	
	
PART	I.	Interactome	mapping	of	acute	lymphoblastic	leukemia	gene	
products	
	
1.	Mutations	associated	to	ALL	in	cancer	gene	census		
	
In	order	to	identify	cancer	genes	associated	with	acute	lymphoblastic	leukemia	(ALL),	

we	searched	the	COSMIC	database	version	71	and	collected	all	available	information	

about	 mutated	 genes	 in	 ALL	 samples.	 COSMIC	 V71	 contains	 over	 1058292	 tumor	

samples	 containing	 over	 2710449	 coding	 mutations	 in	 28977	 genes	 231.	 We	 found	

more	 than	2500	mutations	 in	 coding	 sequences	of	366	genes	 that	were	 reported	 in	

36909	ALL	samples.	In	the	COSMIC	database,	a	set	of	572	genes	whose	mutations	are	

causally	 linked	 to	 oncogenesis,	 are	 called	 human	 Cancer	 Gene	 Census	 232.	 	 This	 set	

includes	140	genes	well	accepted	as	“cancer	driver	genes”	because	mutations	in	those	

genes	directly	promote	tumorigenesis	233.	In	ALL	samples,	we	found	that	20%	of	the	

cancer	 gene	 census	 is	 affected	 by	 mutations	 in	 coding	 regions	 of	 116	 genes	

(Supplemental	 table	 S1A).	 This	 high	 number	 of	 mutated	 genes	 is	 not	 due	 to	 over	

representation	 of	 ALL	 samples	 in	 COSMIC,	 as	 ALL	 samples	 count	 for	 about	 3%	 of	

tumor	 samples	 compiled	 in	 the	 COSMIC	 V71	 (Figure	 19	 a).	 	 	 The	 “ALL-genes”	 set	

contains	 74	 well-known	 driver	 genes	 including	 35	 oncogenes	 and	 39	 tumor	

suppressor	genes	(TSG)	(Supplemental	table	S1B).	
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Figure	 19:	 ALL	 census	 genes	 ranking	(a)	 Distribution	 of	 ALL	 census	 genes	 and	 other	
census	 genes	 according	 to	 number	 of	 mutations	 and	 number	 of	 samples	 and	 their	
distribution	 among	driver	 genes.	 Red	 and	bleu	bars	 represent	ALL	 census	 genes	 and	
other	cancer	census	genes	respectively	(b)	Mutations	associated	to	ALL	in	cancer	gene	
census.	Frequency	of	mutations	in	the	top	20	genes	(36909	ALL	samples).	The	number	
and	 proportion	 of	 ALL	 samples	 in	 which	 gene	 mutations	 were	 detected	 are	
represented.	Data	source:	COSMIC	database.	

	

For	 each	 ALL-gene	 we	 extracted	 the	 number	 of	 samples	 as	 well	 as	 the	 number	 of	

distinct	mutations.	Figure	19	b	represents	the	top	20	frequently	mutated	genes	among	

the	116	ALL-genes.	 Each	 gene	has	 at	 least	 2	distinct	mutations	observed	 in	 at	 least	

556	 different	 samples,	 from	 a	 total	 of	 36909	 ALL	 samples	 were	 examined.	 Seven	

genes	were	found	mutated	in	more	than	5%	of	ALL	samples,	including	genes	encoding	

for	 FLT3	 (9.9%),	 NRAS	 (6.14%),	 JAK2	 (6.08%),	 NOTCH1	 (5.87%),	 IKZF1	 (5.67%),	

KRAS	 (5.52%)	 and	PTPN11	 (5.32%)	 (Figure	 19	b	 and	 figure	 20	 a).	We	 also	 ranked	

ALL-genes	 according	 to	 the	 number	 of	 distinct	 mutations	 found	 in	 ALL	 samples	

(Figure	19	b	 and	 figure	20	b).	 The	 top	 ranked	 gene	was	NOTCH1	with	595	distinct	

mutations	mostly	 found	 in	 its	 heterodimerization	 (HD)	domain	 (63%	of	mutations)	

and	 in	 its	 proline,	 glutamic	 acid,	 serine,	 threonine-rich	 (PEST)	 domain	 (27%	 of	

mutations)	(Figure	22).	Mutations	in	the	HD	domain	that	enhance	NOTCH1	cleavage	

and	nuclear	translocation	of	the	intracellular	NOTCH1	protein	(ICN),	and	mutations	in	

the	 PEST	 domain	 that	 result	 in	 the	 stabilization	 of	 NICD,	 are	 gain-of-function	

mutations	 affecting	 the	 transcriptional	 activation	 of	 Notch1-target	 genes.	 The	

majority	of	 these	activating	mutations	were	 found	 in	human	T	 lymphocytes	ALL	(T-

ALL)	 samples,	 as	 previously	 reported	 54.	 Other	 highly	 mutated	 ALL-genes	 include	
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PTEN	 (140	 distinct	 mutations)	WT1	 (86	 distinct	 mutations),	 TP53	 (85	mutations),	

PAX5	(79	mutations),	and	IL7R	(73	mutations)	(Figure	19	b).	

	
Figure	20:	Top	20	ALL	census	genes.	(a)	The	20	most	frequently	mutated	genes	in	ALL	
samples;	X-axis	represents	the	proportion	of	samples	where	mutations	were	reported.	
(b)	 Number	 of	 distinct	 mutations	 per	 genes	 in	 ALL	 samples;	 X-axis	 represents	 the	
number	 of	 distinct	 mutations	 found	 in	 the	 coding	 sequences	 and	 Y-axis	 the	 top	 20	
genes	with	higher	number	of	distinct	mutations.	

	

For	the	majority	of	ALL-genes,	the	number	of	distinct	mutations	per	gene	correlated	

with	 the	 number	 of	 mutated	 samples	 (Figure	 21,	 red	 circled),	 suggesting	 that	 a	

number	of	 somatic	mutations	occurred	 randomly	during	oncogenesis,	 as	 previously	

observed	 for	 other	 types	 of	 cancers	 such	 as	 ovarian	 carcinoma	 or	 acute	 myeloid	

leukemia	234.	Another	set	of	eight	genes	(FBXW7,	CDKN2A,	PTPN11,	IKZF1,	JAK1,	JAK2,	

KRAS	 and	NRAS)	 exhibit	 an	 average	of	 33	mutations	 in	1500	–	2500	 examined	ALL	

samples	(Figure	21).	These	genes	are	characterized	by	similar	mutations	occurring	in	
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distinct	ALL	samples,	suggesting	their	potential	roles	in	clonal	expansion	of	ALL.	Two	

genes	 are	 outliers,	 and	 display	many	more	mutations	 (NOTCH1)	 or	 are	mutated	 in	

many	more	samples	than	average	(FLT3).		These	larger	numbers	reflect	the	high	rate	

of	NOTCH1	mutations	 specifically	 in	 T-ALL	 samples	 (99,9%	 of	NOTCH1	mutations);	

and	 the	 involvement	 of	 FLT3	 in	 childhood	 ALL,	 as	 previously	 described	 235.	

Interestingly,	 NOTCH1	 and	 FLT3	 mutations,	 mostly	 localized	 in	 two	 functional	

domains	(HD	and	PEST	for	NOTCH1,	juxtamembrane	(JM)	and	tyrosine	kinase	(TKD)	

for	FLT3),	are	found	respectively	in	1897	and	723	different	patients,	and	are	exclusive	

in	examined	ALL	samples	(Figure	22	and	Figure	19	b).	

	

	

	
Figure	 21:	 Occurrence	 of	 mutations	 per	 gene	 in	 ALL	 samples.	 X-axis	 represents	 the	
number	of	distinct	mutations	found	in	the	coding	sequences	and	Y-axis	the	number	of	
ALL	samples.	Each	dot	represents	a	single	gene.	
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Figure	 22:	 Distribution	 of	 mutations	 in	 ALL	 patients	 for	 NOTCH1,	 FLT3	 and	 FBXW7.	
Schematic	representation	for	each	protein	and	its	domains,	the	number	of	ALL	samples	
with	 mutations	 localization	 and	 their	 percentage	 for	 each	 protein	 are	 represented	
above	each	domain.	Notch1	domains:	Epidermal	growth	 factor	repeats	 (EGF	repeats),	
Lin12	 and	 Notch	 repeats	 (LNR),	 heterodimerization	 domain	 (HD),	 transmembrane	
domain	(TD),	RBP-Jκ-associated	module	(RAM),	ankyrin	repeats	(ANK),	transactivation	
domain	 (TAD),	 proline,	 glutamic	 acid,	 serine,	 threonine-rich	 domain	 (PEST).	 FLT3	
domains:	 extracellular	 domain	 (EC),	 transmembrane	 domain	 (TM),	 juxtamembrane	
(JM),	 amino-terminal	 and	 carboxy-terminal	 kinase	 domains	 (TK1	 and	 TK2	
respectively),	 kinase	 domain	 (K1),	 	 (STK).	 FBXW7	domains:	 tryptophan-aspartic	 acid	
40	repeat	(WD).			

	

	

2.	Interconnections	between	ALL-gene	products	
	
The	phenotypic	impact	of	a	genetic	alteration	is	not	entirely	determined	by	the	known	

function	of	the	mutated	gene,	but	also	by	the	functions	of	components	with	which	the	

gene	 and	 its	 products	 interact	 and	 their	 interaction	 partners.	 In	 addition,	 the	

association	of	biological	networks	 is	not	random	but	rather	 follows	basic	organizing	

principles	in	their	structures.	Recent	network	analyses	show	that	proteins	involved	in	

the	same	disease	have	an	 increased	tendency	to	 interact	with	each	other.	Moreover,	

mutations	 in	 interacting	 proteins	 often	 lead	 to	 similar	 disease	 phenotype	 236.	 To	

analyze	 the	 connectivity	 between	 ALL-gene	 products,	 we	 collected	 protein-protein	

interactions	(PPIs)	data	 from	three	databases:	BioGRID	5,	HPRD	237	and	IntAct	 7	and	

filtered	 all	 reported	 interactions	 between	 the	 116	 ALL-gene	 products.	 	 Figure	 23	

shows	 that	 63	 out	 116	 ALL-gene	 products	 are	 interconnected.	We	 then	 prioritized	

ALL-gene	 products	 based	 on	 their	 degree	 of	 interconnectivity	 (Supplemental	 table	

S2B).	 One	 of	 the	 top	 interconnected	 ALL-proteins	 is	 beta-catenin	 (encoded	 by	
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CTNNB1	gene),	which	 is	 a	 central	hub	 in	 the	Wnt/β-catenin	 signalling	pathway	and	

plays	a	crucial	role	normal	haematopoiesis	238.	It	has	been	shown	that	50	-	85%	of	the	

childhood	 T-ALL	 patients	 overexpress	 β-catenin	 239,	 further	 supporting	 our	 finding	

that	 β-catenin	 is	 an	 important	 hub	 in	 ALL.	 Other	Wnt/β-catenin	 signaling	 pathway	

members	such	as	APC,	TCF3	and	TCF7L2	 interacting	with	β-catenin,	are	part	of	our	

ALL-gene	 product	 set	 and	 were	 previously	 found	 differentially	 expressed	 in	 T-ALL	

patients	239.			

Another	 example	 is	 PIK3R1	 with	 8	 partners	 including	 PIK3CA	 that	 interacts	 with	

additional	 4	 ALL-gene	 products.	 PI3K	 members	 are	 essential	 effectors	 in	 the	

PI3K/AKT/mTOR	signalling	pathway,	which	is	activated	in	a	number	of	ALL	samples	
240.	Another	example	is	ABL1	that	interacts	with	7	partners.	The	BCR-ABL1	fusion	is	

the	driver	chromosomal	rearrangement	in	chronic	myeloid	leukemia	(CML)	241	and	is	

also	 	 found	 in	more	 than	 20%	 of	 	 ALL	 patients	 242.	 	 Mutations	 in	ABL1	 gene	were	

associated	to	different	types	of	cancer	243.		

	
Figure	 23:	 Interactions	 between	 proteins	 mutated	 in	 ALL	 samples.	 Protein-protein	
interactions	were	extracted	from	three	databases:	IntAct,	HPRD	and	BioGRID	and	only	
interactions	reported	with	at	least	two	publications,	and	detected	by	two	experimental	
methods	are	represented	in	this	map.	

	

3.	Co-occurrence	of	mutations	in	ALL-genes	
	
We	then	explored	the	relationship	between	interacting	genes	based	on	the	occurrence	

of	mutations	 in	 the	 same	 ALL	 samples.	We	 showed	 that,	 in	 addition	 to	 biophysical	

interactions,	 several	 ALL-gene	 products	 are	 mutated	 in	 the	 same	 patient	 samples,	

KIT

JAK1

PDGFRB

SOCS1

JAK3

PDGFRA

ABL1
UBR5

TP53

CREBBP

BRCA1

MLLTCF3
ATM

STK11

MAP2K1

BRAF

ERBB2

AKT1

MAP2K4

MSH2

FANCA

NOTCH1

MSH6

EP300

PTEN

FBXW7

CDK6

TRRAP
SMARCA4

CDK4

RB1

CDKN2A RUNX1

SMARCB1
APC

ARID1A

TCF7L2

CARD11EZH2SUZ12 BCL10DNMT3A

KDR

MET

CTNNB1PIK3CA
NRAS

CBL RET

PIK3R1

PTPN11

JAK2

MPL

HRAS

EGFR

SH2B3

H3F3APTPRC MLH1LCK PMS2 ATRXPMS1



	 	 RESULTS	PART	I	
	

	

suggesting	 several	ways	 of	 deregulating	 cancer	 pathways	 (Figure	24).	 As	 shown	on	

figure	24,	 our	 analysis	 revealed	 that	ALL	 samples	 could	be	 classified	 into	4	distinct	

clusters	 of	 affected	 pathways,	 based	 on	 co-occurrence	 of	 mutations	 in	 important	

cancer	driver	genes:	PI3K/AKT	and	NOTCH	pathways,	JAK	and	RAS	pathways,	Wnt/β-

catenin	and	the	cell	cycle,	and	the	transcriptional	regulation	pathways.	Interestingly,	

protein	 phosphatases	 PTEN	 and	 PTPN11,	 and	 proteins	 important	 in	 genome	

maintenance	and	chromatin	modification	P53	and	CREB	binding	protein	are	centrals	

and	 connect	 with	 deregulated	 pathways	 through	 different	 set	 of	 mutations	

(Supplemental	table	S3).		

	

Figure	 24:	 Co-occurrences	 of	 mutations	 in	 ALL	 samples.	 Nodes	 represent	 proteins	
associated	with	 ALL,	 with	 an	 area	 proportional	 to	 the	 number	 of	 distinct	mutations.	
Edges	 join	 pairs	 of	 interacting	 proteins	 for	 which	 mutations	 co-occur	 in	 the	 same	
samples.	 Edge	 widths	 are	 proportional	 to	 the	 number	 of	 samples	 with	 co-occurring	
mutations.	

	

Combining	all	the	above	criteria:	frequency	of	mutations	in	individual	cancer	genes	in	

ALL	samples,	number	of	distinct	mutations	and	their	pattern	in	ALL-gene	(Figures	18,	

19,	 and	 20),	 interconnections	 between	 ALL-gene	 products	 and	 co-occurrence	 of	

mutated	genes	in	the	same	samples	(Figures	23	and	24),	we	prioritized	ALL-genes	and	

suggest	that	TP53,	NOTCH1,	CREBBP,	PTEN,	EGFR,	JAK2,	ABL1,	PTPN11,	CBL	and	EP300	

are	the	top	10	ALL	driver	genes	(Supplemental	table	S4).	
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4.	Functional	associations	between	ALL-gene	products	and	their	partners	in	the	
human	proteome	
	
We	 hypothesized	 that	 the	 ALL-genes	 set	 is	 not	 limited	 to	 mutated	 genes	 in	 ALL	

samples,	 but	 could	 be	 extended	 to	 functional	 related	 genes	 and	 their	 products.	 In	

order	 to	 identify	 ALL-gene	 products	 interactors,	 we	 filtered	 from	 3	 different	 PPI	

databases	(BioGRID,	HPRD	and	IntAct),	proteins	that	interact	with	at	least	2	of	the	116	

ALL-gene	products	(Supplemental	table	S5A).	The	obtained	interactome	map	(Figure	

25)	 shows	 that	 interconnected	 ALL-gene	 products	 have	 also	 several	 common	

partners,	 prioritized	 according	 to	 the	 number	 of	 interacting	 ALL-gene	 products	

(Supplemental	table	S5B).	PPI	stored	in	databases	are	curated	from	the	literature	and	

some	 proteins	 such	 as	 P53,	 BRCA1	 or	 ATM	 heavily	 studied	 with	 hundreds	 of	

publications,	 have	 more	 PPI	 reported	 than	 others	 that	 are	 not	 studied	 with	 equal	

intensity.	 Previous	 studies	 suggested	 that	 unbiased	 PPI	 mapping	 allow	

characterization	 of	 overlooked	 PPI	 and	 identification	 of	 unknown	 diseases-related	

candidates	244.		
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Figure	25:	Literature	curation	of	interactions	between	the	116	proteins	mutated	in	ALL	
and	 their	 human	 partners.	 Grey	 nodes	 represent	 proteins	 mutated	 in	 ALL	 and	 the	
purple	nodes	human	interactors.	

	

We	then	performed	a	yeast-hybrid	(Y2H)	unbiased	PPI	detection	assay	using	a	set	of	

ALL-genes	and	the	human	ORFeome	collection.	Out	of	the	116	ALL	census	genes,	21	

were	present	in	the	human	ORFeome	5.1	collection.	The	hORFeome	5.1	is	a	collection	

of	 15483	 open	 reading	 frames	 (ORFs)	 representing	 12794	 genes	 accounting	 for	 ≈	

50%	of	 the	human	genome.	hORFs	 are	 cloned	 into	 the	pAD-dest-CYH	and	pDB-dest	

encoding	the	Gal4	Activating	and	DNA-binding	domains,	respectively.	

	

	We	 identified	 193	 interactions	 between	 13	 ALL	 gene	 products	 and	 168	 human	

partners.	 	 This	 experiment	 confirmed	 our	 observations	 using	 literature	 curated	
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interactions,	 that	 interconnected	 ALL-gene	 products	 are	 also	 connected	 through	

several	 common	 partners	 in	 complex	 macromolecules	 (Figure	 26).	 	 We	 identified	

several	 novel	 central	 hubs	 such	 as	 GOLGA2	 that	 interacts	 with	 ALL-gene	 products	

NOTCH1,	SMARCB1,	PTPN11	and	WT1,	and	CDC33,	which	is	a	common	interactor	of	

ALL-gene	products	MLH1,	QT1,	and	SMARCB1	(Figure	26,	Supplemental	table	S4B).		

	

Figure	26:	 Interactions	 identified	by	high	throughput	Y2H	screen.	Cancer	census	gene	
encoded	proteins	are	represented	in	grey	and	their	partners	in	green.	

