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Abstract—Co-simulation opens new opportunities to combine
mature ElectroMagnetic Transients (EMT) and Phasor-Mode
(PM) solvers, and take advantage of their respective high ac-
curacy and execution speed. In this paper, a relaxation approach
is presented, iterating between an EMT and a PM solver. This
entails interpolating over time the phasors of the PM simula-
tion, extracting phasors from the time evolutions of the EMT
simulation, and representing each sub-system by a proper multi-
port equivalent when simulating the other sub-system. Various
equivalents are reviewed and compared in terms of convergence
of the PM-EMT iterations. The paper also considers the update
with frequency of the Thévenin impedances involved in the EMT
simulation, the possibility to compute the EMT solution only
once per time step, and the acceleration of convergence through
a prediction over time of the boundary variables. Results are
presented on a 74-bus, 23-machine test system, split into one
EMT and one PM sub-system with several interface buses.

Index Terms—co-simulation, phasor mode simulation, electro-
magnetic transients, hybrid simulation, hardware-in-the-loop

I. INTRODUCTION

THE term co-simulation refers to the combination of (at
least) two different tools for performing a single multi-

physics or multi-model simulation. This paper deals specif-
ically with the co-simulation of EMT and phasor models.
The main motivation behind this work is to combine the
accuracy of EMT with the computational efficiency of PM
simulations. While mature software exist for both models,
further investigations and developments are needed for their
efficient and accurate coupling.

A number of simulation and/or system reduction techniques
have been proposed in the literature. EMT models [1] are the
most accurate. They can represent network components at var-
ious levels of detail. Moreover, there are a number of mature
EMT simulation software (e.g. EMTP-RV, PSCAD, Hypersim,
etc.). Nevertheless, they are also the most computationally
demanding, compared to simplified models. Dynamic Phasor
models (e.g. [2]) can be as accurate as EMT ones and, at the
same time, faster to simulate, when the waveforms are quasi-
sinusoidal. However, to the authors’ knowledge, there exists
no industry-grade tool relying on this approach. Reduced,
equivalent models of a large portion of the system can be
used, for instance in the form of a Low Frequency Equivalent,
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while performing detailed EMT simulations of the sub-system
of greater interest [3]. This approach is faster than full EMT
simulation, but with some decrease of accuracy. Even more
simplified, the PM solvers, used in stability studies, are usually
based on the positive-sequence phasors and assume negligible
(or compensated) negative- and zero-sequence components [4].
While this is the fastest category of solvers, EMT phenomena
are not considered. The approach reported in this paper
combines PM and EMT solvers.

The idea of combining PM and EMT models can be traced
back to [5], involving studies of High Voltage Direct Current
(HVDC) current-source converters. Still today, PM-EMT hy-
brid simulations are mainly applied to HVDC systems (e.g.
[6], [7]). A comprehensive literature review can be found in
[8]. A drawback of many proposed methods is the relatively
small size of the EMT sub-system considered, mainly for
performance reasons. However, with the computational power
available nowadays, larger EMT models can be simulated
efficiently. Thus, a larger neighborhood of the device being
investigated can be included in the detailed EMT model.
Similarly, when a contingency is simulated in the EMT sub-
system, a larger number of the impacted components can be
represented in detail. In this way, when the boundary between
the PM and EMT sub-systems is located further away from the
disturbance, the voltages and currents at the interface are closer
to the balanced, quasi-sinusoidal evolution assumed in PM
simulations. This makes the extraction of boundary voltages
and currents from the response of the EMT sub-system easier.
On the contrary, if the PM-EMT boundary is too close to the
disturbance location, a wide-band multi-port system equivalent
has to be used, as discussed in [6] and its references, to
represent the PM sub-system in the EMT simulation. Enlarging
the EMT sub-system generally means increasing the number
of interface buses between PM and EMT sub-systems. One
issue tackled in this paper is the proper choice and update
of the multi-port equivalent attached to those interface buses.
This is an extension of the authors’ previous work reported in
[9], [10].

The paper is organized as follows. Section II reviews the
main PM-EMT boundary conditions proposed in the litera-
ture. Section III details the relaxation process including time
interpolation and phasor extraction. Simulation results are
presented in Section IV, before concluding in Section V.

