
Académie universitaire Wallonie–Europe
Université de Liège — Faculté des Sciences Appliquées
Collège de doctorat en Électricité, électronique et informatique

Indirect Quadrangular Mesh Generation
and

Validation of Curved Finite Elements

Doctoral Dissertation presented by

Amaury Johnen

in fulfilment of the requirements for the degree of
Docteur en Sciences de l’Ingénieur

Frebruary 2016

Thesis committee:

Prof. Éric Bechet (Université de Liège)
Prof. Damien Ernst (Université de Liège), President
Prof. Pascal Frey (Université de Paris 6)
Prof. Christophe Geuzaine (Université de Liège), Advisor
Dr. Bruno Lévy (INRIA Nancy)
Prof. Jean-François Remacle (Université catholique de Louvain)
Prof. Josep Sarrate (Université Polytechnique de Catalogne)

© 2016 Amaury Johnen

Abstract

Among the different types of 3D finite element meshes, hexahedral meshes
present properties that can be highly desirable, such as alignment with phys-
ical features or a lower computational cost. For this reason and despite the
maturity of the tetrahedral mesh generators, hexahedral mesh generation has
always been a prolific research domain. Yet, there exists currently no ro-
bust algorithm capable of generating conformal all-hexahedral meshes with
prescribed input size field on any arbitrary geometry. One difficulty that re-
mains is that there exists no method to robustly assert that a hexahedron is
valid. Indeed, linear hexahedra can be folded (tangled) in the same way than
curvilinear tetrahedra.

This thesis addresses two subjects. First, two original quadrangular mesh
generation techniques are investigated, with the aim to generalize them to 3D.
Both are indirect methods and thus consider the problem of combining pairs
of triangles of an initial input triangular mesh. The first technique, called
Blossom-Quad, computes the optimal solution of this problem with respect
to a given quality criterion. As for any indirect method, the quality of the
solution strongly depends on the location of the nodes in the initial triangular
mesh. The generalization to 3D is however unclear and a second technique
is investigated. This one aims at computing a near-optimal solution by using
a look-ahead tree technique. The corresponding algorithm allows tuning the
quality of the final mesh by choosing the depth of the tree as a parameter. This
technique gives a promising way forward, especially as it is directly applicable
in 3D.

The second subject concerns the development of a method that permits to
compute, with respect to any prescribed tolerance, the extrema of Jacobian-
based quantities defined on finite elements of any order and type. Applied
to the Jacobian determinant, this method allows to assert the validity of any
(curvi-)linear finite element. This method is also applied to a quality measure
that quantifies the pointwise anisotropy of the elements. Besides being very
attractive for hexahedral mesh generation, this method is especially useful
for the analysis of curvilinear finite element meshes. It can moreover be an
important component of optimization techniques for achieving robustness.

i

Résumé

Parmi les différents types de maillages d’éléments finis 3D, les maillages hex-
aédriques présentent des propriétés qui peuvent être extrêmement attrayantes
telles que l’alignement avec les caractéristiques physiques ou un coût de cal-
cul plus faible. Pour cette raison, et malgré la maturité des algorithmes de
génération de maillages tétraédriques, la génération de maillage hexaédrique
a toujours été un domaine de recherche prolifique. Pourtant, il n’existe pas
encore d’algorithme robuste capable de générer des maillages totalement hex-
aédriques, conformes, sur des géométries arbitraires, tout en respectant un
champ de taille imposée. Une difficulté qui subsiste est qu’il n’existe pas de
méthode pour affirmer de manière robuste qu’un hexaèdre est valide. En effet,
les hexaèdres linéaires peuvent être repliés sur eux-mêmes au même titre que
peuvent l’être les tétraèdres courbes.

Cette thèse traite de deux sujets. Premièrement, deux techniques originales
de génération de maillages quadrangulaires sont examinées avec le but de pou-
voir les généraliser au problème 3D. Ces deux techniques prennent l’approche
indirecte qui consiste à combiner des paires de triangles dans un maillage
triangulaire initial d’entrée. La première technique, appelée Blossom-Quad,
calcule la solution optimale de ce problème par rapport à un critère de qualité
donné. Comme pour n’importe quelle autre méthode indirecte, la qualité de
la solution dépend fortement de la localisation des nœuds dans le maillage
triangulaire initial. La généralisation au problème 3D est toutefois incertaine
et une seconde technique est examinée. Celle-ci vise à calculer une solution
presque optimale en utilisant une technique d’arbre de décision. L’algorithme
correspondant permet de commander la qualité du maillage final en choisissant
la profondeur de l’arbre comme paramètre. Cette technique donne une voie
à suivre prometteuse, particulièrement de par le fait qu’elle soit directement
applicable au problème 3D.

Le second sujet traite du développement d’une méthode qui permet de cal-
culer avec la précision voulue les valeurs extrêmes de quantités basées sur le
jacobien qui sont par essence valables pour les éléments finis de n’importe quel
type et n’importe quel ordre. Appliquée au déterminant jacobien, cette méth-
ode, permet d’affirmer la validité des éléments finis linéaires ou courbes. Cette
méthode est aussi appliquée à une mesure de qualité qui quantifie l’anisotropie

ii

iii

ponctuelle des éléments. En plus d’être très intéressante pour la génération de
maillage hexaédrique, cette méthode est particulièrement utile pour l’analyse
de maillages d’éléments finis courbes. Elle peut également être un composant
important des techniques d’optimisation afin d’accroître leur robustesse.

Remerciements

Ecrire une thèse est une incroyable aventure que je n’oublierai jamais. Ce fut
à la fois long et court, parsemé de hauts et de bas. Je voudrais remercier
les nombreuses personnes qui ont contribué directement ou indirectement à
l’écriture ou qui ont agrémenté toutes ces années de recherche qui ont abouti
à ce manuscrit :

Il y a d’abord mon promoteur, Christophe Geuzaine, qui m’a non seulement
proposé un excellent sujet de thèse dans lequel j’ai pu m’épanouir pleinement
mais surtout qui m’a guidé tout au long de la thèse et ce, jusqu’aux derniers
instants.

Il y a aussi mes collègues et anciens collègues ainsi que mon promoteur qui
ont toujours su faire régner une super ambiance dans le service ACE.

La dernière ligne droite de la rédaction a été particulièrement intense. Je
l’ai passée en grande partie retiré à la campagne, ce qui m’a aidé à tenir le
coup. Je le dois à ma formidable mamie qui m’a fourni un espace de travail
idéal et préparé de délicieux petits plats pendant ces nombreuses semaines.

Parmi mes amis, ma famille et mes collègues, beaucoup m’ont proposé de
l’aide. Même si je n’ai pas toujours répondu à la proposition, ça fait toujours
chaud au cœur de se sentir soutenu et je tiens aussi à les remercier.

Il y a de ces gens qu’on a envie de remercier pour leur présence, même
lorsqu’ils n’ont pas de relations directes avec le présent travail. Je pense à :

Mes chers parents par qui tout a commencé. Ils m’ont conçus puis élevé de
leur côté, chacun avec leurs moyens respectifs. Mon père m’a appris le sens du
travail, ma mère à persévérer, et les deux m’ont toujours soutenu dans tout
ce que j’ai entrepris.

Mon frère, toujours là pour m’apporter une aide précieuse lorsque j’en ai
besoin.

Ma petite sœur adorée qui a apporté du soleil dans ma vie et qui grandi
trop vite.

Mon très cher ami, Arnaud, que je n’arriverais décidément jamais à sur-

iv

v

passer à l’escalade.

Enfin, comment ne pas mentionner la précieuse amitié que j’ai eu la chance
de partager avec Sabine lors de mes études et au début du doctorat ? En plus
des nombreux et chouettes moments passés en sa compagnie, celle-ci a été un
véritable catalyseur à ma vie sociale au sein de l’université.

Contents

1 Introduction 1

2 State of the Art 5
2.1 Quadrangular and hexahedral mesh generation 7

2.1.1 Algorithm attributes . 7
2.1.2 Conformal all-quad/all-hex meshing constraints 11
2.1.3 Core methods . 13
2.1.4 Geometry partition methods 19
2.1.5 Octree-based methods 26
2.1.6 Direct advancing front methods 26
2.1.7 Indirect methods . 29

2.2 Curved finite element validity and quality 30
2.2.1 Methods for asserting the validity 31
2.2.2 Geometric and Jacobian-based quality measures 33

3 Contributions 36

4 Conclusions 41

Bibliography 44

A Paper I: Blossom‐Quad: A non‐uniform quadrilateral mesh
generator using a minimum‐cost perfect‐matching algorithm 62
A.1 Introduction . 63
A.2 Mesh quality measures . 64
A.3 Non-optimal matching algorithm 64
A.4 The new Blossom-Quad algorithm 66
A.5 Existence of perfect matchings 69
A.6 Optimization . 72
A.7 The Blossom-Quad algorithm 73
A.8 Examples . 73
A.9 Conclusions . 77

vi

Contents vii

B Paper II: Sequential decision-making approach for quadran-
gular mesh generation 81
B.1 Introduction . 82
B.2 Problem Statement . 83
B.3 Formulation as a sequential decision-making problem 84
B.4 Uniform look-ahead tree . 84
B.5 Selective look-ahead tree . 86
B.6 Results . 86
B.7 Conclusion . 87

C Paper III: Geometrical validity of curvilinear finite elements 89
C.1 Introduction . 90
C.2 Curved meshes, distortion and bounds on Jacobian det. 91
C.3 Bounds for second order planar triangles 92
C.4 Adaptive bounds for arbitrary curvilinear finite elements 93
C.5 Numerical results . 99
C.6 Conclusions and perspectives 101

D Paper IV: Geometrical validity of high-order pyramidal fi-
nite elements 104
D.1 Introduction . 105
D.2 Pyramidal finite element space 105
D.3 Pyramidal Jacobian determinant space 106
D.4 Bézier basis for the pyramidal Jacobian determinant 107
D.5 Results . 108
D.6 Conclusion . 109

E Paper V: Computing the extrema of a shape quality mea-
sure for curvilinear finite elements (Draft) 111
E.1 Introduction . 112
E.2 A quality measure based on the metric eigenvalues 114
E.3 Bézier expansion . 117
E.4 Computing bounds of the measure in 2D 121
E.5 Computing bounds of the measure in 3D 122
E.6 A bounding curve for the domain Ω𝑎𝐾 128
E.7 Results . 129
E.8 Conclusion . 133

CHAPTER 1
Introduction

The Finite Element Method (FEM) is a powerful numerical technique that
allows solving partial differential equations on complex geometries. Its ori-
gins go back to the 1950s with the appearance of the first digital computers.
At this time, only large companies could afford such computers and, unsur-
prisingly, it is amongst aerospace companies that the method started to be
developed. In the 1960s, the FEM began to be transferred to a wider range
of engineering applications and, as a matter of fact, authors already acknowl-
edged its power and generality at this time [1–5]. Since then, the method has
continually gained fame and it is nowadays widely used in almost every field
of engineering analysis, the domains of application being extremely vast: aero-
nautics, automotive, civil engineering, electrical engineering and electronics,
biomechanics, soil mechanics, etc. It is considered that the number of finite
element analyses performed every day around the world is of the order of the
million [6], while FEM in industry weights several billion dollars per year [7].
The popularity of FEM in industry can be explained by the numerous benefits
it brings: the possibility to analyze a design in detail and predict its perfor-
mance and reliability, the possibility to optimize designs in order to reduce
material usage, the reduction of costly physical prototyping and testing and
an overall reduction of the time-to-market for new products.

A Finite Element analysis usually consists of four principal steps: geome-
try construction, mesh generation (the discretization of the geometry in small
simple shapes), computation of the solution and post-processing. Although it
may seem at first sight that the second step, mesh generation, is a trivial task,
it is nothing of the sort. It is actually commonly admitted that it constitutes
the major bottleneck of the process [6, 8–13]. This fact concerns above all
complex industrial geometries and is caused by several factors [8, 14, 15]. On
the one hand, block-structured meshes require to manually partition the ge-

1

Introduction 2

ometry into blocks, which can take weeks or more for complex geometries. On
the other hand, unstructured meshes are much more automatic but complex
geometries require that the mesh generation parameters are fine-tuned, often
in a trial-and-error process. Moreover, a significant number of geometrical
models contain errors such as overlapping patches, gaps between patches or
surface intersections, which require time-consuming and difficult-to-automate
repairs.

Finite element meshes consist of a set of small simple shapes called finite el-
ements that are the support for computing the solution field. Different types
of elements exist: the most common elements are, in 2D, the triangle and
the quadrangle, and in 3D, the tetrahedron, the hexahedron, the prism and
the pyramid. Two main schools stand out: some users of the FEM prefer
triangular and tetrahedral meshes for the availability of fast and robust gen-
erators while some users prefer all-quadrangular and all-hexahedral meshes
which may offer better properties such as alignment with physical features or
a lower computational cost. Quadrangular and especially hexahedral mesh
generation are by far harder problems than their rival counterparts and have
been the subject of numerous research works, as evidenced by the many PhD
theses published over the years [16–24]. There is a real demand for auto-
matic all-hexahedral mesh generators, and designing such a mesh generator
that would work on arbitrarily complex geometries has been and still is the
fantasy of many researchers...

Classical finite element meshes are composed of linear (straight-sided) ele-
ments over which the solution is interpolated using either linear or quadratic
polynomials. Improving the accuracy of the solution can be achieved through
the refinement of the mesh in what is referred to as the h-version of the FEM.
Another approach is the p-version which consists in fixing the size of the ele-
ments but increasing the degree of the polynomial interpolation functions. It
has been shown that the p-version may offer better convergence of the solution
(see, e.g. [25]), provided also that the elements conform to curved boundaries,
i.e. that high-order (curved) elements are used when necessary. Moreover, it
has been established that a mix of the two approaches, called the hp-version
could lead to a “superconvergence” [26]. There has thus been a frenzy in the
1980s to develop such methods but the complexity of the implementations
hampered the momentum [27], in particular due to the difficulty to robustly
produce high-order meshes that conform to curved boundaries. Consequently
most of the current industrial-grade and commercial finite element packages
are still based on at most second-order interpolation on straight-sided meshes.

There is currently a renewed interest for high-order mesh generation due to
recent developments in the field of high-order finite element methods [28], such
as discontinuous Galerkin [29, 30] or spectral [31, 32] methods. Those methods
crucially rely on the availability of high-quality curvilinear meshes. Methods

Introduction 3

for generating such meshes include smoothing [33] and elasticity analogies [34].
However, even when those methods work well, there is no guarantee that the
resulting mesh will be valid. An alternative approach is to use optimiza-
tion [35–38], which allows to directly maximize one or several quality criteria.
These methods require the definition of proper quality measures of curvilinear
meshes that can be used in the optimization formulations. As optimization
is usually computationally expensive, it can realistically be applied only on
small patches of elements. To this end, detecting elements that have to be
optimized is essential.

Objective of this work
The objective of this thesis if twofold:

1. To design a quadrangular mesh generation algorithm that is automatic,
produces high-quality quadrangles, is able to respect a prescribed input
size field and is a good candidate for the extension to the 3D problem,
while being reasonably fast.

2. To design efficient algorithms for asserting the validity and for measuring
the quality of finite elements of any order and any type, for the purpose
of generating and validating quadrangular/hexahedral as well as general,
curved meshes.

Outline
The manuscript is organized as follows: In Chapter 2, we review state-of-the-
art techniques for the two subjects we are interested in: (1) quadrangular and
hexahedral mesh generation and (2) the validation of (curved) arbitrary order
finite elements. In Chapter 3, we detail our contributions, which are appended
in their original published form at the end of the thesis:

1. An algorithm that computes an optimal solution of the problem of com-
bining triangles of an initial triangular mesh in order to produce a quad-
rangular mesh [39] (Appendix A);

2. A strategy that aims at efficiently computing a near-optimal solution of
the same problem [40] (Appendix B);

3. A method for robustly and efficiently computing the extrema of the
Jacobian determinant of curved, arbitrary order finite elements, and
subsequently determine their validity [41] (Appendix C);

4. An extension of the above method to pyramids [42] (Appendix D);

Introduction 4

5. A technique for computing the extrema of a Jacobian-based quality mea-
sure of curved, arbitrary order finite elements (Appendix E).

Finally, conclusions as well as our perspectives are presented in Chapter 4.

CHAPTER 2
State of the Art

The idea of discretizing space in order to compute numerical solutions of par-
tial differential equations arose a hundred years ago: the first Finite Difference
Methods (FDM) were developed on mechanical calculators for weather predic-
tion and simple grids were used in order to discretize the atmosphere around
the earth [14, 43]. The arrival of electronics and digital computers led to a dra-
matic increase in the use of numerical methods and the Finite Element Method
(FEM) emerged in the 1950s. One significant advance that was brought by the
FEM is more flexibility in the discretization of the geometrical domain: while
FDM imposed the use of a grid that is aligned with the axes, the FEM relied
on a mesh that can be totally unstructured. At the beginning, meshes were
often created manually and in any case were usually quite simple: since mesh
generation is a means to an end, users would commonly create their meshes in
an ad-hoc manner for specific geometries. It is around the 1970s, as the need
for accuracy of simulations increased, along with the size and complexity of
the meshes, that mesh generation became a discipline on its own.

A finite element (FE) mesh consists of a set of small simple shapes called
finite elements. There exists one 0D element, which is called a node, and one
1D element, called an edge. In 2D, there are two classical finite elements: the
triangle and the quadrangle (a.k.a. quadrilateral). In 3D, tetrahedra (pyramids
with a triangular basis) and hexahedra (cuboids) are the main finite elements
but other elements also exist, e.g. prisms (a.k.a. wedges) or pyramids (with a
quadrangular basis). Nodes, edges, triangles and tetrahedra are from a same
family, the family of simplexes, so they can be referred to as the simplicial
elements. Every element (except the node) is bounded by entities of one
smaller dimension. For instance, a hexahedron is bounded by six quadrangular
faces while a quadrangle is bounded by four edges. We consider that two
elements are adjacent if they share an entity of one smaller dimension (an

5

State of the Art 6

edge for 2D elements and a face for 3D elements). Moreover, two elements
are said to be connected if there exists a sequence of adjacent elements that
starts by one of the two elements and ends by the other.

Any mesh has to respect a certain number of topological and geometrical
constraints in order to be usable for a finite element simulation (see e.g. [44]):

1. Topological validity: Several conditions have to be satisfied for a mesh
to be topologically valid. For instance, the elements cannot overlap, i.e.
any point of the topological space can belong to at most one element.
Moreover, the mesh must be connected which is true only if all the el-
ements are pairwise connected. It is also required that no element is
self-adjacent, i.e. an element cannot share a face with itself. Even if
strictly speaking it has not to do with validity, doublets are also com-
monly forbidden because those elements, which share two or more faces,
cannot possibly have an acceptable geometrical quality.

2. Geometrical validity: In addition to being topologically valid, geometri-
cal validity requires that any geometrical point belongs to at most one
element and that no element self-overlaps. The latter condition concerns
quadrangular, hexahedral and curved elements.

3. Topological and geometrical quality: Even topologically and geometri-
cally valid meshes might not lead to accurate FEM solutions. Notions
of topological and geometrical qualities must then be introduced. How-
ever, the link between topological/geometrical quality and the accuracy
of FEM solutions is often non trivial, as it depends on the mathematical
structure of the underlying partial differential equations. Topological
quality concerns above all quadrangular and hexahedral meshes and is
not independent from geometrical quality: for instance, the best geomet-
rical quality of a quadrangle usually corresponds to having every angle
equal to 𝜋/2. This implies that every interior node of the correspond-
ing mesh has a valence of 4 1, which corresponds to a high topological
quality.