	

As	 suggested	 by	 other	 studies,	 interconnected	 proteins	 are	 more	 associated	 with	

common	diseases	than	expected	by	chance	245	and	the	same	cancer	driver	genes	are	

often	 involved	 in	 different	 cancer	 types,	 as	 evidenced	 by	 several	 examples	 233.	 To	

identify	 novel	 ALL-gene	 candidates	 through	 a	 “guilt-by-association”	 prediction,	 we	

prioritized	ALL-gene	products	interactors	using	three	criteria:	(1)	the	number	of	ALL-
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gene	products	partners,	 (2)	 their	 implications	 in	other	 types	of	cancer	and	(3)	 their	

expression	in	24	common	ALL	cell	lines.	In	total,	we	identified	37	ALL-gene	products	

interactors	that	could	be	considered	as	ALL-associated	candidates	(Figure	27	a	and	b).		

	
Figure	 27:	 Prioritization	 of	 ALL-associated	 candidates.	 (a)	 The	 graph	 represents	 a	
ranking	 37	 candidates	 among	 the	 ALL-related	 partners	 based	 on	 the	 number	 of	
interactions	between	human	proteins	and	ALL	related	proteins.	In	addition	these	genes	
are	 among	 the	 cancer	 gene	 census	 and	 they	 are	 expressed	 in	 60%	 of	 ALL-cell	 lines	
(purple	 bars	 represent	 literature-curated	 interactors	 and	 green	 bars	 represent	 Y2H	
interactors).	The	X-axis	represents	gene	symbols;	the	Y-axis	represents	the	number	of	
partners.	 (b)	 Interactions	 between	 the	 37	 identified	 ALL-candidate	 genes	 and	 their	
partners	among	the	ALL	gene	census.	
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DISCUSSION	PART	I	
A	major	and	powerful	approach	to	elucidating	the	molecular	mechanisms	underlying	

the	 complex	 diseases	 such	 as	 cancer	 is	 represented	 by	 the	 investigation	 of	

interactions	between	proteins	encoded	by	disease	genes	in	the	human	protein-protein	

interaction	 network	 246.	 Thus,	 a	 systematic	 examination	 of	 the	 proteins	 encoded	 by	

ALL	 cancer	 genes	 in	 the	 human	 interactome	 may	 help	 us	 identify	 new	 candidate	

genes,	 improve	 candidate	 gene	 prioritization	 methods,	 and	 have	 a	 deeper	

understanding	of	the	genetic	landscape	of	ALL.	

Deregulated	signaling	is	considered	a	major	contributing	factor	in	leukomogenesis	of	

T-ALL,	 it	 is	 thus	 important	 to	 analyze	 interaction	 hubs	 illustrated	 by	 different	

examples	 in	 our	 network.	 Proteins	 interact	with	 each	 other	 and	with	 other	 cellular	

components	 forming	 complex	 networks.	 These	 networks	 share	 some	 features	 and	

they	 are	 part	 of	 common	pathways.	Diseases	 are	 not	 independent	 from	 each	 other,	

potential	 cellular	 network-based	 dependencies	 between	 human	 diseases	 has	 led	 to	

the	generation	of	various	global	disease	network	maps,	which	link	disease	phenotypes	

together	 if	 some	molecular	 or	 phenotypic	 relationships	 exist	 between	 them	 247.	 An	

interesting	example	elucidating	“disease	interdependency”	is	given	by	study	that	used	

high	throughput	datasets	such	as	mRNA	expression	and	PPI	networks.	They	revealed	

significant	 pathological	 similarities	 between	 54	 human	 diseases,	 in	 addition	 to	

common	 pathways	 and	 processes	 implicating	 many	 proteins	 that	 are	 mutated	 and	

known	to	be	therapeutic	targets	248.	Studying	the	interconnectivity	between	ALL	gene	

products	 enabled	 the	 identification	of	 several	ALL-gene	 candidates.	 	 In	our	map	we	

showed	that	54%	of	the	ALL	related	proteins	are	interconnected	forming	one	complex	

network.	 Some	 of	 these	 genes	 are	 highly	 connected;	we	 take	 as	 an	 example	BRCA1	

gene	 interacting	 with	 12	 proteins	 in	 the	 interactome	 of	 ALL	 proteins.	 Among	 its	

partners;	 the	 family	 of	DNA	 repair	mismatch	proteins:	MSH2,	MSH6	and	MLH1,	 the	

transcription	 factor	 TP53	 and	 ATM	 (ataxia	 telangiectasia	 mutated	 serine-protein	

kinase),	that	are	involved	in	the	DNA-damage	repair	pathway	along	with	BCRA1	and	

BCRA2	proteins	249,	250.	The	interactions	linking	these	proteins	to	BCRA1	indicate	that,	

in	addition	to	PPIs,	this	protein	hub	also	represents	a	common	signalling	pathway	in	

which	these	proteins	 interact	 functionally	and	physically.	BRCA1	and	BRCA2	are	the	
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most	 well-known	 genes	 linked	 to	 breast	 cancer	 risk	 251.	 In	 addition	 to	 being	

implicated	 in	 breast	 cancer,	 it	 was	 demonstrated	 that	 defects	 in	 BRCA	 pathway	

increase	 the	 risks	 of	 a	 subset	 for	 lymphomas	 and	 leukemias	 that	 are	 probably	

associated	 with	 gene	 rearrangements	 among	 them	 ALL	 252.	 Their	 connections	 to	

Fanconi	 anemia	 proteins	 (FANC),	 further	 implicate	 BRCA1	 and	 BRCA2	 deficits	 in	

hematological	 cancers	 253.	 Faconi	 anemia	 is	 a	 genetically	 and	 phenotypically	

heterogenous	 autosomal	disorder	defined	by	 congenital	malformations,	 progression	

marrow	failure,	and	marked	predisposition	to	malignancy	254.	

As	previously	mentioned,	the	CTNNB1	(the	β-catenin	gene)	interaction	hub	also	drew	

our	attention,	this	protein	in	linked	to	9	partners	among	the	ALL	related	proteins.	The	

β-catenin	protein	encoded	by	CTNNB1	is	essential	in	the	WNT-signalling	pathway;	it	

binds	to	several	proteins	in	the	cytoplasm	(such	as	APC)	triggering	its	translocation	to	

the	 nucleus.	 	 It	 interacts	 with	 other	 nuclear	 proteins	 (TCF,	 p300)	 leading	 to	 the	

transcriptional	activation	of	target	genes	regulating	different	cellular	processes	such	

as	adhesion,	proliferation	and	development	 255.CTNNB1	mutations	and	deregulation	

are	 linked	 to	 many	 epithelial-originating	 malignancies	 such	 as	 breast,	 ovarian,	

endometrial,	colorectal	and	skin	cancers	256.	We	observe	how	CTNNB1	gene	product	is	

a	 central	 protein	 linked	 to	 proteins	 that	 are	 implicated	 in	WNT	 signalling	 pathway	

(Figure	 23).	 It	 is	 known	 that	 activation	 of	 the	 Wnt/β-catenin	 signalling	 pathway	

through	 loss-of-function	mutations	 in	 the	 APC	 protein	 and	 axin,	 or	 gain-of-function	

mutations	 in	 β-catenin	 are	 linked	 to	 various	 hematological	 malignancies	 including	

ALL.	In	fact	β-Catenin	plays	a	crucial	role	as	an	effector	of	the	Wnt/β-catenin	pathway	

in	normal	haematopoiesis	 238.	 In	 the	absence	of	WNT	signals,	a	complex	of	proteins,	

including	 APC,	 axin	 and	 GSK3β,	 controls	 phosphorylation	 and	 subsequent	

proteasomal	 degradation	 of	 β-catenin.	When	WNT	 signalling	 is	 activated,	 β–catenin	

accumulates	 in	the	nucleus	where	it	 interacts	with	T-cell	 factor	transcription	factors	

(TCF)	leading	to	the	transcriptional	activation	of	target	genes.		Mutations	in	β-catenin	

or	APC	can	lead	to	the	formation	of	constitutively	active	β-catenin/TCF	complexes	and	

altered	expression	of	target	genes,	that	are	associated	to	cancer	257.	More	than	85%	of	

the	childhood	T-ALL	patients	showed	upregulated	β-catenin	expression	at	the	protein	

level	 compared	 with	 normal	 human	 thymocytes.	 A	 recent	 study	 using	 microarray	

analysis	carried	out	on	T-ALL	patients	showed	that	50%	of	T-ALL	patients	represent	a	

two-fold	 change	 in	β-catenin	 expression.	 In	 addition,	 other	WNT	 signalling	member	
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such	as	TCF3	and	TCF7L2,	partners	of	CTNNB1	shown	in	the	interactome	map,	were	

differentially	expressed	in	T-ALL	patients,	and	in	some	cases	associated	to	β-catenin	

upregulation	239.		

Another	example	of	protein	hubs	in	our	map	is	PIK3R1	with	8	partners	among	them	

we	find	PIK3CA	that	interacts	with	4	proteins.	PI3K	proteins	are	essential	effectors	in	

the	 PI3K/AKT/mTOR	 signalling	 pathway.	 This	 signalling	 cascade	 is	 activated	 by	

receptor	 tyrosine	 kinases,	 integrins,	 B	 and	 T-cell	 receptors	 and	 other	 stimuli	 that	

induce	 the	 production	 of	 phosphatidylinositol	 triphosphate	 (PIP3)	 by	

phosphoinositide	 3-kinase	 (PI3K).	 This	 step	 induces	 the	 activation	 of	 AKT	 due	 to	

phosphorylation	by	 the	PDK1	and	mTORC2	 258,	259.	AKT	 is	 a	proto-oncoprotein	with	

many	 substrates	 and	 effects	 such	 as	 apoptosis	 and	 protein	 synthesis.	 The	 tumor	

suppressor	 phosphate	 and	 tensin	 homolog	 PTEN,	 inhibits	 AKT	 activity	 by	

dephosphorylating	PIP3,	while	inactivating	mutations	or	deletion	of	PTEN	leading	to	

Akt	activation	occur	in	ALL	240.		

ABL1	is	connected	to	7	partners,	this	gene	constitutes	the	subject	of	a	large	number	of	

studies,	 and	mutations	 in	 this	 gene	were	 associated	 to	different	 types	of	 cancer.	An	

important	 gene	 fusion	 that	 implicates	 ABL1	 and	 BCR	 genes	 has	 been	 described	 in	

leukemias	(chronic	myeloid	 leukemia;	CML),	 the	 fusion	protein	resulting	 is	essential	

and	 sufficient	 for	 the	 malignant	 transformation	 of	 CML	 241.	 In	 addition,	 BCR-ABL1	

fusion	is	also	found	in	other	cancers	such	as	breast	and	prostate	cancers.		

These	examples	of	protein	hubs	prove	that	interactions	between	a	set	of	proteins	or	

interactions	linked	to	a	central	protein	are	not	randomly	organized.	Moreover	in	the	

context	 of	 mutations	 and	 genes	 associated	 to	 ALL,	 we	 show	 that	 proteins	 with	

mutations	in	ALL	are	highly	interconnected	to	each	other,	they	are	also	implicated	in	

common	signalling	pathways	where	deregulation	in	one	or	several	components	show	

high	incidence	in	ALL	development.	Mutations	in	one	or	more	interconnected	proteins	

may	 lead	 to	 disruption	 of	 these	 complexes	 and	 development	 of	 ALL,	 and	 drug	

resistance	mechanisms.	In	addition,	these	proteins	were	linked	to	other	cancers	such	

as	 breast	 cancer	 and	 other	 types	 of	 leukemias.	 Other	 studies	 have	 highlighted	 the	

importance	of	evaluating	gene	mutations	from	a	global	point	of	view;	and	went	deeper	

to	 assess	 the	 interconnectivity	 between	 diseases.	 Goh	 et	 al.	 showed	 that	 genes	

associated	with	similar	disorders	show	both	higher	likelihood	of	physical	interactions	

between	 their	 products	 and	 higher	 expression	 profiling	 similarity	 for	 their	
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transcripts,	 supporting	 the	 existence	 of	 distinct	 disease-specific	 functional	modules.	

They	 established	 the	 human	 disorder	 network,	 showing	 that	 cancer	 in	 among	 the	

most	 connected	 disorders.	 This	 is	 due	 in	 part	 to	 the	 fact	 that	 cancer	 subtypes	 are	

tightly	connected	with	each	other	through	tumor	suppressors	such	as	TP53	and	PTEN.	

Another	interesting	finding	was	that	leukemia,	in	contrast	to	most	disorders,	relate	to	

a	 large	 number	 of	 disease	 genes	 260.	 This	 observation	 was	 also	 confirmed	 in	 our	

interactome.	 Disease	 annotation	 analysis	 using	 DAVID	 tool	 revealed	 for	 the	 ALL-

related	genes	 that	 they	are	 implicated	 in	common	cancers	 such	as	colorectal	 cancer	

(EP300,	 APC,	 TP53,	 CTNNB1,	 NRAS,	 FGFR3,	 AKT1,	 BRAF	 and	 PIK3CA),	 ovarian	 and	

breast	 cancer	 (BRCA1,	 CTNNB1,	 MSH2,	 KRAS,	 AKT1	 and	 PIK3CA),	 acute	 myeloid	

leukemia	(FLT3,	ARHGEF12,	NUP214,	RUNX1,	and	KIT).		

	

Co-occurrence	of	mutations	
	
Exploring	 the	 relationship	 between	 the	 ALL-gene	 candidates	 based	 on	 the	 co-

occurrence	of	mutations	in	the	same	ALL	samples,	provided	us	with	valuable	data	for	

potential	ALL-gene	candidates.		

The	 network	 in	 figure	 24	 shows	 that	 in	 addition	 to	 the	 physical	 interactions	 these	

proteins	are	also	found	to	be	mutated	in	the	same	ALL	samples.	PIK3CA,	PIK3R1	and	

AKT1,	proteins	of	the	PIK3-AKT	pathway,	are	interconnected	and	are	co-mutated	in	a	

high	 number	 of	 ALL	 samples.	 Mutations	 at	 the	 PI3K/AKT/PTEN	 pathway	 can	

contribute	 to	 leukemogenesis	 by	 elevating	 the	 expression	 of	 the	 pleiotropic	 anti-

apoptotic	 AKT	 protein,	 which	 can	 stimulate	 antiapoptotic	 proteins	 and	 inhibit	 pro-

apoptotic	 proteins.	 Inactivating	 PTEN	mutations	 are	 known	 to	 occur	 in	 ALL	 and	 to	

disturb	signalling	of	AKT/PI3K	pathway.	Co-occurrence	of	mutations	in	the	same	ALL	

samples	can	have	an	important	significance	when	it	comes	to	the	clinical	outcome	of	

ALL	patients.	Inactivation	of	PTEN	can	be	associated	with	poor	treatment	response	in	

ALL.	A	 study	was	 carried	out	on	300	ALL	patients,	 analyzing	 the	 incidence	of	PTEN	

point	 mutations,	 they	 show	 that	 inactivating	 PTEN	 mutations	 associated	 with	

activating	 NOTCH1	 mutations	 in	 patients	 have	 better	 response	 to	 therapy	 261.	

Importantly	the	majority	of	PTEN	identified	mutations	localize	in	exon	7	“hotspot”	in	

the	 C2	 domain	 of	 the	 protein,	 accounting	 for	 82%	 of	 ALL	 samples	 with	 PTEN	

mutations.	 These	mutations	 lead	 to	 the	 truncation	 of	 the	 C2	 domain	 responsible	 of	
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binding	to	the	membrane	for	subsequent	dephosphorylation	of	the	membrane-bound	

PIP3	 262.	Moreover,	 in	 T-ALL,	 activation	 of	 AKT	 has	 been	 described	 downstream	 of	

NOTCH1	and	AKT	may	be	activated	upon	 transcriptional	 repression	of	PTEN	by	 the	

NOTCH1-activated	transcriptional	repressor	HES1	55.	Notch1	the	top	mutated	gene	in	

ALL	 (Figure	 20	 b)	 interacts	 with	 both	 AKT1	 and	 FBXW7	 and	 several	 ALL	 samples	

exhibit	mutations	in	genes	encoding	those	proteins.	For	example,	NOTCH1	and	FBXW7	

mutations	 co-occur	 in	 ≈	 40	 samples,	 most	 of	 these	 mutations	 result	 in	 a	 higher	

expression	 and	 activation	 of	 NOCTH1,	 which	 is	 highly	 linked	 to	 T-cell	 ALL	 cancer	

development.	 PTEN,	 PI3K	 and	 AKT	 abnormalities	 showed	 high	 incidence	 in	 T	 cell	

acute	lymphoblastic	leukemia	62.	In	fact	the	PTEN/PI3K/AKT	pathway	constitutes	an	

important	 pathway	 that	 regulates	 the	 signalling	 of	 multiple	 processes	 such	 as	

apoptosis,	cell	proliferation	and	growth.	Deregulation	of	this	pathway	is	implicated	in	

a	 number	 of	 human	 diseases,	 where	 activating	 mutations	 in	 one	 of	 these	 proteins	

were	reported	263.	This	subnetwork	also	includes	NOTCH1	and	FBXW7.	Mutations	in	

the	HD/PEST	domains	of	NOTCH1	and	FBXW7,	which	 leads	 to	an	over-activation	of	

the	Notch	pathway,	frequently	occur	in	T-ALL	patients	58.	In	addition	PTEN	mutations	

also	occurred	with	FBXW7	mutations	in	the	same	T-ALL	samples.	PTEN	was	described	

as	 an	 indirect	NOTCH1	 target	 (through	HES1	 and	 cMYC),	 resulting	 in	 constitutively	

active	PI3K-	AKT	signalling	57.	In	figure	24	we	show	that	FBXW7	mutations	co-occur	

with	 NOTCH1	 mutations	 and	 with	 PTEN	 mutations	 in	 30	 and	 37	 ALL	 samples	

respectively.	In	fact,	several	studies	have	reported	better	outcome	in	T-ALL	harboring	

NOTCH1	and/or	FBXW7	mutations,	conversely	when	PTEN	mutations	co-occurred	in	

these	patients,	it	associates	with	poor	prognostic	264.	