II. A SHORT REVIEW OF BOUNDARY CONDITIONS

Boundary conditions deal with the equivalent model used
to replace one sub-system when simulating the other. Figure 1
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Figure 1. Boundary conditions. Arrows indicate information transfers from
one solver to the other at successive iterations of the relaxation process

summarizes the main approaches found in the literature.
In the simplest scheme, shown in Fig. 1.a, when simulating

one sub-system, the other is replaced by an ideal voltage or
current source whose value is given by the previous iteration
of the relaxation scheme [11]. Another approach, used for
instance in [6] and shown in Fig. 1.b, consists of a current
source to represent the EMT sub-system, while a Frequency
Dependent Network Equivalent (FDNE) admittance in parallel
with an ideal current source is used to replace the PM sub-
system. This representation is more accurate and valid over a
wider frequency range, thus allowing to move the PM-EMT
boundary closer to the disturbance location without degrading
accuracy [8]. A variant of the latter is shown in Fig. 1.c and
used in [12], where the EMT sub-system is represented by an
impedance updated at each relaxation iteration.

The last approach, and the one used in this work, makes use
of a Norton and a Thévenin equivalent, as shown in Fig. 1.d.
It must be noted that the choice between Norton and Thévenin
is arbitrary, as for each one there is an equivalent model in
the other representation. This approach can be already found
in [13], while further investigations have been reported in [7],
[9], [10]. Nevertheless, the above references report on results
with a single boundary bus, and on small test systems.

The main issue with the current source equivalent (left-hand
side in Figs. 1.a and 1.b) is that it does not take into account
the variations of current with voltage at the boundary bus.
In other words, the sensitivity of the replaced sub-system to
voltage is neglected and the co-simulation process needs to
wait for the next iteration to get an updated boundary current
value. The voltage source representation (right-hand side in
Fig. 1.a) has a similar limitation concerning the sensitivity to
current variations.

The equivalent impedance representation, shown on the
left-hand side in Fig. 1.c, leads to a dynamically updated,
diagonal impedance matrix Zk = diag

(
V̄1

k

Ī1
k , . . . ,

V̄n
k

Īn
k

)
where

Figure 2. Protocol of computation combining PM and EMT solvers

V̄1
k
, . . . , V̄n

k are the voltage phasors at the n boundary buses,
and Ī1

k
, . . . , Īn

k the corresponding currents, all at the k-
th iteration of the relaxation process. Clearly, the coupling
between boundary buses is neglected.

With the Thévenin (or Norton) equivalents, shown in
Figs. 1.b, c and d, the coupling between boundary buses is
taken into account through an n × n Thévenin impedance
matrix Zpm. This equivalent makes up a first-order (linear)
approximation of the variation of voltages with currents at
the boundary buses of the replaced sub-system. With proper
updates of Zpm, this approximation shows good accuracy and
fast convergence, as confirmed by the results in Section IV.
Furthermore, Zpm does not need to be updated frequently, but
only when a significant change (such as fault inception and
clearing) takes place in the system.

III. THE PROPOSED CO-SIMULATION ALGORITHM

A. Relaxation process

The overall protocol for the interaction between the PM
and the EMT solvers is sketched in Fig. 2. PM simulation is
performed with a “large” time-step size H , and EMT with a
“small” time-step size h. The focus is on iterations performed
when passing from time t to time t+H , i.e. over one step of
the PM simulation. Based on some prediction of the interface
voltages and currents (step 0), the PM sub-system is computed
first (step 1). It is solved once again (step 5) after having
simulated the EMT sub-system (step 3). Steps 2 and 4 consist
in updating the boundary conditions for resp. the EMT and the
PM sub-systems. Steps 2 to 5 are repeated until convergence
or for a predefined number of iterations.

Figure 3 shows the main computation steps, the information
exchanged by both solvers and the update of the equivalents.