Note that this is not an exhaustive list. For example, when using FEM on
complex geometries (e.g. coming from CAD models), the mesh should closely
approximate (be “close enough” to) its boundaries, and completely fill the
volume. Such constraints are however not a concern for the present thesis.

1The valence of a node or an edge is a positive integer number. In a quadrangular mesh,
it represents the number of quadrangles that touch a given node. In a hexahedral mesh, the
valence represents the number of hexahedra that completely touch a given edge.

2.1. Quadrangular and hexahedral mesh generation 7

2.1 Quadrangular and hexahedral mesh generation
In contrast to simplicial mesh generation, which can be considered as ma-
ture since the 1990s [45–52] and for which robust algorithmic implementations
are widely used [53–57], quadrangular and hexahedral mesh generation is still
largely an open problem. Various reasons explain the demand for quadrangu-
lar/hexahedral meshes [58]:

• Empirical studies in structural analysis have shown that four to ten times
less hexahedra are needed than tetrahedra in order to achieve a compa-
rable accuracy, which implies less memory usage and less computational
cost [59, 60].

• The linear tetrahedron is very stiff (mathematically, the eigenvalues of its
stiffness matrix are larger than, e.g. the linear hexahedron). In elastic
and elasto-plastic analyses, it implies that the linear tetrahedron locks
in bending tests and using hexahedra [61] or quadratic tetrahedra [62]
allows to overcome this drawback.

• Another well-known advantage of hexahedra is their effectiveness to cap-
ture anisotropic features. For instance, elements with high aspect ra-
tios are required in boundary layers for Navier-Stokes computations and
stretched hexahedra perform better than stretched tetrahedra. Hex-
ahedra are also more appreciated than tetrahedra for anisotropically
adapted meshes in presence of a directional flow [63]. Also, alignment
of hexahedral elements with the material features of composite mate-
rials leads to better performance when performing structural dynamics
simulations [58].

• The high-order spectral finite element method [32] makes use of the
Gauss–Lobatto quadrature which leads to a diagonal mass matrix on
quadrangles and hexahedra [64]. The spectral finite element method has
been extended to triangles, at a higher computational cost than quad-
rangles, but not to tetrahedra [65]. Moreover, recent developments of the
method on GPUs have highlighted promising scalability and throughput
for hexahedra [66].

Before reviewing the main families of algorithms and techniques to generate
such meshes, we highlight the main factors that explain the difficulties of
quadrangular/hexahedral mesh generation.

2.1.1 Algorithm attributes
The quadrangular/hexahedral meshing algorithms have many characteristics
that differentiate them from one another. It is common in the literature to

2.1. Quadrangular and hexahedral mesh generation 8

establish a list of them in the form of the desired attributes that the ideal
mesh generation algorithm should have [11, 21, 23]. However, in this the-
sis, we prefer not to talk about an ideal algorithm, as some attributes are
mutually conflicting (like the mesh size constraint and the mesh structure).
Moreover, an algorithm can be well-adapted for certain classes of geometries
or applications but not in other cases.

The following list is not exhaustive but tries to highlight the most com-
mon attributes that characterize quadrangular/hexahedral mesh generation
methods:

• Quad/Hex proportion: It is usually implicitly understood that quadran-
gular and hexahedral meshes refer to meshes composed of only one type
of element. However, while it is indeed possible to create such meshes in
2D, no general automatic algorithm generating fully-hexahedral meshes
for arbitrary geometries currently exists. It is thus common to design
algorithms to generate what are called hex-dominant meshes, which con-
tain other types of elements (tetrahedra, prisms and pyramids) but for
which the hexahedra are in the majority. By contrast, meshes that do
not contain other types of elements can be explicitly referred to as all-
quadrangular and all-hexahedral meshes. It is worth mentioning that
there also exists hybrid meshes in which regions are meshed with struc-
tured hexahedral elements and other regions are meshed with tetrahedral
elements. The connection between the different regions can be confor-
mal or not (see the next attribute). At last, the term mixed mesh also
exists to designate a mesh that contains several types of elements.

• Conformity: In a conformal mesh, two elements can either be uncon-
nected or share a node, an edge or a face. This implies in particular
that a hexahedron cannot share a face with a tetrahedron in a confor-
mal manner. In a conformal hybrid mesh, it is thus necessary to use
prisms and pyramids in order to make the transition between the two
types of elements. A hexahedron that shares a face with two tetrahedra
is one example of non-conformity. Other examples include a quadrangle
that shares an edge with two smaller quadrangles or two hexahedra that
share three nodes or more but no faces.

• Geometry generality: Ideally, a quadrangular/hexahedral meshing algo-
rithm should be able to handle any kind of geometry. In practice, how-
ever, all-quadrangular/all-hexahedral algorithms have to neglect others
attributes and there exist many geometry-specific mesh generators that
can efficiently produce high-quality meshes for restricted classes of ge-
ometries.

2.1. Quadrangular and hexahedral mesh generation 9

• Mesh structure: It is common to separate meshes into two categories:
unstructured and structured meshes. A mesh is said to be locally struc-
tured if in some neighborhood the nodes are such that they could be
the nodes of a deformed regular (e.g. cartesian) grid. Among struc-
tured meshes, we distinguish three subcategories: all-structured, block-
structured and semi-structured meshes. An all-structured mesh is a mesh
that is structured everywhere. Every interior node of an all-structured
quadrangular mesh has thus a valence 4. Similarly, each interior edge
of an all-structured hexahedral mesh has a valence 4. Block-structured
meshes consist of a small number of all-structured patches. Finally, we
say that a mesh is semi-structured when the number of irregularities
(valences different from 4) is limited. The main families of algorithms
used to generate these three subcategories of structured meshes will be
reviewed in the next section: mapping and submapping techniques for
all-structured meshes, geometry partition methods for block-structured
meshes and receding fronts, paving/plastering or grid-based methods for
semi-structured meshes. Note that the structure is intimately linked to
the notion of topological quality.

• Mesh quality: As briefly mentioned above, the FEM solution can be de-
teriorated by bad quality elements, which can also have an impact on the
simulation time. Indeed, bad quality elements can e.g. reduce the stable
time step of explicit time integration schemes or decrease the conver-
gence rate of iterative schemes. The definition of what is a good-quality
element is not well-established and different kinds of simulations can
be influenced differently by the quality of elements, but it is commonly
required that the angles of the quadrangles are as close as possible to
𝜋/2. In the same way, it is commonly required that the angles between
two faces of an hexahedron are as close as possible to 𝜋/2. Note that the
mesh structure is somehow correlated to the quality in the sense that
high-quality meshes are very structured.

• Element size control: The smaller the size of the elements, the more ac-
curate the solution. However, as computation time is directly linked to
the number of elements, it is often desirable to generate coarser meshes in
“less-important” regions and finer meshes in regions where high accuracy
is needed, a process automated in ℎ-adaptive analyses. The prescribed
size field can often present strong gradings, which imposes strong con-
straints on the mesh structure (and geometrical and topological quality).
Note that while some algorithms are not a priori designed to respect a
prescribed size field, post-processing steps can always be applied to lo-
cally refine a mesh in conformal manner (e.g. [67, 68]).

• Boundary mesh constraint: There exist different strategies for meshing
a multipart geometry. In the top-down strategy, the highest dimen-

2.1. Quadrangular and hexahedral mesh generation 10

sional mesh is generated first and lower dimensional meshes (surface,
edge, node meshes) are extracted on the boundary of each part. On
the contrary, in the bottom-up strategy, the boundaries of the geometry
are meshed first, before creating the higher dimensional meshes. Some
algorithms are not designed to respect a boundary mesh and are thus
not well-suited for a bottom-up strategy.

• Direct or indirect generation procedure: Some algorithms generate first
a triangular or a tetrahedral mesh as the foundation for generating the
quadrangular/hexahedral meshes. Those algorithms are called indirect
while the others are called direct algorithms.

• Boundary sensitivity: In some domains of application and particularly
in fluid dynamics, the solution must be very accurately resolved close
to the boundaries of the geometry. It follows that high-quality elements
are strongly desirable near these boundaries. Methods that are designed
to generate such meshes are called boundary-sensitive.

• Orientation sensitivity: The mesh produced by an orientation-sensitive
mesh generator will depend on the orientation of the geometry in space,
e.g. its (mis)alignment with coordinate axes. Geometries predominantly
consisting of plane surfaces parallel to the coordinate axes can be han-
dled well by such algorithms. In general, orientation-insensitive algo-
rithms are however more desirable.

• Tolerant to bad geometry: Complex geometries that go from the design
step to the meshing step often present bad geometry definitions such as
overlapping patches, gaps between patches or surface intersections. Re-
pairing those geometries is a very time-consuming, often manual task.
Handling gracefully bad geometries is an important attribute for indus-
trial mesh generators.

• Computational cost: It is always advantageous that an algorithm is as
fast as possible. This is particularly true for mesh generation for which
parameters must often be tuned in a trial-and-error manner. On a per-
sonal computer, automatic tetrahedral mesh generators are nowadays
capable of generating more than one million tetrahedra per minute [57].
Large industrial meshes are generated on supercomputers and can eas-
ily contain more than 1 billion tetrahedral elements. It is difficult to
establish an acceptable computation cost for quadrangular/hexahedral
mesh algorithms. This would depend on the type and the quality of the
mesh, as well as the class of geometries the algorithm can handle, etc.
However, it is reasonable to say that for an industrial application, the
computational complexity of meshing algorithms should be as close to
possible to linear.

2.1. Quadrangular and hexahedral mesh generation 11

To conclude, let us mention that mesh generators can have different de-
grees of automation. As mentioned above, for arbitrary complex geometries,
fully-automatic hexahedral mesh generators do not exist. Popular industrial
approaches are based on a mostly manual partitioning of the geometry, which
requires a lot of human time and experience.

2.1.2 Conformal all-quad/all-hex meshing constraints
In addition to the topological and geometrical constraints common to all type
of finite element meshes, all-quadrangular and all-hexahedral meshes have
other constraints that make them particularly difficult to generate as well as
less flexible for e.g. adaptation.

To better understand these constraints, it is useful to consider the dual
graph of the mesh, which is defined as the graph whose vertices correspond
to mesh elements and whose edges join pairs of adjacent elements. Duals of
quadrangular and hexahedral meshes have a particular topological structure
that is called Spatial Twist Continuum (STC) [69]. This structure is described
by two entities (see Fig. 2.1):

• Chords: A quadrangle can be seen as two pairs of opposing edges and a
hexahedron can be seen as three pairs of opposing faces. This involves
in the dual graph that edges incident to a vertex can be uniquely paired.
We can thus give this definition to a chord: it is a sequence of connected
dual edges for which each two consecutive edges correspond to opposing
edges/faces of the mesh. In other words, a chord represents a stack of
quadrangles or hexahedra. A chord can either be a closed loop or start
and terminate at the boundary. As a consequence, quadrangular (resp.
hexahedral) meshes must have an even number of edges (resp. faces) on
the boundary.

• Sheets: Two adjacent hexahedra have 5 chords running through them.
One is common to the two hexahedra and the other four can be uniquely
paired such that the paired chords are locally parallel. As a consequence,
two chords that are locally close (i.e. running through the same hexa-
hedron or two adjacent hexahedra) are either locally parallel or locally
perpendicular. A sheet can then be defined as follows: it is the surface
that contains a collection of chords for which each set of locally close
chords are perpendicular to a foreign chord. In the primal mesh, it cor-
responds to a layer of hexahedra. Similarly to chords, a sheet can be
a closed surface or its boundaries have to coincide with the geometry
boundary. A sheet can self-intersect and the intersection of two sheets
or two parts of a sheet is a chord.

2.1. Quadrangular and hexahedral mesh generation 12

(a) (b)

Figure 2.1: Dual entities of the hexahedral mesh: (a) A chord which corre-
sponds to a stack of hexahedra and (b) a sheet which corresponds to a layer
of hexahedra. (Pictures from [23].)

Any topological modification applied on a mesh can be seen from the STC
point of view. For quadrangular meshes, a collapse for example corresponds
to (1) cutting two chords which intersect at their intersection and (2) recon-
necting the parts pairwise in a way that they don’t intersect anymore (see
Figure 2.2). Similarly, removing a doublet consists in reducing the number of
intersections between two chords by one. Because of the sheets, there is no
such local modification in hexahedral meshes. A modification that affects a
sheet has to propagate along at least one chord included in that sheet. For in-
stance, the generalization of the 2D collapsing is changing the topology of the
STC so that an intersection between two sheets is removed. In other words,
collapsing a given hexahedron imposes to collapse all the hexahedra that are
run through by the corresponding chord.

Figure 2.2: The collapse operation consists in removing a quadrangle and
merging to opposing nodes in order to close the created hole. In the STC
point of view, it consists in modifying two intersecting chords.

This explains two things: (1) The topological post-processing performed
on a all-hexahedral mesh is a non-local process and it offers therefore less pos-
sibilities and (2) more generally, the problem of generating an all-hexahedral
mesh is much more constrained and therefore much harder than the problem
of generating other types of meshes.

2.1. Quadrangular and hexahedral mesh generation 13

As an illustration, let us consider a geometry that is topologically a 𝑛-holed
torus. It is possible to cut each of the 𝑛-handles in turn by non-self-intersecting
topological disks bounded by an even cycle of edges in order to topologically
reduce the geometry to a sphere [70], which admits an all-hexahedral mesh
provided that the number of faces on its boundary is even. However, this
does not ensure that it is possible to generate a good-quality (or even a valid)
mesh. One famous example is Schneiders’ pyramid for which every face is
discretized with quadrangles in an elementary manner [71]. There are four
quadrangles on the base and three quadrangles on each triangular faces (see
Figure 2.3). A reasonable number of hexahedra in order to fill the volume
would be 5 or 6 (such that the size of each element remains close to the size
at the boundary). Because of the top corner, that has four adjacent edges,
such a solution is however impossible. The minimal solution in term of the
number of sheets implies 20 hexahedra [72]. This solution contains however
many doublets and does not meet the topological validity constraints (and
geometrical quality) required for a finite element simulation. Up to now,
two valid solutions have been published, which respectively use 118 and 88
hexahedra [73, 74]. However, the resulting elements have poor scaled Jacobian
determinant and the meshes are thus of poor quality, which restricts their
interest for industrial applications.

(a) (b)

Figure 2.3: (a) Schneiders’ pyramid and (b) a cut of the 88-elements solution
proposed by Yamakawe and Shimada. (Pictures from [74].)

In the following sections we review a non-exhaustive list of the state-of-the-
art techniques for generating quadrangular and hexahedral meshes (further
details can be found in [58, 75, 76]).

2.1.3 Core methods
These methods are generally easy to implement and constitute in some way the
basis of quadrangular and hexahedral mesh generation. They only apply to
elementary geometrical shapes, so they are used either to mesh simple geome-
tries or in the partition techniques (Sect. 2.1.4). It is important to point out
that all of these core methods produce meshes that are strongly constrained.

2.1. Quadrangular and hexahedral mesh generation 14

For instance, mapping methods require that the number of edges/faces must
be the same on opposite sides of the domain.

Mapping

Mapping is the natural technique for generating an all-structured mesh. It
consists in deforming a grid defined on a computational domain such that
it fits into the physical domain, i.e. the geometry. This can be made by an
explicit mapping or an implicit mapping, the former being generally more
efficient than the latter. There is one requirement for the geometry to be
mappable: it must be topologically equivalent to a quadrilateral or a cuboid.
In other words, the user must determine four logical sides from a surface
geometry or six logical quadrilateral faces from a volume. The quality of the
mesh that is obtained depends on the shape of the geometry: the more the
resemblance with a rectangle or a rectangular cuboid, the better the quality.

The Transfinite Interpolation (TFI) method [77] is one of the most popular
algorithm for producing all-structured meshes [78] (Fig. 2.4). The mapping
is defined by an explicit algebraic expression. More precisely, it is defined
through interpolation functions that can have different forms: linear, square,
cubic, Hermite or Bernstein polynomials. The TFI method is computationally
efficient, in term of both memory and time, and is easy to implement. Some
improvements extend the applicability of the TFI method [79, 80].

𝜉

𝜂

𝑥

𝑦

Figure 2.4: Among the various algorithms based on mapping, the Transfinite
Interpolation method is one of the most popular. The mesh of the compu-
tational domain (left) can be mapped to the physical domain (right) if four
logical sides are identified. Here, the two physical border edges drawn in thick
black on the right mesh form one unique logical side.

Another family of mappings includes explicit conformal mappings [81–83].
By definition, those mappings preserve the local angles. The grid defined
on the computational domain is orthogonal and the angle preservation im-

2.1. Quadrangular and hexahedral mesh generation 15

plies that the resulting mesh (composed of straight-sided elements) is near-
orthogonal. Explicit conformal mappings have been largely used for meshing
outer domains, principally for fluid simulations. It was really appreciated in
FDM for which a (near-)orthogonal grid avoids to add cross-derivative terms
for the resolution of the equations. In contrast with the TFI method, a con-
formal mapping is inherently a 2D technique.

PDE-based methods [84, 85] have also been widely used to produce all-
structured meshes. The mapping is defined by an implicit PDE equation that
can be elliptic, hyperbolic or parabolic. Elliptic methods have the great advan-
tage to produce smoother meshes than the TFI method but are more compu-
tationally expensive. Hyperbolic methods are useful to mesh outer domains by
propagating an initial boundary mesh. They provide grid orthogonality and
are faster than elliptic methods. They however propagate the singularities of
the boundary. Parabolic methods combine some of the advantages of both
elliptic and hyperbolic methods. In particular, they provide smooth meshes
while being computationally efficient.

Primitives

Mesh generation based on primitives consists in meshing simple geometrical
shapes with predetermined templates [86]. Examples of simple geometrical
shapes are polygons, circles, boxes, tetrahedra, spheres, cylinders, etc. The
template of the tetrahedral primitive, for instance, consists in dividing a tetra-
hedral shape into four hexahedral blocks. Those blocks are then meshed by
using a mapping technique. The geometrical shapes do not need to be straight-
sided, e.g. the template of the tetrahedral shape can be used to mesh an octant
of an sphere (Fig. 2.5). Algorithms based on primitives are fast and easy to
implement and are thus often included in mesh generators. They also usu-
ally produce good-quality meshes. An interesting method for meshing some
primitives is the midpoint subdivision [87].

The cylinder primitive, that is created by ‘‘sweeping’’ a quadrangular mesh
from one end to the other, has been extended to more advanced algorithms
that are presented in the next paragraph.

Sweeping

The sweeping technique consists in creating a 3D mesh by projecting the
mesh of a surface along a specified trajectory. In one respect, sweeping is to
meshing what extrusion is to CAD modeling. The geometries must possess
the following characteristics (see [88] for details):

• Every boundary surface is either a source surface, a target surface or a
linking surface (see Fig. 2.6). The source surface and the target surface

2.1. Quadrangular and hexahedral mesh generation 16

Figure 2.5: Techniques based on primitives allow meshing simple geometries
such that this octant of a sphere (left). The template of the tetrahedral shape
can be applied (middle). It consists of four hexahedral blocks that are meshed
using a mapping technique. The image on the right shows the same mesh for
which the front block has been hidden.

are unique.

• The source surface and the target surface (also called cap surfaces) must
be topologically the same. In particular, they must contain the same
number of logical sides and the same number of holes.

• The linking surfaces must be bounded by 4 logical sides.

(a) (b)

Figure 2.6: Topological shape of a sweepable volume. The source and tar-
get surfaces must be unique and the linking surfaces must be topologically
equivalent to a quadrilateral. (Pictures from [89].)