The	 same	 observation	 is	 valid	 for	 JAK	 proteins,	 a	 family	 of	 large	 tyrosine	 kinases	

(JAK1,	 JAK2	 and	 JAK3).	 This	 family	 of	 genes	 along	 with	 STAT	 family	 (signal	

transducers	 and	 activators	 of	 transcription)	 and	 the	 CIS/SOCS	 family	 constitute	 the	

effector	 genes	 of	 the	 JAK/STAT	 pathway.	 JAKs	 mediate	 signals	 from	 a	 variety	 of	

cytokines	 and	 growth	 factors.	 In	 general,	 receptor	 dimerization	 or	 oligomerization	

due	 to	 ligand	 binding	 results	 in	 the	 juxtapositioning	 of	 the	 JAKs,	 either	 through	

homodimeric	or	heterodimeric	 interactions.	The	recruitment	of	 JAKs	results	 in	 their	

phosphorylation,	 either	 via	 autophosphorylation	 and/or	 transphosphorylation	 by	

other	 JAKs	or	other	 families	of	 tyrosine	kinases.	This	activation	 results	 in	 increased	
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JAK	 kinase	 activity.	 Activated	 JAKs	 then	 phosphorylate	 receptors	 on	 target	 tyrosine	

residues	 that	 serve	 as	 docking	 sites	 allowing	 the	 binding	 of	 STATs	 and	 their	

subsequent	phosphorylation.	Activated	STATs	dimerize	and	translocate	to	the	nucleus	

leading	 to	 the	regulation	of	 target	gene	promoters,	 including	 the	bcl-2	 family	genes,	

MYC,	 CyclinD…265.	 Since	 activating	 mutations	 in	 JAK2	 have	 been	 linked	 to	

leukemogenesis,	 several	 studies	 have	 been	 focusing	 on	 the	 development	 of	 small	

molecule	 JAK2	 inhibitiors,	 such	 as	 AG-490	 a	 specific	 tyrosine	 kinase	 blocker.	

Inhibition	of	Jak2	with	AG-490,	selectively	blocks	leukemic	cell	growth	in	vitro	and	in	

vivo	 by	 inducing	 programmed	 cell	 death,	 with	 no	 deleterious	 effect	 on	 normal	

haematopoiesis	 265,	 266.	 Sequencing	 analyses	 and	 gene	 expression	 profiles	 for	 ALL	

patients	 revealed	 high	 frequency	 of	 recurrent	 somatic	 alterations	 in	 Janus	 kinase	

signalling	 and	 also	 other	 key	 signalling	 pathways	 including	 the	 TP53/RB	 tumor	

suppressor	pathway	and	Ras	signalling	267.	

Exploring	 mutations	 co-occurring	 in	 several	 different	 genes	 for	 the	 same	 patients	

enables	the	characterization	of	driver	genes	that	are	specifically	mutated	in	ALL.		The	

interacting	proteins	encoded	by	genes	with	mutations,	or	proteins	that	have	common	

interactors	 that	 are	 implicated	 in	 common	 signalling	 pathways	 such	 as	 NOTCH1,	

FBXW7	and	PTEN	represent	interesting	candidates	for	targeted	therapy	development.		

Functional	associations	between	ALL-gene	products	and	their	partners	in	the	
human	proteome	
	
The	identification	of	novel	proteins	linked	to	the	proteins	that	are	mutated	in	ALL,	can	

also	 be	 associated	 to	 this	 disease	 and	 therefore	 represent	 novel	 targets	 or	 ALL	

candidates.	Applying	the	“guilt-by-association”	concept,	with	specific	criteria	linked	to	

ALL	 such	 as	 the	 number	 of	 ALL-gene	 products	 partners,	 their	 implications	 in	 other	

types	of	cancer	and	their	expression	ALL	cell	lines,	provided	a	valuable	clue	to	the	role	

of	novel	gene	products	potentially	associated	with	ALL.	In	fact	we	find	that	ALL-gene	

products	are	 interconnected	by	the	mean	of	these	proteins	that	were	not	previously	

linked	 to	 ALL	 in	 the	 human	 proteome	 (Figure	 25).	 In	 figure	 25,	 the	 interactions	

between	 the	 ALL	 proteins	 and	 their	 partners	 from	 literature	 are	 represented.	 The	

interactions	were	extracted	 from	3	different	databases	(BioGRID,	HPRD	and	 IntAct).	

Proteins	 that	 interact	 with	 at	 least	 2	 of	 the	 ALL	 related	 proteins,	 and	 interactions	

reported	 in	 two	 scientific	 papers	 and	 detected	 with	 two	 different	 experimental	
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methods	are	represented.	This	complex	map	shows	that	in	addition	to	being	directly	

linked	 to	 each	 other,	 the	 ALL	 related	 proteins	 are	 interconnected	 by	 the	 mean	 of	

common	 partners.	 The	 degree	 of	 connectivity	 for	 the	 common	 interactors	 is	

represented	by	the	graph	that	shows	the	number	of	ALL	proteins	interacting	with	the	

identified	 partners	 from	 the	 human	 interactome.	 The	 proteins	 in	 grey	 were	 not	

previously	associated	with	ALL,	but	can	be	considered	as	interesting	candidates	that	

can	be	studied	 in	ALL,	due	to	their	connectivity	with	genes	mutated	 in	ALL.	The	top	

interconnected	protein	is	the	ubiquitin	C,	a	polyubiquitin	precursor	encoded	by	UBC	

gene,	which	 interacts	with	 13	ALL-related	 proteins	 (node	 in	 the	 center	 of	 CTNNB1,	

PTEN,	 AKT1	 and	BRAF	 on	 the	 upper	 right	 zone	 of	 the	map	 in	 figure	 25).	 Ubiquitin	

exists	 in	 the	 cell	 either	 covalently	 attached	 to	 another	 protein	 of	 free.	 Ubiquitin-

conjugated	proteins	are	targeted	for	degradation	via	the	proteasome,	lysosome	or	the	

endoplasmic	 reticulum,	depending	on	 the	ubiquitinated	residues.	Therefore	 it	 is	not	

surprising	 to	 find	 that	UBC	 is	 highly	 connected	 to	 several	 ALL	 proteins.	 In	 fact,	 the	

ubiquitin	 system	plays	an	 important	 role	 in	maintaining	 the	homeostatic	balance	of	

cellular	processes;	therefore	its	deregulation	can	promote	the	development	of	cancer	
268.	 GRB2	 interacts	 with	 10	 of	 the	 ALL	 related	 proteins.	 GRB2	 is	 a	 ubiquitously	

expressed	 adaptor	 protein	 that	 facilitates	 the	 assembly	 of	 multiprotein	 signalling	

complexes	at	activated	receptors	and	signalling	proteins.	GRB2	contains	a	single	SH2	

domain	that	allows	it	to	bind	tyrosine-phosphorylated	receptors,	this	domain	binds	to	

the	hematopoietic	 specific	adaptor	protein	 linker	 for	activation	of	T	 cells	 (LAT)	and	

other	adaptor	proteins.	In	addition	to	two	SH3	domains	which	brings	various	ligands	

to	the	sites	of	activating	signals	269.	Due	to	its	role	in	propagating	signalling	pathways	

downstream	 of	 several	 receptors,	 deregulation	 of	 GRB2-mediated	 signalling	

complexes	has	been	linked	to	oncogenesis.	Targeting	the	GRB2	has	been	explored	as	

an	anti-cancer	drug,	using	candidates	that	can	associate	with	GRB2	and	antagonize	its	

signalling	 270.GRB2	 was	 not	 previously	 linked	 to	 ALL,	 but	 in	 a	 recent	 study	 they	

investigated	 the	 role	 of	 GRB2	 in	 ETV6/FLT3	mediated	 leukemogenesis,	 they	 found	

that	 FLT3	 mutations	 at	 specific	 tyrosine	 residues	 alter	 the	 GRB2	 binding	 to	

FLT3/ETV6	and	result	 in	an	impaired	activation	of	STAT5,	Erk1/2	and	Akt	in	Ba/F3	

cells.	Their	data	 indicate	that	GRB2	is	a	potential	 therapeutic	 target	 in	patients	with	

EXT6/FLT3-positive	myeloid/lymphoid	neoplasm	with	eosinophilia-patients271.	Other	

examples	 of	 highly	 interconnected	 proteins	 are	 STAT1	 and	 5	 of	 the	 JAK/STAT	
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pathway.	MDM2	 the	 negative	 regulator	 of	 p53	 protein	 interacts	with	 8	 ALL-related	

proteins,	MDM2	is	known	to	bind	to	p53	and	inhibit	 its	transcriptional	activity,	 thus	

favoring	 its	 nuclear	 transport	 and	 degradation.	 Overexpression	 of	 MDM2	 was	

described	to	favor	uncontrolled	cell	proliferation	through	inhibition	of	p53	in	various	

cancers.	 Several	 compounds	 that	 inhibit	 the	 p53-MDM2	 pathway	 interaction	 show	

anti-proliferative	 effect	 in	 tumour	 cells	 overexpressing	MDM2	 272.	 Targeting	MDM2	

with	 a	 natural	 product	 called	 Triptolide,	 induces	 apoptosis	 in	 a	 subgroup	 of	 acute	

lymphoblastic	 leukemia	cells273.	Another	example	 is	Nilotinib	 the	 selective	BCR-ABL	

tyrosine	kinase	inhibitor,	widely	used	to	treat	Philadelphia-positive	and	Philadelphia-

negative	ALL,	studies	also	demonstrated	that	nilotinib	inhibits	MDM2	by	inducing	its	

self-ubiquitination	 and	 degradation,	 leading	 to	 p53-independent	 apoptosis	 pathway	

and	 helping	 treating	 ALL	 274.	 These	 interconnected	 proteins	 constitute	 interesting	

example	 showing	 that	 even	 proteins	 that	 are	 not	 mutated	 in	 leukemic	 patients	

constitute	 potential	 candidates	 for	 targeted	 anti-cancer	 therapy.	 Thus	 interactomic	

approach	and	establishing	the	connections	between	proteins	that	are	mutated	in	ALL	

and	their	partners	in	the	human	interactome	enables	the	identification	of	key	proteins	

that	can	open	doors	for	novel	targeted	therapies.		

Databases	gathering	data	about	interactions	from	scientific	reports,	attempt	to	create	

a	complete	listing	of	literature-curated	data.	It	should	be	noted	that	interactomic	data	

for	genes	are	biased,	due	to	the	fact	that	some	genes	or	proteins	are	more	frequently	

studied	than	others.	An	example	illustrating	this	theory	is	BRCA1	that	we	found	in	our	

interactome,	as	the	most	 interconnected	protein	among	the	ALL-gene	products.	This	

protein	 was	 frequently	 studied	 in	 ovarian	 and	 breast	 cancer,	 in	 addition	 to	 recent	

findings	 that	 relate	 BRCA	 proteins	 to	 leukemias	 as	 we	 previously	 mentioned.	

Furthermore	 experimental	methods	used	 to	 detect	 interactions,	 largely	 vary	 among	

different	 studies.	 Using	 a	 high	 throughput	 PPI	 screening	 technique	 limits	 the	 bias	

resulting	 from	 the	 irregularity	 of	 applied	 methods	 and	 focusing	 on	 “well-studied”	

genes.	

High	throughput	yeast	two-hybrid	screening	
	
Despite	these	extensive	curation	efforts,	the	existing	maps	are	considered	incomplete,	

and	 the	 literature-based	 datasets,	 while	 richer	 in	 interactions,	 are	 prone	 to	



	 	 DISCUSSION	PART	I	
	

	 79	

investigative	 biases,	 containing	 more	 interactions	 for	 the	 more	 explored	 disease	

proteins	236.		

High	 throughput	 Y2H	 screening	 enabled	 the	 identification	 of	 novel	 interactions	

between	 ALL	 gene	 products	 and	 proteins	 from	 the	 human	 interactome.	 The	

constructed	 network	 confirmed	 that	 ALL-related	 proteins	 are	 interconnected;	 they	

represent	 several	 common	 partners	 such	 as	 GOLGA2	 interacting	 with	 NOTCH1,	

SMARCB1,	 PTPN11	 and	 WT1,	 and	 CDC33,	 which	 interacts	 with	 MLH1,	 QT1,	 and	

SMARCB1.	 We	 classified	 the	 identified	 partners	 according	 to	 the	 degree	 of	

connectivity,	which	 is	 represented	 by	 the	 number	 of	ALL	 gene	 products	 interacting	

with	each	protein.	The	advantage	of	identifying	these	novel	interactions	is	to	highlight	

proteins	that	have	not	yet	been	associated	with	ALL,	these	proteins	are	not	known	to	

be	involved	in	ALL	and	may	provide	new	insights	for	research	in	this	domain.	GOLGA2	

is	a	cis-Golgi	matrix	protein	that	plays	a	major	role	in	the	stacking	of	Golgi	cisternae	

and	 maintenance	 of	 Golgi	 structure.	 It	 also	 participates	 in	 the	 glycosylation	 and	

transport	of	proteins	and	lipids	in	the	secretory	pathway	275.	Targeting	GOLGA2	using	

specific	shRNA	showed	to	inhibit	angiogenesis	and	induce	autophagy-dependent	cell	

death	 in	 lung	cancer	cells	 276,	but	 it	has	not	been	previously	 linked	to	ALL.	ABI2	the	

abl-interactor	2	(encoded	by	the	Abl	associated	gene	ARG)	is	a	non-receptor	tyrosine	

kinase,	 together	with	c-Abl	 they	constitute	 the	members	of	 the	mammalian	Abelson	

family	 of	 kinases	 that	 were	 first	 identified	 as	 oncogenes	 associated	 to	 human	

leukemias.	Arg	is	activated	by	fusion	with	Tel	transcription	factor	in	cases	of	AML	277.		

Among	the	common	interactors	in	our	Y2H	map	some	were	previously	associated	to	

cancer	and	have	served	as	 therapeutic	 targets,	but	not	 in	 the	ALL	context.	 It	 is	 thus	

important	 to	 exploit	 these	novel	 partners	 and	 analyze	 their	potential	 implication	 in	

ALL.	

The	 advantage	 of	 using	 the	 high	 throughput	 approach	 is	 in	 the	 reduction	 of	

interactomic	 hubs	 constituted	 by	 proteins	 that	 are	 most	 studied.	 As	 we	 have	

previously	 mentioned,	 information	 represented	 in	 different	 literature–curation	

databases	are	biased	due	to	the	fact	that	repeatedly	studied	proteins	,are	more	likely	

to	 have	more	 interactomic	 data	 than	 less	 studied	proteins.	 Thus	 using	 a	 systematic	

high	throughput	interaction	detection	technique	such	as	the	Y2H	helps	minimize	the	

observed	 bias.	 In	 our	 Y2H	 map	 we	 can	 highlight	 novel	 candidates	 that	 can	 be	
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associated	 to	 ALL,	 such	 GOLGA2	 and	 CDC33.	 Another	 example	 that	 grabbed	 our	

attention	 is	 EXT1	 that	 interact	 with	 2	 ALL	 related	 proteins,	 NOTCH1	 and	 FBXW7	

(Figure	26).	EXT1	was	detected	 in	our	Y2H	screen	as	a	partner	 for	both	Notch1	and	

FBXW7.	Notch	was	the	subject	of	the	analysis	and	investigations	in	a	huge	number	of	

publications	involving	its	mechanism	of	action,	regulation	of	the	signalling	pathway	to	

its	implication	in	diseases	and	its	role	as	important	and	promising	therapeutic	target	
278.	

We	investigated	the	expression	of	interactors	in	T-ALL	cell	lines	and	found	that	79%	

of	 genes	 these	 are	 expressed	 in	 60%	of	 T-ALL	 cell	 lines.	 Applying	 selection	 criteria	

such	 as	 the	 degree	 of	 connectivity	 and	 gene	 expression	 in	 ALL	 cell	 lines	 to	 the	

interaction	 partners	 identified	 from	 both	 literature	 curated	 data	 and	 our	 Y2H	

interactome	 enabled	 the	 prioritization	 of	 37	ALL-gene	 products	 interactors	 as	ALL-

candidates	 (Figure	 26).	 Using	 similar	 approach	 that	 integrates	 expression	 profiles,	

mutation	effects	and	interactome	data	has	been	recently	used	as	an	analytical	tool	for	

identifying	novel	driver	genes	in	cancer	246,	279.		

In	 summary,	 we	 extracted	 mutations	 found	 in	 ALL	 patients	 that	 were	 reported	 in	

COSMIC	database,	 and	 identified	 116	ALL-related	 genes	 among	 cancer	 gene	 census.	

Network	analyses	of	protein-protein	interactions	show	that	54%	among	the	ALL-gene	

products	 are	 interconnected	 and	 represent	 central	 protein	 hubs	 such	 as	 the	 beta-

catenin	protein	and	PIK3R1.	In	addition,	we	found	that	several	mutations	in	the	ALL-

genes	products	co-occur	in	the	same	samples,	which	can	be	classified	into	4	clusters	of	

affected	 pathways.	 ALL-related	 gene	 products	 are	 also	 interconnected	 through	

common	 partners	 from	 the	 human	 interactome.	 Our	 experimental	 data	 from	 Y2H	

screening	 enabled	 the	 identification	 of	 novel	 partners	 for	 the	 ALL-related	 proteins.	

Among	the	Y2H	and	literature-curated	identified	interactors	we	prioritized	37	genes	

as	ALL-associated	candidates.		

The	field	of	systems	biology	has	evolved	enormously	during	the	recent	years,	due	to	

the	 availability	 of	 a	 huge	 amount	 of	 genomic	 and	 proteomic	 data	 and	 the	 progress	

made	 in	 technologies	 allowing	 high-throughput	 screening	 and	 the	 development	

bioinformatics	tools.	Despite	the	great	advantage	of	applying	this	approach	in	the	first	

part	of	our	analysis,	represented	by	the	identification	of	several	novel	potential	cancer	

genes,	 it	 should	 be	 noted	 that	 interactomic	 and	 bioinformatics	 analyses	 have	 their	
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limitations.	 Their	 advantage	 resides	 in	highlighting	 interesting	 candidates	but	 these	

hypotheses	 need	 to	 be	 validated,	 in	 order	 to	 provide	 biological	 and	 molecular	

explanation	for	the	role	and	the	impact	of	these	cancer	gene	products	in	the	disease	

development	or	therapy.	

Further	 analyses	 are	 required	 to	 clarify	 this	 point;	 interactions	 can	 be	 tested	 in	

conditions	 where	 ALL-related	 proteins	 are	 mutated	 (reported	 mutations	 in	 ALL	

samples).	We	expect	that	mutations	will	disrupt	the	network	organization,	leading	to	

loss	 of	 some	 interactions,	 which	 can	 provide	 a	 more	 detailed	 explanation	 of	 the	

molecular	 basis	 of	 ALL	 pathogenesis	 and	 development.	 On	 another	 level	 ALL-

candidate	genes	 can	be	 tested	 for	 their	potential	 role	 in	ALL,	 first	by	 characterizing	

the	 links	 between	 these	 candidates	 and	 their	ALL-related	protein	partners	 and	 in	 a	

second	step	 investigating	 their	effect	 in	ALL	using	a	T-ALL	cell	 lines	or	ALL-specific	

animal	models.	