The PM simulation is performed first, relying on the
last updated equivalent of the EMT sub-system (or on an
equivalent derived from the predicted values, as described in
Section III-E). It yields the intermediate values of the boundary
bus voltages and currents, V̄ k+ 1

2 and Īk+ 1
2 , which are passed

to the EMT simulation.
First, they are used to compute the vector of Thévenin

voltage phasors:

Ēpm = V̄ k+ 1
2 −ZpmĪk+ 1

2 , (1)

with:
Zpm = Rpm + jωnomLpm , (2)

where Zpm is an estimate of the Thévenin impedance matrix
of the PM sub-system, as seen from its boundary buses, Rpm
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Figure 3. Main steps and information exchange relaxation process for co-
simulation [10]

(resp. Lpm) is the corresponding resistance (resp. inductance)
matrix, computed prior to the simulation, and ωnom is the
nominal angular frequency.

Next, the components of Ēpm are interpolated as described
in Section III-C, to obtain the vector e of voltages at each
discrete time t + mh (m = 0, . . . , ρ). Finally, the Thévenin
equivalent is replaced by the differential equations of the
corresponding RL circuit:

v = e+Rabc
pm i+Labc

pm

d

dt
i , (3)

where v, e and i are vectors of dimension 3n relative to the
three phases of the n boundary buses, and Rabc

pm (resp. Labc
pm)

is the 3n×3n three-phase resistance (resp. inductance) matrix
derived from Zpm (and, hence, accounting for the coupling
between boundary buses).

At the end of the EMT simulation, after the phasors have
been extracted, the updated boundary voltages and currents
V̄ k+1 and Īk+1 are made available. They are in turn used
to update the Norton equivalent used by the PM simulation.
That equivalent is represented with standard models of current
injectors, impedance loads, and branches with pi-equivalents.

Convergence is checked in the PM solver at the level of
network equations. Iterations are stopped when the current
mismatches at all buses (including the boundary buses) fall be-
low some tolerance. Once convergence has been achieved, the
simulation proceeds with the next time interval [t+H t+2H].
Otherwise, an additional relaxation iteration is performed.

B. Updating equivalent impedances Zpm with frequency

PM simulations are usually performed with constant net-
work and machine impedances, computed at nominal fre-
quency. In the EMT simulation, on the other hand, no such
approximation is made, since current and voltage waveforms
are computed by solving differential equations of the type (3).

Hence, using Zpm at nominal frequency (see Eq. (2)) to
compute Ēpm and there from obtaining (by the interpolation

Figure 4. Interpolation of Thévenin voltage sources

detailed in Section III-C) the voltages e used in Eq. (3)
introduces some inconsistency. A more accurate approach, in
case of large frequency deviations, consists in updating Zpm

with frequency before computing the Thévenin voltage Ēpm.
Because frequency differs from one boundary bus to an-

other, the following approximation is considered:

Zpm ≃ Rpm + j Lpm diag (ω1, . . . , ωn) . (4)

Thus, the i-th column of Lpm is multiplied by the frequency
ωi of the current at the i-th boundary bus (i = 1, . . . , n). The
latter frequency is evaluated numerically at discrete time t+H
as:

ωi(t+H) ≃ ωnom +
ψi(t+H)− ψi(t)

H
, (5)

where ψi(t) is the phase angle of the extracted current at the
previous discrete time t and ψi(t+H) the corresponding phase
angle obtained from the last EMT simulation at the current
time t+H .
Zpm is updated at every co-simulation iteration, and used

to compute Ēpm according to Eq. (1).

C. Time interpolation

Time interpolation is used to obtain from the phasors pro-
vided by PM simulation the corresponding waveforms used by
EMT simulation. The phasors of concern are the n Thévenin
voltages. A linear interpolation of respectively the magnitude
and phase angle of each phasor Ēpm is considered, as shown
in Fig. 4. H is assumed to be a multiple of h, i.e. H = ρh
where ρ is an integer. Note that this choice is for simplicity of
presentation, but is not required by the procedure. Thus, at the
discrete time instant t+mh (m = 0, . . . , ρ), the interpolated
Thévenin voltage magnitude is given by:

E(t+mh) = ||Ēpm(t)||+m

ρ

(
||Ēpm(t+H)|| − ||Ēpm(t)||

)
,

(6)
where || || denotes the magnitude. Similarly, the interpolated
phase angle is given by:

ϕ(t+mh) = ∠Ēpm(t)+
m

ρ

(
∠Ēpm(t+H)− ∠Ēpm(t)

)
(7)

where ∠ denotes the phase angle. Considering phase a, for
instance, the discretized Thévenin voltage is obtained as (m =
0, . . . , ρ):

ea(t+mh) =
√
2E(t+mh) cos [ωnom (t+mh) + ϕ(t+mh)] .