The volume mesh can be generated in four distinct steps: (1) generation
of an all-structured quadrangular mesh on the linking surfaces, (2) generation
of the mesh on the source surface, (3) projection of this mesh onto the target
surface and (4) generation of the inner nodes and volume elements. This
results in a layered mesh for which the layers have the following characteristics:
they are perpendicular to the sweep direction, they are all topologically the
same and correspond to an extrusion of the source surface mesh. Due to

2.1. Quadrangular and hexahedral mesh generation 17

this particularity, they are often called 2.5D meshes and the geometries, 2.5D
geometries. The meshes of the linking surfaces are generated using a mapping
technique. Many sweeping methods consider the nodes of the linking surfaces
as a stack of bounding loops for the construction of the interior nodes. The
mesh of the source surface can be of any type (triangular, quadrangular or
mixed) and can be generated using any existing technique for generating a
mesh on a surface. The challenging steps of the method are the two remaining
steps: projection of the source mesh to the target surface and location of the
interior nodes inside the volume. The mesh of the target surface must have
the same connectivity that the mesh of the source surface. Several methods
can be employed to construct it:

• Smoothing: The method consists in constructing a mesh on the target
surface of the same connectivity that the mesh on the source surface with
an initial node placement that may not necessarily be good. This can
be done by computing e.g. an affine mapping. Then, a smoothing oper-
ation is applied in order to improve the quality [90]. This approach can
give really good results on a various types of geometries but smoothing
routines are typically slow and not well-suited for large meshes.

• Least-squares approximation of an affine mapping: This method requires
that the two surfaces have a parameterization. The idea is to compute an
affine mapping that will transform the nodes of the source surface to the
target surface in the parametric space. Since the boundary nodes of the
target surface are already known (after the linking surfaces have been
meshed), the mapping would be the mapping between the boundary
nodes of the two surfaces. This mapping is not affine in the general
case, thus the affine mapping is computed in the least-square sense [89].

Generation of the inner nodes can be done by one the following methods:

• Geometric placement: Similarly to a frontal method, this method se-
quentially creates the hexahedra of each layer [91]. A hexahedron is
created only if seven nodes are known and the last node is placed such
that the three faces of the new element touched by the node are planar.
This limits the distortion of the final mesh and works well for specific
blocky geometries.

• Layer smoothing: As for generating the mesh on the target surface, the
location of the interior nodes can be computed by smoothing the 2D
mesh of each layer [92]. This results in planar node layers which is not
adapted for geometries with curvatures on the source and target surfaces.

• Faceted node projections [93]: This method uses a background triangu-
lar mesh in order to locate the new nodes. This background mesh is

2.1. Quadrangular and hexahedral mesh generation 18

first generated on the source surface by tessellating the boundary nodes.
Then it is elevated to each layer of nodes that has to be created. Each
new interior node is computed using the barycentric coordinate of the
triangle which contains it. At the end, the volume elements are created
by connecting the nodes. An offset distance is considered in order to
take into account the curvature of the source and target surfaces, such
that the resulting mesh is smooth. Inverted elements can however be
introduced in the background mesh if the geometry presents distorted
holes.

• Least-square approximation of an affine mapping: The method consists
in computing the interior nodes of a given layer as an affine mapping of
the nodes from the source surface. Some geometries require only trans-
lation, rotation, and scaling of layer meshes. In this case, the mapping
between two bounding loops of the linking surfaces is affine and the in-
terior nodes are placed according to this exact affine mapping. For more
complex sweeping, an affine mapping may not exist but an affine map-
ping can still be computed in the least-square sense [92]. In this case, an
error exists between the computed position and the position that would
be computed by using the actual mapping of the bounding loops. Note
that a functional has to be minimized which leads to solve a linear system
that can sometimes be singular. The minimization of another equiva-
lent functional [94, 95] can overcome this drawback while improving the
matching respect of the curvature of the source and target surfaces. The
node location can again be improved in different ways [96–98].

Figure 2.7: Sweeping techniques can handle various type of geometries as,
for example, geometries with twisted and curved sweep path (left) or high
curvature of the source and target surfaces (right). (Pictures from [89, 95].)

Figure 2.7 presents two geometries that have been meshed using the sweeping
technique. Extensions to sweeping techniques that allow to handle geometries
with multiple source and target surfaces are presented in the next section.

2.1. Quadrangular and hexahedral mesh generation 19

2.1.4 Geometry partition methods
Geometry partition is an important class of all-hexahedral mesh generators.
Formerly, the term geometry decomposition was used in order to designate
such methods but some authors began to use the more explicit term partition,
which we also prefer to use. The technique consists in partitioning the geom-
etry into subdomains of simple shape that can be meshed by one of the core
methods presented in the previous section. Block-structured meshes are typi-
cally obtained by meshing the subdomains with a mapping technique. Those
meshes are usually of very good quality due to their structure. However, the
conformity of the mesh between the adjacent subdomains implies that the con-
straints on the mesh size—peculiar to the core methods—propagate through
the whole geometry. The number of elements, and thus the discretization,
cannot be chosen in a particular region of the geometry without having con-
sequences in other regions. The control of the element size is thus highly
limited. Specifically, refining the mesh in a region of interest will usually also
refine the mesh in other unwanted parts of the geometry. Theoretically, any
kind of geometry can be partitioned in order to mesh the subdomains with the
core methods. However, automatic partition methods still struggle to handle
complex geometries. For this reason, the partitioning of complex geometries
is a human-time-consuming manual process.

Those methods are not designed to respect a given boundary mesh and
are thus not suited for a bottom-up strategy. They are moreover all direct
algorithms.

Submapping

The submapping technique produces all-structured meshes on geometries that
have not necessarily the shape of a quadrilateral or a cuboid [99, 100]. Even
so, the geometries should have angles that are relatively close to 90° in order
for the generated mesh to be of good quality. Moreover, for 3D geometries,
the faces must be mappable or submappable. This technique is well-adapted
to blocky geometries and is popular in mechanical simulations. The quality
of the generated mesh can be very good if the geometry lends itself to the
submapping, both inside and near the boundary. Figure 2.8 shows a mesh
obtained by the submapping technique.

In 2D, the submapping algorithm relies on a classification of the vertices of
the surface to mesh. This classification allows to consider a representation of
the surface for which the edges are vertical or horizontal (see Figure 2.9). This
representation is called the computational domain. (In 3D, the computational
domain is sometimes referred to as the polycube.) The edges are then classified
according to their direction in this computational domain. In order to be
all-structured, the final mesh must verify the property that the number of

2.1. Quadrangular and hexahedral mesh generation 20

Figure 2.8: Submapping of a gear. (Picture from [101].)

intervals on edges going upward (resp. from left to right) is equal to the
number of intervals on edges going downward (resp. from right to left). This
constraint is enforced by solving an integer linear problem (ILP). Then, virtual
edges are created that partition the geometry into mappable regions. Those
regions are meshed using a mapping technique and the final mesh is taken
as the union of those meshed regions. The submapping of 3D geometries
relies on the same approach: (1) classification of vertices, edges and faces, (2)
resolution of a ILP for assigning the intervals on the edges, (3) partition of
the geometry into cuboidal regions using virtual faces and (4) meshing of the
regions using a mapping technique.

References [101, 102] improve the vertex classification and the interval as-
signment and extend the applicability of the method to surfaces and volumes
with holes and voids. The proposed method automatically reduces multiply
connected geometries into simply connected geometries by virtually connect-
ing the holes or the voids to the exterior boundary.

Let us mention [103] in which it is proposed to generate all-structured
meshes on general geometries without partitioning. This improves stability
in comparison to other existing submapping methods. An initial manual par-
tition is however needed, making the method not fully automatic. Moreover,
the position of the inner nodes is computed by solving a sparse linear system.

Multisweeping and multiaxis sweeping

Geometries on which one-to-one sweeping can be applied must have only one
source and one target surface (see Section 2.1.3). More complex geometries
exist that can accept a swept mesh: geometries with multiple source sur-

2.1. Quadrangular and hexahedral mesh generation 21

end
corner

𝐴 𝐵

𝐶

𝐷

𝐸𝐹

𝐺

𝐻

(a) Vertex classification
𝐴 𝐵

𝐶𝐷

𝐸𝐹

𝐺𝐻

(b) Edge classification

(c) Final mesh

Figure 2.9: The submapping relies on a classification of the geometric enti-
ties: vertices, edges and faces (in 3D). The classification of the vertices (a)
is function of the angle defined between their two adjacent edges. There are
four classifications: end, side, corner or reversal. From this information, the
computational domain (b) is constructed. The edges are then classified in
function of their direction. The final mesh (c) is obtained after dividing the
geometry into quadrilateral regions and applying the mapping technique to
each of them.

faces but a single target surface in which case the meshing algorithm is called
many-to-one sweeping, and geometries with multiple source and multiple tar-
get surfaces for which the algorithms are called many-to-many sweeping (see
Figure 2.10). A method for detecting whether a geometry is sweepable, based
on geometric and topological informations, has been developed in [88]. Addi-
tionally, the method is able to detect the source, target and linking surfaces of
sweepable geometries. The linking surfaces must be meshed with a mapping
or submapping technique. A method for assigning the intervals of sweepable
geometry is described in [104].

A first approach to multisweeping was described in [91]. This method is the
only one that does not perform any partition. The source and linking surfaces
are meshed and a layer index is associated to each source surface according
to its position in the linking surface. The meshing of the interior is done
frontally, beginning from the initial source surface(s) and by the geometric
placement technique described in Section 2.1.3. Each time a source surface
is encountered, its nodes are added to the front. Each time a target surface
is encountered, the nodes that touch it are used to produce the mesh of this
surface and are removed from the front. This method can only work well for
simple blocky geometries but is not suited to more complex sweepings. The

2.1. Quadrangular and hexahedral mesh generation 22

(one-to-one) (many-to-one) (many-to-many)

Figure 2.10: Different meshes obtained with a sweeping or a multisweeping
technique. (Pictures from [21].)

reason is that the front moves forward without knowing where it goes.

In order to overcome this drawback, current approaches are based on real
and virtual partitions. The difficult part for doing this is the “imprinting”
process. Source and target surfaces do not have the same topology in general.
The imprinting process consists in subdividing source surfaces and/or target
surfaces such that they topologically match. Two approaches for many-to-
many sweeping have been developed:

• Virtual partition into barrels: This approach consists in virtually parti-
tioning the geometry into “barrels”, i.e. sub-volumes that have a single
source area and a single target area and can be meshed using a one-to-
one sweeping technique [96]. The process begins by meshing the source
and linking surfaces. Then the imprinting is performed and the barrels
are formed. It is worth mentioning that barrels can share a source/target
area; they can thus be grouped in stacks of barrels that connect source
and target surfaces of the geometry. The next step is the projection of
the source surfaces to each source and target areas of the barrels. Fi-
nally, the interior of the barrels is meshed separately and the final mesh
is the combination of the elements in all the barrels. Note that the link-
ing areas are predetermined (by the “ribs”) such that the conformity
is ensured between adjacent barrels. Reference [105] introduces Boolean
operations for the imprinting operation such that more configurations
and more complex geometries can be dealt with.

• Partition into many-to-one sweepable volumes: The goal of this method
is to partition the geometry into sub-volumes that have a single target
surface in order to be subsequently meshed by any existing many-to-
one sweeping technique [97, 106]. The method uses its own mesh size,
different from the size prescribed by the user because meshes that are
created have for unique purpose to produce the partition. The linking
surfaces are meshed with a mapping or a submapping technique. Using
this information, the bounding loops of the target surfaces are back-

2.1. Quadrangular and hexahedral mesh generation 23

propagated to the source surfaces. The bounding loops of the target
surfaces are then imprinted on the source surfaces in order for them
to topologically match the target surfaces. Finally, triangular meshes
are created between the source and target surfaces inside the geometry
to represent the partition. An improvement of this method, which in-
crease the robustness of the computed imprints in particular, has been
presented in [107].

A many-to-one method has been described in [108] and a multiaxis sweeping
algorithm has been presented in [109].

Medial axis

The medial axis is the set of points of a geometry for which there are more
than one closest point on the boundary of the geometry. A more convenient
definition can be given. Let us say that a disk (in 2D) or a ball (in 3D) is
maximal inscribed to the geometry if it is entirely contained inside and if it
is tangent to the boundary at two or more points. Thus, amongst all the
disks/balls included inside the geometry that are tangent to a given point of
the boundary, the maximal inscribed disk/ball is the one that has the larger
radius. The medial axis can then be defined as the location of the center of
all the maximal inscribed disks/balls, which is illustrated in Figure 2.11(a).
Note that in 3D, the medial axis is also called medial surface.

The medial axis is somehow the skeleton of the geometry and it equivalently
represents the geometry when in combination with the radius of the maximal
inscribed discs/balls. This is known as the medial axis transform (MAT). The
medial axis can be used to partition any given geometry. The first step is to
construct it. The medial axis is usually extracted from a Voronoi diagram 2

since the medial axis is approximately a subset of the Voronoi diagram. First,
the boundary of the geometry is sampled, which gives a discretization of the
boundary. Then the Voronoi diagram is computed (see Figure 2.11 (b)). Fi-
nally, Voronoi edges and faces intersecting the geometry and entities located
outside the geometry are removed. The remaining entities constitute an ap-
proximation of the medial axis. Details on how to construct the medial axis
can be found in [110–112]. A drawback of the method is that the sampling
of the geometry has to be dense in order to obtain a topologically correct
medial axis and a robust method is still lacking for general 3D geometries.
Moreover, in some situations, the medial axis can be degenerate: for instance,

2The Voronoi diagram of a given set of points is a partition of the space into Voronoi cells.
To every point is associated a Voronoi cell and the Voronoi cell of a point 𝑃 corresponds to
the region of the space in which 𝑃 is the closest point amongst the set. A Voronoi diagram
is shown in Figure 2.11 (b).

2.1. Quadrangular and hexahedral mesh generation 24

a medial axis face degenerates to an edge in a square prism and the geometry
of Figure 2.11 has two degenerate medial axis vertices.

(a) (b)

Figure 2.11: A geometry can be equivalently described by the medial axis
transform (MAT), i.e. the combination of the medial axis and the radius
of the maximal inscribed disks/balls. (a) A geometry (in black solid) and
the corresponding medial axis (in black dashed). Some maximal inscribed
disks are represented in gray. The medial axis can be extracted from the
Voronoi diagram. (b) The Voronoi diagram (in gray) corresponding to the
given sampling of the boundary (black dots).

The medial axis can be used for many purposes. A first use is the partition
of the geometry into sub-volumes [113–115]. In this technique, the sub-volumes
can be meshed using a midpoint subdivision technique proposed by [87]. This
approach usually produces poor quality meshes in regions where the medial
axis is degenerate. This can be overcome by computing a subdivision based
on the embedded Voronoi diagram [116]. Even if it is closely related to the
medial axis, the embedded Voronoi diagram is much easier to compute. The
sub-volumes are most of the time sweepable in which case an all-hexahedral
mesh can be generated but some sub-volumes that cannot be meshed with
only hexahedra can be created.

The medial axis can also be used for detecting thin regions [117–119]. This
information can be useful for partitioning and reducing the number of degrees
of freedom for the mesh generation. The detection can be done by comparing
the radii of the maximal inscribed discs of the boundary faces (which give
approximately the lateral dimensions) with respect to the radii of the maximal
inscribed balls of the volume (which give approximately the thickness).

Another approach is to generate a mesh on the medial axis, which is sub-
sequently extruded to the boundaries of the geometry. This approach pro-
vides all-quad/hex-dominant meshes [110]. However, a large number of non-
hexahedral elements are generated on complex geometries and there even re-
main elements with 7 vertices (hexahedra with one collapsed edge), which
are usually not handled by solvers. An improved algorithm is thus presented
in [120].

2.1. Quadrangular and hexahedral mesh generation 25

A last use of the medial axis is for analyzing the geometry and assisting
the user in the manual partition process [121]. The suggested sub-volumes are
sweepable and an all-hexahedral mesh can be generated.

Cross-field based methods

Some recent works take advantage of the computation of a cross-field.
The cross-field can be viewed as the preferred orientations of the quadran-
gles/hexahedra defined at each point of the domain, see Figure 2.12(a). The
approach takes its origin from the graphics community where such fields have
been used for visual effects such as anisotropic shading or texture synthesis.
On surfaces cross-fields have also been used to compute global parameteriza-
tions from input triangular meshes [122–125]. These parameterizations can be
aligned as desired, e.g. in the direction of the main curvatures, and inherently
provide all-structured quadrangular meshes. However, this approach is not
able to conform to prescribed boundary meshes or respect a given prescribed
element size field. Another use of cross-fields is partitioning the domain into
four-sided regions [126, 127]. Indeed, it has been demonstrated that singu-
larities are the crucial characteristic features of cross-fields [128], which corre-
sponds to irregular nodes (nodes for which the valence is not 4). A partitioning
of the domain can thus be constructed using this information, see Figure 2.12.
The cross-fields can be computed in different manners, by solving an elliptic
PDE [127] or by using a fast-marching algorithm [126]. An advantage of the
method is that it tries to compute a good position for the singularities and
that the boundaries of the partitions are curved.

(a) (b)

Figure 2.12: A cross-field can be used for partitioning. (a) The cross-field
represented by crosses in which two singularities are visible and the corre-
sponding partition into four sub-volumes. (b) The resulting mesh. (Pictures
from [127].)

Computation of a global parameterization in 3D has been proposed
in [129, 130]. The cross-field is first computed on 2D surfaces before being
is extended inside the volume. Other techniques relies on the minimization of
an energy function [131, 132] and on the construction of a singularity graph
for partitioning the geometry [133].

2.1. Quadrangular and hexahedral mesh generation 26

2.1.5 Octree-based methods
Octree-based (or grid-based) methods [67, 134] are able to produce all-hexa-
hedral meshes on arbitrary geometries in a fully automatic manner, at the
cost of degraded element quality near boundaries. The generation is done in
a top-down strategy: an interior mesh is generated from a cartesian grid or
an quadtree/octree if a mesh size field is prescribed. Elements that are not
completely located inside the volume are not generated. Then, the boundary
of this mesh is projected or adapted to the boundary of the geometry. A
mesh obtained with a grid-based method is shown in Figure 2.13. When
quadtrees/octrees are used instead of a cartesian grid, the mesh can be left
non-conformal or it can be made conformal by using transitions templates as
shown in Figure 2.14. The set of templates presented in [67] has been further
extended in order to improve the adaptation of the mesh to the geometry [68].

Figure 2.13: Meshes produced by a grid-based technique are all-structured in-
side the volume and unstructured at the boundaries of the geometry. (Picture
from [135].)

Many extensions have been proposed. In references [136, 137], the method
is adapted to handle geometries defined by volumetric data, which is a com-
mon type of geometry in bio-medical engineering. Reference [138] proposes a
method to handle geometries with heterogeneous materials. For those geome-
tries, the whole volume is still meshed at the same time but the interfaces
between different materials are subsequently recovered. This method is im-
proved in [139]. The capture of embedded features inside the mesh is a related
problem and a method is presented in [140].

2.1.6 Direct advancing front methods
In order to be able to respect an initial boundary mesh, several advancing front
methods have been designed. They all need as the minimal information an

2.1. Quadrangular and hexahedral mesh generation 27

(a) (b)

Figure 2.14: In 2D, in order to tune the size of the elements, a quadtree can
be used instead of a cartesian grid. The mesh is initially non-conformal (a)
but it can be made conformal (b) by applying transition templates.

initial boundary mesh. An advantage of those techniques is that the resulting
mesh is usually of high quality and well aligned near the boundary.