In	the	second	part	of	our	analyses	we	provide	a	proof-of-concept	on	how	systematic	

interactome	 approaches	 could	 allow	 identification	 of	 novel	 targeted	 genes,	 by	

investigating	EXT1-NOTCH1	novel	interaction.	
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PART	 II.	 EXT1	 is	 functionally	 associated	 with	 the	 Notch	 pathway	
through	its	interaction	with	NOTCH1	and	FBXW7	
	
	
The	 following	 example	 illustrates	 the	 validity	 of	 combining	 interactome	approaches	

and	 gene	 mutations	 characterization	 to	 identify	 specific	 cancer	 type-related	 genes.		

Exostosin	glycosyltransferase	1	(EXT1)	is	an	endoplasmic	reticulum	transmembrane	

protein	frequently	mutated	in	multiple	osteochondromas	280-282.	 	We	identified	EXT1	

as	 a	 common	 interactor	 of	 two	ALL-gene	products	NOTCH1	and	FBXW7	 (Figure	26	

and	26a).	We	then	investigated	the	potential	 functional	 interplay	between	EXT1	and	

the	NOTCH	pathway.		

The	exostin	 (EXT)	 family	of	genes	encodes	glycosyltransferases	 involved	 in	heparan	

sulfate	 (HS)	 biosynthesis.	 Five	 human	members	 of	 this	 family	 have	 been	 cloned	 to	

date:	 EXT1,	 EXT2,	 EXTL1	 (EXT-like	 1),	 EXTL2,	 and	 EXTL3.	 EXT1	 and	 EXT2	 form	 a	

golgi-located	 complex	 that	 catalyzes	 the	 chain	 elongation	 step	 in	 heparan	 sulfate	

biosynthesis.	 HS	 are	 sulfated	 glycosaminoglycans	 (GAGs)	 distributed	 on	 the	 cell	

surfaces	 and	 in	 the	 extracellular	 matrices	 of	 most	 tissues.	 EXT1	 and	 EXT2	 localize	

predominantly	 to	 the	endoplasmic	reticulum	(ER).	Together	 they	 form	a	complex	 in	

the	golgi	apparatus.	EXT1/EXT2	complex	is	responsible	for	chain	elongation,	and	the	

levels	of	the	individual	proteins	affect	the	polymerization	process.	The	level	of	EXTL3	

also	 affects	 chain	 elongation,	 but	 the	 changes	 indicate	 that	 or	 EXTL3	 must	 be	 an	

initiator	of	HS	chains	283.	HS	proteoglycans	have	been	implicated	in	diverse	number	of	

biological	processes	linked	to	intracellular	signalling,	cell-cell	interactions,	and	tissue	

morphogenesis	 284.	 Mutations	 in	 EXT1	 and/or	 EXT2	 were	 essentially	 linked	 to	

hereditary	 multiple	 exostoses	 (HME).	 Hereditary	 multiple	 exostoses	 (HME)	 is	 an	

autosomal	 dominant	 hereditary	 disorder	 with	 a	 prevalence	 of	 1/100	 000	

characterized	 by	 the	 formation	 of	 cartilage-capped	 tumors,	 known	 as	

osteochondromas	or	exostoses,	which	develop	primarily	on	the	long	bones	of	affected	

individuals	from	early	childhood	until	puberty	285.	Mutations	in	either	EXT1	or	EXT2	

and	the	resulting	reduction	or	absence	of	HS	 in	 the	exostosis	cartilage	cap	has	been	

implicated	 in	 disturbed	 signalling	 response	 in	 exostosis	 chondrocytes	 286,	 287.	

Moreover,	 individuals	 with	 HME	 have	 a	 significantly	 higher	 risk	 than	 the	 general	
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population	 of	 developing	malignancies	 such	 as	 chondrosarcomas	 288,	289.	Mutational	

analysis	of	HME	patients	has	shown	that	inactivating	mutations	in	the	EXT1	and	EXT2	

genes	 are	 responsible	 for	 the	majority	 of	 familial	 cases:	 60–70%	 of	 the	 cases	 have	

mutations	 in	 EXT1.	 The	 role	 of	 EXT1	 as	 a	 classical	 tumor-suppressor	 gene	 was	

strongly	 supported	 by	 two	 sets	 of	 observations:	 the	 formation	 of	 cartilage-capped	

tumors	 and	 a	 higher	 risk	 of	 cartilaginous	 and	 bone	 malignancies	 in	 HME,	 and	 the	

presence	of	 genomic	 and	 chromosomal	 abnormalities	 at	 the	EXT1	 locus	 in	 sporadic	

neoplasms	290.		An	interesting	study	showed	that	epigenetic	loss	of	EXT1	disrupts	HS	

synthesis	 in	 cancer	 cells.	 They	 have	 demonstrated	 that	 the	 main	 malignancy	 type	

undergoing	 EXT1	 CpG	 island	 hypermethylation	 is	 leukemia.	 Two	 mechanisms	 of	

disruption	of	HS	 levels	 in	 cancer	 cells	 are	 shown:	 the	blocking	of	HS	production	by	

hypermethylation	 of	 EXT1	 as	 occurs	 in	 APL	 and	 ALL,	 and	 the	 increase	 in	 the	

degradation	of	HS	by	overexpression	of	heparanase,	as	occurs	in	the	vast	majority	of	

solid	tumors,	probably	including	chondrosarcomas	and	osteosarcomas	291.	

	

1.	Validation	of	NICD	interactions	

Our	 yeast	 two-hybrid	 screen	 performed	 for	 Notch	 intracellular	 domain	 with	 the	

human	ORFeome	 version	 5.1	 enabled	 us	 to	 determine	 19	 proteins	 interacting	with	

NICD.	We	wanted	to	validate	the	identified	interactions,	therefore	we	selected	a	set	of	

literature-curated	 interactions	 for	 NOTCH1	 (32	 interactors),	 in	 addition	 to	

interactions	 identified	 by	 our	 Y2H	 screen	 for	 NICD	 (19	 interactors)	 and	 we	 tested	

them	 using	 the	 protein	 complementation	 assay	 (PCA)	 in	 mammalian	 cells.	 	 The	

principle	 of	 this	 technique	 is	 similar	 to	 the	 Y2H	method.	 In	 the	 PCA	 two	 potential	

interacting	 proteins	 (bait	 and	 prey)	 are	 fused	 to	 parts	 of	 the	 Gaussia	 princeps	

luciferase,	and	overexpressed	in	HEK	293	cells,	if	an	interaction	occurs	between	bait	

and	 prey,	 the	 luciferase	 is	 then	 reconstituted	 and	 luciferase	 activity	 is	 measured.	

Luciferase	 normalized	 ratio	 is	 calculated	 for	 each	 interaction,	 and	 according	 to	

Cassonet	et	al.	for	a	calculated	ratio	higher	than	3,5	an	interaction	is	considered	true	

and	validated	 25.	For	 the	51	 tested	 interactions	with	NICD,	we	were	able	 to	validate	

72%	of	our	Y2H	interactions	and	75%	of	literature	(Table	3).		
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Table	3:	Normalized	luciferase	value	calculated	for	Notch1	interactors	tested	in	PCA.	

Iteractor	 NLR	 Source	
DTX2	 2457	 LCI	
AKT1	 551	 Y2H	
B3GALT4	 400	 Y2H	
GOLGA2	 714	 Y2H	
RHOA	 224	 Y2H	
POFUT1	 134	 LCI	
FBXW7	 62	 LCI	
SMAD3	 42	 LCI	
XRCC6	 40	 LCI	
RELA	 32	 LCI	
NUMB	 26	 LCI	
MEF2C	 20	 LCI	
SNW1	 17	 LCI	
YY1	 15	 LCI	
PIK3CG	 14	 LCI	
EXT1	 13	 Y2H	
LCK	 13	 LCI	
COL4A6	 13	 Y2H	
HMGN5	 10	 Y2H	
NUMBL	 6	 LCI	
ADAM17	 6	 LCI	
MAGED1	 6	 Y2H	
XRCC6	 5.6	 LCI	
ARL6IP5	 4.7	 Y2H	
JAG1	 4.6	 LCI	
RBP3	 4.1	 LCI	
GOPC	 3.9	 Y2H	
PSEN1	 3.9	 LCI	
LFNG	 3.7	 LCI	
NOV	 3.6	 LCI	
ADCK5	 3.6	 LCI	
GSK3B	 2.8	 LCI	
DAZAP2		 2.7	 Y2H	
RBPJ	 2.6	 LCI	
LNX2	 2.3	 Y2H	
POU2AF1	 2.1	 Y2H	
ESM1	 1.7	 LCI	
CNTN1	 1.68	 LCI	
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DLL4	 1.6	 LCI	
PSEN2	 1.46	 LCI	
REL		 1.4	 LCI	
KIAA1191	 1.19	 Y2H	
TLE3	 1.3	 Y2H	
PIK3CA	 0.8	 LCI	
LEF1	 0.6	 LCI	
FAM185A	 0.5	 Y2H	
UBC	 0.4	 LCI	
NFKB1	 0.4	 LCI	
NCRNA00260	 0.3	 Y2H	
C6orf182		 0.3	 Y2H	
BLOC1S1	 0.2	 LCI	
	

2.	EXT1	affects	NOTCH1	transactivation	and	protein	level	

EXT1-NICD	interaction	was	validated	by	the	PCA	method,	to	determine	whether	EXT1	

is	 involved	 in	 regulating	 the	 transcriptional	 activation	 of	 Notch1	 target	 genes,	 we	

performed	 Notch-responsive	 luciferase	 reporter	 assays.	 Depletion	 of	 EXT1	 using	

small	 interfering	 RNA	 in	 HeLa	 Notch1∆E-eGFP	 cell	 line	 stably	 expressing	 an	 eGFP-

tagged,	transcriptionally	inactive	and	ligand-independent	Notch1	construct	increased	

the	luciferase	activity	for	Notch	transactivation	with	a	2-time	fold	compared	to	control	

condition	 (Figure	 28	 b).	 A	 similar	 effect	 was	 observed	 in	 HEK293	 cell,	 after	 EXT1	

depletion	 leading	 to	 a	 1.5-time	 fold	 increase	 in	 Notch1	 luciferase	 transactivation	

(Figure	28	c).		



	 	 RESULTS	PART	II	
	

	

	

Figure	28:	EXT1	depletion	promotes	NOTCH1	transcriptional	activity.	 (a)	 Interactions	
between	 NOTCH1,	 EXT1	 and	 FBXW7.	 Grey	 nodes	 represent	 proteins	 associated	 with	
ALL,	 with	 an	 area	 proportional	 to	 the	 number	 of	 distinct	mutations.	 Bleu	 edges	 join	
pairs	of	 interacting	proteins	 for	which	mutations	co-occur	 in	 the	same	samples.	Edge	
widths	 are	 proportional	 to	 the	 number	 of	 samples	with	 co-occurring	mutations.	 The	
green	node	 represent	EXT1	and	grey	edges	 interactions	 identified	 in	Y2H	 (b)	and	 (c)	
Luciferase	 reporter	 assay	 using	 TP1-luciferase	 construct	 in	 HeLa	 Notch∆E-eGFP	 cell	
lines	and	HEK293	cells	respectively.	Cells	were	transfected	with	EXT1	siRNA	or	control	
siRNA	 as	 indicated.	 The	 relative	 luciferase	 values	 are	 normalized	 using	 a	 Renilla	
luciferase	 construct.	 Knock-down	of	 EXT1	was	 analyzed	 by	 qPCR.	Data	 represent	 the	
means	±SEs	of	three	independent	experiments.	**:	p-value	<	0.01,	***:	p-value	<	0.001.	
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Consistent	with	previous	finding,	Notch1	induced	TP1	luciferase	reporter	activity	was	

inhibited	by	EXT1	transfection	in	HEK293	and	HeLa	Notch1∆E-eGFP	cell	lines	by	50%	

and	30%	respectively	(Figure	29).		

	

Figure	29:	EXT1	 inhibits	Notch-1	 transcriptional	activation.	Luciferase	reporter	assay	
using	 TP1-luciferase	 construct	 in	 HEK293	 and	 HeLa	 Notch∆E-eGFP	 cell	 lines	
transfected	 with	 PSG5C	 control	 plasmid,	 NICD	 or	 EXT1	 constructs	 as	 indicated.	 The	
relative	 luciferase	 values	 are	 normalized	 using	 a	 Renilla	 luciferase	 construct.	 Data	
represent	 the	means	±SEs	of	 three	 independent	 experiments.	 *:	 p-value	<	0.05,	 **:	 p-
value	<	0.01,	***:	p-value	<	0.001.	

	

Moreover,	 EXT1	 depletion	 increases	 mRNA	 levels	 of	 expression	 of	 Notch1	 target	

genes:	HES1	and	cMYC	(Figure	30).		
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Figure	30:	EXT1	depletion	increases	mRNA	levels	of	NOTCH1	target	genes.	mRNA	expression	
levels	of	Notch1	target	genes;	cMYC	and	HES1	analysed	by	qPCR	following	EXT1	Knock	down.	
Data	represent	the	means	±SEs	of	three	independent	experiments.	**:	p-value	<	0.01,	****:	p-
value	<	0.0001.	

The	effect	of	EXT1	on	Notch1	transactivation	was	also	confirmed	in	a	zebrafish	model.	

We	 performed	 a	 knockdown	 of	 EXT1	 gene	 using	 EXT1	 morpholino	 designed	 for	

specific	 splice	 blocking	 of	 EXT1b	 ortholog	 in	 transgenic	 zebrafish	 line	

Tg(Tp1bglob:eGFP)um13	expressing	fluorescent	marker	eGFP	under	the	control	of	a	

Notch-responsive	element	TP1,	this	line	can	report	on	Notch	signalling	activity.		

	

Figure	 31:	 EXT1	 depletion	 promotes	 NOTCH1	 transcriptional	 activity	 in	 zebrafish.	 A	
zebrafish	transgenic	line	Tg(Tp1bglob:eGFP)um13,	reporter	for	Notch1	transcriptional	
activity,	were	treated	with	control	or	Ext1b	ortholog-targeted	morpholinos.		Left	panel	
represents	TP1	bglob:hngb1-eGFP	construct.	The	graph	represents	the	percentage	eGFP	
cells	sorted	by	FACS.	Data	represent	the	means	±SEs	of	three	independent	experiments.	
**:	p-value	<	0.01.	
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The	percentage	of	GFP	cells	measured	in	FACS	was	increased	by	40%	following	EXT1	

depletion,	compared	to	condition	with	control	morpholinos	(figure	31).		

	
	

	

Figure	 32:	 EXT1b	 knockdown	 in	 transgenic	 zebrafish	 line	 Tg	 (Tp1bglob:eGFP)um13.	
Embryos	were	 injected	with	 EXT1b	morpholino	 or	 control	morpholino	 both	with	 an	
mcherry	 expressing	 construct.	 Forty-two	 hours	 post	 fertilization	 embryos	 were	
observed	 under	 confocal	 microscopy.	 This	 transgenic	 zebrafish	 line	 can	 report	 on	
Notch-signalling	 activity,	when	 signalling	 is	 activated	 eGFP	 is	 expressed	 (green).	 Red	
staining	 marks	 either	 Mocontrol	 or	 MoEXT1b	 in	 the	 upper	 and	 lower	 panel	
respectively.	Embryos	injected	with	MoEXT1b	represent	malformation	in	the	head	and	
heart	edema.	

	

The	 advantage	 of	 using	 HeLa	 N1ΔE-eGFP	 cell	 line	 is	 that	 we	 can	 easily	 determine	

Notch1	 localization	 in	 confocal	microscopy.	HeLa	N1ΔE-eGFP	 cells	were	 transfected	

with	 mcherry	 tagged	 EXT1	 plasmid	 and	 we	 followed	 EXT1	 and	 Notch-eGFP	

localization	 in	 time-lapse	 confocal	 microscopy.	 We	 used	 Nikon	 A1	 confocal	

microscope	that	took	images	of	fixed	areas	in	transfected	wells	every	20	minutes	for	

12	hours	and	we	made	a	movie	of	eGFP	cells	with	EXT1-mcherry.	We	observed	that	

when	EXT1-mcherry	is	produced	in	the	cell,	GFP	fluorescence	_representing	Notch1_	

is	reduced	over	time	(Figure	33,	movie).	
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Figure	33:	EXT1	reduces	NOTCH1	levels	in	HelaNotch1∆EeGFP	cells.	Confocal	images	of	
HeLaNotch1∆E-eGFP	 cells	 transfected	 with	 EXT1-mCherry	 during	 time	 -	 lapse	
experiment.	 Green	 and	 red	 labeling	 correspond	 to	 NOTCH1-GFP	 and	 EXT1-mCherry	
proteins	 localizations,	 respectively.	 White	 arrows	 indicate	 the	 same	 set	 of	 cells	
followed	during	the	time-lapse	in	which	overexpression	of	EXT1	induced	a	decrease	in	
GFP	fluorescence.	

	

We	performed	Notch1	reporter	assay	in	a	system	that	mimics	the	canonical	activation	

of	 Notch	 signalling	 via	 its	 ligand	 in	 vitro	 with	 special	 U2OS	 Tet-on	 flp-in	 cell	 line	

bearing	 isogenic	 transgene	 encoding	 Notch1-Gal4	 receptor	 co-cultured	 with	 K562	

cells	 expressing	 DLL4	 ligand	 that	 can	 activate	 NOTCH1.	 EXT1	 overexpression	

decreased	Notch	 transactivation	 in	 both	 conditions	 for	 U2OS	 cells	 co-cultured	with	

control	or	DLL4	expressing	cells.	We	calculated	the	activation	ratio	by	DLL4	ligands,	in	

presence	and	absence	of	EXT1,	and	observed	no	difference	 in	 the	activation	rate	by	

Notch1-eGFP EXT1-mcherry Merge
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the	ligand	suggesting	that	EXT1	does	not	affect	NOTCH1	ligand	dependent	activation	

(Figure	34).		

	

	

Figure	34:	 EXT1	 inhibits	Notch-1	 transcriptional	 activation	 in	U2OS	N1-Gal4	 cell	 line.	
Luciferase	 reporter	 assay	 using	 Gal4-luciferase	 construct	 in	 U2OS	 N1-Gal4	 cell	 line	
transfected	with	PSG5C	control	plasmid	or	EXT1	construct	and	co-cultured	with	K562	
control	cells	or	K562	cells	expressing	Notch	ligand	DLL4	as	indicated.	Activation	ratio	
by	DLL4	expressing	cells	compared	to	control	K562	cells	was	calculated	in	both	control	
and	 EXT1-overexpression	 conditions	 as	 indicated.	 Data	 represent	 the	means	 ±SEs	 of	
three	independent	experiments,	each	performed	in	triplicate.	*:	p-value	<	0.05.	

	

These	 observations	 confirm	 that	 EXT1	 has	 an	 effect	 on	 Notch1	 signalling	 at	

transcriptional	level,	 inhibiting	its	transactivation	and	some	of	NOTCH1	target	genes	

transcription.	We	also	showed	that	this	effect	is	independent	of	receptor	activation	by	

the	ligand	at	the	cell	surface.		