(8)
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D. Phasor extraction

Phasor extraction consists of obtaining from the voltage and
current waveforms at the boundary buses, provided by EMT
simulation and denoted by v and i in Fig. 3, the positive-
sequence voltage and current phasors, denoted by V̄ k+1 and
Īk+1 in the same figure. Two methods are used to this purpose.
The first one consists in fitting to each waveform separately
a shifted quasi-cosine evolution. The second method uses a
projection of the three phase variables on a rotating reference
frame. The first is the main method used, but it is replaced by
the second over some time intervals, as explained hereafter.

For simplicity, the presentation deals with currents, but
voltages are treated similarly.

Method 1: Least-square curve fitting: This method consists
of fitting to the points obtained by EMT simulation the com-
bination of a variable-amplitude variable-phase cosine with an
exponentially decaying component. At time t+H , the fitting is
performed in the least-square sense using the points collected
over an interval [t+H − Tx t+H].

The function to fit is taken as:
√
2

[
A0 +

(A1 −A0)k

kmax

]
cos

[
kTx ωnom

kmax
+ ϕ0 +

(ϕ1 − ϕ0)k

kmax

]
+ E exp

(
− kTx
kmaxτ

)
, (9)

where k = 0, . . . , kmax is the discrete time (kmax = fsTx,
where fs is the sampling frequency). The six parameters to
identify are:

• A0, ϕ0: effective value and phase angle at time t+H−Tx
• A1, ϕ1: effective value and phase angle at time t+H
• E, τ : amplitude of the exponential component at time
t+H − Tx, and the corresponding time constant.

The terms of higher frequency present in the EMT simulation
outputs are filtered out as “measurement noise” by the least-
square fitting. Owing to the presence of the cosine component
in (9), Tx should be at least equal to one period at fundamental
frequency ωnom/2π.

The two parameters of interest for phasor extraction are A1

and ϕ1, the amplitude and phase angle of the quasi-cosine
component at time t + H (i.e. for k = kmax). Note that, by
considering the value of (9) at the end of the EMT simulation
interval, the procedure does not introduce any time delay.

Each phase current is processed separately, yielding possibly
unbalanced phasors, with effective values A1a, A1b and A1c

and phase angles ϕ1a, ϕ1b and ϕ1c, all relative to time t+H .
The positive, negative and zero-sequence components are

straightforwardly obtained from: Ī+a
Ī−a
Īoa

 =
1

3

 1 ej
2π
3 e−j 2π

3

1 e−j 2π
3 ej

2π
3

1 1 1

 A1ae
jϕ1a

A1be
jϕ1b

A1ce
jϕ1c

 .
The least-square fitting is applied to the last kmax + 1

samples in a time window of width Tx. However, if a large
disturbance, such as fault inception or clearing, takes place
in this time window, it may not be appropriate to consider
the same values of (A0, A1, ϕ0, ϕ1, E, τ) before and after the
disturbance.
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Figure 5. Extraction problem around the time of a major disturbance

By way of illustration, Fig. 5 shows the phase currents
before and after clearing a three-phase fault by opening the
individual phase breakers at three successive times, shown
with dash-dotted lines. Assuming that phasor extraction is
needed at t = 1.12 s, with Tx = 20 ms, the time window of
fitting is shown in shaded grey. The three clearing times fall in
that window. A proper handling of the wave distortions would
require using a different function (9) after fault clearing. This,
however, would lead to an insufficient number of samples.

Note that this problem occurs with other extraction methods,
such as Fourier analysis, although it has not been documented
in the literature, to the authors’ knowledge. It will be less
critical if the boundary buses are far enough from the fault
location, which is another reason to somewhat extend the EMT
sub-system.

The above issue is dealt with by resorting to another
extraction technique while the interval [t+H − Tx t+H]
includes a discontinuity. The technique replacing temporarily
the least-square fitting could be the one in Ref. [6] (involving
the instantaneous power). Instead, the results reported in this
paper have been obtained with the method detailed hereafter.