The paving algorithm has been proposed for creating quadrangular
meshes [141, 142]. It sequentially adds quadrangles starting from the bound-
ary and manages fronts. Fronts thus propagate to the interior of the geometry
and collide, see Figure 2.15. Collisions between fronts are the main difficulty
of the method. They have to be well handled in order to construct a good
quality mesh and such that the voids that are left can be meshed with only
quadrangles if necessary. The method has been improved in [143] and the
problem of meshing 3D surfaces has been treated in [144].

Figure 2.15: The paving algorithm in action. The light gray edges are part
of the two fronts that remain after that two collisions occurred. (Picture
from [143].)

The generalization of paving for hexahedral meshes is the plastering algo-
rithm [16, 145, 146]. It starts from a quadrangular mesh on the boundary
and creates hexahedra the same way than for the paving algorithm. However,

2.1. Quadrangular and hexahedral mesh generation 28

due to the additional constraints inherent to all-hexahedral meshing (see Sec-
tion 2.1.2), this method can create inner voids that cannot be further meshed
with hexahedra leading to the creation of a hex-dominant mesh. It is the price
to pay for respecting the initial boundary mesh. The unconstrained plaster-
ing (and in 2D, the unconstrained paving) [65, 147, 148] has been designed in
order to obtain more chances of success. The method releases itself from the
boundary mesh constraint. A background tetrahedral mesh is used in order
to compute successive fronts. Those fronts are computed independently of
any hexahedra; it is with the intersection of the fronts that the hexahedral
elements are defined. At the end, inner voids that cannot be hexahedralized
may still remain.

Another disadvantage of those techniques is that bad elements are usually
created at the meeting of fronts. The main reason is that fronts are propagated
towards each other without anticipating the collisions. A recent method called
the receding front method [149] has been designed in order to overcome this
drawback. It only works for exterior domains, however. The novelty of this
technique is to precompute the fronts in order to obtain a smooth transition
between the inner surface and the outer surface. This is done by computing
the level set of both surfaces. By combining them, a field that smoothly goes
from 0 on the outer surface to 1 on the inner surface is obtained. The fronts
are extracted from this field, see Figure 2.16. Then, the hexahedral mesh is
constructed layer by layer from the quadrangular mesh of the inner surface to
the outer surface. An all-hexahedral mesh is obtained. Note that a boundary
layer mesh can be obtained by computing thin layers near the boundary. Also,
it has to be pointed out that the mesh of the outer surface is defined by the
hexahedral elements. A similar method uses a harmonic field in order to
precompute the fronts [150]. This method works for more general geometries
and allows the user to choose the principal directions of the fronts.

(a) (b)

Figure 2.16: The receding front technique precompute fronts. (a) The fronts
computed for a simple geometry and (b) a mesh obtained for a plane. (Pictures
from [149].)

2.1. Quadrangular and hexahedral mesh generation 29

2.1.7 Indirect methods
Indirect methods transform an initial triangular/tetrahedral mesh into a
quadrangular/hexahedral mesh. Triangular/tetrahedral mesh generators are
fast, robust and fully automatic. The indirect approach has the advantage
to work on any geometry and to allow making abstraction of the geometry
definition. The transformations from triangles/tetrahedra to quadran-
gles/hexahedra can be done in two ways. The first is to split a triangle into 3
quadrangles or a tetrahedron into 4 hexahedra as shown in Figure 2.17. This
technique is very simple to implement but produces bad-quality meshes so
it is not actually used in this form. A more advanced method that works in
2D has been proposed in [151]. The algorithm classifies the edges (as either
a boundary edge, a corner edge, etc). Then, some of the edges are split in
two and triangles are split by applying splitting templates according to the
classification of the edges.

Figure 2.17: Element splitting. (Picture from [18].)

The other way to convert a simplicial mesh into a quadrangular/hexahedral
mesh is by combinations. A quadrangle can be created by combining two ad-
jacent triangles and a hexahedron can be created by combining usually 5 to
7 tetrahedra. In 2D, a first method was proposed in [152]. The method con-
sists in combining pairs of triangles. The order in which they are combined
influences the number of quadrangles that can be created and some heuristics
have been presented in order to maximize the number of combinations. Refer-
ence [153] proposed additional topological operations (splitting and swapping)
in order to improve the quality of the elements. The algorithm of [152] is im-
proved in [154] by including local triangle splitting and by taking an advancing
front approach. The front defines the limit between the already created quad-
rangles and the remaining triangles. This makes it possible to ensure that
an all-quad mesh is created if the number of edges on the boundary is even.
Another method is Q-Morph [155]. It improved boundary alignment and or-
thogonality by including edge swapping and by locally smoothing the mesh
after a quadrangle is created. Also, quadrangles can be created by combining
more than two triangles. Reference [156] proposes a combination technique
that is able to respect a generalized metric map. The method does not take

2.2. Curved finite element validity and quality 30

an advancing front approach but achieves all-quadrangular meshing by split-
ting the elements of the resulting mixed mesh. Another approach that does
not rely on an advancing fronts is proposed in [157], which takes advantage of
the fact that combining pairs of triangles is equivalent to matching pairs of
vertices in the dual graph of the mesh. An algorithm inspired from a well-
known graph theory problem, perfect matching, is presented. First, a binary
tree is extracted from the dual graph. Then, the matching is computed start-
ing from the leaves and by adding Steiner points if necessary. This algorithm
produces all-quad meshes but with a lot of irregular nodes. Based on this
algorithm, reference [158] proposes a high-quality all-quadrangular mesh gen-
erator. To this end, the irregular nodes are converted to regular nodes by
topological cleanups. In addition to common topological cleanups, an algo-
rithm from [159] for remeshing patches of several elements is used.

In 3D, there is currently no method for creating all-hexahedral meshes on
complex geometries. All the following techniques thus create hex-dominant
meshes. A technique for searching the possible combinations of tetrahedra
that form a hexahedron and combinations that form a prism is presented
in [160]. The extension of Q-Morph in 3D has been presented in [161]. As
for direct advancing front techniques, the method constructs conformal hex-
dominant meshes in general since there remain tetrahedra that cannot be
combined or transformed into valid hexahedra at meeting of fronts. Another
approach which relies on a better node location of the initial tetrahedral mesh
is presented in [162]. To do so, a packing of cubes is first computed, then the
tetrahedral mesh is generated using an advancing front method. Note that
this method does not allow respecting a prescribed size field. Another hex-
dominant technique is presented in [163], where nodes are inserted from the
boundary using a direction field and a size field, such that they are already
good candidates for creating hexahedra. Then the tetrahedralization is com-
puted and a greedy recombination algorithm is applied. At the end, a confor-
mal hex-dominant mesh is obtained. Hexahedra that are near the boundaries
are orthogonal and well-aligned. However, contrary to [161] non-hexahedral
elements can remain at the boundaries of the geometry. Figure 2.18 shows a
resulting mesh on a mechanical geometry.

2.2 Curved finite element validity and quality
An important characteristic of indirect methods which strongly influences the
quality of the resulting mesh is the way the simplex to quadrangles/hexahedra
transformations are applied. Indeed, the problem of combining the trian-
gles/tetrahedra can be seen as a sequence of decisions to be made. Where
to begin the combination process? Which triangles/tetrahedra to combine
together and in which order? Answers to those questions depend on what is
crucial for the simulation. For instance, alignment and orthogonality of ele-

2.2. Curved finite element validity and quality 31

Figure 2.18: Mesh obtained by an indirect method. The mesh is conformal
hex-dominant. Non-hexahedral elements are in grey while hexahedra are in
white. (Picture from [163].)

ments can be highly desired near the boundaries of the geometry. In this case,
it is better to combine first the triangles/tetrahedra that touch the boundaries.
The (geometrical) validity and quality of the created quadrangles/hexahedra is
certainly one of the most important characteristics that must lead the choices.
Moreover, as it has been seen in the introduction, there is a real demand for
the generation of curved high-order meshes and thus for methods to assess
validity and quality of such meshes.

Concerning topological quality, it is known that a node valence 4 is ideal
for quadrangular meshes. For hexahedra, it has been shown in [164] that
node valence is less meaningful and that edge valence is a better indicator
of topological quality. In the following, we review the state of the art for
determining the geometrical validity of an element and measuring its quality
(more details can be found in [75, 76, 165]). Most of the underlying techniques
make use of the mapping between a reference element (defined e.g. in the unit
square or the unit cube) and the actual (physical) mesh element defined in
the computational domain. This mapping is used in FEM to recast all the
spatial integrations that must be performed in the computational domain (e.g.
coordinates (𝑥, 𝑦)) as integrals in a (unique) reference coordinate system (e.g.
coordinates (𝜉, 𝜂), see Figure 2.19).

2.2.1 Methods for asserting the validity
It is known since the early age of FEM that the determinant of the Jacobian
of the mapping between the reference and physical element has to be strictly

2.2. Curved finite element validity and quality 32

𝜉

𝜂

Reference

𝑥

𝑦

Physical

𝐽→𝑝

Figure 2.19: Mapping between the reference and the physical element.

positive in order for the mesh to be valid [166, 167]. For straight-sided sim-
plicial elements, the Jacobian determinant is constant and for straight-sided
quadrangles, the Jacobian determinant takes its minimum at one corner of the
element, which implies that asserting the validity of those elements is trivial.
This is not the case for hexahedra and more generally for curved (high-order)
elements, for which the Jacobian determinant is a polynomial function of order
at least two. The natural method for determining their validity is to compute
the minimum of the Jacobian determinant, which remains straightforward for
quadratic triangles [168] but not for the other elements.

Some validity conditions for the case of the quadratic serendipity (a.k.a. “8-
node”) quadrangle are given in [169] and an exact computation of the minimum
of the Jacobian determinant for those elements is given in [170]. Although not
being considered in those papers because it was not used in simulations at
the time, the complete quadratic element, i.e. the “9-node” quadrangle can
a priori be treated the same way. With additional geometrical tests, the
computation can be accelerated in some cases [171]. Quadratic tetrahedra
and linear hexahedra are studied in [168]. However, an exact computation is
not achieved and only necessary conditions for the validity of those elements
are provided. The case of the linear hexahedron is also studied in [172]. It is
conjectured that if the Jacobian determinant is positive on the boundary, then
it is also positive inside the element. However, even if it is straightforward
to verify the positivity on the edges, no algorithm for verifying the positivity
on the faces is given. Constructions relying on the positivity property of
Bernstein-Bézier polynomials have been investigated in [173] for the case of
quadratic tetrahedra. The Bézier coefficients of the Jacobian determinant are
computed, which leads to a sufficient condition of validity if they are positive.
The computed bound is however not sharp.

2.2. Curved finite element validity and quality 33

2.2.2 Geometric and Jacobian-based quality measures
Many quality measures have been proposed in the literature, particularly for
linear simplicial elements. Several of these quality measures vanish when the
element becomes invalid, which makes them also usable as a validity test. It
is usually preferred to have normalized measures, i.e. measures that take their
value between 0 and 1. However, measures that take negative values when
the element is invalid are equivalently accepted. A distinction can be made
between geometric quality measures and Jacobian-based quality measures.

Geometric quality measures

Used since the beginning of the FEM, geometric quality measures are con-
structed from geometric characteristics such as the area/volume of the ele-
ment, the length of the edges or the radii of the inscribed and circumscribed
circle/sphere. Reference [174] surveys many existing geometric quality mea-
sures for linear finite elements, while proposing additional quality measures.
Reference [175] discusses the influence of the quality of the mesh on both
the interpolation properties and the numerical solution of various PDEs and
presents a comprehensive survey of geometric quality measures for linear sim-
plicial elements. Geometric quality measures are not easily generalizable to
curved elements. For quadratic tetrahedra, reference [173] proposes a mea-
sure constructed by approximating the volume and surface of the element by
splitting it into 8 tetrahedra.

Let us also mention [176, 177], which studies the quality of second order
triangles and tetrahedra. An algorithm is proposed for determining the ad-
missible area in which the mid-side nodes can be located in such a way that the
Jacobian determinant at the nodes of the element remains above a given value.
A geometric quality measure is derived from this criterion; its generalization
to higher orders is unclear.

Jacobian-based quality measures

The Jacobian matrix of the mapping between the reference or an “ideally-
shaped” element and the physical element (see Figure 2.20) contains all the
distortion information. It is natural to define quality measures from it; how-
ever it is only in the 2000s that such measures have been popularized. A great
advantage of Jacobian-based measures is that their definition is independent
of the type of element. They are also directly generalizable to curved elements.
However, an important characteristic distinguishes the case of linear simplicial
elements and other cases. The Jacobian matrix of linear simplicial elements
is constant over the element, which implies that an element-wise quality mea-
sure can easily be constructed from it. For curved elements and even for linear
quadrangular and hexahedral elements, the Jacobian matrix is not constant

2.2. Curved finite element validity and quality 34

over the element. Even if the same quality measure can be used, it will be
only a pointwise measure. Thus, an additional step has to be applied in order
to convert the pointwise measure into an element-wise measure.

𝜉

𝜂

Reference
𝜉

𝜂

Ideal

𝑥

𝑦

Physical

𝐽→𝑝

𝐽→𝑖

𝐽𝑖→𝑝

Figure 2.20: Mappings between the reference, the ideal and the physical ele-
ment.

Linear elements A framework for algebraic quality measures is established
in [178, 179]. This framework allows the construction, classification, and eval-
uation of such algebraic measures. From this framework, the definition of
quality measures for simplicial elements is straightforward and several can-
didates are proposed. An element-wise measure 𝑄 is derived for quadrangu-
lar/hexahedral elements by computing the pointwise measure at all corner (4
in the case of a quadrangle and 8 in the case of an hexahedron) and by com-
puting either their minimum or their harmonic or geometric average. This
ensures that 𝑄 is 0 if and only if the pointwise quality measure vanishes at
one corner and that it is equal to 1 if and only if the pointwise measure is 1
at all the corners.

For linear quadrangular/hexahedral elements the quality definition that
prevails in the litterature is the scaled Jacobian. This measure appears to
have been mentioned for the first time in [180] for quadrangles and in [181]
for hexahedra. A geometrical definition can be found in [162]. The authors
usually take the minimum of the scaled Jacobian computed at each corner as
the element-wise quality measure.

Quadratic elements A quality measure for the quadratic serendipity (8-
node) quadrangle, is proposed in [182]. The coordinates of the face node that
would exist if the element was complete are derived in function of the coordi-
nates of the 8 other nodes, and the parameters obtained in this derivation are
used in the construction of a quality measure. Reference [183] considers the
definition of algebraic quality measures for quadratic triangles. Similarly to

2.2. Curved finite element validity and quality 35

what had been proposed by the same author for linear quadrangles/hexahedra,
it is proposed to compute the pointwise measure at every node of the element
and to take the minimum, maximum or the 𝑝th power-mean as the element-
wise quality. In the case of the maximum, this global quality is compared to
the actual maximum of the pointwise measure and it is shown that the former
can be in some situations a poor approximation of the latter.

Arbitrary order elements Recent works have focused on defining a qual-
ity measure for curved simplicial finite elements of any order [184, 185]. The
approach is to the consider an algebraic quality measure as proposed in [178],
which constitutes the pointwise measure and to compute the 𝐿2-norm as the
element-wise quality measure. This measure however cannot be used as a
validity test. It is mentioned in [186] that this technique, although developed
only for simplicial elements, can be extended to non-simplicial elements. Note
that using the same approach, algebraic quality measure can also be defined
for non-planar curved triangles [187].

CHAPTER 3
Contributions

Despite the fact that tetrahedral mesh generation is significantly easier, we
have seen in Section 2.1 that there are sufficient benefits of using all-hexahedral
meshes in some applications to have a manifest demand for them [58]. How-
ever, we have also seen in Section 2.1.2 how this problem is highly constrained.
Several successful methods (submapping, multisweeping, etc.) deal with these
constraints by taking a “global approach”. However, they are restrained to a
certain class of geometries and they usually do not allow respecting a pre-
scribed size field. A natural question is whether it is possible to design an
algorithm for general geometries that has both property of global formulation
and fine control of the element size.

Our first contribution, the Blossom-Quad algorithm, aims at finding a
global approach which can respect a prescribed size field for the problem of
quadrangulating general surfaces [39] (see Appendix A). The method takes an
indirect approach; this way, the respect of the prescribed size field is trivial
since the initial triangular mesh already respects it. The novelty of our first
contribution is the formulation of the problem of combining pairs of trian-
gles as a minimum-cost perfect-matching problem in the dual graph 1 of the
triangular mesh. Minimum-cost perfect-matching is a well-known problem of
graph theory and an efficient algorithm to solve it, called Blossom, has been
originally proposed in [188, 189]. Our Blossom-Quad algorithm takes as input
an initial mesh composed of an even number of connected triangles. Then,
the potential combinations are listed and a cost is associated to each of them;
this cost is function of the inverse of the quality measured on the quadrangle
that would be created. The optimal solution of the combination problem is
computed through the minimum-cost perfect-matching algorithm. In order

1We recall that the dual graph of a mesh is a graph whose vertices correspond to the
elements of the mesh and whose edges correspond to the adjacency of two elements.

36

Contributions 37

to ensure that a perfect match exists, “fake” combinations may occur at the
boundary of the domain. Finally, a post-processing step is applied in order
to deal with the possible fake combinations and to improve the quality of
the final mesh [190, 191]. Blossom-Quad can be used with both CAD and
STL models, provided for the latter that a reparameterization is performed
(e.g. [192]). The algorithm is not perfect: (1) the fake combinations are not
trivial to handle in order to have good quality elements at the boundaries of
the geometry, and (2) even if multiple improvements have been proposed since
1965, the best known implementation of the minimum-cost perfect-matching
algorithm in term of complexity runs in 𝑂 (𝑛2

△) [193–195], where 𝑛△ is the
number of triangles. The latter drawback can however be compensated by
partitioning large meshes—at the cost of increasing the chances to obtain fake
combinations. A typical timing of the Blossom-Quad algorithm is about 10 s
for generating 50,000 quadrangles, out of which 3 s are spent for generating the
original 100,000 triangles (on a Macbook Pro Retina, Mid 2012 @ 2.3GHz).
Finally, we also show in the paper that the choice of the quality measure has
a significant influence on the resulting mesh.

While this approach works very well it cannot be extended directly to
the 3D problem of combining tetrahedra into hexahedra. Indeed, the graph
theory matching problem is inherently only defined for “combining two ele-
ments together”. A possible generalization is the reformulation of the match-
ing problem but in this case, to the best of our knowledge, no corresponding,
efficient algorithm exists. Moreover, it is not sufficient to find a “perfect com-
bination” (i.e. a solution for which each tetrahedron is used for creating the
hexahedra); the solution also has to be conformal, which adds other difficul-
ties. Those conformity constraints can be nicely handled by constructing the
graph of compatibilities between potential hexahedra or its complementary,
the graph of incompatibilities between potential hexahedra. Searching a solu-
tion in those graphs corresponds to two well-known problems of graph theory:
the maximum clique and maximum independent set problem respectively [196].
However, those two problems are NP-complete in general and can be solved
in polynomial time only for particular graph structures.