	
3.	EXT1	regulates	NOTCH1	degradation	through	FBXW7	
	
One	of	 the	main	reasons	 for	selecting	EXT1-NOTCH1	interaction	was	that	EXT1	also	

interacts	 with	 FBXW7	 that	 regulates	 NICD	 proteasomal	 degradation.	 The	

transcriptional	 effect	 observed	 previously	 does	 not	 exclude	 that	 EXT1	might	 play	 a	

role	 in	 the	 regulation	 of	 Notch1	 protein	 levels	 may	 be	 through	 promoting	 its	

degradation.		

Previously	we	have	validated	EXT1-NICD	 interaction	 in	mammalian	cells.	We	 tested	

FBXW7-NICD	interaction	using	PCA	and	we	were	also	able	to	validate	this	interaction	

with	 a	 NLR	 ≈	 15.	 Overexpression	 of	 EXT1	 with	 both	 NICD-GL1	 and	 FBXW7-GL2	
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vectors	induces	10-fold	increase	in	calculated	NLR	(Figure	35).		

	

Figure	 35:	 Validation	 of	 NICD-EXT1-FBXW7	 interactions	 using	 PCA	 method.	 Protein	
complementation	assay	in	HEK	cells	transfected	with	NICD-Gluc1	and/or	FBXW7-Gluc2,	
in	addition	to	EXT1-yfp	as	indicated	in	the	X-axis,	Normalized	Luciferase	Value	(NLR)	is	
represented	by	the	Y-axis.	

	

Next,	we	determined	whether	EXT1	plays	a	role	in	the	regulation	of	NICD	protein	level	

by	 using	western	 blot	 analysis	 in	 HEK393	 cells.	 The	 cells	were	 co-transfected	with	

Flag-tagged	NICD	 and	 YFP-tagged	 EXT1.	We	 observe	 a	 downregulation	 of	 the	NICD	

protein	level	with	co-expression	of	EXT1	(figure	36	a).			
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Figure	36:	EXT1	regulates	NOTCH1	degradation	through	proteasomal	degradation.	(a)	
and	 (b)	 HEK293	 cells	 were	 transfected	 with	 NICD-Flag	 and	 EXT1-YFP	 expressing	
plasmids	 as	 indicated.	 Eighteen	 hours	 post-transfection	 cells	 were	 treated	 with	
proteasomal	 inhibitor	MG132	 for	6	hours	and	 lysates	analyzed	by	western	blot	using	
anti-Flag	M2	 and	 anti-GFP	 antibodies.	 (c)	 HeLaNotch1∆E-eGFP	 cells	were	 transfected	
with	EXT1-YFP	expressing	plasmid	as	indicated.	Eighteen	hours	post	transfection,	cells	
were	treated	with	proteasomal	inhibitor	MG132	for	6	hours	and	lysates	were	analyzed	
by	western	blot	using	a	NICD	antibody.	

	

A	similar	effect	of	was	observed	in	HeLaNotch1ΔE-eGFP	cells	transfected	with	EXT1-

yfp,	 showing	a	downregulation	of	NICD	protein	 level	 (Figure	36	c).	Moreover,	EXT1	

depletion	using	specific	siRNA	induced	an	upregulation	of	NICD	protein	levels	in	both	

HEK293	and	HeLaNotch1∆E-eGFP	cell	lines	(Figure	37	a	and	b	respectively).				

We	 evaluated	 the	 involvement	 of	 EXT1	 in	 the	 NICD	 proteasome-dependent	

degradation	 pathway	 by	 performing	 western	 blot	 analysis.	 NICD	 protein	 level	 was	

lower	 in	 HEK293	 cells	 overexpressing	 EXT1	 than	 in	 cells	 transfected	 with	 control	

plasmid	 (Figure	 36	 a,	 lanes	 3	 and	4	 and	36	b,	 lanes	 1	 and	2),	 and	 the	 treatment	 of	

MG132	 enhanced	 the	 NICD	 protein	 level	 by	 inhibiting	 proteasomal	 degradation	

(figure	36	b	 lanes	2	and	4).	This	 result	was	also	confirmed	 in	HeLa	Notch1∆E-eGFP	

cell	line	with	a	similar	observation	(Figure	36	c).	In	addition,	NICD	protein	level	was	

higher	 in	 EXT1-depleted	 Hela	 Notch1∆E-eGFP	 cells	 than	 in	 cells	 transfected	with	 a	

control	siRNA	(Figure	37	b,	lanes	1	and	2),	and	the	treatment	of	MG132	enhanced	the	

NICD	protein	level	by	inhibiting	proteasomal	degradation	(Figure	37	b,	lanes	3	and	4).	
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Figure	 37:	 EXT1	 depletion	 increases	 NICD	 preotein	 levels.	 (a)	 HEK293	 cells	 were	
transfected	with	siRNA	for	EXT1	or	a	siRNA	control	using	calcium	phosphate.	Twenty-
four	hours	post-transfection	cells	were	transfected	with	NICD-Flag	expressing	plasmid	
as	 indicated,	 and	 after	 24	 hours	 lysates	 analyzed	 by	western	 blot	 using	 anti-Flag	M2	
antibody.	 Knock-down	 of	 EXT1	 was	 analyzed	 by	 qPCR.	 (b)	 HeLaNotch1∆E-eGFP	 cells	
were	transfected	with	EXT1	siRNA	or	control	siRNA	as	indicated.	Forty	two	hours	pot-
transfection,	 cells	 were	 treated	 with	 proteasomal	 inhibitor	 MG132	 for	 6	 hours	 and	
lysates	 were	 analyzed	 by	 western	 blot	 using	 a	 NICD	 antibody.	 Relative	 mRNA	
expression	 levels	 of	EXT1	analyzed	by	qPCR.	Data	 in	 the	 graphs	 represent	 the	means	
±SEs	of	three	independent	experiments,	each	performed	in	triplicate.	**:	p-value	<	0.01,	
***:	p-value	<	0.001.	

	

We	 tested	 the	 involvement	 of	 FBXW7	 in	 the	 degradation	 of	 NICD	 by	 EXT1.	 FBXW7	

depletion	in	HEK293	cells	using	specific	siRNA	targeting	Fbxw7,	can	partially	recover	

and	 enhance	 NICD	 protein	 level	 in	 the	 presence	 of	 EXT1	 (Figure	 38).	 This	 result	

indicate	 that	 downregulation	 of	 NICD	 by	 EXT1,	 occurs	 in	 part,	 via	 an	 FBXW7-

dependent	mechanism.		
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Figure	38:	EXT1	regulates	NOTCH1	degradation	through	FBXW7.	(a)	HEK293	cells	were	
transfected	with	siRNA	for	FBXW7	or	a	siRNA	control	using	calcium	phosphate.	Twenty-
four	 hours	 post-transfection	 cells	 were	 transfected	 with	 NICD-Flag	 and	 EXT1-YFP	
expressing	plasmids	as	indicated.	Twenty-four	hours	later	lysates	analyzed	by	western	
blot	using	anti-Flag	M2	and	anti-GFP	antibodies.	(b)	Relative	mRNA	expression	levels	of	
FBXW7	 analyzed	 by	 qPCR.	 Data	 represent	 the	 means	 ±SEs	 of	 three	 independent	
experiments,	performed	in	triplicate.	***:	p-value	<	0.001.	

	

	
4.	Genes	coregulated	by	EXT1	and	FBXW7		
	
To	 confirm	 the	 potential	 interplay	 between	 EXT1	 and	 FBXW7	 we	 performed	 RNA	

sequencing	 on	 total	 RNA	 extracted	 from	 HeLa	 Notch1∆E-eGFP	 cell	 line	 in	 three	

different	 conditions.	 Cells	 were	 silenced	 for	 EXT1	 or	 FBXW7	 genes	 using	 specific	

siRNA	and	siRNA	control	for	the	control	condition	292,	293.	We	were	able	to	identify	sets	

of	 genes	 that	 are	 differentially	 expressed;	 up	 or	 down	 -	 regulated	 compared	 to	 the	

control	condition	(figure	39	a).	The	intersection	in	the	Venn	diagram	with	479	genes	

represents	co-regulated	genes;	accounting	for	22%	and	30%	of	deregulated	genes	for	

siEXT1	and	siFBXW7	knockdown	conditions	respectively.	We	analyzed	the	set	of	“co-

regulated”	genes	using	ToppFun	 for	gene	 list	analysis	 functional	annotation,	and	we	

were	able	to	categorize	them	into	49	clusters.		
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Figure	 39:	 Genes	 coregulated	 by	 EXT1	 and	 FBXW7.	 (a)	 HeLa	 Notch∆E-eGFP	 were	
treated	siRNA	for	EXT1,	FBXW7	or	a	control	siRNA.	Relative	mRNA	expression	levels	of	
EXT1	 and	 FBXW7	were	 then	 analyzed	 by	 qPCR	 and	 RNA	 samples	 subjected	 to	 high	
throughput	 Illumina	 sequencing	 (RNA-seq).	 Ven	 diagrams	 represent	 a	 comparison	
between	 deregulated	 genes	 following	 knock	 down	 of	 EXT1	 or	 FBXW7.	 (b)	 Relative	
mRNA	 expression	 levels	 of	 EXT1	 and	 FBXW7	 analyzed	 by	 qPCR.	 Data	 in	 the	 graphs	
represent	 the	 means	 ±SEs	 of	 three	 independent	 experiments,	 each	 performed	 in	
triplicate.	

	

	

Interestingly	 the	 most	 relevant	 GO-term	 corresponding	 to	 the	 top	 5	 molecular	

functions	 with	 the	 lowest	 p-values	 (supplemental	 table	 S7)	 were	 linked	 to	

phosphorylation	 and	 kinases	 activities.	 Substrate	 recognition	 by	 FBXW7	 requires	

phosphorylation	of	its	substrates	including	c-MYC,	NOTCH,	c-JUN,	cyclin-E	and	mTOR	
294,	suggesting	that	EXT1	could	also	play	a	role	in	FBXW7-substrates	recognition.	
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Figure	40:	Gene	ontology	enrichment	analysis	of	common	deregulated	genes.	The	479	
genes	 coregulated	 by	 EXT1	 and	 FBXW7	 were	 analyzed	 for	 molecular	 function	
enrichment	 using	 ToppFun	 for	 gene	 list	 analysis	 functional	 annotation.	 This	 graph	
represents	the	top	5	most	relevant	GO-terms	corresponding	to	lowest	p-values	among	
GO-terms.	The	Y-axis	represents	the	top	5	GO-terms,	the	X-axis	the	number	of	genes	for	
contained	 in	each	GO-term.	P-value	corresponding	 to	each	 term	 is	represented	 in	 the	
graph.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 .																																														
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DISCUSSION	PART	II	
	
Several	examples	can	illustrate	the	effectiveness	of	using	the	“interactomes”	approach	

for	the	identification	of	novel	cancer	related	genes.	As	we	have	prioritized	ALL-gene	

products,	 the	 exostin	 glysosyltransferase	 1	 (EXT1)	 gene	 grabbed	 our	 attention	 for	

several	 reasons;	 first	 for	 being	 a	 novel	 interaction	 linked	 to	 two	 of	 the	 ALL-gene	

products:	NOTCH1	and	FBXW7,	second	for	being	already	implicated	in	an	other	type	

of	cancer	(osteosarcoma)	via	inactivating	mutations.		

	

Validation	of	interaction	in	NOTCH1	interactome	
	

Before	exploring	the	relationship	between	EXT1	and	NOTCH1	we	analysed	the	Notch1	

interactome	and	proceeded	to	the	validation	of	the	identified	interactions.	

Our	 yeast	 two-hybrid	 screen	 performed	 for	 Notch	 intracellular	 domain	 with	 the	

human	ORFeome	 version	 5.1	 enabled	 us	 to	 determine	 19	 proteins	 interacting	with	

NICD.	Among	these	NICD	partners,	AKT1	has	been	reported	previously	for	interacting	

with	Notch	signalling	and	being	essential	for	neural	development	through	regulation	

of	 this	 signalling	pathway.	 It	was	demonstrated	 that	both	AKT	and	Notch	 signalling	

pathways	 interact	 through	 complex	 molecular	 interactions	 in	 development	 295,	 296.	

Several	data	showed	that	Notch	can	affect	AKT	signalling	and	AKT1	also	affects	Notch	

signalling	but	their	direct	interaction	was	not	previously	demonstrated.		

Among	 the	 identified	NICD	 partners,	 AKT1,	 RhoA,	 LNX2	 and	TLE3	 can	 be	 linked	 to	

Notch	signalling	according	to	data	published	in	literature.	

Recently	 it	 was	 demonstrated	 that	 RhoA/Rho	 kinase	 is	 regulated	 by	 Notch	 in	

endothelial	 cells,	 promoting	 senescence	 phenotype	 associated	 with	 barrier	

dysfunction	297.	RhoA	is	a	member	of	Ras	family	of	small	GTPases	that	we	identified	in	

our	 screen	 as	 a	 partner	 of	 Notch1.	 In	 fact,	 Notch	 and	 Rho	 GTPase	 signalling	 were	

previously	 shown	 to	 control	 dendritic	 development	 298.	 Activation	 of	 RhoA	 in	 a	

number	of	different	cell	types	appears	to	limit	dendritic	growth,	whereas	activation	of	

Notch	 appears	 to	 restrict	 dendritic	 growth	 and	 promote	 dendritic	 branching	 by	

regulating	the	activation	of	members	of	Rho	GTPase	family.	As	shown	for	AKT1,	RhoA	
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might	 be	 affected	 by	Notch	 signalling.	We	 are	 the	 first	 to	 show	 a	 direct	 interaction	

between	Notch1	and	RhoA.	

LNX2	 in	 the	 ligand	 of	 Numb	 X	 2,	 LNX	 is	 a	 RING	 finger	 and	 PDZ	 domain	 containing	

protein	that	interacts	with	the	cell	fate	determinant	Numb.	Numb	was	identified	as	a	

substrate	 ubiquitinated	 by	 LNX	 which	 is	 considered	 as	 the	 first	 example	 of	 an	 E3	

ligase	that	appears	to	involve	PDZ	domains	for	substrate	recognition	299.	It	 is	known	

that	 proteins	 with	 PDZ	 domains	 often	 interact	 with	 the	 cytoplasmic	 tails	 of	

transmembrane	 proteins	 and	 localize	 to	 discrete	 sub-membranous	 sites.	 Therefore,	

the	 LNX	 PDZ	 domains	 may	 be	 involved	 in	 the	 recognition	 of	 transmembrane	

receptors,	 which	 may	 in	 turn	 be	 substrates	 for	 ubiquitylation	 by	 LNX.	 This	

explanation	could	be	valid	for	LNX2	and	NOTCH1,	on	the	other	hand	Numb	promotes	

Notch	ubiquitination	and	degradation.	Numb	can	 interact	with	other	 factors	such	as	

Itch	to	promote	Notch	degradation.	Knowing	that	Numb	can	bind	LNX2,	we	speculate	

that	 LNX2	 might	 be	 involved	 in	 Notch1	 ubiquitination	 via	 Numb	 also.	 These	

hypothesis	need	to	be	investigated,	and	are	not	part	of	our	analysis.	

TLE	family	has	been	implicated	in	tumorigenesis	and	has	been	shown	to	interact	with	

and	modulate	 the	Notch	pathway,	via	phosphorylation	by	mitogen-activated	protein	

kinase	(MAPK)	in	response	to	epidermal	growth	factor	receptor	(EGFR)	signalling	300.	

TLE3	have	been	shown	to	interact	with	the	Notch	pathway	for	the	control	of	epithelial	

differentiation	 301,	302.	 TLE	 family	 also	 act	 as	 important	 effectors	 of	Notch	 signalling	

through	their	interactions	with	Hes	proteins,	and	the	deregulation	of	Notch	signalling	

has	been	implicated	in	the	pathogenesis	of	some	cancers.	

	

We	represent	the	19	proteins	 identified	in	the	Y2H	in	table	4,	with	known	functions	

described	for	each	protein.	
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Table	4:	NICD	interacting	protein	partners	identified	in	the	Y2H	screen.	

Gene	 Pubmed-Id	 Annotation	 Protein	function	

AKT1	 207	 V-akt	 murine	 thymona	 viral	 incogene	
homolog	1	

Serine-threonine	protein	kinase		

ARL6IP5	 10550	 ADP-Ribosylation-Like	 Factor	 6	 Interacting	
Protein	5	

The	encoded	protein	associated		
with	the	cytoskeleton	

B3GALT4	 8705	 UDP-Gal	 beta	 GLcNAc	 beta	 1,3-
galactosyltransferase	polypeptide	4	

Type	II	glycoprotein	

COL4A6	 1288	 Collagen	type	IV	alpha	6	 Gene	 encoding	 one	 of	 the	 six	
subunits	
	of	 type	 IV	 collagen	 the	 major	
structural		
component	 of	 basement	
membranes	

C1orf217	 84719	 Chromosome	1	open	reading	frame	217	 Long	 intergenic	 non-protein	
	coding	RNA	260	

C6orf182	 285753	 Chromosome	6	open	reading	frame	182	 		

C9orf62	 157927	 Chromosome	9	open	reading	frame	62	 Non	coding	region	

DAZAP2	 9802	 DAZ	associated	protein	2	 Proline	 rich	 protein	 interacts	
	with	 several	 proteins	 such	 as	
	E3	ubiquitin	ligases	

EXT1	 2131	 Exostin	glycosyltransferase	1	 Endoplasmic	 reticulum	 resident	
type	 II	
	transmembrane	
glycosyltransferase	
	involved	 in	 Heparan	
Sulfatebiosynthesis	

FAM185A	 222234	 Family	 with	 sequence	 similarity	 185,	
member	A	

		

GOLGA2	 2801	 golgin	A2	 Protein	 playing	 roles	 in	 the	
stacking	
	of	 Golgi	 cisternae	 and	 in	
vesicular	transport	

GOPC	 57120	 Golgi	 associated	 PDZ	 and	 coiled-coil	 motif	
containing	

		

HMGN5	 79366	 High	 mobility	 group	 nucleosome	 binding	
domain	5	

Nucleosomal	 binding	 and	
transcriptional	
	activating	protein	

LNX2	 222484	 Ligand	of	numb-protein	X	2	 		

NCRNA00
260	

84719	 Non-protein	coding	RNA	260	 		

POU2AF1	 5450	 POU	Classe	2	Associating	Factor	1	 Gene	 related	 to	 transcription	
coactivator	
	activity	 and	 transcription	
cofactor	activity	

RHOA	 387	 Ras	homology	family	member	 Member	 of	 the	 Rho	 family	 of	
GTPases	

TLE3	 7090	 Transducin-like	enhancer	of	split	3	 Transcriptional	 co-repressor		
protein-function	 in	 Notch	
pathway-associated		
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Though	 the	 Y2H	 is	 a	 stringent	 method	 for	 identifying	 protein-protein	 interactions	

(PPIs),	 it	 requires	 cross-validation	 to	 increase	 coverage	 and	 accuracy,	 which	 is	 the	

case	 for	 any	 other	 information	 provided	 by	 a	 certain	 screening	 methods	 for	 PPIs.	