Method 2: Projection on a rotating reference and filtering:
The amplitude and phase angle of the positive-sequence com-
ponent can be extracted from the three-phase, time-varying
current waveforms by projecting them on (x, y) reference axes
[11]. These are the axes used in the PM simulation to project
the rotating vectors associated with quasi-sinusoidal variables,
and obtain their corresponding rectangular components. This
is illustrated in Fig. 6 where Ix and Iy are the components of
phasor Īa, all three varying with time.

The reference axes are taken as rotating at the angular speed
ωnom in the PM simulation. Thus, at time t, the angle between
the x axis and a fixed reference is (see Fig. 6):

θ = ωnomt, (10)

assuming that the x and the reference axes coincide at t = 0.
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Figure 6. Reference axes involved in the phasor extraction

The projection is of the Park type [14], and inspired of phase
locked loop systems [15]. The vector of projected currents
ixy is obtained from the vector of three-phase instantaneous
currents iabc using the linear transformation:

ixy = T iabc , (11)

where:

T =

√
2

3

[
cos (θ) cos

(
θ − 2π

3

)
cos

(
θ − 4π

3

)
− sin (θ) − sin

(
θ − 2π

3

)
− sin

(
θ − 4π

3

) ]
.

(12)
If the three-phase currents were balanced at fundamental

frequency only, i.e. if

iabc =

 ia
ib
ic

 =

 √
2Ia cos (ωnomt+ ψa)√

2Ia cos
(
ωnomt+ ψa − 2π

3

)
√
2Ia cos

(
ωnomt+ ψa − 4π

3

)
 , (13)

then, it is easily shown that:

ixy =

[
Ix
Iy

]
=

[
Ia cosψa

Ia sinψa

]
, (14)

which shows that the components of ixy are indeed the
projections on x and y of a vector rotating at angular speed
ωnom, having amplitude Ia and a phase angle ψa with respect
to the x axis, as shown in Fig. 6. The current phasor to consider
in PM simulation is thus obtained from:

Ia =
√
I2x + I2y , ψa = arctan

Iy
Ix

. (15)

Note that Eqs. (11)-(12) are applied to the currents iabc at the
last time t+H of the interval [t t+H] currently simulated by
the EMT solver. Hence, this phasor extraction technique does
not either introduce a delay associated with the processing of
the waveforms at times prior to t+H .

However, Eq. (14) is valid only for balanced, three-phase
currents at fundamental frequency. The effects of a fault
located in the EMT sub-system are felt at the boundary
between PM and EMT sub-systems. Thus, the boundary
current waveforms are affected by “noise” stemming from
aperiodic, negative- and zero-sequence components, as well
as harmonics. Filtering is necessary to eliminate their effects.

Aperiodic (resp. negative-sequence) components present in
iabc will show their effects on ixy as sinusoidal components
at nominal (resp. double nominal) frequency. Therefore, the
filter must satisfy the following requirements:

• preserve the amplitude of components with frequencies
between 0 and 5 Hz. This covers the frequency spectrum
of concern in PM simulation;

• filter out the fundamental-frequency, double-
fundamental-frequency, and higher frequency
components;

• do not affect the phase with respect to the initial signal in
the [0 5] Hz frequency range, to avoid introducing delay
between the EMT and PM simulations.

To meet these objectives, a low-pass numerical filter pro-
cesses the sequence of (Ix, Iy) values obtained by applying
the transformation (11)-(12) to the values of iabc computed by
the EMT simulation. Thus, the sampling period of the filter is
h. Re-sampling is necessary in case the discrete times of the
EMT simulation are not equidistant, which is the case if the
time-step size was reduced during the EMT simulation. The
time window processed by the filter should not be too narrow,
for accuracy reasons [16]. In practice it is set to one period at
fundamental frequency.

The Butterworth low-pass filter [16] satisfies the above
requirements. For a continuous-time filter of K-th order, the
magnitude-squared transfer function takes on the form:

|H̄c(jω)|2 =
1

1 + (ω/ωc)
2K

, (16)

where ωc is the cutoff frequency. This filter is characterized
by a magnitude response maximally flat in the pass-band. This
means that the first 2K − 1 derivatives of function (16) are
zero at frequency ω = 0 [16].