Our second contribution aims at finding an alternative approach that can
easily be extended to 3D [40] (see Appendix B). To this end, we still take an
indirect approach and we formulate the combination problem as a sequential
decision-making problem, which is a problem often come across in reinforce-
ment learning, a domain of artificial intelligence [197]. The quadrangulation
process is thus viewed as a sequence of combinations to perform. In con-
trast to the techniques reviewed in Section 2.1.7, which use pure heuristics to
determine the combinations to add in the sequence, we employ a look-ahead
tree [198]. This look-ahead tree allows, at a given state of the mesh (i.e. at
an intermediate state between the initial triangular mesh and the final mesh),

Contributions 38

to attach a “reward”—that is based not only on the quality of the quadran-
gle that would be created but also on the quality of the future quadrangles
that can be further created in the neighborhood—to each potential combina-
tion. In other words, the look-ahead tree allows to “see in the future” and
to anticipate, in a similar way a human would do it. Heuristics are used in
order to obtain as much quadrangles as possible but patches of triangles that
cannot be further combined usually remain. However, they contain an even
number of triangles and the final mesh can easily be post-processed in order
to be transformed into an all-quadrangular mesh (e.g. using [159]). We show
that augmenting the depth of the tree, up to a certain number, increases the
quality of the final mesh as well as the number of combinations. This method
can be seen as a relaxation of Blossom-Quad, since it computes a near-optimal
solution, while Blossom-Quad computes the optimal one. However, contrary
to Blossom-Quad which has a complexity of 𝑂 (𝑛2

△), this algorithm is linear
and allows to achieve better quality elements at the boundaries. Moreover, it
has the advantage to be more flexible: additional topological and geometrical
operations can be applied during the combination process. Finally, the appli-
cation of the look-ahead tree technique on the 3D problem is straightforward.
A typical percentage of combination success of this algorithm is between 98%
and 99%, in function of the depth of the look-ahead tree. The timing is typ-
ically 16 s for combining 100,000 triangles with a look-ahead tree of depth
3.

In both of these methods, the location of the nodes in the initial triangular
mesh is not insignificant; they should ideally be placed such that the triangles
are good candidates for the combinations. Traditional triangular mesh gen-
erators usually aim at producing triangles that are as equilateral as possible.
For the combination problem, it is usually best if the triangles are closer to
right-angled triangles. Several techniques can be used for this purpose [199–
201].

Also, in both of these approaches, the functional to optimize is based on
the validity and the quality of the created quadrangles. In practice however,
there exists currently no method to robustly assert that a (linear) hexahedron
is valid. Moreover, it is unclear if computing the minimum of the scaled
Jacobian at the corner of linear hexahedra is sufficient to judge their quality.
The next three papers deal with this validity issue, as well as proposing a
more robust quality measure. The scope of these contributions is actually
much larger, as they address the validity and quality of arbitrary order finite
elements, which are crucial for the development of the new generation of high-
order solvers.

In our third contribution, we design an efficient algorithm to accurately
compute the minimum and the maximum of the Jacobian determinant (to
which we refer as 𝐽min and 𝐽max respectively) of any common curvilinear fi-

Contributions 39

nite elements except the pyramid [41] (see Appendix C). Since the Jacobian
determinant is a polynomial function, we expand it in the Bézier basis that
corresponds to the element. Bézier bases having both properties of positivity
and boundedness, the minimum (resp. maximum) of the expansion coefficients
constitutes a lower (resp. upper) bound of the Jacobian determinant, which is
however not sharp in general. To sharpen those bounds we employ a method
which consists in subdividing the expansion. This subdivision is done in a
recursive and adaptive manner and has a quadratic rate of convergence [202].
In order to be able to characterize the sharpness of, e.g., the lower bound, an
upper bound of 𝐽min is necessary. This upper bound is provided by actual
values of the Jacobian determinant amongst the coefficients of the expansion.
Experiments show that the extrema of the Jacobian determinant can be com-
puted efficiently with any prescribed tolerance. This algorithm allows then
to assert for certain that an element is valid or not by looking at the sign of
𝐽min. Moreover, the minimum and the maximum of the Jacobian determinant
can be used to construct a distortion measure. In practice, the method can
determine the validity of 1,000,000 linear hexahedra in about 2.5 s while the
same number of third-order tetrahedra are processed in 9 s. Note that this
work is based in part on our master thesis [203].

Our fourth contribution extends this method to the case of Bergot’s curvi-
linear pyramids [42] (see Appendix D). For pyramids, the Jacobian determi-
nant is a rational function and this extension is not trivial [204]. However,
we show that a Bézier-like basis can be constructed with the same positivity
and boundedness properties. This basis can be used for optimization but does
not allow subdivision; we thus construct an enriched basis for which the algo-
rithm of our third contribution can apply. Results show that the method is
as efficient as for the other types of elements.

Our last contribution, which is still a draft paper, aims at efficiently com-
puting the extrema of a (pointwise) Jacobian-based quality measure for any
arbitrary-order pyramidal and non-pyramidal elements (see Appendix E). We
consider the eigenvalues of the metric tensor (which correspond to the singu-
lar values of the Jacobian matrix) and we take the ratio between the minimum
and the maximum of those eigenvalues as the quality measure. This quality
measure has been shown to be effective for simulations [36]. Geometrically,
this is a measure of the pointwise anisotropy within the curved element. Since
the metric tensor is a real symmetric matrix, in the 3D case, a trigonomet-
ric expression of the eigenvalues can be established by an affine transforma-
tion [205]. Despite its relative complexity, the method takes typically only
about 20 to 30 times longer to fully analyze the quality of linear hexahedral
or third-order tetrahedral meshes than the corresponding analysis of their va-
lidity. This makes the computational cost of the algorithm comparable to the
mesh generation time.

Contributions 40

The corresponding algorithms are integrated to the stable release of the
software Gmsh [57] which can be downloaded on the following website: www.
gmsh.info. Since Gmsh is an open-source software, all the algorithms can be
found in its source code:

• The Blossom-Quad algorithm is currently the default algorithm for cre-
ating quadrangular meshes with the indirect approach and the code can
be found in gmsh/Mesh/meshGFaceOptimize.{h/cpp}.

• The algorithm of our second contribution is still experimental and can
only be used through the C++ API: The code is located in
gmsh/Mesh/meshGFaceRecombine.{h/cpp}.

• The algorithm for detecting invalid curvilinear elements as well as the
algorithm for computing their quality can be used through the plugin
AnalyseCurvedMesh. The implementation is scattered in multiple files
that are mainly located in directory gmsh/Numeric but a good starting
point is to look at gmsh/Plugin/AnalyseCurvedMesh.{h/cpp}.

www.gmsh.info
www.gmsh.info

CHAPTER 4
Conclusions

The objective of this thesis was twofold: (1) develop efficient quadrangulation
techniques for finite element applications, in view of their eventual extension
to the very hard problem of automatic all-hexahedral mesh generation; and
(2) design accurate procedures for assessing the validity and the quality of any
type of finite element.

As was reviewed in Chapter 2, numerous techniques have been proposed
over the years to generate quadrangular/hexahedral meshes. We have focused
on indirect methods, which inherit their robustness and ability to respect pre-
scribed size fields from the underlying triangulation/tetrahedralization, and
have investigated two research directions in this setting. The first one consists
in formulating the combination problem as a minimum-cost perfect-matching
problem. The main advantage is that this allows computing an optimal solu-
tion for which all the triangles are combined. In order for this to be possible,
the only condition is that the number of triangles in the initial mesh is even.
However, some “fake” combinations at the boundaries may occur and have
to be handled as a post-processing step. The second approach consists in us-
ing a look-ahead tree technique to determine the triangles to combine. This
technique allows to obtain a near-optimal solution; in this sense, it is between
approaches based on pure heuristics and the optimal approach. By augment-
ing the depth of the tree, the quality of the final mesh increases, without
increasing the complexity of the algorithm that remains linear. We believe
that current indirect quadrangulation methods have reached a plateau due
to the difficulty to further improve the heuristics and that this look-ahead
tree technique, which adds “computer intelligence”, is a very promising way
forward, especially as it is directly applicable in 3D.

For the second problem that we have investigated, we have shown that, us-
ing the properties of Bézier expansions, it is possible to efficiently compute the

41

Conclusions 42

extrema values of Jacobian-based quantities defined on finite elements of any
order and type (including pyramidal elements). In particular, the minimum of
the Jacobian determinant can be efficiently computed with any prescribed tol-
erance, which allows asserting the validity of curvilinear elements. The same
technique is the basis of the proposed method for the calculation of a quality
measure that quantifies the pointwise anisotropy of the elements. We believe
that this strategy constitutes a fundamental building block for the analysis
and optimization of finite element meshes.

Perspectives
Many perspectives for future works exist.

For quadrangular mesh generation:

1. Extension of the quadrangulation techniques to 3D: The Blossom-Quad
algorithm gives nice results, however, as mentioned before, its generaliza-
tion to 3D is problematic and the generation of high-quality quadrangles
near the boundaries is difficult. The application of the look-ahead tree
technique to 3D is on the contrary trivial, but several questions arise, in
particular due to the fact that the branching factor of the tree will be
much larger for combining hexahedra than for combining quadrangles
(see 3. below).

2. Study provability of the validity and quality of indirect all-quadrangular
(and all-hexahedral) mesh generation: As explained in Section 2.2, a
valid and good quality mesh is essential for finite element simulations.
When creating a quad-dominant mesh a simple solution is to only com-
bine triangles that lead to valid/good-quality quadrangles. When an
all-quadrangular mesh is needed, no trivial solution exists.

3. Investigation of an advanced look-ahead tree technique: We have shown
that increasing the depth of the tree leads to an improvement of the re-
sulting mesh. However, expanding the tree uniformly is expensive, since
the computation time increases proportionally to ℎ𝛼, with ℎ the depth
and 𝛼 the branching factor. While the branching factor is reasonably
small for the 2D problem (< 2), it is expected to be much larger for the
3D problem (> 10). Therefore, it is crucial to investigate more advanced
look-ahead tree techniques such as the Monte Carlo tree search [206].

4. Additional types of actions: While the use of a triangular mesh generator
that produces close to right-angled triangles, such as [200], is very useful,
especially near the boundaries, the node location is however not optimal
and many bad-quality or even invalid quadrangles are created. Thus, in

Conclusions 43

addition to the combinations, it may be useful to add other actions such
as node relocation, edge swaping, or collapse.

For the validation of meshes:

1. Extension of the method to other quality measures: The ability to com-
pute the extrema of the Jacobian determinant and the minimum of a
Jacobian-based quality measure suggests that it should be possible to
extend the technique to other Jacobian-based quality measures. In par-
ticular, it would be very helpful to be able to compute the minimum of
the scaled Jacobian, which is the reference quality measure used in the
hexahedral mesh generation community.

2. Study of the proposed element-wise quality measures: There are several
studies on the influence of the geometric quality of linear elements on the
FEM solution. However, the influence of the quality of curved elements
on FEM solutions is still largely unknown. The advent of good quality
measures should help greatly in such studies.

3. Use of the results for optimizing curvilinear meshes: It has already be
shown that Bézier expansions can also be used in an optimization algo-
rithm to make valid (to untangle) a curved mesh [36]. One question that
arises is whether it is possible to do the same for optimizing the quality
of the mesh.

Bibliography

[1] E. R. Arantes Oliveira. Theoretical foundations of the finite element
method. International Journal of Solids and Structures, 4(10):929–952,
1968.

[2] C. V. Girijavallabhan and L. C. Reese. Finite-element method for prob-
lems in soil mechanics. Journal of Soil Mechanics & Foundations Div,
94(2):473–496, 1968.

[3] R. S. Sandhu and E. L. Wilson. Finite-element analysis of seepage in
elastic media. Journal of the Engineering Mechanics Division, 95(3):
641–652, 1969.

[4] C. A. Brebbia and J. J. Connor. Fundamentals of finite element tech-
niques for structural engineers. Butterworth Press, 1973.

[5] G. Strang. Piecewise polynomials and the finite element method. Bul-
letin of the American Mathematical Society, 79(6):1128–1137, 1973.

[6] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. “Consider a spherical
cow” – Conservation of geometry in analysis: Implications for computa-
tional methods in engineering. IMA Hot Topics Workshop: Compatible
Spatial Discretizations for Partial Differential Equations, 2004.

[7] D. Roylance. Finite element analysis. MIT Press, Cambridge, 2001.

[8] I. Babuška, W. D. Henshaw, J. E. Oliger, J. E. Flaherty, J. E. Hopcroft,
and T. Tezduyar, editors. Modeling, mesh generation, and adaptive
numerical methods for partial differential equations. Springer Science &
Business Media, 1995.

[9] K. Haghighi and E. Kang. A knowledge-based approach to the adaptive
finite element analysis. In Modeling, Mesh Generation, and Adaptive
Numerical Methods for Partial Differential Equations, pages 267–276.
Springer, 1995.

[10] B.-Y. Shih and H. Sakurai. Automated hexahedral mesh generation
by swept volume decomposition and recomposition. In Proceedings of

44

Bibliography 45

the 5th International Meshing Roundtable, volume 96, pages 273–280.
Citeseer, 1996.

[11] T. Blacker. Automated conformal hexahedral meshing constraints, chal-
lenges and opportunities. Engineering with Computers, 17(3):201–210,
2001.

[12] J. F. Shepherd and C. R. Johnson. Hexahedral mesh generation con-
straints. Engineering with Computers, 24(3):195–213, 2008.

[13] S. J. Owen, B. W. Clark, D. J. Melander, M. Brewer, J. F. Shepherd,
K. Merkley, C. Ernst, and R. Morris. An immersive topology environ-
ment for meshing. In Proceedings of the 16th International Meshing
Roundtable, pages 553–577. Springer, 2008.

[14] T. J. Baker. Mesh generation: Art or science? Progress in Aerospace
Sciences, 41(1):29–63, 2005.

[15] J. Chen, D. Zhao, Y. Zheng, Z. Huang, and J. Zheng. Fine-grained par-
allel algorithm for unstructured surface mesh generation. In Proceedings
of the 22nd International Meshing Roundtable, pages 559–578. Springer,
2014.

[16] S. A. Canann. Plastering and optismoothing: New approaches to auto-
mated, 3D hexahedral mesh generation and mesh smoothing. PhD thesis,
Brigham Young University, 1991.

[17] D. R. White. Automatic, quadrilateral and hexahedral meshing of
pseudo-cartesian geometries using virtual subdivision. PhD thesis,
Brigham Young University, 1996.

[18] S. J. Owen. Non-simplical unstructured mesh generation. PhD thesis,
Carnegie Mellon University, 1999.

[19] O. U. Baran. Control methodologies in unstructured hexahedral grid
generation. PhD thesis, Vrije Universiteit Brussel, 2005.

[20] K. Kovalev. Unstructured hexahedral non-conformal mesh generation.
PhD thesis, Vrije Universiteit Brussel, 2005.

[21] J. F. Shepherd. Topologic and geometric constraint-based hexahedral
mesh generation. PhD thesis, The University of Utah, 2007.

[22] X. Roca. Paving the path towards automatic hexahedral mesh generation.
PhD thesis, Universitat Politècnica de Catalunya, 2009.

[23] E. Ruiz-Gironés. Automatic hexahedral meshing algorithms: from struc-
tured to unstructured meshes. PhD thesis, Universitat Politècnica de
Catalunya, 2011.

Bibliography 46

[24] T. Carrier Baudouin. Hexahedral-dominant mesh generation. PhD the-
sis, Université catholique de Louvain, 2013.

[25] I. Babuška, B. A. Szabo, and I. N. Katz. The p-version of the finite
element method. SIAM Journal on Numerical Analysis, 18(3):515–545,
1981.

[26] I. Babuška and B. Q. Guo. The h-p version of the finite element method
for domains with curved boundaries. SIAM Journal on Numerical Anal-
ysis, 25(4):837–861, 1988.

[27] R. H. MacNeal. Finite Elements. CRC Press, 1993.

[28] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary,
H. Deconinck, R. Hartmann, K. Hillewaert, H. T. Huynh, et al. High-
order CFD methods: current status and perspective. International Jour-
nal for Numerical Methods in Fluids, 72(8):811–845, 2013.

[29] J. S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin meth-
ods: algorithms, analysis, and applications. Springer Science & Business
Media, 2007.

[30] R. M. Kirby, S. J. Sherwin, and B. Cockburn. To CG or to HDG:
a comparative study. Journal of Scientific Computing, 51(1):183–212,
2012.

[31] P. E. J. Vos, S. J. Sherwin, and R. M. Kirby. From h to p efficiently: Im-
plementing finite and spectral/hp element methods to achieve optimal
performance for low-and high-order discretisations. Journal of Compu-
tational Physics, 229(13):5161–5181, 2010.

[32] G. Karniadakis and S. Sherwin. Spectral/hp element methods for com-
putational fluid dynamics. Oxford University Press, 2013.

[33] P. M. Knupp. Winslow smoothing on two-dimensional unstructured
meshes. Engineering with Computers, 15(3):263–268, 1999.

[34] Z. Q. Xie, R. Sevilla, O. Hassan, and K. Morgan. The generation of arbi-
trary order curved meshes for 3D finite element analysis. Computational
Mechanics, 51(3):361–374, 2013.

[35] S. J. Sherwin and J. Peiró. Mesh generation in curvilinear domains using
high-order elements. International Journal for Numerical Methods in
Engineering, 53(1):207–223, 2002.

[36] T. Toulorge, C. Geuzaine, J.-F. Remacle, and J. Lambrechts. Robust
untangling of curvilinear meshes. Journal of Computational Physics,
254:8–26, 2013.

Bibliography 47

[37] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Optimization of
a regularized distortion measure to generate curved high-order unstruc-
tured tetrahedral meshes. International Journal for Numerical Methods
in Engineering, 2015.

[38] C. Geuzaine, A. Johnen, J. Lambrechts, J.-F. Remacle, and T. Toulorge.
The generation of valid curvilinear meshes. In IDIHOM: Industrial-
ization of High-Order Methods-A Top-Down Approach, pages 15–39.
Springer, 2015.

[39] J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, and
C. Geuzaine. Blossom-Quad: A non-uniform quadrilateral mesh gener-
ator using a minimum-cost perfect-matching algorithm. International
Journal for Numerical Methods in Engineering, 89(9):1102–1119, 2012.

[40] A. Johnen, D. Ernst, and C. Geuzaine. Sequential decision-making ap-
proach for quadrangular mesh generation. Engineering with Computers,
31(4):729–735, 2015.

[41] A. Johnen, J.-F. Remacle, and C. Geuzaine. Geometrical validity of
curvilinear finite elements. Journal of Computational Physics, 233:359–
372, 2013.

[42] A. Johnen and C. Geuzaine. Geometrical validity of curvilinear pyra-
midal finite elements. Journal of Computational Physics, 299:124–129,
2015.

[43] L. F. Richardson. Weather prediction by numerical process. Cambridge
University Press, 1922.

[44] F. Ledoux and J. Shepherd. Topological and geometrical properties of
hexahedral meshes. Engineering with Computers, 26(4):419–432, 2010.

[45] R. Löhner and P. Parikh. Generation of three-dimensional unstructured
grids by the advancing-front method. International Journal for Numer-
ical Methods in Fluids, 8(10):1135–1149, 1988.

[46] M. S. Shephard and M. K. Georges. Automatic three-dimensional mesh
generation by the finite octree technique. International Journal for Nu-
merical Methods in Engineering, 32(4):709–749, 1991.

[47] P. L. George, F. Hecht, and E. Saltel. Automatic mesh generator with
specified boundary. Computer Methods in Applied Mechanics and En-
gineering, 92(3):269–288, 1991.

[48] S. Rebay. Efficient unstructured mesh generation by means of Delaunay
triangulation and Bowyer-Watson algorithm. Journal of Computational
Physics, 106(1):125–138, 1993.

Bibliography 48

[49] P. L. George and É. Seveno. The advancing-front mesh generation
method revisited. International Journal for Numerical Methods in En-
gineering, 37(21):3605–3619, 1994.

[50] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional
mesh generation. Journal of Algorithms, 18(3):548–585, 1995.

[51] R. Löhner. Progress in grid generation via the advancing front technique.
Engineering with Computers, 12(3-4):186–210, 1996.

[52] J. R. Shewchuk. Delaunay refinement mesh generation. PhD thesis,
Carnegie Mellon University, 1997.