Therefore	it	was	important	to	test	a	set	of	NOTCH1	interactions	from	both	literature-

curated	 interactions	 and	 Y2H	 interactions.	 The	 result	 obtained	 using	 the	 protein	

complementation	assay	is	very	promising	for	the	set	of	interactions	that	we	extracted	

from	 our	 Y2H	 screen,	 with	 a	 rate	 comparable	 to	 the	 one	 obtained	 for	 literature	

interactions	(table	3).		

	

Notch1	-	EXT1	a	novel	interaction		

If	we	 take	 a	 closer	 look	 to	 the	NOTCH1	 and	FBXW7	 interactomes	merged	 together,	

with	interactions	extracted	from	literature	(BioGRID,	HPRD	and	IntAct	databases)	and	

from	 our	 Y2H	 screen	 we	 identify	 2	 common	 interactors:	 PSEN1	 and	 EXT1	 as	 it	 is	

shown	in	figure	41.	The	interactomic	map	highlights	novel	Y2H	interactions	for	both	

Notch1	 and	 FBXW7	 represented	 in	 red,	 as	 for	 literature-curated	 interactions	 (LCI)	

they	are	represented	in	grey.	Apart	from	being	known	to	directly	interact,	Notch1	and	

its	 E3	 ubiquitin	 ligase	 FBXW7	 have	 a	 common	 interactor	 PSEN1,	 reported	 in	

literature.	 PSEN1	 belongs	 to	 the	 family	 of	 presenilin	 basically	 known	 for	 being	

mutated	 in	 patients	 with	 Alzheimer’s	 disease.	 Presenilins	 are	 implicated	 in	 the	

regulation	 of	 Notch	 signalling	 through	 affecting	 the	 receptors	 cleavage	 at	 the	 cell	

surface.	 PSEN1,	with	 PSEN2	 form	 the	 central	 components	 of	 γ-secretase	 complexes	

that	 are	 required	 for	 intra-membrane	 cleavage	 of	 over	 70	 different	 substrates	

including	Notch1.	Psen1	is	a	critical	facilitator	of	Notch	signalling	and	other	signalling	

pathways	303.	On	the	other	hand	PSEN1	is	a	substrate	of	FBXW7.	

Another	common	interactor	linking	NOTCH1	and	FBXW7	interactomes	was	EXT1.	
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Figure	41:	NOTCH1	and	FBXW7	interactomes.	The	grey	nodes	represent	NOTCH1	and	
FBXW7,	while	purple	and	green	nodes	represent	 interactors	 from	 literature	and	Y2H	
respectively.		

	

	
The	 link	 between	 FBXW7	 and	 Notch1	 is	 well	 established,	 as	 re-visited	 in	 our	

introduction	section.		EXT1	was	described	in	the	biosynthesis	of	heparin	sulfate	(HS),	

and	mutations	 in	EXT1	are	 associated	 to	multiple	 exostosis;	 a	 dominantly	 inherited	

genetic	 disorder	 characterized	 by	 multiple	 cartilaginous	 tumors.	 Heperan	 sulfate	

proteoglycans	 are	 expressed	 at	 the	 cell	 surface	 of	 nearly	 all	 vertebrates.	One	of	 the	

important	 function	 of	 heparan	 sulfate	 proteoglycans	 is	 to	 modulate	 signalling	 via	

mediating	 the	 formation	 of	 ligand	 receptor	 complexes	 304.	 Knowing	 that	 EXT1	

essential	function	is	linked	to	the	HS,	the	first	question	we	asked	is	whether	it	affects	

Notch1	 signalling	 at	 the	 cell	 surface	 through	 HS	 regulation.	 The	 answer	 to	 this	

question	was	 clarified	when	 analysing	 the	 effect	 of	 activating	 the	Notch1	 signalling	

through	DLL4	 ligand	 in	U2OS	 cell	 line.	 The	 rate	 of	 activation	by	 the	 ligand	was	not	

affected	by	EXT1	overexpression.		

Using	NOTCH1	transcriptional-responsive	 luciferase	reporter	assay,	we	showed	that	

depletion	 of	 EXT1	 using	 small	 interfering	 RNA	 increased	 NOTCH	 transactivation	

activity	 in	 different	 cell	 lines	 (Figure	 28).	 	We	 also	 showed	 that	 depletion	 of	EXT1	
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increases	mRNA	expression	levels	of	two	important	NOTCH1-target	genes:	HES1	and	

MYC	 (Figure	 30).	 Consistent	 with	 this	 finding,	 over-expression	 of	 EXT1	 inhibits	

NOTCH1-transactivation	in	different	cell	lines	(Figures	29	and	34)	and	correlates	with	

a	reduction	of	NICD	protein	levels	(Figure	33	and	time-lapse	video).	We	confirmed	the	

effect	 of	 EXT1	 on	 NOTCH1	 pathway	 using	 a	 zebrafish	 in	 vivo	 model.	 We	 treated	

transgenic	 zebrafish	 line	 Tg(Tp1bglob:eGFP)um13	 expressing	 fluorescent	 marker	

eGFP	 under	 the	 control	 of	 a	 Notch-responsive	 element	 TP1,	 with	 morpholino	

targeting	 EXT1	 b	 zebrafish	 orholog.	 	 As	 shown	 on	 Figure	 32,	 we	 observed	 a	 40%	

increase	 cells	 expressing	 Notch	 activity	 following	 depletion	 of	 EXT1	 zebrafish	

orthologs.	

FBXW7	is	an	E3	ubiquitin	ligase	regulating	NOTCH1	proteasomal	degradation	305.	To	

determine	 whether	 EXT1	 interferes	 with	 FBXW7	 –	 NOTCH1	 association,	 we	 first	

showed	that	the	interaction	between	NOTCH1	and	FBXW7	was	dramatically	enhanced	

in	the	presence	of	EXT1	(Figure	35).		Then,	we	showed	that,	in	the	presence	of	EXT1,	

the	 level	 of	 NOTCH1	 intracellular	 domain	 (NICD)	 is	 reduced	 in	 a	 proteasome-

dependent	 manner	 (Figure	 36	 b	 and	 c:	 compare	 presence	 and	 absence	 of	 MG132	

proteasome	 inhibitor).	 Interestingly,	we	also	 showed	 that	 reduced	 levels	of	NICD	 in	

the	presence	of	EXT1	are	FBXW7-dependent		(Figure	38).	To	more	deeply	analyze	the	

functional	relationship	between	EXT1	and	FBXW7	in	regulating	cellular	homeostasis,	

a	 function	well	 known	 for	FBXW7	 305,	we	performed	a	genome-wide	analysis	of	 the	

transcriptome	 of	 HeLa-NICDdeltae-GFP	 306	 depleted	 for	 EXT1	 or	 FBXW7.	 	 We	

identified	479	mRNAs	co-regulated	by	both	EXT1	and	FBXW7,	which	represent	more	

than	30%	of	FBXW7	targets	(Figure	39).	 	Functional	annotation	enrichment	analysis	

of	these	EXT1/FBXW7	co-regulated	genes	finally	indicated	a	significant	enrichment	in	

genes	encoding	for	kinases	including	cyclin-dependent	and	MAP	kinases	(Figure	40).			

Kinases	 play	 an	 essential	 role	 in	 cell	 cycle	 regulation,	 and	 protein	 phosphorylation	

regulates	 most	 aspects	 of	 cell	 life	 307.	 Deregulation	 of	 kinase	 mechanism	 leads	 to	

disease	 and	 cancer	 development,	 therefore	 Kinases	 are	 intensively	 studied	 as	 anti-

cancer	 drugs	 through	 the	 developing	 inhibitor	 candidates	 that	 are	 able	 to	 arrest	

proliferation	 and	 induce	 apoptosis	 308.	 FBXW7	 is	 known	 to	 regulate	 proteasomal	

degradation	 of	 a	 large	 number	 of	 proteins,	 in	 a	 mechanism	 dependent	 of	

phosphorylation	 activity	 that	 is	mediated	 by	 kinases	 and	 cyclin-dependent	 kinases.	
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Recent	 studies	 demonstrated	 that	 GATA3	 is	 a	 novel	 target	 of	 FBXW7,	 and	 its	

degradation	 depends	 on	 CDK2	 309	 and	 CDK1	 310	 kinases.	 GSK3B	 is	 also	 one	 of	 the	

kinases	that	are	crucial	for	FBXW7-dependent	degradation,	for	MYC,	JUN,	cyclin	E	and	

NOTCH1	proteins195.	It	is	not	surprising	to	find	that	FBXW7	depletion	can	affect	a	set	

of	genes	encoding	proteins	implicated	in	the	kinase	and	phosphorylation	pathway.		As	

for	EXT1,	the	link	with	kinases	was	described	through	the	role	of	heparan	sulfate	for	

proper	 binding	 of	 growth	 factor	 to	 its	 kinase	 receptor.	 Among	 growth	 factors,	

fibroblast	 growth	 factors	 (FGFs)	 depend	 on	 heparan	 sulfate	 proteoglycans	 (HSPGs)	

for	 cell	 signalling	 activity,	 and	 FGFs	 act	 through	 tyrosine-kinase	 receptors.	 These	

components	 form	 a	 complex	 at	 cell	 surface	 leading	 to	 the	 phosphorylation	 of	 the	

receptor	 and	 therefore	 triggering	 the	 activation	 of	 signalling	 cascades.	 This	 role	 of	

EXT1	role	was	described	 in	growth	factor	signalling	and	fibroblast	 interactions	with	

the	extracellular	matrix	311,	312.	 	However	EXT1	association	with	kinases	activity	was	

not	previously	established.	

Our	 data	 suggest	 a	 novel	 role	 of	 EXT1.	 Performing	 RNA-seq	 transciptome	 analysis	

combined	 with	 enrichment	 analysis	 confirmed	 that	 EXT1	 is	 functionally	 linked	 to	

FBXW7,	 probably	 through	 priming	 kinases	 and	 substrates	 such	 as	 Notch1	 towards	

proteasomal	degradation.		
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CONCLUSION	AND	PERSPECTIVES	
	
The	sequencing	of	different	cancer	genomes	allows	identification	and	characterization	

of	 mutated	 genes	 in	 cancer	 samples.	 However,	 the	 development	 of	 genome-based	

therapies	 requires	 greater	 knowledge	 of	 the	 specific	 driver	 genes	 implicated	 in	

diverse	 cancer	 types	 and	 subtypes.	 Prioritization	 of	 cancer-implicated	 genes	 has	

received	 growing	 attention,	 using	 a	 multitude	 of	 tools	 that	 integrate	 data	 source	

covering	gene	sequences	and	mutations,	protein	interactions,	signalling	pathways	and	

function	 annotations.	 Studies	 nowadays	 tend	 to	 analyze	 cancer	 types	 and	 disease	

development	 from	 a	 global	 point	 of	 view	where	 a	 complete	 spectrum	 of	 “omics”	 is	

involved,	 including	 genomics,	 transcriptomics,	 proteomics,	 and	 metabolomics	 in	

addition	 to	 their	 interactions	 and	 relationships	 with	 other	 phenotypes.	 In	 2012,	

Moreau	 and	Tranchevent	 published	 an	 interesting	 review	describing	 computational	

tools	 for	 prioritizing	 candidate	 genes	 that	 were	 classified	 into	 4	 strategies	 as	 it	 is	

shown	in	figure	42.		

The	 Filtering	 strategy	 relies	 on	 reducing	 the	 list	 of	 candidates	 that	 fulfill	 specific	

properties	into	a	smaller	 list.	The	disadvantage	of	this	method	is	higher	rate	of	false	

negative	due	to	strict	filtering	criteria.	While	ranking	methods	classify	the	candidates	

according	 to	 multiple	 criteria.	 Text-mining	 depends	 on	 defining	 disease-relevant	

keywords	 to	 identify	 promising	 candidates.	 Similarity	 profiling	 combines	 both	

knowledge	 bases	 and	 raw	data	 in	 order	 to	 determine	 candidate	 genes	 according	 to	

their	 similarity	 to	 already	known	genes	 for	 a	 specific	disease.	Network	analysis	has	

recently	become	popular	 for	 gene	prioritization,	having	 the	advantage	of	 expanding	

the	potential	candidates	according	to	relationships	between	nodes.		
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Figure	 42:	 Computational	 strategies	 for	 prioritization.	 Prioritization	methods	 can	 be	
classified	 into	 a	 filtering	 strategy	 and	 three	 ranking	 strategies.	 (a)	 Filtering	 strategy,	
(b)	text-mining	strategy,	(c)	Similarity	profiling	and	data	fusion	strategy,	(d)	Network-
based	strategy.	Adapted	from	313.	

	

The	goal	of	data	integration	in	network-based	prioritization	is	to	identify	nodes	of	the	

network	that	are	relevant	to	the	disease	or	biological	process	of	interest	rather	than	

infer	 the	 edges	 of	 the	 network. So	 instead	 of	 only	 prioritizing	 genes	 in	 isolation,	

generating	 hypotheses	 about	 potential	 interactions	 would	 increase	 the	 value	 of	

prioritizing	 methods	 leading	 to	 hypotheses	 that	 can	 be	 tested	 experimentally	 for	

biological	 validation	 313.	 In	 addition,	 combining	 multiple	 methods	 in	 parallel	 can	

improve	the	quality	of	predictions.		

It	 has	 been	 observed	 that	 cancer	 proteins	 are	 inter-connected	 in	 systematic	

interactome	 maps	 than	 proteins	 with	 no	 known	 association	 with	 cancer.	 This	

observation	 can	 be	 extended	 to	 additional	 candidate	 cancer	 genes	 identified	 by	

systematic	 approaches	 such	as	 (i)	 cancer	genome	sequencing,	 (ii)	 transposon-based	

screens	in	mice,	(iii)	investigation	of	DNA	tumor	virus	targets,	and	(iv)	genome-wide	

association	 studies	 244.	 These	 studies	 thus	 suggest	 that	 the	 human	 cancer	 genomic	
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landscape	 is	 not	 limited	 to	 the	 572	 relatively	 well-accepted	 genes	 reported	 in	 the	

Sanger	Catalogue	Of	Somatic	Mutations	in	Cancer	(COSMIC).		

In	 our	PhD	 thesis,	we	 focused	on	 acute	 lymphoblastic	 leukemia	 (ALL)	 cancer	 genes	

and	demonstrated	the	added	value	of	systematic	interactome	maps	to	help	prioritize	

cancer	genes.	We	showed	that,	combining	the	frequency	of	mutations	in	samples,	the	

number	and	pattern	of	distinct	mutations,	and	the	 inter-connectivity	between	genes	

products,	could	help	determine	specific	affected	signalling	pathways	in	ALL.	We	also	

showed	that,	novel	ALL-genes	candidates,	such	as	EXT1,	could	be	identified	based	on	

their	functional	association	with	well-known	ALL-genes	such	as	NOTCH1	and	FBXW7.		

	

	
Figure	43:	Prioritization	workflow	for	ALL	genes.	Using	COSMIC	(Catalogue	Of	Somatic	
Mutations	In	Cancer)	database,	genes	mutated	in	ALL	samples	were	selected.	Applying	
different	ranking	criteria	(cited	in	the	green	boxes	in	the	upper	panel)	we	defined	a	set	
of	 the	 top	ALL	driver	 genes.	Next	we	 established	 the	 interactome	maps	of	 the	 “genes	
mutated	 in	ALL	samples”	using	 literature	and	a	Y2H	screen,	and	we	applied	different	
criteria	 (cited	 in	 the	green	boxes	 in	 the	 lower	panel)	 in	order	 to	prioritize	novel	ALL	
gene	products	candidates.	
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We	then	provided	experimental	results	supporting	 the	hypothesis	 that	EXT1	gene,	a	

tumor	 suppressor	 not	 previously	 linked	 to	 ALL	 by	 mutations,	 is	 involved	 in	 the	

regulation	 of	 the	 NOTCH	 pathway	 through	 its	 dual	 interaction	 with	 ALL-related	

proteins:	 NOTCH1	 and	 FBXW7.	 Interestingly	 the	 comparative	 analysis	 of	 EXT1	 and	

FBXW7	 targets	 revealed	 kinases	 as	major	 regulated	 components,	 and	 experimental	

data	 suggest	 that	 EXT1	 acts	 on	 the	 Notch	 pathway	 through	 an	 FBXW7-dependent	

mechanism.	 The	 protein	 level	 and	 transcriptional	 activity	 of	 NOTCH1	 were	 higher	

when	 EXT1	was	 depleted,	 and	 the	 levels	 of	 NICD	 increased	 by	 the	 blocking	 of	 the	

proteasome.	 EXT1	 negatively	 regulated	 Notch1	 signalling	 pathway	 both	 at	 the	

transcriptional	 level	 and	 in	 term	 of	 protein	 stability.	 The	 inhibitory	mechanism	we	

suggest	 functions	 through	 suppression	 of	 RBP-Jk	 (CSL)	 transactivation	 that	 we	

observed	 in	 our	 luciferase	 reporter	 assays,	 in	 response	 to	 the	 down	 regulation	 of	

NICD	protein	probably	through	promoting	its	degradation.	

	
Figure	44:	Graphical	summary.	EXT1	regulates	NOTCH1	signalling	through	an	FBXW7-
dependent	 pathway.	 EXT1	 inhibits	 NICD	 transactivation	 and	 decreases	Notch1	 target	
genes	 mRNA	 levels	 (HES1	 and	 MYC),	 by	 promoting	 NICD	 proteasomal	 degradation	
through	an	FBXW7-dependent	mechanism.	

	

Understanding	the	impact	of	EXT1	on	NOTCH	signaling	in	vivo,	is	being	investigated	in	

our	 laboratory	using	 conditional	 knock-out	mice	 for	Ext1	 and	Notch1	and	xenograft	

model	for	T-ALL.		