The filter is applied twice, once with increasing and once
with decreasing times. Doing so almost cancels the phase shift
introduced by the filter in the pass-band. In this work, K has
been taken equal to two. However, applying the filter twice
yields globally a fourth-order filter, which is expected to give
sufficient cut-off band attenuation for most systems.

E. Prediction over time and iterations

To speed up the convergence of the relaxation process,
when starting the computations of a new time step t + H ,
each interface variable can be initialized to predicted values
obtained from its own history (see step 0 in Fig. 2). For
instance, with a first-order (linear) prediction, the predicted
value of variables x is given by:

x̃(t+H) = x(t)+
x(t)− x(t−H)

H
H = 2x(t)−x(t−H) ,

where the slope at time t has been approximated by finite
differences. A second-order prediction can also be used, which
relies on three points in the past. The predicted states are
computed as:

x̃(t+H) = a (t+H)
2
+ b (t+H) + c (17)

where a, b, and c are obtained by solving the linear system:
x(t− 2H) = a (t− 2H)

2
+ b (t− 2H) + c

x(t−H) = a (t−H)
2
+ b (t−H) + c

x(t) = at2 + bt+ c

(18)

Just after a large disturbance, such as fault inception or
clearing, a zero-order prediction is used for a sufficient number
of steps (3 to 5) before resorting to a higher-order prediction.
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Figure 7. One-line diagram of the Nordic test system [17]

The interface variables could also be predicted in between
the iterations of the same time step, based on the values at the
previous iterations. This technique was not contemplated due
to the already small number of iterations between EMT and
PM simulations taken by the proposed relaxation procedure.

IV. SIMULATION RESULTS

A. Test system

This section reports on simulation results obtained with a
74-bus, 102-branch, and 23-machine system. It is based on
a variant of the so-called Nordic test system detailed in [17].
The system one-line diagram is shown in Fig. 7 along with the
decomposition in PM and EMT sub-systems. The RAMSES
software, developed at the University of Liège, has been used
for the PM simulation [18]. The EMT sub-system simulator
was implemented in MATLAB. The results of the PM-EMT
co-simulation were systematically compared to those obtained
with EMTP-RV, and RAMSES where appropriate.

The trapezoidal rule was used in both the PM and the
MATLAB-based EMT solvers. The step size h was set to
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Figure 8. Case 1a: Voltage magnitude at bus 4044

100 µs, and H to 0.02 s (one cycle at fundamental frequency),
giving a ratio H/h = 200. Moreover, for this system, the
ratio of the equation count in the EMT and in the pha-
sor models is 2287/609 = 3.75. Assuming that the effort
needed to simulate a set of differential-algebraic equations is
comparable in both simulators, the overall speed-up of the
PM over the EMT simulation can be roughly estimated as:
(Nb of EMT equations/Nb of PM equations) (H/h) ≃ 770.
In reality detailed EMT models are even more time-consuming
due to switching events, detailed control and protection
schemes, etc., which yields an even higher speed-up.

For accuracy and/or convergence of the PM solver, it may
be required to use a smaller value for H , e.g. one half, or even
one fourth of a cycle. In fact, a higher H is more demanding
for the convergence of the relaxation procedure. Hence, the
choice of one cycle can be considered a “worst case” from
the co-simulation viewpoint.

B. Case 1: Three-phase fault at bus 1042

In this scenario, a three-phase, solid fault is applied at
t = 1 s, on one of the two circuits between buses 1044 and
1042, very near the latter, in the EMT sub-system. The fault
is cleared by opening all three phases of the line. The nearby
machines contribute to imbalance of the system response.

This severe contingency could lead to transient (angle)
instability. Thus, two cases have been considered. In Case
1a, the fault is cleared in 10.5 cycles, just before the critical
clearing time is reached. In Case 1b, the fault is cleared in
12.5 cycles, which is higher than the critical clearing time.

1) Case 1a: Fault cleared before the critical time: A
comparison of the voltage evolutions at the boundary bus 4044,
obtained by EMT, PM and PM-EMT simulations, respectively,
is provided in Fig. 8. The curves clearly show that the response
of the PM-EMT co-simulation is very close to the EMT refer-
ence, given by EMTP-RV, while the PM response (computed
by RAMSES) shows delayed electromechanical oscillations
after t = 2 s. The figure zoom shows that the fault is applied
and cleared instantaneously in the PM simulation, owing to
the neglected rate of change of armature flux linkages, which
leads to representing the network through algebraic equations.