[53] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator. In Applied Computational Geometry Towards
Geometric Engineering, pages 203–222. Springer, 1996.

[54] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec. Triangula-
tions in CGAL. In Proceedings of the sixteenth annual symposium on
Computational geometry, pages 11–18. ACM, 2000.

[55] H. Si. TetGen: A quality tetrahedral mesh generator and three-
dimensional Delaunay triangulator, 2004.

[56] P. L. George, F. Hecht, and E. Saltel. TetMesh-Ghs3d, mesh generator
for tetrahedral element, 2004.

[57] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh
generator with built-in pre-and post-processing facilities. International
Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[58] J. Sarrate, E. Ruiz-Gironés, and X. Roca. Unstructured and semi-
structured hexahedral mesh generation methods. Computational Tech-
nology Reviews, 10:35–64, 2014.

[59] A. O. Cifuentes and A. Kalbag. A performance study of tetrahedral and
hexahedral elements in 3-D finite element structural analysis. Finite
Elements in Analysis and Design, 12(3):313–318, 1992.

[60] V. I. Weingarten. The controversy over hex or tet meshing. Machine
Design, 66(8):74–76, 1994.

[61] S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardama. A
comparison of all-hexagonal and all-tetrahedral finite element meshes for
elastic and elasto-plastic analysis. In Proceedings of the 4th International
Meshing Roundtable, 1995.

Bibliography 49

[62] A. Huerta, A. Angeloski, X. Roca, and J. Peraire. Efficiency of high-
order elements for continuous and discontinuous Galerkin methods. In-
ternational Journal for Numerical Methods in Engineering, 96(9):529–
560, 2013.

[63] R. Biswas and R. C. Strawn. Tetrahedral and hexahedral mesh adapta-
tion for CFD problems. Applied Numerical Mathematics, 26(1):135–151,
1998.

[64] D. Komatitsch, S. Tsuboi, and J. Tromp. The spectral-element method
in seismology. Geophysical Monograph Series, 157:205–227, 2005.

[65] M. L. Staten, R. A. Kerr, S. J. Owen, T. D. Blacker, M. Stupazzini, and
K. Shimada. Unconstrained plastering—Hexahedral mesh generation
via advancing-front geometry decomposition. International Journal for
Numerical Methods in Engineering, 81(2):135–171, 2010.

[66] J.-F. Remacle, R. Gandham, and T. Warburton. Gpu accelerated spec-
tral finite elements on all-hex meshes. arXiv preprint arXiv:1506.05996,
2015.

[67] R. Schneiders, R. Schindler, and F. Weiler. Octree-based generation
of hexahedral element meshes. In Proceedings of the 5th International
Meshing Roundtable. Citeseer, 1996.

[68] Y. Ito, A. M. Shih, and B. K. Soni. Octree-based reasonable-quality
hexahedral mesh generation using a new set of refinement templates.
International Journal for Numerical Methods in Engineering, 77(13):
1809–1833, 2009.

[69] P. Murdoch, S. Benzley, T. Blacker, and S. A. Mitchell. The spatial twist
continuum: A connectivity based method for representing all-hexahedral
finite element meshes. Finite Elements in Analysis and Design, 28(2):
137–149, 1997.

[70] S. A. Mitchell. A characterization of the quadrilateral meshes of a surface
which admit a compatible hexahedral mesh of the enclosed volume. In
Proceedings of the 13th Annual Symposium on Theoretical Aspects of
Computer Science, pages 465–476. Springer, 1996.

[71] R. Schneiders. A grid-based algorithm for the generation of hexahedral
element meshes. Engineering with Computers, 12(3-4):168–177, 1996.

[72] T. Suzuki, S. Takahashi, and J. Shepherd. An interior surface gener-
ation method for all-hexahedral meshing. In Proceedings of the 14th
International Meshing Roundtable, pages 377–398. Springer, 2005.

Bibliography 50

[73] S. Yamakawa and K. Shimada. Hexhoop: Modular templates for con-
verting a hex-dominant mesh to an all-hex mesh. Engineering with Com-
puters, 18(3):211–228, 2002.

[74] S. Yamakawa and K. Shimada. 88-element solution to Schneiders’ pyra-
mid hex-meshing problem. International Journal for Numerical Methods
in Biomedical Engineering, 26(12):1700–1712, 2010.

[75] J. F. Thompson, B. K. Soni, and N. P. Weatherill. Handbook of grid
generation. CRC press, 1998.

[76] P. J. Frey and P.-L. George. Mesh generation: application to finite
elements. ISTE, 2008.

[77] W. J. Gordon and C. A. Hall. Construction of curvilinear co-ordinate
systems and applications to mesh generation. International Journal for
Numerical Methods in Engineering, 7(4):461–477, 1973.

[78] R. Haber, M. S. Shephard, J. F. Abel, R. H. Gallagher, and D. P.
Greenberg. A general two-dimensional, graphical finite element prepro-
cessor utilizing discrete transfinite mappings. International Journal for
Numerical Methods in Engineering, 17(7):1015–1044, 1981.

[79] W. A. Cook and W. R. Oakes. Mapping methods for generating three-
dimensional meshes. Computers in Mechanical Engineering, 8:67–72,
1982.

[80] T. Shih, R. T. Bailey, H. L. Nguyen, R. J. Roelke, et al. Algebraic grid
generation for complex geometries. International Journal for Numerical
Methods in Fluids, 13(1):1–31, 1991.

[81] C. C. L. Sells. Plane subcritical flow past a lifting aerofoil. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical
Sciences, 308(1494):377–401, 1969.

[82] J. South and A. Jameson. Relaxation solutions for inviscid axisymmetric
transonic flow over blunt or pointed objects. In AIAA Computational
Fluid Dynamics Conference, 1973.

[83] D. C. Ives. Conformal grid generation. Applied Mathematics and Com-
putation, 10:107–135, 1982.

[84] A. M. Winslow. Numerical solution of the quasilinear Poisson equation
in a nonuniform triangle mesh. Journal of Computational Physics, 1(2):
149–172, 1966.

Bibliography 51

[85] J. F. Thompson, F. C. Thames, and C. W. Mastin. Automatic nu-
merical generation of body-fitted curvilinear coordinate system for field
containing any number of arbitrary two-dimensional bodies. Journal of
Computational Physics, 15(3):299–319, 1974.

[86] M. B. Stephenson and T. D. Blacker. Using conjoint meshing prim-
itives to generate quadrilateral and hexahedral elements in irregular
regions. Technical report, Sandia National Labs., Albuquerque, NM
(USA), 1989.

[87] T. S. Li, R. M. McKeag, and C. G. Armstrong. Hexahedral meshing us-
ing midpoint subdivision and integer programming. Computer Methods
in Applied Mechanics and Engineering, 124(1):171–193, 1995.

[88] D. R. White and T. J. Tautges. Automatic scheme selection for toolkit
hex meshing. International Journal for Numerical Methods in Engineer-
ing, 49(1-2):127–144, 2000.

[89] X. Roca, J. Sarrate, and A. Huerta. Mesh projection between parametric
surfaces. Communications in Numerical Methods in Engineering, 22(6):
591–603, 2006.

[90] P. M. Knupp. Applications of mesh smoothing: copy, morph, and sweep
on unstructured quadrilateral meshes. International Journal for Numer-
ical Methods in Engineering, 45(1):37–45, 1999.

[91] L. Mingwu, S. E. Benzley, G. Sjaardema, and T. Tautges. A multi-
ple source and target sweeping method for generating all-hexahedral
finite element meshes. In Proceedings of the 5th International Meshing
Roundtable, volume 96, pages 217–225. Citeseer, 1996.

[92] P. M. Knupp. Next-Generation Sweep Tool: A method for generating
all-hex meshes on two-and-one-half dimensional geometries. In Proceed-
ings of the 7th International Meshing Roundtable, pages 505–513, 1998.

[93] M. L. Staten, S. A. Canann, and S. J. Owen. BMSweep: Locating
interior nodes during sweeping. Engineering with Computers, 15(3):
212–218, 1999.

[94] X. Roca and J. Sarrate. An automatic and general least-squares projec-
tion procedure for sweep meshing. Engineering with Computers, 26(4):
391–406, 2010.

[95] X. Roca and J. Sarrate. Least-squares approximation of affine map-
pings for sweep mesh generation: functional analysis and applications.
Engineering with Computers, 29(1):1–15, 2013.

Bibliography 52

[96] T. Blacker. The cooper tool. In Proceedings of the 5th International
Meshing Roundtable. Citeseer, 1996.

[97] D. R. White, S. Saigal, and S. J. Owen. CCSweep: Automatic decom-
position of multi-sweep volumes. Engineering with Computers, 20(3):
222–236, 2004.

[98] M. A. Scott, M. N. Earp, S. E. Benzley, and M. B. Stephenson. Adaptive
sweeping techniques. In Proceedings of the 14th International Meshing
Roundtable, pages 417–432. Springer, 2005.

[99] D. R. White, L. Mingwu, S. E. Benzley, and G. D. Sjaardema. Auto-
mated hexahedral mesh generation by virtual decomposition. In Pro-
ceedings of the 4th International Meshing Roundtable, pages 165–176.
Citeseer, 1995.

[100] M. Whiteley, D. White, S. Benzley, and T. Blacker. Two and three-
quarter dimensional meshing facilitators. Engineering with Computers,
12(3-4):144–154, 1996.

[101] E. Ruiz-Gironés and J. Sarrate. Generation of structured hexahedral
meshes in volumes with holes. Finite Elements in Analysis and Design,
46(10):792–804, 2010.

[102] E. Ruiz-Gironés and J. Sarrate. Generation of structured meshes in
multiply connected surfaces using submapping. Advances in Engineering
Software, 41(2):379–387, 2010.

[103] R. Chen and P. Xi. A digraph-based hexahedral meshing method for
coupled quasi-polycubes. Computer Methods in Applied Mechanics and
Engineering, 268:18–39, 2014.

[104] J. Shepherd, S. Benzley, and S. A. Mitchell. Interval assignment for
volumes with holes. International Journal for Numerical Methods in
Engineering, 49(1-2):277–288, 2000.

[105] M. Lai, S. Benzley, and D. White. Automated hexahedral mesh genera-
tion by generalized multiple source to multiple target sweeping. Interna-
tional Journal for Numerical Methods in Engineering, 49(1-2):261–275,
2000.

[106] J. F. Shepherd, S. A. Mitchell, P. Knupp, and D. R. White. Methods
for multisweep automation. In Proceedings of the 14th International
Meshing Roundtable, 2000.

[107] E. Ruiz-Gironés, X. Roca, and J. Sarrate. Using a computational domain
and a three-stage node location procedure for multi-sweeping algorithms.
Advances in Engineering Software, 42(9):700–713, 2011.

Bibliography 53

[108] M. A. Scott, S. E. Benzley, and S. J. Owen. Improved many-to-one
sweeping. International Journal for Numerical Methods in Engineering,
65(3):332–348, 2006.

[109] K. Miyoshi and T. D. Blacker. Hexahedral mesh generation using multi-
axis cooper algorithm. In Proceedings of the 9th International Meshing
Roundtable. Citeseer, 2000.

[110] P. Sampl. Medial axis construction in three dimensions and its applica-
tion to mesh generation. Engineering with Computers, 17(3):234–248,
2001.

[111] D. J. Sheehy, C. G. Armstrong, and D. J. Robinson. Computing the
medial surface of a solid from a domain Delaunay triangulation. In
Proceedings of the third ACM symposium on Solid modeling and appli-
cations, pages 201–212. ACM, 1995.

[112] G. M. Turkiyyah, D. W. Storti, M. Ganter, H. Chen, and M. Vimawala.
An accelerated triangulation method for computing the skeletons of free-
form solid models. Computer-Aided Design, 29(1):5–19, 1997.

[113] T. K. H. Tam and C. G. Armstrong. 2D finite element mesh genera-
tion by medial axis subdivision. Advances in Engineering Software and
Workstations, 13(5):313–324, 1991.

[114] M. A. Price, C. G. Armstrong, and M. A. Sabin. Hexahedral mesh
generation by medial surface subdivision: Part I. Solids with convex
edges. International Journal for Numerical Methods in Engineering, 38
(19):3335–3359, 1995.

[115] M. A. Price and C. G. Armstrong. Hexahedral mesh generation by
medial surface subdivision: Part II. Solids with flat and concave edges.
International Journal for Numerical Methods in Engineering, 40(1):111–
136, 1997.

[116] A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. Hexahedral
mesh generation using the embedded Voronoi graph. Engineering with
Computers, 15(3):248–262, 1999.

[117] X.-J. Luo, M. S. Shephard, L.-Z. Yin, R. M. O’Bara, R. Nastasi, and
M. W. Beall. Construction of near optimal meshes for 3D curved do-
mains with thin sections and singularities for p-version method. Engi-
neering with Computers, 26(3):215–229, 2010.

[118] T. T. Robinson, C. G. Armstrong, and R. Fairey. Automated mixed
dimensional modelling from 2D and 3D CAD models. Finite Elements
in Analysis and Design, 47(2):151–165, 2011.

Bibliography 54

[119] J. E. Makem, C. G. Armstrong, and T. T. Robinson. Automatic de-
composition and efficient semi-structured meshing of complex solids.
Engineering with Computers, 30(3):345–361, 2014.

[120] W. R. Quadros. LayTracks3D: Mesh generator for general assembly
models using medial axis transform. In Research notes of the 22nd
International Meshing Roundtable, 2013.

[121] J. H.-C. Lu, I. Song, W. R. Quadros, and K. Shimada. Geometric reason-
ing in sketch-based volumetric decomposition framework for hexahedral
meshing. Engineering with Computers, 30(2):237–252, 2014.

[122] F. Kälberer, M. Nieser, and K. Polthier. QuadCover - Surface parame-
terization using branched coverings. Computer Graphics Forum, 26(3):
375–384, 2007.

[123] J. Palacios and E. Zhang. Rotational symmetry field design on surfaces.
ACM Transactions on Graphics (TOG), 26(3):55, 2007.

[124] D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadrangula-
tion. ACM Transactions on Graphics (TOG), 28(3):77, 2009.

[125] N. Ray, B. Vallet, L. Alonso, and B. Lévy. Geometry-aware direction
field processing. ACM Transactions on Graphics (TOG), 29(1):1, 2009.

[126] H. J. Fogg, C. G. Armstrong, and T. T. Robinson. Multi-block decom-
position using cross-fields. In VI International Conference on Adaptive
Modeling and Simulation, pages 254–267, 2013.

[127] N. Kowalski, F. Ledoux, and P. Frey. Automatic domain partitioning
for quadrilateral meshing with line constraints. Engineering with Com-
puters, pages 1–17, 2014.

[128] G. Bunin. A continuum theory for unstructured mesh generation in two
dimensions. Computer Aided Geometric Design, 25(1):14–40, 2008.

[129] M. Nieser, U. Reitebuch, and K. Polthier. CubeCover – Parameteriza-
tion of 3D volumes. Computer Graphics Forum, 30(5):1397–1406, 2011.

[130] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. All-hex meshing using
singularity-restricted field. ACM Transactions on Graphics (TOG), 31
(6):177, 2012.

[131] J. Huang, Y. Tong, H. Wei, and H. Bao. Boundary aligned smooth 3D
cross-frame field. ACM Transactions on Graphics (TOG), 30(6):143,
2011.

Bibliography 55

[132] J. Huang, T. Jiang, Y. Wang, Y. Tong, and H. Bao. Automatic frame
field guided hexahedral mesh generation. Technical report, State Key
Lab of CAD & CG, College of Computer Science at Zhejiang University,
2012.

[133] N. Kowalski, F. Ledoux, and P. Frey. Smoothness driven frame field
generation for hexahedral meshing. Computer-Aided Design, In press.

[134] R. Schneiders and R. Bünten. Automatic generation of hexahedral fi-
nite element meshes. Computer Aided Geometric Design, 12(7):693–707,
1995.

[135] J. Qian and Y. Zhang. Automatic unstructured all-hexahedral mesh
generation from B-Reps for non-manifold CAD assemblies. Engineering
with Computers, 28(4):345–359, 2012.

[136] Y. Zhang, C. Bajaj, and B.-S. Sohn. 3D finite element meshing from
imaging data. Computer Methods in Applied Mechanics and Engineering,
194(48):5083–5106, 2005.

[137] Y. Zhang and C. Bajaj. Adaptive and quality quadrilateral/hexahedral
meshing from volumetric data. Computer Methods in Applied Mechanics
and Engineering, 195(9):942–960, 2006.

[138] Y. Zhang, T. J. R. Hughes, and C. L. Bajaj. An automatic 3D mesh gen-
eration method for domains with multiple materials. Computer Methods
in Applied Mechanics and Engineering, 199(5):405–415, 2010.

[139] J. Qian, Y. Zhang, W. Wang, A. C. Lewis, M. A. Qidwai, and A. B.
Geltmacher. Quality improvement of non-manifold hexahedral meshes
for critical feature determination of microstructure materials. Interna-
tional Journal for Numerical Methods in Engineering, 82(11):1406–1423,
2010.

[140] S. J. Owen and J. F. Shepherd. Embedding features in a cartesian grid.
In Proceedings of the 18th International Meshing Roundtable, pages 117–
138. Springer, 2009.

[141] T. D. Blacker and M. B. Stephenson. Paving: A new approach to au-
tomated quadrilateral mesh generation. International Journal for Nu-
merical Methods in Engineering, 32(4):811–847, 1991.

[142] T. D. Blacker, M. B. Stephenson, and S. Canann. Analysis automa-
tion with paving: A new quadrilateral meshing technique. Advances in
Engineering Software and Workstations, 13(5):332–337, 1991.

Bibliography 56

[143] D. R. White and P. Kinney. Redesign of the paving algorithm: robust-
ness enhancements through element by element meshing. In Proceedings
of the 6th International Meshing Roundtable, pages 323–335, 1997.

[144] R. J. Cass, S. E. Benzley, R. J. Meyers, and T. D. Blacker. Generalized
3-D paving: An automated quadrilateral surface mesh generation algo-
rithm. International Journal for Numerical Methods in Engineering, 39
(9):1475–1489, 1996.

[145] S. A. Canann. Plastering: A new approach to automated, 3D hexahedral
mesh generation. American Institute of Aeronautics and Astronautics,
1992.

[146] T. D. Blacker and R. J. Meyers. Seams and wedges in plastering: A 3-D
hexahedral mesh generation algorithm. Engineering with Computers, 9
(2):83–93, 1993.

[147] M. L. Staten, S. J. Owen, and T. D. Blacker. Unconstrained paving
& plastering: A new idea for all hexahedral mesh generation. In Pro-
ceedings of the 14th International Meshing Roundtable, pages 399–416.
Springer, 2005.

[148] M. L. Staten, R. A. Kerr, S. J. Owen, and T. D. Blacker. Unconstrained
paving and plastering: progress update. In Proceedings of the 15th
International Meshing Roundtable, pages 469–486. Springer, 2006.

[149] E. Ruiz-Gironés, X. Roca, and J. Sarrate. The receding front method
applied to hexahedral mesh generation of exterior domains. Engineering
with Computers, 28(4):391–408, 2012.

[150] M. Li and R. Tong. All-hexahedral mesh generation via inside-out ad-
vancing front based on harmonic fields. The Visual Computer, 28(6-8):
839–847, 2012.

[151] M. S. Ebeida, K. Karamete, E. Mestreau, and S. Dey. Q-TRAN: A
new approach to transform triangular meshes into quadrilateral meshes
locally. In Proceedings of the 19th International Meshing Roundtable,
pages 23–34. Springer, 2010.

[152] S. H. Lo. Generating quadrilateral elements on plane and over curved
surfaces. Computers & Structures, 31(3):421–426, 1989.