	 	 CONCLUSION	AND	PERSPECTIVES	
	

	 109	

	
In	 conclusion,	 we	 believe	 that	 this	 work	 presents	 conceptual	 advances	 of	 broad	

interest	for	cancer	biology	and	application	of	systems	biology	in	the	identification	of	

novel	targeted	genes	and	pathways	associated	to	human	cancer.	
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MATERIALS	AND	METHODS	
	

1.	Plasmids	
Open	 reading	 frames	 (ORF)	 encoding	 Notch1	 partners	 (tested	 for	 Protein	

complementation	assay)	were	obtained	from	human	ORFeome	v5.1	(center	of	cancer	

systems	 biology:	 CCSB)	 as	 pDONR223	 vectors.	 As	 for	 human	 NICD	 plasmid,	 it	 was	

purchased	 from	 addgene.	 FBXW7	 α	 was	 obtained	 from	 Dr.	 E.	 Dejardin	 from	 the	

laboratory	 of	 molecular	 immunology	 and	 signal	 transduction	 –	 Groupe	

Interdisciplinaire	 de	 Génoprotéomique	 Appliquée	 (GIGA).	 ORFs	 that	 were	 not	

available	from	the	hORF	V5.1	(BRAF,	HRAS,	ABL1,	 JAK2	and	SMARCB1	and	NOTCH1	

genes),	 and	 Notch1	 seperate	 intacellular	 domains	 were	 cloned	 by	 Gateway	

recombination	 technology	 (Invitrogen)	 using	 specific	 primers	 flanked	 with	 the	

following	 AttB1	 and	 AttB2	 Gateway	 sites:	 5’-	

GGGGACAACTTTGTACAAAAAAGTTGGCATG-3’	 (AttB1)	 and	 5’-	

GGGGACAACTTTGTACAAGAAAGTTGA-3’	 (AttB2).	 These	 constructions	 were	 verified	

by	PCR	and	sequencing.	

Inserts	 from	 pDONR223	were	 transferred	 by	 LR	 cloning	 (Invitrogen)	 into	 different	

destination	 vectors:	 pAD-destCYH	 and	 pDB-dest	 the	 Y2H	 expression	 vectors,	 and	

pDEST1899	(flag	tag),	pDEST491	(YFP-tag)	and	pDEST-mcherry.	

	

2.	Gateway	cloning	
Cloning	was	 carried	out	using	 the	Gateway	 recombination	 technology	as	mentioned	

previously.	This	system	is	a	universal	cloning	method	that	takes	advantage	of	the	site-

specific	 recombination	 properties	 of	 bacteriophage	 lambda	 to	 provide	 a	 rapid	 and	

highly	 efficient	way	 to	move	DNA	 sequences	 into	multiple	 vector	 systems.	Genes	of	

interest	 were	 cloned	 in	 the	 donor	 vector	 pDNR223	 and	 in	 different	 expression	

vectors:	 pAD	 and	 pDB	 yeast	 expression	 vectors,	 and	 pN1GLuc	 and	 pN2GLuc	 for	

Gaussia	luciferase	complementation	assay	and	other	vectors	such	YFP,	mCherry,	Flag	

expression	vectors.	 In	order	 to	 clone	NICD,	BRAF,	HRAS,	ABL1,	 JAK2	and	SMARCB1	

that	were	not	present	in	the	hORFeome	collection	5.1,	we	performed	PCR	to	amplify	

the	 gene	 of	 interest	with	 specific	 primers	 flanked	 by	 attB	 Gateway	 sequences.	 PCR	
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product	 was	 then	 cloned	 into	 the	 donor	 vector	 in	 BP	 reaction,	 using	 Gateway	 BP	

clonase	 (Invitrogen)	 (figure	45).	This	 reaction	 in	performed	by	adding	100ng	of	 the	

PCR	product	with	150ng	of	the	donor	vector	with	1µl	of	the	BP	clonase	II	enzyme	mix	

in	a	total	volume	of	10µl	 in	a	1,5ml	eppendorf	at	25oC	for	an	hour.	To	terminate	the	

reaction	1µl	of	proteinase	K	solution	was	added	to	the	mixture	and	incubated	for	10	

minutes	 at	 37oC.	 2µl	 of	 each	 BP	 reaction	 were	 transformed	 into	 40µl	 of	 Hb101	

electrocompetent	 bacterial	 cells,	 then	 transferred	 into	 1ml	 of	 LB	 medium	 and	

incubated	at	37oC	for	1	hour	with	shaking.	100µl	of	each	transformation	were	plated	

onto	LB	agar	plates	complemented	with	ampicillin	antibiotic	(1µg/ml)	and	incubated	

at	37oC	overnight.	Positive	colonies	were	selected	and	transferred	into	5	ml	of	liquid	

LB	+	ampicillin	medium	for	DNA	extraction	using	NucleoSpin	Plasmid	kit	(Marcherey-

Nagel)	 according	 to	manufacturer	 instructions.	 Extracted	DNA	was	 verified	 by	 PCR,	

subsequent	 electrophoresis	 and	 sequencing	 using	 specific	 primers	 in	 the	 donor	

vectors.	

Next,	 in	 order	 to	 clone	 genes	 into	 expression	 vectors,	 LR	 reaction	 was	 carried	 out	

using	Gateway	LR	clonase	(Invitrogen)	(Figure	45).	This	reaction	was	performed	by	

adding	150ng	of	the	entry	clone	(containing	the	gene	of	interest	flanked	by	attL	sites)	

and	150	ng	of	a	destination	vector	(containing	attR	sites)	with	1µl	of	the	LR	clonase	II	

enzyme	mix	in	a	total	volume	of	10µl	in	a	1,5ml	eppendorf	at	25oC	for	an	hour.	Next	

we	 follow	 the	 same	 steps	 mentioned	 above	 for	 the	 BP	 clonase	 reaction	 but	

spectinomycin	 antibiotic	 is	 used	 instead	 ampicillin	 antibiotic	 in	 bacterial	 culture.	

Cloned	 plasmids	 were	 verified	 by	 PCR	 and	 gel	 subsequent	 electrophoresis	 and	

sequencing.	
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Figure	45:	Gateway	cloning.	BP	and	LR	reactions.	The	Gateway	BP	reaction	consists	of	a	
reaction	using	BP	clonase	 in	addition	 to	 the	PCR	product	with	 flanking	attB	sites	and	
the	donor	vector	containing	attP	sites.	The	resulting	 is	an	entry	clone	containing	attL	
sites	flanking	gene	of	interest.	The	Gateway	LR	reaction	consists	of	a	reaction	using	LR	
clonase	in	addition	to	the	entry	clone	and	the	destination	vector	containing	attR	sites.	
The	 resulting	 product	 is	 an	 expression	 clone	 containing	 attB	 sites	 flanking	 gene	 of	
interest	and	ready	for	gene	expression.	attP	and	attB	are	specific	recombination	sites	
in	 phage	 λ	 and	 E.coli	 respectively.	 ccdB	 is	 a	 lethal	 gene	 used	 as	 positive	 selection	
marker	that	acts	by	killing	the	background	of	bacterial	cells	with	no	cloned	DNA.	

		

3.	Cell	culture,	DNA	and	siRNA	transfection,	and	treatments.	

In	 cell	 culture	 experiments,	 HEK293	 cells,	 HeLa	 cells	 and	 HeLaN1ΔE-eGFP	 were	

grown	 in	 DMEM	 supplemented	 with	 10%	 FBS,	 non-essential	 amino	 acids,	 sodium	

pyruvate,	glutamate,	and	antibiotics:	streptomycin	and	penicillin	(Lonza),	in	5%	CO2	

at	37oC.	

HeLaN1ΔE-eGFP	 cells	 were	 provided	 by	 Andreas	 Krämer	 from	 Leibniz	 Institut	 für	

Altersforschung–Fritz	Lipmann	Institut,	Jena,	Germany.	
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U2OS	Tet-on	flp-in	cells	bearing	isogenic	transgenes	encoding	Notch1-Gal4	and	K562-

Dll4	cells	were	provided	by	Inge	Van	De	Walle	from	Department	of	Clinical	Chemistry,	

Microbiology	 and	 Immunology,	 Faculty	 of	 Medicine	 and	 Health	 Sciences,	 Ghent	

University.	K562	were	grown	and	maintained	in	RPMI	(Gibco)	containing	15%	FBS	in	

a	5	%C02	incubator	at	37°C.	

13	T-ALL	cell	lines	were	grown	and	maintained	in	RMPI	containing	10-20%	FBS	in	a	5	

%C02	incubator	at	37°C.	

T-ALL	 cell	 lines:	 ALL-SIL,	 CTV-1,	 JURKAT,	 Karpas	 45,	 KOPT-K1,	 LOUCY,	 MOLT-13,	

MOLT-4,	PEER,	SUP-T11,	SUP-T13,	SUP-T7,	TALL-1.	

HEK293	 cells	 were	 DNA–transfected	 with	 polyethylenimine	 (PEI)	 purchased	 from	

Sigma,	 reagent	 was	 dissolved	 in	 water	 at	 1mg/ml	 and	 preserved	 at	 -80oC.	

Transfection	 with	 PEI	 was	 performed	 on	 HEK	 cells	 cultured	 in	 DMEM	 at	 80%	

confluence.	 Medium	 was	 changed	 before	 transfection	 and	 cells	 were	 collected	 24	

hours	post-transfection.	

HeLa	cells	and	HeLaN1ΔE-eGFP	cells	were	DNA-transfected	with	lipofectamine	2000	

reagent	(Invitrogen)	according	to	manufacturer’s	instructions	and	collected	24	hours	

post-transfection.	

SiRNA	 transfection	 was	 performed	 with	 Calcium	 Phosphate	 using	 ProFection	

Mammalian	Transfection	kit	 from	Promega	according	to	manufacturer’s	 instructions	

on	cells	cultured	in	DMEM	at	40-50%	confluence.	Medium	was	changed	24	hours	later	

and	cells	were	collected	48h	post-transfection.	

As	 for	experiments	 involving	both	DNA	and	siRNA	 transfections,	 siRNA-transfection	

was	performed	as	we	previously	described	and	24	hours	later	after	changing	medium	

cells	 were	 transfected	 with	 DNA	 using	 lipofectamin	 2000	 reagent	 (Invitrogen)	 and	

cells	were	collected	24h	post	DNA-transfection.	

For	proteasomal	degradation	 inhibition,	 cells	were	 treated	of	10µg/ml	MG132	 for	6	

hours	before	being	collected.	

For	inhibition	of	γ-secretase	we	used	DAPT	at	10µm/ml	for	6	hours.	

siRNA	sequences:	

siEXT1:	5′-GGAUUCCAGCGUGCACAUUtt-3′	

siFBXW7:	5’-	GCAUAGAUUUUAUGGUAAtt-3’	

siCtrl:	5’-	GGCUGCUUCUAUGAUUAUGtt-3’	
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4.	Immunofluorescence	and	confocal	microscopy	

Cells	were	grown	on	glass	 slides	 in	24-well	plates.	They	were	washed	 in	warm	PBS	

three	 times	and	 fixed	with	PBS-paraformaldehyde	4%	for	15	min	and	washed	twice	

with	PBS.	Cells	were	permeabilized	in	PBS-Triton	X-100	0,5%	for	20	min	and	blocked	

in	blocking	solution	PBS-FBS	20%	for	30	min	and	washed	twice	with	PBS.	Cells	were	

then	incubated	with	corresponding	primary	antibody	diluted	in	the	PBS-Triton	X-100	

0,5%	for	2	hours,	washed	3	times	with	PBS,	incubated	1	hour	with	the	corresponding	

Alexa-conjugated	 secondary	 antibodies	 (Invitrogen)	 diluted	 1/1000	 in	 PBS-Triton	

solution,	washed	 3	 times	with	 PBS	 and	mounted	 on	 glass	 coverslips	 using	 ProLonf	

Gold	Antifade	montant	with	DAPI	(life	technologies).	

Slides	 were	 examined	 by	 confocal	 microscopy	 with	 Leica	 TCS	 SP2	 or	 Nikon	 A1R	

confocal	 microscope	 with	 one	 60X	 oil-objective	 and	 pictures	 were	 taken	 with	 a	

1024x1024	pixels	resolution.	Pictures	were	processed	and	assembled	with	Leica	LAS	

AF	Lite	software.	

	

5.	Luciferase	reporter	assay	

Cells	 were	 seeded	 in	 24-well	 plates	 and	 transfected	 with	 300ng	 of	 either	 TP1	

luciferase	reporter	plasmid	(TP1-luc)	or	CBF1	reporter	plasmid	(CBF1-luc)	and	30ng	

of	renilla	Luciferase	(R-Luc).	TP1	promoter	consists	of	8	multimerized	RBP-Jκ	binding	

motifs	 upstream	 of	 luciferase.	 The	 TP1	 promoter	 is	 transactivated	 in	 a	 RBP-Jκ	

dependent	manner	by	the	activated	forms	of	the	four	mammalian	Notch	receptor	and	

thus,	 has	 been	 often	 used	 to	 read	 out	 Notch	 pathway	 activity.	 CBF1	 reporter	 also	

contains	 a	 firefly	 luciferase	 gene	 under	 the	 control	 of	multimerized	 CSL	 responsive	

element	 upstream	 of	 a	 minimal	 promoter.	 24	 hours	 post-transfection	 luciferase	

activity	was	measured	in	cell	lysates.		

	As	for	U2OS	N1-Gal4	cells	they	were	transfected	300ng	of	Gal4-firefly	luciferase	and	

30ng	 R-Luc	 reporter	 plasmid.	 After	 24	 hours,	 K562	 cells	 expressing	 Notch	 ligands	

DLL4	 or	 K562	 control	 cells	 were	 added	 to	 the	 transfected	 cells	 in	 the	 presence	 of	

tetracycline	(2	μg/mL).	After	24-hour	co-culture,	luciferase	activity	was	measured	in	

cell	lysates.	
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Cell	 lysis	 and	 luciferase	 assays	 were	 performed	 in	 triplicate	 using	 Dual-luciferase	

reporter	assay	system	from	Promega.	Luciferase	measurements	were	performed	in	96	

well	plates	using	DLR	automated	machine.	Firefly	 luciferase	values	were	normalized	

to	R-luc	values	and	calculated	ratio	represent	luciferase	activity.	

	

6.	qRT-PCR	

Total	 RNA	 was	 extracted	 using	 GeneJET	 RNA	 Purification	 Kit	 (Thermo	 scientific),	

DNaseI-treated	 on	 the	 column	 	 (Thermo	 Scientific)	 and	 reverse-transcribed	 with	

random	 primers	 (Thermo	 scientific).	 qPCR	 was	 performed	 using	 SYBER	 Green	

detection	from	Roche	and	run	on	Lightcycler	480	(Roche).	mRNA	quantification	was	

ensured	 by	 normalization	 on	GAPDH	housekeeping	 gene.	 Relative	 expression	 levels	

were	calculated	for	each	gene	using	the	ΔCt	or	ΔΔCt	method.	Primers	used	in	RT-qPCR	

are	represented	in	table	5.	

	

Table	5:	qRT-PCR	primer	sequences	

Target	 sequence	reference	 Forward	primer	 Reverse	primer	
mNotch1	 NM_008714	 TGCAGAACAACAAGGAGGAG	 AGTGGTCCAGCAACACTTTG	
eGFP	 pEGFP-N1	ORF	frame1	 TGACCCTGAAGTTCATCTGC	 GAAGTCGTGCTGCTTCATGT	
GAPDH	 2597	 TTGCCATCAATGACCCCTTCA	 CGCCCCACTTGATTTTGGA	
hNotch1	 		 CAACTGCCAGAACCTTGTGC	 GCACTCGTCGATCTCCTCAG	
FBXW7	 		 CCCGGAGCTGTGCAGCAA	 CAGATGTAATTCGGCGTCGTT	
HES1	 		 TAGCTCGCGGCATTCCAAGC	 GTGCTCAGCGCAGCCGTCATCT	
HES5	 		 GAAAAACCGACTGCGGAAGC	 GGAAGTGGTACAGCAGCTTC	
HEY1	 		 CGAGGTGGAGAAGGAGAGTG	 CTGGGTACCAGCCTTCTCAG	
EXT1	 		 GCTCTTGTCTCGCCCTTTTGT	 TGGTGCAAGCCATTCCTACC	
cMYC	 		 CTCCTACGTTGCGGTCACAC	 CCGGGTCGCAGATGAAACTC	
		
	

7.	FACS	analyses	and	labeling	

Heparan	 sulfate	 staining:	 about	 2.105	 cells	 were	 trypsinized,	 washed	 twice	 and	

resuspended	 in	PBS.	Cells	were	 incubated	 for	1	hour	with	Heparan	sulfate	antibody	

(10E4	 anti-HS	 from	USBio)	 diluted	1/50	 in	 PBS,	washed	 three	 times	 and	 incubated	
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with	Alexa-conjugated	secondary	antibodies	(Invitrogen)	diluted	1/1000	in	PBS.	Cells	

were	analysis	a	FACSCalibur	flow	cytometer	(BD	Biosciences).	

Apoptosis	 assay:	2.105	cells	were	washed	twice	with	cold	PBS	then	resuspended	in	

100µl	of	1X	binding	buffer,	5µl	of	V450	Annexin	(BD	Biosciences)	was	added,	the	cells	

were	 gently	 vortexed	 and	 incubated	 for	 15	 min	 in	 the	 dark,	 400µl	 of	 1X	 biding	

solutions	was	added	and	cells	were	analyzed	by	flow	cytometry.	

	

8.	High-throughput	yeast-two	hybrid	

The	 yeast	 two-hybrid	 assay	 is	 a	 regular	 and	 well-established	 interaction	 screening	

method	 allowing	 binary	 interactions	 detection.	 In	 regular	 molecular	 biology	

laboratory	settings,	it	is	possible	to	either	screen	interactions	one-by-one,	or	to	screen	

libraries	of	Gal4-AD	fusion	proteins	representing	entire	proteomes.	We	performed	a	

large-scale	 pairwise	 interaction	 screen	 using	 specific	 equipment	 and	 robotics	 to	

perform	most	 of	 the	 screenings	 steps	 in	 an	 automated	way.	 The	method	 described	

here	 below	 corresponds	 to	 a	 standard	 yeast	 two-hybrid	 interaction	 assay.	 In	 our	

screen	we	used	the	hORFeome	version	5.1	a	collection	library	of	human	ORFs	cloned	

from	 the	 Mammalian	 Gene	 Collection	 (MGC)	 resource,	 representing	 a	 resource	 of	

ORFs	 that	 can	be	 transferred	 easily	 to	 any	Gateway	 compatible	 destination	 vectors.	

This	collection	contains	15	483	ORFs	representing	almost	half	of	the	human	genome,	

that	 they	 are	 cloned	 into	 the	 pAD-dest-CYH	 and	 pDB-dest	 encoding	 the	 Gal4	

Activating	 and	 DNA-binding	 domains,	 respectively.	 The	 resulting	 individual	 clones	

were	transferred	in	MATa	Y8800	(pAD)	and	MATα	Y8930	(pDB)	S.	cerevisiae	strains	

(figure	 46).	 As	 for	 the	 ALL-genes	 ORFs	 that	 were	 not	 available	 in	 the	 hORF	 V5.1	

collection,	 they	 were	 purchased	 from	 addgene	 and	 cloned	 into	 pAD-dest-CYH	 and	

pDB-dest.	
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Figure	 46:	 The	 human	 ORFeome	 V5.1	 and	 the	 Y2H	 system.	 The	 human	 ORFeome	
version	5.1	is	a	collection	of	15483	human	ORFeomes	representing	12794	genes	cloned	
into	AD	and	DB	yeast	vectors.	On	the	right	we	represent	 the	yeast	 two-hybrid	system	
(Y2H)	consisting	of	bait	and	prey	proteins	(represented	by	ORF	X	and	ORF	Y)	are	fused	
to	 	 the	 Gal4	 DNA	 binding	 domain	 (DB)	 and	 the	 Gal4	 activating	 domain	 (AD).	 When	
fusion	 proteins	 are	 produced	 and	bait	 part	 of	 the	 first	 interact	with	 prey	 part	 of	 the	
second,	transcription	factor	of	the	reporter	gene	occurs.		