2) Case 1b: fault cleared after critical time: Due to the
delayed fault elimination in this scenario, machine g6 (located
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Figure 9. Case 1b: Rotor speed of generator g6
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Figure 10. Case 1b: Voltage magnitude at bus 4044

next to the fault) loses synchronism and separates with respect
to the rest of the system. This marginally unstable scenario is
a severe test, since small initial deviations can evolve into
large final excursions. Figure 9 shows the evolution of the
rotor speed of g6. Note that the simulation has been run, for
comparison purposes, until the speed reaches 1.1 pu while
the machine would be tripped by protections before that in
practice. A zoom on the on-fault period reveals, as expected,
an almost linear increase in the PM response, while the PM-
EMT and EMT evolutions show oscillations due to additional,
fast decaying torque components [4].

Figure 10 shows the corresponding evolution of the voltage
magnitude at the boundary bus 4044, given by the three
solvers. A good match is observed between PM-EMT and
EMT responses, which is not the case for the PM one.

C. Case 2: Single-phase fault at bus 1042

In this scenario, a single-phase, solid fault is applied at
t = 1 s on one of the two circuits between buses 1044 and
1042, very near the latter. The fault is cleared by opening all
three phases of the faulted line at t = 1.21 s (i.e. after 10.5
cycles). This case is of higher interest since it further justifies
the use of EMT simulation, and the phase imbalance is more
demanding for the PM-EMT coupling.

Figure 11 shows the evolution of the current in the 1044-
1042 circuit parallel to the faulted one (same phase as the fault)
before, during and shortly after the fault occurrence. The PM-
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Figure 12. Case 2: active and reactive powers injected at bus 4044

EMT co-simulation response matches pretty well the EMT
benchmark. The active and reactive powers flowing through
the boundary bus 4044 are shown in Fig. 12. It can be seen
that the electromechanical oscillations are preserved in spite
of the simplification of the distant PM sub-system.

D. Case 3: Tripping of Generator g9

This test is aimed at checking the accuracy of the PM-EMT
co-simulation in the presence of large frequency deviations. To
this purpose, the disturbance consists of tripping, at t = 1 s,
the 1000-MVA generator g9 located in the PM sub-system.
Note that most cases of practical interest involve disturbances
located in the EMT sub-system represented in greater detail.
The reverse is considered here, for checking purposes.

Figure 13 shows the influence of updating the Thévenin
equivalent with frequency, as discussed in Section III-B. The
plot shows ||V̄ k+1

4044 − V̄
k+1/2
4044 ||, where the upperscript symbols

are those defined in Fig. 3, and k corresponds to the last iter-
ation of the relaxation procedure. The lower values obtained
when updating with frequency indicates that the results of the
coupled EMT and PM simulations are more consistent.

The evolutions of the rotor speed of machine g13, located
near the boundary bus 4041, are shown in Fig. 14, focusing on
the time interval until frequency reaches its minimum. In this
case, due to PM approximations in the area near the tripped
generator g9, the PM-EMT evolution is comparatively less
accurate and closer to the PM rather than the EMT solution.

E. Convergence of the relaxation process

Table I provides the number of iterations of the relaxation
procedure, i.e. the number of cycles in Fig. 3 until convergence
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Table I
NB. OF RELAXATION ITERATIONS FOR VARIOUS BOUNDARY CONDITIONS.

“MED” DESIGNATES THE MEDIAN, AND “MAX” THE MAXIMUM VALUE

Boundary conditions (see Fig. 1)
Case (a) (b) (c) (d)

Med Max Med Max Med Max
1-a no conv. 2 9 3 25 2 4
1-b no conv. 3 9 4 25 3 4
2 no conv. 3 4 2 4 2 5
3 no conv. 2 13 3 6 2 4

Table II
NB. OF RELAXATION ITERATIONS FOR VARIOUS PREDICTIONS

Prediction:
Case zero-order first-order second-order

Med Max Med Max Med Max
1-a 3 4 3 4 2 4
1-b 3 4 3 4 3 4
2 3 4 2 4 2 4
3 3 4 3 4 2 4

is reached. For a given simulation, the numbers of iterations
were recorded at all time steps; the median and the maximum
of all values are shown in the table. A zero-order prediction
has been considered in all cases. The results relate to various
boundary conditions, identified by the letters in Fig. 1. It was
found that the conditions of type (a) did not make the iterations
converge (even in steady-state conditions). All other boundary
conditions led to convergence, and yielded the same dynamic
response [9]. The performances of type (c) vary too much from
one case to another; type (d) is consistently the best.