[153] B. P. Johnston, J. M. Sullivan, and A. Kwasnik. Automatic conversion of
triangular finite element meshes to quadrilateral elements. International
Journal for Numerical Methods in Engineering, 31(1):67–84, 1991.

[154] C. K. Lee and S. H. Lo. A new scheme for the generation of a graded
quadrilateral mesh. Computers & Structures, 52(5):847–857, 1994.

Bibliography 57

[155] S. J. Owen, M. L. Staten, S. A. Canann, and S. Saigal. Q-Morph:
An indirect approach to advancing front quad meshing. International
Journal for Numerical Methods in Engineering, 44:1317–1340, 1999.

[156] H. Borouchaki and P. J. Frey. Adaptive triangular-quadrilateral mesh
generation. International Journal for Numerical Methods in Engineer-
ing, 41(5):915–934, 1998.

[157] S. Ramaswami, P. Ramos, and G. Toussaint. Converting triangulations
to quadrangulations. Computational Geometry, 9(4):257–276, 1998.

[158] C. S. Verma and T. Tautges. Jaal: Engineering a high quality all-
quadrilateral mesh generator. In Proceedings of the 20th International
Meshing Roundtable, pages 511–530. Springer, 2012.

[159] G. Bunin. Non-local topological clean-up. In Proceedings of the 15th
International Meshing Roundtable, pages 3–20. Springer, 2006.

[160] S. Meshkat and D. Talmor. Generating a mixed mesh of hexahedra,
pentahedra and tetrahedra from an underlying tetrahedral mesh. Inter-
national Journal for Numerical Methods in Engineering, 49(1-2):17–30,
2000.

[161] S. J. Owen and S. Saigal. H-Morph: An indirect approach to advancing
front hex meshing. International Journal for Numerical Methods in
Engineering, 49(1-2):289–312, 2000.

[162] S. Yamakawa and K. Shimada. Fully-automated hex-dominant mesh
generation with directionality control via packing rectangular solid cells.
International Journal for Numerical Methods in Engineering, 57(15):
2099–2129, 2003.

[163] T. C. Baudouin, J.-F. Remacle, E. Marchandise, F. Henrotte, and
C. Geuzaine. A frontal approach to hex-dominant mesh generation.
Advanced Modeling and Simulation in Engineering Sciences, 1(1):1–30,
2014.

[164] M. L. Staten and K. Shimada. A close look at valences in hexahedral
element meshes. International Journal for Numerical Methods in Engi-
neering, 83(7):899–914, 2010.

[165] V. D. Liseikin. Grid generation methods. Springer Netherlands, 2010.

[166] W. B. Jordan. AEC research and development report. Technical report,
KAPL-M-7112, 1970.

[167] A. R. Mitchell, G. Phillips, and E. Wachspress. Forbidden shapes in
the finite element method. IMA Journal of Applied Mathematics, 8(2):
260–269, 1971.

Bibliography 58

[168] D. A. Field. Algorithms for determining invertible two-and three-
dimensional quadratic isoparametric finite element transformations. In-
ternational Journal for Numerical Methods in Engineering, 19(6):789–
802, 1983.

[169] A. E. Frey, C. A. Hall, and T. A. Porsching. Some results on the global
inversion of bilinear and quadratic isoparametric finite element trans-
formations. Mathematics of Computation, 32(143):725–749, 1978.

[170] D. A. Field. An algorithm for determining invertible quadratic isopara-
metric finite element transformations. Mathematics of Computation, 37:
347–360, 1981.

[171] M. L. Baart and E. J. Mulder. A note on invertible two-dimensional
quadratic finite element transformations. Communications in Applied
Numerical Methods, 3(6):535–539, 1987.

[172] P. M. Knupp. On the invertibility of the isoparametric map. Computer
Methods in Applied Mechanics and Engineering, 78(3):313–329, 1990.

[173] P. L. George and H. Borouchaki. Construction of tetrahedral meshes of
degree two. International Journal for Numerical Methods in Engineer-
ing, 90(9):1156–1182, 2012.

[174] D. A. Field. Qualitative measures for initial meshes. International Jour-
nal for Numerical Methods in Engineering, 47(4):887–906, 2000.

[175] J. R. Shewchuk. What is a good linear finite element? interpolation,
conditioning, anisotropy, and quality measures (preprint). Preprint,
2002.

[176] A. Z. I. Salem, S. A. Canann, and S. Saigal. Mid-node admissible spaces
for quadratic triangular arbitrarily curved 2D finite elements. Interna-
tional Journal for Numerical Methods in Engineering, 50(2):253–272,
2001.

[177] A. Z. I. Salem, S. Saigal, and S. A. Canann. Mid-node admissible space
for 3D quadratic tetrahedral finite elements. Engineering with Comput-
ers, 17(1):39–54, 2001.

[178] P. M. Knupp. Algebraic mesh quality metrics. SIAM Journal on Scien-
tific Computing, 23(1):193–218, 2001.

[179] P. M. Knupp. Algebraic mesh quality metrics for unstructured initial
meshes. Finite Elements in Analysis and Design, 39(3):217–241, 2003.

Bibliography 59

[180] P. M. Knupp. Achieving finite element mesh quality via optimization of
the Jacobian matrix norm and associated quantities. part I—A frame-
work for surface mesh optimization. International Journal for Numerical
Methods in Engineering, 48(3):401–420, 2000.

[181] P. M. Knupp. Achieving finite element mesh quality via optimization of
the Jacobian matrix norm and associated quantities. part II—A frame-
work for volume mesh optimization and the condition number of the
jacobian matrix. International Journal for Numerical Methods in Engi-
neering, 48(8):1165–1185, 2000.

[182] K.-Y. Yuan, Y.-S. Huang, and T. H. H. Pian. Inverse mapping and
distortion measures for quadrilaterals with curved boundaries. Inter-
national Journal for Numerical Methods in Engineering, 37(5):861–875,
1994.

[183] P. Knupp. Label-invariant mesh quality metrics. In Proceedings of the
18th International Meshing Roundtable, pages 139–155. Springer, 2009.

[184] X. Roca, A. Gargallo-Peiró, and J. Sarrate. Defining quality measures
for high-order planar triangles and curved mesh generation. In Pro-
ceedings of the 20th International Meshing Roundtable, pages 365–383.
Springer, 2012.

[185] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Distortion and
quality measures for validating and generating high-order tetrahedral
meshes. Engineering with Computers, pages 1–15, 2014.

[186] A. Gargallo Peiró. Validation and generation of curved meshes for
high-order unstructured methods. PhD thesis, Universitat Politècnica
de Catalunya, 2014.

[187] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Defining quality
measures for mesh optimization on parameterized CAD surfaces. In
Proceedings of the 21st International Meshing Roundtable, pages 85–
102. Springer, 2013.

[188] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathemat-
ics, 17(3):449–467, 1965.

[189] J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices.
Journal of Research of the National Bureau of Standards, 69:125–130,
1965.

[190] J. Sarrate and A. Huerta. An improved algorithm to smooth graded
quadrilateral meshes preserving the prescribed element size. Communi-
cations in Numerical Methods in Engineering, 17(2):89–99, 2001.

Bibliography 60

[191] J. Daniels, C. T. Silva, and E. Cohen. Localized quadrilateral coarsening.
Computer Graphics Forum, 28(5):1437–1444, 2009.

[192] E. Marchandise, C. C. de Wiart, W. G. Vos, C. Geuzaine, and J.-F.
Remacle. High-quality surface remeshing using harmonic maps—Part
II: Surfaces with high genus and of large aspect ratio. International
Journal for Numerical Methods in Engineering, 86(11):1303–1321, 2011.

[193] H. N. Gabow. Data structures for weighted matching and nearest com-
mon ancestors with linking. In Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, pages 434–443. Society for
Industrial and Applied Mathematics, 1990.

[194] W. Cook and A. Rohe. Computing minimum-weight perfect matchings.
INFORMS Journal on Computing, 11(2):138–148, 1999.

[195] V. Kolmogorov. Blossom V: A new implementation of a minimum cost
perfect matching algorithm. Mathematical Programming Computation,
1(1):43–67, 2009.

[196] C. Vande Kerckhove. Génération de maillages hexa-dominants par
optimisation combinatoire (in french). Master’s thesis, Université
Catholique de Louvain, 2013.

[197] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode rein-
forcement learning. In Journal of Machine Learning Research, pages
503–556, 2005.

[198] T. Jung, L. Wehenkel, D. Ernst, and F. Maes. Optimized look-ahead
tree policies: A bridge between look-ahead tree policies and direct policy
search. International Journal of Adaptive Control and Signal Processing,
28(3-5):255–289, 2014.

[199] B. Lévy and Y. Liu. 𝐿𝑝 centroidal Voronoi tessellation and its applica-
tions. ACM Transactions on Graphics (TOG), 29(4):119, 2010.

[200] J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Béchet,
E. Marchandise, C. Geuzaine, and T. Mouton. A frontal Delaunay quad
mesh generator using the 𝐿∞ norm. International Journal for Numerical
Methods in Engineering, 94(5):494–512, 2013.

[201] T. C. Baudouin, J.-F. Remacle, E. Marchandise, J. Lambrechts, and
F. Henrotte. Lloyd’s energy minimization in the 𝐿𝑝 norm for quadri-
lateral surface mesh generation. Engineering with Computers, 30(1):
97–110, 2014.

[202] E. Cohen and L. L. Schumaker. Rates of convergence of control polygons.
Computer Aided Geometric Design, 2(1):229–235, 1985.

Bibliography 61

[203] A. Johnen. Génération de maillages éléments finis d’ordre élevé (in
french). Master’s thesis, Université de Liège, 2010.

[204] M. Bergot, G. Cohen, and M. Duruflé. Higher-order finite elements for
hybrid meshes using new nodal pyramidal elements. Journal of Scientific
Computing, 42(3):345–381, 2010.

[205] O. K. Smith. Eigenvalues of a symmetric 3 × 3 matrix. Communications
of the ACM, 4(4):168, 1961.

[206] F. Maes, D. L. St-Pierre, and D. Ernst. Monte Carlo search algorithm
discovery for single-player games. IEEE Transactions on Computational
Intelligence and AI in Games, 5(3):201–213, 2013.

APPENDIX A
Paper I: Blossom‐Quad: A

non‐uniform quadrilateral mesh
generator using a minimum‐cost

perfect‐matching algorithm

62

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2012; 89:1102–1119
Published online 6 February 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.3279

Blossom-Quad: A non-uniform quadrilateral mesh generator using
a minimum-cost perfect-matching algorithm

J.-F. Remacle1,*,†, J. Lambrechts1, B. Seny1, E. Marchandise1, A. Johnen2 and
C. Geuzainet2

1Institute of Mechanics, Materials and Civil Engineering (iMMC), Université Catholique de Louvain, Bâtiment Euler,
Avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium

2Department of Electrical Engineering and Computer Science, Université de Liège, Montefiore Institute B28, Grande
Traverse 10, 4000 Liège, Belgium

SUMMARY

A new indirect way of producing all-quad meshes is presented. The method takes advantage of a well-
known algorithm of the graph theory, namely the Blossom algorithm, that computes the minimum-cost
perfect matching in a graph in polynomial time. The new Blossom-Quad algorithm is compared with stan-
dard indirect procedures. Meshes produced by the new approach are better both in terms of element shape
and in terms of size field efficiency. Copyright © 2012 John Wiley & Sons, Ltd.

Received 15 December 2010; Revised 13 July 2011; Accepted 13 July 2011

KEY WORDS: quadrilateral meshing; surface remeshing; graph theory; optimization; perfect matching

1. INTRODUCTION

Quadrilateral surface meshes are sometimes considered as superior to triangular meshes for finite
element simulations. Discussions about if and why quadrilaterals are better than triangles are usu-
ally passionate in the finite element community. We will not try to argue about that thorny question
here—but we assume that quadrilateral meshes are indeed useful, and in this paper, we present a
new way of generating such meshes.

Let us first briefly recall which kinds of methods can be used to build non-uniform quadrilateral
meshes in an automatic manner. There are essentially two categories of methods.

In direct methods, the quadrilaterals are constructed at once, either using some kind of advancing
front technique [1] or using regular grid-based methods (quadtrees). Advancing front methods for
quads are considered to be non-robust, and quadtree methods usually produce low-quality elements
close to the boundaries of the domain and are unable to fulfill general size constraints (anisotropy,
strong variations).

In indirect methods, a triangular mesh is built first. Triangle-merge methods then use the triangles
of the initial mesh and recombine them to form quadrangles [2,3]. Other more sophisticated indirect
methods use a mix of advancing front and triangle merge [4].

The method we present here is an indirect approach to quadrilateralization. We make use of a
famous algorithm of the theory of graphs: the Blossom algorithm, proposed by Edmonds in 1965
[5,6], which allows us to find the minimum-cost perfect matching of a given graph. The new method
has some clear advantages: (i) it provides a mesh that is guaranteed to be quadrilateral only; (ii) it is
optimal in a certain way; and (iii) it is fast.

*Correspondence to: J.-F. Remacle, Université Catholique de Louvain, Bâtiment Euler, Avenue Georges Lemaître 4,
1348 Louvain-la-Neuve, Belgium.

†E-mail: jean-francois.remacle@uclouvain.be

Copyright © 2012 John Wiley & Sons, Ltd.

A.1. Introduction 63

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1103

2. MESH QUALITY MEASURES

The aim of the mesh generation process described in this paper is to build a mesh made of quadri-
laterals that has controlled element sizes and shapes. We are interested in generating non-uniform
quadrilateral meshes. Local information about sizes is given through the definition of a mesh size
field that returns, for every point Ex in the domain, a ‘characteristic’ length h.Ex/ that has to be fulfilled
by the mesh.

Let Ea and Eb be two points of R3. The adimensional length of the vector
�!
ab with respect to the

non-uniform size field h is defined as follows [3, 7]:

lh.
�!
ab/D

����!ab���
1Z
0

1

h.�!a C t
�!
ab/

dt . (1)

An optimum mesh in terms of the size is a mesh for which every edge i is of adimensional size lhi
equal to 1. It is of course impossible to have such a perfect unit mesh. Here, we define the efficiency
index [7] � of a mesh as the exponential of the mean value of the difference between each edge
length lhi and 1:

�Œ%�D 100 exp

1

ne

neX
iD1

di

!
, (2)

with di D lhi � 1 if lhi < 1, di D .1=lhi /� 1 if lhi > 1, and ne the number of edges in the mesh.
Surface mesh algorithms usually produce triangular meshes with typical values of � around 85%,
that is, with non-dimensional sizes around 1=

p
26 lhi 6

p
2.

Having the right sizing for the mesh is not enough: mesh generators should also provide meshes
with controlled element qualities. We then define a quality measure for quadrilateral elements. Con-
sider a quadrilateral element q and its four internal angles ˛k , k D 1, 2, 3, 4. We define the quality
�.q/ of q as follows:

�.q/Dmax

�
1�

2

�
max
k

�ˇ̌̌�
2
� ˛k

ˇ̌̌�
, 0

�
. (3)

This quality measure is 1 if the element is a perfect quadrilateral and is 0 if one of those angles is
either 60 or >� . In what follows, we will present statistics for the quadrilateral meshes:

� The efficiency index � , which measures the adequacy of the mesh with the mesh size field. The
index � is smaller or equal to 1 and should be as close as possible to � D 100%.
� The average element quality N� as well as the worst element quality �w , which can be important

in the context of finite element simulations.

3. INDIRECT QUADRILATERALIZATION USING A NON-OPTIMAL
MATCHING ALGORITHM

In Section 1, we have made the distinction between direct and indirect methods for the construction
of quadrilateral meshes. In the case of indirect methods, a triangular mesh is first constructed. Then,
triangles are recombined in order to produce quadrangles.

Consider a triangular mesh made of nt triangles ti , i D 1, : : : nt . In what follows, we consider
internal edges eij of the mesh that are common to triangles ti and tj . We define a cost function
c.eij / D 1 � �.qij / that is associated to each graph edge eij of the mesh and that is defined as
the mesh quality of the quadrilateral qij that is formed by merging the two adjacent triangles ti
and tj . Usual indirect quadrilateralization procedures work as follows [3]. Edges eij of the graph
are sorted with respect to their individual cost functions. Then, the two triangles that are adjacent
to the best edge eij of the list are recombined into a quadrilateral. Triangles ti and tj are tagged
in order to prevent other edges that are adjacent either to ti or to tj from being used for another

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.2. Mesh quality measures 64

1104 J.-F. REMACLE ET AL.

quadrilateral forming. Then, the algorithm processes the ordered list of edges, forming quadrilater-
als with triangles adjacent to an edge as long as none of those adjacent triangles are tagged. Figure 1
shows an illustration of this procedure for a rectangular domain of size 1 � 3 and a mesh size field
defined by

h.x,y/D 0.1C 0.08 sin.3x/ cos.6y/.

Isolated triangles inevitably remain in the mesh, and the resulting mesh is not made of quadrilaterals
only. The mesh is then said to be quad dominant. In the example of Figure 1, the resulting mesh is
made of 836 quads and 240 triangles.

A mesh composed of quadrilaterals can be built subsequently using a uniform mesh refinement
procedure [3]. Every quadrilateral of the quad-dominant mesh is split into four sub-quadrilaterals,
and every triangle is split into three sub-quadrilaterals (Figure 2). For the size criterion h.Ex/ to be
fulfilled, the initial triangular mesh should thus be built using a size field with twice the value (i.e.,
2h) that is expected in the final mesh.

The recombination process just described is sub-optimal. It does not provide the best set of edges
to be recombined with respect to some general cost function. Indeed, the only optimality property
of this algorithm is that it ensures that the best triangle pair will be recombined.

The second part of the algorithm, namely the mesh refinement step, also has some drawbacks.
Splitting every element of the mesh produces a mesh that has half the size of the initial mesh. It is of
course possible to generate an initial mesh with double the required size. Yet, with real geometries,
the new vertices will have to be added on the geometry, which is not trivial. On the other hand, the
refinement step does not allow a sharp control of the mesh size. On Figure 2, the procedure ends
with an efficiency index of 79%, which cannot be considered as good.

In [2], the authors proposed a scheme for recombining triangular meshes that does not always
require the refinement step, using a kind of advancing front technique. The merging of triangles
starts at the boundary; when a front closes, the algorithm attempts to maintain an even number of
triangles on any sub-front. Again, this approach is sub-optimal because the result depends on the
ordering of elements and on the choice of the initial front.

= 88.9% = 85.6%

Figure 1. Illustration of the quad-dominant algorithm. The left mesh is the initial triangular mesh, and the
right mesh is the quad-dominant mesh, after smoothing (triangles are in gray).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.3. Non-optimal matching algorithm 65

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1105

= 85.5% = 83.9% = 79.1%

Figure 2. A quad-dominant algorithm using halgo D 2h followed by a one-mesh refinement procedure leads
to a reduction of the efficiency index � .

4. THE NEW BLOSSOM-QUAD ALGORITHM

Here, our aim is to build a mesh generation scheme that starts with a triangular mesh and attempts
to find the set of pairs of triangles that forms the best possible quadrilaterals with the constraint of
not leaving any remaining triangle in the mesh.

4.1. Blossom: a minimum-cost perfect-matching algorithm

Let us consider G.V,E, c/ as an undirected weighted graph. Here, V is the set of nV vertices,
E is the set of nE undirected edges, and c.E/D

P
c.eij / is an edge-based cost function, that

is, the sum of all weights associated to every edge eij 2E of the graph. A matching is a subset
E 0 �E, such that each node of V has at most one incident edge in E 0. A matching is said to be
perfect if each node of V has exactly one incident edge in E 0. As a consequence, a perfect match-
ing contains exactly nE 0 D nV =2 edges. A perfect matching can therefore only be found for graphs
with an even number of vertices. A matching is optimum if c.E 0/ is minimum among all possible
perfect matchings.