	

One	pool	of	21	AD	of	selected	genes-Y8800	was	mated	to	each	of	the	15,483	DB-ORFs	

Y8930	of	 the	hORFeome	v5.1	 (CCSB,	Dana-Farber	Cancer	 Institute)	 and	each	of	 our	

cloned	DB-genes	Y8930;	 and	165	pools	 of	 94	AD-ORFs	of	 the	hORFeome	v5.1	were	

mated	to	each	of	the	21	DB-selected	genes	Y8930.	One	Y2H	screening	was	performed	

in	 the	 reciprocal	orientation,	 as	described	 in	 3.	 Colonies	positive	 for	 the	GAL1::HIS3	

and	GAL1::ADE2	selective	markers	but	negative	 for	autoactivation	were	selected	 for	

PCR-amplification	 (Zymolyase	20T	 from	Seikagaku	Biobusiness,	 and	Platinum®	Taq	

DNA	 Polymerase	 from	 Invitrogen)	 and	 identification	 of	 interacting	 proteins	 by	

sequencing	of	the	respective	AD-	and	DB-ORFs.		

	

High	throughput	Y2H	screening	was	performed	according	to	the	steps	outlined	in	the	

pipeline	below.	

						1.	 Primary	 screening.	 In	 this	 step,	 distinct	 yeast	 clones	 (MATα),	 containing	

individual	DB-ORFs	of	each	of	 the	21	ALL	selected	genes	arrayed	 in	a	96-well	plate,	

are	mated	 to	minipools	 of	 yeast	 containing	 100	 AD-human	 ORFs	 (MATa)	 from	 the	
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ORFeome	collection	on	YEPD	plates	media.	Alternatively,	 each	DB-human	ORF	 from	

the	 ORFeome	 collection	 is	 mated	 to	 a	 pool	 of	 the	 AD-ORFs	 of	 21	 ALL-genes.	 After	

mating	yeast	are	replicated	to	Sc-Leu-Trp-His	selection	plates	and	Sc-Leu-His	+	3-AT	+	

1mg/ml	of	cycloheximide	(CYH).	Three	to	five	days	post	selection,	primary	positives	

diploid	cells	are	picked	and	used	for	secondary	phenotyping.		

						2.	 Secondary	phenotyping.	Primary	positives	are	grown	in	liquid	selecting	media	

(Sc-Leu-Trp-His)	 to	 saturation	 (at	 least	 24	 hours)	 and	 spotted	 on	 selection	 and	

control	plates:	Sc-Leu-Trp-His+1mM	of	3-AT;	Sc-Leu-His	+	1	mM	of	3-AT	+	1mg/ml	of	

CYH;	 Sc-Leu-Trp-Ade	+	1mM	of	 3-AT	 and	 Sc-Leu-Ade	+	1	mM	of	 3-AT	+	1mg/ml	of	

CYH	 for	 the	 Y	 strains.	 Replica	 cleaning	 is	 necessary	 to	 decrease	 the	 background	

growth	and	to	insure	that	you	start	out	with	comparable	amounts	of	cells	in	each	spot.	

To	determine	candidate	positive	clones	we	systematically	add	to	selection	and	control	

plates,	a	collection	of	 six	diploid	control	 strains.	We	usually	score	positives	colonies	

showing	a	 reporter	 transcriptional	activity	 level	equal	or	higher	 to	 that	of	 control	2	

(pDEST-AD-E2F1	+	pDEST-DB-CYH2-pRB).	

					3.	 Identification	of	 interacting	pairs:	Positives	yeast	clones	are	grown	overnight	

on	 YPD	 plates.	 A	 small	 amount	 of	 yeast	 cells	 is	 lysed	 using	 zymolase,	 an	 enzyme	

preparation	from	Arthrobacter	luteus,	which	effectively	lyses	live	yeast	wall.	For	each	

positive	 diploid,	 two	 PCRs	 are	 then	 performed	 to	 individually	 amplify	 DB-ORF	

(primers	DB	and	Term)	and	AD-ORF	(primers	AD	and	Term).	PCR	products	are	then	

verified	 on	 E-Gel	 96	 agarose	 1%,	 and	 used	 as	 template	 in	 sequencing	 reactions	 to	

obtain	identities	of	interacting	pairs.		

					5.		 Retesting	interacting	pairs.	Candidate	Y2H	pairs	should	were	verified	by	two-

fold	independent	experiments.	To	this	end,	the	location	of	each	clone	is	 identified	in	

the	ORFeome	database	and	corresponding	fresh	archival	yeast	stocks	cultured	in	Sc-

Leu	 (DB-ORFs)	 or	 Sc-Trp	 (AD-ORFs)	 liquid	media,	mated	 on	 YPD	media	 plates	 and	

transferred	 two-fold,	 on	 two	 phenotyping	 selection	 (His3	 and	 Ade2)	 and	 control	

media	(+CYH).	
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Figure	47:	Overview	of	the	Y2H	screen	performed	for	genes	of	interest.	A	simplified	workflow	
of	the	Y2H	screen	shows	that	individual	DB-ORFs	of	each	of	the	21	ALL	selected	genes	arrayed	
in	a	96-well	plate,	are	mated	to	minipools	of	yeast	containing	100	AD-human	ORFs	from	the	
hORFeome	V5.1	collection.	Alternatively,	each	DB-human	ORF	from	the	ORFeome	collection	is	
mated	to	a	pool	of	the	AD-ORFs	of	21	ALL-genes.	After	mating	yeast	are	replicated	to	Sc-Leu-
Trp-His	selection	plates	and	Sc-Leu-His	+	3-AT	+	1mg/ml	of	cycloheximide	(CYH).	Three	to	
five	days	post	selection,	primary	positives	diploid	cells	are	picked	and	used	for	secondary	
phenotyping.	Extracted	DNA	from	positive	colonies	is	sequenced	and	interacting	protein	
partners	are	identified	using	Basic	Alignment	Research	Tool	(BLAST).	

	

9.	Databases	and	literature	PPI	curation	

9.1.	Mutational	datasets	

COSMIC:	 is	a	Catalogue	Of	Somatic	Mutations	 in	Cancer,	published	by	 the	Wellcome	

Trust	 Sanger	 Institute	 	 	 (http://www.sanger.ac.uk/genetics/CGP/cosmic/)	 231,	 314.	

COSMIC	 combines	 data	 gathered	 from	 scientific	 literature	 with	 data	 from	 high	

throughput	 mutation	 detection	 experiments	 performed	 by	 the	 Cancer	 Genome	

Project,	 to	 identify	 genes	 causally	 critical	 to	 the	 development	 of	 different	 types	 of	
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human	cancers.			The	current	version	of	COSMIC	database	(v75)	of	somatic	mutations	

in	 cancer	 contains	 information	 referenced	 in	 22621	 scientific	 reports	 and	 23223	

human	 genes	 implicated	 via	 mutation	 in	 cancer,	 3702312	 coding	 mutations	 and	

1177397	samples.	It	includes	precise	definitions	of	mutations	compared	to	reference	

sequences	from	GenBank,	published	articles,	type	of	mutation,	number	of	patients	and	

samples	affected	by	these	mutations,	etc.		

	

Human	ORFeome	V5.1:	 	 (http://horfdb.dfci.harvard.edu/index.php?page=home):	It	

is	 a	 collection	 of	 18,414	 cloned	 human	 Open	 Reading	 Frames	 (ORFs)	 representing	

more	 than	 15,000	 human	 genes.	 We	 have	 access	 to	 this	 collection	 through	 our	

collaboration	with	the	Center	for	Cancer	Systems	Biology	(CCSB)	at	the	Dana	Farber	

Cancer	Institute	(DFCI),	Harvard	Medical	School,	Boston,	USA.	

9.2.	Protein-protein	interactions	datasets	
	Human	PPIs	were	collected	and	verified	 from	 the	different	 interactomics	databases	

BioGRID	 5,	 HPRD	 237	 and	 IntAct	 7.	 Only	 physical	 PPIs	 validated	 at	 least	 in	 two	

independent	 references	 or	 by	 two	 methods	 were	 considered	 as	 confident	 and	

maintained	for	the	analysis.	

Information	 about	 genes	 containing	 mutations	 in	 their	 coding	 regions	 is	 retrieved	

from	the	COSMIC	database,	evaluated;	organized	and	selected	genes	were	submitted	

for	experimental	analysis.	 	To	establish	a	 catalog	of	genes	and	mutations	associated	

with	ALL,	we	used	the	version	71	of	COSMIC,	previously	downloaded	to	a	local	server	

and	we	extracted	data	 related	 to	ALL.	We	developed	and	 implemented	a	procedure	

that	automatically	collects	information	and	check	the	consistency	of	changes	with	the	

coding	 sequences	 and	 find	 the	 corresponding	 positions	 on	 clones	 from	 the	 human	

ORFeome.	

The	 retrieved	 information	 include	 details	 provided	 at	 either	 nucleotide	 or	 protein	

level	 (mutation	 syntax),	 sample	 id	 (portion	 of	 a	 tumour	 being	 examined	 for	

mutations),	tissue	from	which	the	sample	originated,	histological	classification	of	the	

sample	and	the	Pubmed	id	of	the	article	that	published	the	study.		
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10.	Network	data	analyses	and	visualization	

For	 each	 interaction	 in	 IntAct,	 HPRD	 and	 BioGRID	 databases,	 we	 retrieved	

information	 corresponding	 to	official	 symbols	 of	 genes	 in	 interaction	 (gene	names),	

experimental	 system	 and	 the	 pubmed	 id.	 To	 this	 information,	we	 added	 the	 entrez	

gene	 ids	 from	Entrez	 gene	 (NCBI's	 repository	 for	 gene-specific	 information)	 315.	We	

removed	duplicate	interactions	(interactions	found	in	more	than	one	databases)	and	

we	generated	a	list	of	all	 interactions	present	in	all	these	three	databases.	From	this	

list,	we	built	a	network	of	interactions,	in	which	we	extracted	a	subnetworks	of	genes	

associated	with	ALL.	This	procedure	was	performed	using	R	graph	packages.	

Network	analyses	and	visualization	of	protein-protein	 interactions	were	carried	out	

with	Cytoscape	software	38.	

	

11.	Protein	complementation	assay	(PCA)	

NICD,	 FBXW7	 and	 selected	 interactants	 were	 cloned	 in	 Gaussia	 luciferase	 1	 and	 2	

(GL1	 for	 NICD	 and	 its	 domains,	 GL2	 for	 FBXW7	 and	 the	 interactants)	 using	 the	

Gateway	 cloning	 technology.	 HEK293	 cells	 were	 seeded	 in	 24	 well-plates	 at	 a	

concentration	5.104	cell/well,	then	transfected	with	GL1	or/and	GL2	plasmids	and	24	

hours	post-transfection,	 luciferase	activity	was	measured	on	 lysates	transferred	 into	

96-well	 plate	 using	 and	 automated	 machine	 DLR	 with	 Renilla	 luciferase	 substrate.	

Normalized	 luciferase	 ratio	 was	 calculated	 as	 follows:	 NLR=	 luciferase	 value	

GL1+GL2/	 (luciferase	 value	GL1+luciferase	 value	GL2).	An	 interaction	 is	 considered	

positive	or	validated	when	NLR≥	3.5.	

Cell	lysis	and	luciferase	assays	were	performed	in	triplicate	for	each	condition.	

	

12.	RNA	sequencing	

Total	RNA	was	 extracted	 from	HeLaN1ΔE-eGFP	 cells	 (siCTRL,	 siEXT1,	 siFBXW7	and	

combined	siEXT1	+	siFBXW7),	quantified	and	tested	for	RNA	quality	controlled	using	

Agilent	 2100	 bioanalyzer	 using	 the	 Eukaryote	 Total	 RNA	 Nano	 assay.	 Total	 RNA	

strands	from	were	used	to	generate	libraries	and	sequenced	by	HiSeq2000	sequencer.	
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Quality	control	and	sequencing	were	performed	by	the	GenoTranscriptomics	platform	

–	GIGA,	Liège.	

13.	EXT1	silencing	in	zebrafish	

Transgenic	zebrafish	line	Tg	(Tp1bglob:eGFP)um13	was	provided	by	Pr.	Parsons	from	

McKusick-Nathans	Institute	for	Genetic	Medicine,	Johns	Hopkins	University	School	of	

Medicine,	 Baltimore,	MD,	 21205,	USA	 316.	 Fish	 of	 the	 Tg	 (Tp1bglob:eGFP)um13	 line	

were	 maintained	 according	 to	 EU	 regulations	 on	 laboratory	 animals.	 Knockdown	

experiments	were	performed	by	injecting	embryos	at	the	one-	to	two-cell	stage	with	

10ng	of	single	splice-blocking	morpholino	designed	specifically	for	EXT1b.	

Couplings	 fish	 and	harvest	 embryos:	 the	day	before	the	 injection	of	morpholinos,	

the	adult	zebrafish	pairs	are	separated	and	placed	in	cages	of	couplings.	8	to	10	cages,	

each	containing	couplings	3	males	and	3	females	were	considered	in	each	experiment.	

The	next	day,	the	separation	between	the	couples	is	removed	to	allow	mating.	As	soon	

as	 the	 egg	 laying	 occurred,	 eggs	 are	 removed,	 put	 in	 petri	 dishes	 and	 the	 fish	 are	

returned	to	their	original	aquarium	after	assessing	their	health.	

Morpholino	 injection:	harvested	zygotes	 injected	with	our	morpholinos	of	 interest	

Mo	EXT1b	by	 conventional	 techniques.	About	 1nL	of	morpholinos	 (10	ng/nL)	were	

injected	into	zygotes	with	a	micro	injector.	The	injected	eggs	are	cultured	at	28	°	C	in	

E3	medium	for	48	hours.	At	24	hours,	the	embryos	are	placed	in	the	culture	medium	

E3	+	PTU	(30mg/L)	in	order	to	prevent	pigmentation.	

Confocal	microscope:	between	24	and	72	hours,	the	embryos	were	observed	under	a	

confocal	microscope.	 To	 do	 this,	 living	 embryos	 previously	 “put	 to	 sleep”	 (Tricaine	

methane	sulfonate	80	mg	/	L	for	at	least	2	minutes)	will	be	mounted	in	a	low	melting	

agarose	gel	in	a	culture	dish	for	microscopic	observation	(type	transwell)	and	covered	

with	culture	medium	E3.	At	the	end	of	the	experiment,	the	embryos	will	be	euthanized	

(Tricaine	methane	sulfonate	500	mg	/	L	for	at	least	10	minutes).	

Morpholino	EXT1b	sequence:	TATCGTTTTTTGGCCTGCATGTGTC	(genetools).	
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14.	Statistical	analysis	

Graph	 values	 are	 presented	 as	 mean	 +/-	 standard	 deviation,	 calculated	 on	 at	 least	

three	 independent	 experiments.	 samples	were	Unless	 stated	 otherwise,	 significance	

was	 determined	 using	 a	 two-tailed	 Student’s	 t-test	 (comparison	 of	means).	 P-value	

thresholds	 are	 depicted	 as	 follows;	 *:	 p<0.05;	 **:	 p<0.01;	 ***:	 p<0.001	 and	 ****:	

p<0.0001.	It	should	be	noted	that	standard	deviation	and	mean	values	in	each	of	the	

following	 experiments:	 luciferase	 reporter	 assays,	 relative	 mRNA	 expression	

determined	 in	 qPCR	 analysis,	 and	 the	 NLR	 values	 calculated	 in	 the	 PCA;	 were	

calculated	for	samples	tested	in	triplicate	in	each	independent	experiment.	

To	 prioritize	 ALL-genes,	 we	 combined	 the	 ranking	 from	 separate	 results	 (rank	 per	

number	of	mutation,	 rank	per	number	of	 samples,	 rank	per	degree)	by	using	order	

statistics.	 First,	 ranks	 are	 divided	 by	 the	 total	 number	 of	 ranked	 genes	 and	 we	

calculated	 the	 Q	 statistic	 317,	 which	 represents	 the	 probability	 of	 obtaining	 the	

observed	ranks	r	by	chance,	calculated	using	joint	cumulative	distribution	of	order	as:	

	

	

	

Where	ri	is	the	rank	ratio	for	result	i,	N	is	the	number	of	genes	used.	
€ 

V0 =1,

€ 

Vk = −1( )i−1Vk− i

i!i=1

k
∑ rN −k+1

i

€ 

Q(r1,r2,...,rN ) = N!VN
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ANNEXES	

	
Annexes	are	available	on	the	following	internet	references:		
	
Table	S1A.xlsx:	Mutations	associated	to	ALL	in	cancer	gene	census	

Table	S1B.xlsx:	Driver	genes	affected	by	subtle	mutations	among	the	ALL	census	

genes.	

Tables	S2A.xlsx:	Interactions	between	ALL-related	proteins	identified	in	the	literature,	

in	2	different	scientific	reports	and	by	2	different	methods.	

Table	S2B.xlsx:	degree	of	connectivity	for	interacting	ALL-related	proteins	

Table	S3.xlsx:	Co-occurrence	of	mutations	in	ALL	samples	

Table	S4.xlsx:	Ranking	ALL	driver	genes	

Table	S5A.xlsx:	Interactions	of	ALL-related	proteins	identified	in	literature-curated	

data	(LCI)	and	in	our	yeast	two-hybrid	screen	(Y2H)	

Table	S5B.xlsx:	Degree	of	connectivity	for	the	LCI	and	Y2H	interactors	with	ALL-

related	protein	

Table	S6A.xlsx:	Genes	expression	from	RNA	sequencing	analysis	in	siEXT1	condition	

Table	S6B.xlsx:	Upregulated	genes	in	siEXT1	condition	

Table	S6C.xlsx:	Downregulated	genes	in	siEXT1	condition	

Table	S6D.xlsx:	Genes	expression	from	RNA	sequencing	analysis	in	siFBXW7	condition	

Table	S6E.xlsx:	Upregulated	genes	in	siFBXW7	condition	

Table	S6F.xlsx:	Downregulated	genes	in	siFBXW7	condition	

Table	S6F.xlsx:	Co-regulated	genes	by	EXT1	and	FBXW7	

Table	S7.xlsx:	Molecular	function	enrichment	for	the	common	deregulated	genes	

using	Toppfun.	

Timelapse	video.avi:	EXT1	reduces	NOTCH1	levels	in	HelaNotch1∆EeGFP	cells	

	

	
	