For illustration purposes, Fig. 15 shows the successive
values of the active and reactive powers at the boundary bus
4041, in Case 2 and at time t = 1.02 s (starting from the
solution at t = 1.00 s), i.e. right after the fault inception.
With the boundary conditions of type (c), four iterations are
needed, while with type (d), three iterations are enough.
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Figure 15. Case 2: Iterations at t = 1.02 s; boundary conditions (c) and (d)

Table II shows similar results, but when varying the order
of the prediction, as explained in Section III-E. The same
four cases have been simulated with boundary conditions of
type (d). Zero-, first-, and second-order predictions have been
considered. It is observed that the second-order prediction
consistently gives the least number of iterations, as expected.

F. Co-simulation with a single iteration

For computational efficiency and in applications such as
hardware-in-the-loop simulations, it is of interest to perform
a single iteration of the relaxation process, involving thus a
single EMT simulation per time step H . Limiting the number
of iterations to one obviously introduces some approximation,
which is illustrated in Figs. 16 and 17.

Figure 16 relates to Case 1b, with zero-order prediction and
boundary conditions of type (b), (c) and (d), respectively. It
shows the relative error on the complex power at the boundary
bus 4044, namely:√

(P1it − Pfc)2 + (Q1it −Qfc)2√
P 2
fc +Q2

fc

,

where P1it + jQ1it is the complex power obtained when
performing a single iteration, and Pfc+ jQfc the same power
from a fully converged co-simulation. The results further
confirm the superiority of boundary conditions of type (d).

Figure 17 shows the same relative error, in all test cases,
using boundary conditions of type (d) and second-order pre-
diction. It can be concluded that a single iteration yields very
good accuracy.

Finally, Fig. 18, relative to Case 1-a, compares the error
caused by imposing a single iteration of co-simulation to
the error observed between the fully converged PM-EMT co-
simulation and the benchmark. It can be concluded that forcing
a single iteration adds comparatively very little error to the one
resulting from the phasor approximation.

V. CONCLUSION

A co-simulation method has been presented, aimed at com-
bining EMT and PM models. The approach is built on the
premise that, with modern solvers, the EMT sub-system can



9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  3  4

(%)

fault inception

fault clearing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4

(b)
(c)
(d)

Figure 16. Case 1-b: Relative error on complex power at bus 4044 when
performing a single co-simulation iteration, and using boundary conditions of
types (b), (c) and (d)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  1  2  3  4  5  6  7  8

(%)

Case 1a
Case 1b
Case 2
Case 3

 0

 0.02

 0.04

 0.06

 1  1.2  1.4

Figure 17. Relative error on complex power at bus 4044 when performing a
single co-simulation iteration, using boundary conditions of type (d)

be enlarged to the extent that, at the interface with the PM
sub-system, the three-phase voltages and currents are almost
sinusoidal and balanced.

The relaxation process involves time interpolation and pha-
sor extraction. The latter is based on least-square fitting. It does
not introduce any delay, while the residuals allow monitoring
how closely the EMT response matches the above mentioned
ideal conditions.

Dynamically updated Thévenin - Norton equivalents are
essential for good convergence. Prediction before proceeding
with a new co-simulation time step, and updating the Thévenin
equivalent with frequency are also recommended.

Simulation results show that a single co-simulation iteration
can be envisaged without significant degradation of accuracy.

So far, the selection of the boundary buses relies on engi-
neering judgment. Efforts towards the automation of this se-
lection is a direction of future research. As far as convergence
is concerned, the most demanding situation is likely to be
the one with a “small” EMT sub-system surrounding the fault
location, in which case the interface variables do not evolve as
expected by the PM solver. However, previous tests on such
a small EMT sub-system have not shown convergence issues.

Further applications will involve power-electronics compo-
nents modeled in detail in the EMT sub-system.
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