In 1965, Edmonds [5, 8] invented the Blossom algorithm that solves the problem of optimum
perfect matching in polynomial time. A straightforward implementation of Edmonds’ algorithm
requires O.n2V nE / operations.

Since then, the worst-case complexity of the Blossom algorithm has been steadily improving.
Both Lawler [9] and Gabow [10] achieved a running time of O.n3V/. Galil et al. [11] improved
it to O.nV nE log.nV//. The current best-known result in terms of nV and nE is O.nV .nE C
lognV// [12].

There is also a long history of computer implementations of the Blossom algorithm, starting with
the Blossom I code of Edmonds et al. [6]. In this paper, our implementation makes use of the Blos-
som IV code of Cook and Rohe [13],‡ which has been considered for several years as the fastest
available implementation of the Blossom algorithm.

‡Computer code available at http://www2.isye.gatech.edu/~wcook/blossom4/

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.4. The new Blossom-Quad algorithm 66

1106 J.-F. REMACLE ET AL.

4.2. Optimal triangle merging

Consider now a mesh made of nt triangles and nv vertices. Consider a specific weighted graph
G.V,E, c/ that is built using triangle adjacencies in the mesh. Here, every vertex of the graph is a
triangle ti of the mesh, and every edge of the graph is an internal edge eij of the mesh that connects
two neighboring triangles ti and tj . Figure 3 shows a simple triangular mesh with its graph and one
perfect matching.

Let us come back first to the non-optimal triangle-merging algorithms of Section 3. In terms of
what has just been defined, the subset E 0 of edges that have been used for triangle merging in the
approach of Borouchaki and Frey [3] is a matching that is very rarely perfect. The one of Lee and
Lo [2] is usually a perfect matching, but not necessarily the optimal one.

Here, we propose a new indirect approach to quadrilateral meshing that takes advantage of the
Blossom algorithm of Edmonds. To this end, we apply the Blossom IV algorithm to the graph
of the mesh. We intend to find the optimum perfect matching with respect to the following total
cost function:

c D
X
e2E 0

.1� �.qij //, (4)

that is, the sum of all elementary cost functions (or ‘badnesses’) of the quadrilaterals, which results
in the merging of the edges of the perfect matching E 0.

An obvious requirement for the final mesh to be quadrilateral only is that the initial triangular
mesh contains an even number of triangles (i.e., an even number of graph vertices). Euler’s formula
for planar triangulations states that the number of triangles in the mesh is

nt D 2.nv � 1/� n
b
v , (5)

where nbv is the number of mesh nodes on its boundary. So, the number of mesh points on the
boundary nbv should be even. Here, our algorithms are applied to general solid models that have
a boundary representation [14]. This means that model surfaces are bounded by connected model

eij

t i

t j

Figure 3. A mesh (in black) and its graph (in cyan and red). The set of graph edges in red forms a
perfect matching.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.4. The new Blossom-Quad algorithm 67

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1107

edges that form edge loops and that the model edges are bounded by model vertices. The mesh
vertices of a model edge nbiv are defined as the mesh vertices on that edge minus the model vertices.
The total number of mesh points on the boundary nbv can thus be written as follows:

nbv D

NEX
iD0

.1C nbiv /. (6)

It is then easy to see that for nbv to be even, it is sufficient for nbiv to be odd. This means that a
sufficient condition for having an even number of triangles in the mesh is to have every model edge
bi discretized with an odd number of mesh vertices.

Figure 4 shows the same illustrative example as Figures 1 and 2 using the Blossom algorithm
for recombining the triangles together with the optimization procedure that will be described in
Section 6. The final result is much better not only with respect to the efficiency index (with � D 83%)
but also with respect to the worst element quality (�w D 0.405 instead of �w D 0.310 for the mesh
of Figure 2). The average quality is better as well.

4.3. Alternative cost functions

Quadrilateral meshes are not isotropic by definition: this is an important difference between quadri-
lateral and triangular meshes. In principle, the orientation of the mesh can be defined through a
‘cross field’, that is, a field of orthogonal tangent vectors to the surface. The cross field can be used
to orient the edges of the quadrilateralization [15].

It is possible to define an alternative cost function c that is based on the information contained in
the cross field. Consider a graph edge eij that is tangent to the surface with a unit vector Eeij . Assume
that the cross field at the midpoint of eij is defined through two orthogonal unit tangents Et1 and Et2.
Edges that are aligned with one of the directions of the cross field should not be used for triangle
merging. This leads to the following alternative cost function:

c.eij /D
1

1�
p
2=2

�
max.jEeij � Et1j, jEeij � Et2j/�

p
2=2

�
. (7)

This edge cost function is maximum (c.eij /D 1) for graph edges aligned with one of the directions
of the cross field and is minimum (c.eij /D 0) for graph edges that are aligned with the bisector of

= 88.9% = 88.3%

Figure 4. Illustration of the Blossom-Quad algorithm.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.4. The new Blossom-Quad algorithm 68

1108 J.-F. REMACLE ET AL.

the cross field. For this minimal value of edge cost function, the mesh edges will then be aligned
with the orthogonal unit tangents Et1 and Et2. Figure 5 compares two meshes of the rectangle with
a uniform size field h D 0.1. The first mesh makes use of the cost function (4). The elements of
this mesh are mainly oriented with the x and y axes. Yet, some patterns of elements are oriented
differently. The use of the alternative cost function (7) with a cross field that is aligned with the
coordinate axes allows having a quasi-perfect orientation of the mesh. A mix of both cost functions
could also be an alternative.

One can use curvature for aligning the quadrilaterals: it is well known that quadrilateral meshes
can be aligned in an optimal way for approximating surfaces, depending on the sign of the two
eigenvalues of the local curvature tensor. Again, it is possible to find an objective function that takes
that into account.

The issue of choosing both an optimal cost function and a suitable cross field is currently under
investigation, and we see in these choices many perspectives for further improvements of the
Blossom-Quad algorithm.

5. EXISTENCE OF PERFECT MATCHINGS

If for some graphs it is possible to find different perfect matchings, there is in general no guarantee
that even one single perfect matching exists in a given graph. Consider the meshes of Figure 6. It is
obvious that no perfect matching exists for the coarsest one. The following result, known as Tutte’s
theorem, proves that none of the two meshes of Figure 6 contains a perfect matching.

Figure 5. Comparison of meshes generated by Blossom-Quad using cost functions (4) and (7). The initial
triangular mesh is on the left. The middle mesh has been generated using (4), and the right mesh uses (7).

Figure 6. Triangulations that have no perfect matching.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.5. Existence of perfect matchings 69

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1109

Tutte’s theorem: A graph G D .V ,E/ has no perfect matching if and only if there is a set S � V
whose removal results in more odd-sized components than the cardinality nS of S , that is, the
number of elements in S [16, 17].

In other words, Tutte’s theorem says that there is no perfect matching in a triangulation if and only
if it is possible to remove nS triangles from the mesh and create more nS non-connected regions
that have an odd-sized number of triangles. Let us use Tutte’s theorem to prove that none of the two
meshes of Figure 6 has a perfect matching. Let us consider the set S of triangles that have their tip
pointed downwards. In the coarsest mesh, nS D 1 and 3 odd-sized components are created, which
proves that no perfect matching exists. In the second one, six triangles are removed, and 10 odd-
sized components are created. This simple pattern can be repeated to produce meshes of arbitrary
sizes that have no perfect matchings.

The general problem of counting the number of perfect matchings in a general graph is #P com-
plete.§ In other words, there is no hope of finding the number of perfect matchings in a general graph.
(There is a way to find out, in polynomial time, whether a perfect matching exists by detecting a
breakdown in the Blossom algorithm.)

There are however some interesting special cases.

5.1. Planar graphs

A graph is said to be planar if it can be drawn in the 2D plane in such a way that its edges intersect
only at its vertices. There exists an efficient algorithm (i.e., in polynomial time) that counts perfect
matchings in a planar graph. In planar graphs, graph edges form closed non-overlapping loops that
form the graph faces. Let G be a planar graph. Then G can be oriented efficiently so that each face
has an odd number of lines oriented clockwise (this orientation is called a Pfaffian orientation of G)
[18]. It can be proven that counting the number of perfect matchings can be performed by computing
the determinant of the Kasteleyn matrix K:

.# of perfect matchings of G/2 D det.K/, (8)

where the Kasteleyn matrix K.G/ is an adjacency matrix defined as follows. Consider an edge eij .
If eij is oriented positively, thenKij D 1 andKj i D�1. If eij is oriented negatively, thenKij D�1
and Kj i D 1. If no edge exists between i and j , then Kij DKj i D 0.

Here, the computation of the determinant can be carried out in polynomial time so that it is quite
easy to count matchings in a triangular mesh. It is therefore possible to compute wether a perfect
matching exists in any planar graph. Yet, finding out that no perfect matching exists does not help
us a lot at this point. Moreover, the mesh of a whole torus does not lead to a planar graph.¶

5.2. Cubic graphs

Cubic graphs, also called trivalent graphs, are graphs for which every node has exactly three adjacent
nodes. Every cubic graph has at least one perfect matching [19]. It can be proven that the number of
perfect matchings in a cubic graph grows exponentially with nV .

In a finite element triangulation, most of the triangles of the mesh have three neighbors. Only the
triangles that are on the boundary of the domain have less than three neighbors. Thus, in general, a
finite element mesh is close to trivalent. We then expect intuitively that perfect matchings will exist
in most finite element triangulations. Even though most of the triangulations that we have tried have
a perfect matching, the Blossom algorithm has encountered a breakdown for some of the meshes
we have tried.

Because cubic graphs always have many perfect matchings, we propose in the Blossom-Quad
algorithm to add some extra edges to the graph with the aim of creating a graph topology that is
close to trivalent and thus increase the chance of finding perfect matchings.

§Sharp P complete, that is, much harder than NP complete.
¶The mesh of a complete sphere is planar, even though it is not intuitive.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.5. Existence of perfect matchings 70

1110 J.-F. REMACLE ET AL.

5.3. Extra edges

In our approach, we propose to add edges (that we call ‘extra edges’ in what follows) in the graph
of the triangulation in a way that maximizes the chance of existence of a perfect matching. Con-
sider two successive mesh edges on the boundary of the domain. If those edges are like e1 and e2
(Figure 7), their neighboring triangles are not connected in the graph. At this point, we add an extra
edge for every pair of triangles that are adjacent to those edges that are successive in the boundary
of the domain. Those new connections are represented as dotted cyan lines in Figure 7.

Some of those successive mesh edges correspond to triangles that are already connected, like e3
and e4 or e2 and e5 in Figure 7. This implies that some of the graph nodes have two neighbors; those
ones are rounded in red in Figure 7. Some others have four neighbors: those are rounded in green in
Figure 7. Yet, there is no node of the graph that has only one adjacent node.

We have not been able to prove that the graph with those extra edges has always a perfect match-
ing. Yet, in our experience, the addition of those extra edges allows us to find a perfect matching in
every example that we have tried.

Technically, we assign a high value (typically 1000) to the ‘badness’ of those extra edges so that
an extra edge belongs to the optimal perfect matching only if there exists no perfect matching in the
original graph. We propose two manners of post-processing those extra edges when they belong to
the perfect matching.

5.3.1. Edge swap. The first algorithm is applied essentially when the extra edge connects two tri-
angles t1 and t3 that surround one single triangle t3 (Figure 8). Edges that are in red in the graph
belong to the perfect matching. If e13 belongs to the matching, then edge e24 belongs to the match-
ing as well. It is therefore possible to swap the mesh edge that connects t2 and t4 and build an
all-quad configuration. Note that the concave quadrangle that has been created will be removed
through topological optimization (Section 6).

5.3.2. Vertex duplication. The second algorithm consists in duplicating the boundary vertex
(Figure 9). This algorithm is applied when the two triangles that are connected by the extra edge are
surrounded by more than one quad.

e1

e5

e3

e2

e4

Figure 7. A mesh (in black) and its graph (in cyan). Dotted cyan lines are the extra graph edges that have
been added in order to ensure that the graph has perfect matchings.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.5. Existence of perfect matchings 71

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1111

e24

t2

t3

t1

t4

e13

Figure 8. Edge swap algorithm for building an all-quad mesh when an extra edge such as e13 belongs to the
matching. Example for a configuration with two triangles and two quads.

Figure 9. Vertex duplication algorithm for building an all-quad mesh when an extra edge is in the matching.

Figure 10. Illustration of quad-vertex-merge optimization operation.

In the next paragraph, we will show how to optimize the quality of the quadrangles of those
all-quad meshes using local mesh modifications.

6. OPTIMIZATION

In order to enhance the quality of the final mesh, we first apply a standard vertex smoothing pro-
cedure [20] to the nodes of the mesh, taking into account the gradation of the size field. Next, we
apply two topological optimization operators specifically tailored for quadrilateral meshes.

The topological optimization operators are local deletion operators: a quad-vertex-merge
(Figure 10) and the doublet collapse (Figure 11) operation [21]. These operators allow us to remove
local mesh structures that have a bad topology. More precisely, the quad-vertex-merge operator
replaces two mesh nodes that have three quadrilateral neighbors by one mesh node with four
neighbors, and the doublet collapse removes a vertex that has two neighbors.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.6. Optimization 72

1112 J.-F. REMACLE ET AL.

Figure 11. Illustration of a doublet collapse optimization operation.

7. THE BLOSSOM-QUAD ALGORITHM

In this section, we summarize the different steps of the new Blossom-Quad algorithm. This algo-
rithm has been implemented in the open-source mesh generator Gmsh|| [14], and examples of how
to use it can be found on the Gmsh wiki.**

1. Starting from a solid model with a boundary representation, mesh every model edge bi with
an odd number of mesh vertices nbiv (6). Then, mesh the model faces with any 2D triangu-
lation algorithm. According to the Euler Equation (5), there will then be an even number of
mesh triangles.

2. From the produced mesh, build a weighted graph G.V,E, c/ (Figure 3) where the cost func-
tion associated to each graph edge c.eij / is given either by (4) or by (7). This weighted graph
has then an even number of graph nodes, which is a necessary condition for a perfect matching
to exist.

3. Enrich the graph with extra edges such as explained in Section 5.3. Those extra edges are given
a very high value of cost function: c.eij /D 1000.

4. Run the Blossom algorithm to find the perfect matching for the given graph.
5. If the perfect matching contains no extra edges, go to step 6. If it contains some, apply the

edge swap algorithm and the vertex duplication algorithm (Section 5.3).
6. Optimize the resulting all-quad mesh as explained in Section 6.

Figure 12 shows the global Blossom-Quad procedure applied to an initial triangular mesh.

8. EXAMPLES

In this section, we present the results obtained by applying the new Blossom-Quad algorithm in
different contexts. First, we present meshes of simple planar geometries using analytical mesh size
fields. Then, we present quadrilateral meshes generated over complex solid models, defined either
by a Computer Aided Design (CAD) or StereoLithoGraphy (STL) triangulation. Finally, we show a
complex quadrilateral mesh used for multiscale ocean modeling.

8.1. Planar quadrilateral meshes with analytical isotropic size fields

This test case has been proposed by Borouchaki and Frey [3]. The domain is a unit square with a
circular hole of radius 0.15 centered at .0.75, 0.75/. The mesh size field is taken to have a value of
h.x,y/ D 0.003 along the medial axis of the domain and to have a linear growth from the medial
axis to the interior of the domain.

The uniform refinement step that is applied in the recombination algorithm of Borouchaki and
Frey [3] has two consequences. On the one hand, it naturally creates a mesh that has a better con-
nectivity. On the other hand, it reduces the efficiency index � of the mesh. As the recombination

||http://geuz.org/gmsh/
**https://geuz.org/trac/gmsh/wiki (username: gmsh and password: gmsh)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.7. The Blossom-Quad algorithm 73

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1113

Initial Raw Blossom Vertex Topological Final
triangulation application smoothing optimization mesh

Figure 12. Illustration of the whole Blossom-Quad algorithm.

algorithm of Borouchaki and Frey [3] includes a mesh refinement step, we propose here to generate
three meshes with the Blossom-Quad algorithm. The first one applies Blossom to a triangular mesh
of size h. The second one applies the Blossom algorithm to a mesh of size 2h, with one subsequent
uniform refinement. The last one applies the Blossom algorithm to a mesh of size 4h, with two
uniform refinements.

Figure 13 compares the quad mesh obtained by Borouchaki and Frey [3] and the three meshes
obtained with the presented Blossom-Quad algorithm. For the problem with size h, the Blossom-
Quad algorithm takes 1.38 s on a MacBook Pro (Apple Inc., Cupertino, CA, USA) clocked at
2.66 GHz. The new algorithm provides meshes that are of better quality close to the boundaries
of the domain. The new algorithm also provides a smoother gradation of the mesh. This is due to
the fact that no mesh refinement phase is required in the new algorithm.

Table I compares the quality of the four meshes. We also present some statistics about the degree
of the vertices di , that is, the number of quads surrounded by a vertex. The new Blossom-Quad
algorithm always produces meshes with better element qualities. The application of the Blossom-
Quad procedure to the mesh of size h is the best in terms of efficiency � . Yet, it has less nodes with
the optimal topology, that is, with four neighbors. Applying the Blossom-Quad to a mesh of size
2h seems to be, at least for this test case, a good compromise. The efficiency is still acceptable, and
the quality of the mesh is optimum, both in terms of topology and element quality. Using an initial
triangular mesh of size 4h does not seem to be a good option, especially in terms of the efficiency � .

8.2. Quadrilateral mesh generation applied to STL models

In this section, we present quad meshes for complex solid models represented only by a triangulation
in STL format.

The first triangulation represents the solid model of the Stanford bunny model, and the second
represents a cerebral aneurysm.†† The latter triangulation is the output of an image segmentation
procedure performed from medical data (computed tomography scan). For the quad-remeshing
procedure, we first compute an automatic triangular remeshing procedure based on a conformal
parametrization as described in [22] and then run the presented Blossom-Quad algorithm.

††The STL triangulation of the aneurysm can be found on the National Institute for Research in Computer Science and
Control website, http://www-roc.inria.fr/gamma/gamma/download.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.8. Examples 74

1114 J.-F. REMACLE ET AL.

Figure 13. Comparison of both the quadrilateral mesh generation algorithm of Borouchaki and Frey [3]
(top, left) and the Blossom-Quad algorithm (other meshes). The top-right mesh has been performed using
Blossom on a triangular mesh of size h. The bottom-left mesh has been generated with the Blossom algo-
rithm applied to a triangular mesh of size 2h, with one subsequent uniform refinement. The last mesh uses

the Blossom algorithm on a mesh of size 4h, with two uniform refinements.

Table I. Quality of the quad meshes for the test case with the medial-axis-based mesh size field h.

Mesh size Quad quality Degree vertices Efficiency

Algorithm halgo �w N� d4.%/ dmin dmax �

Borouchaki and Frey [3] 2h 0.30 0.73 91 3 6 –
Blossom-Quad h 0.32 0.77 72 3 6 85.6%
Blossom-Quad 2h 0.39 0.85 94 3 6 82.3%
Blossom-Quad 4h 0.31 0.87 98 3 7 75.4%

The algorithms are run with an initial mesh size halgo that is subsequently refined to reach the prescribed mesh
size field h. We present values for the minimum quality �w , mean quality N�, percentage of vertices of degree 4,
minimal and maximal values for the degree of vertices, and efficiency index � .

Figure 14 shows two curvature-adapted remeshed STL surfaces, and Figure 15 presents the qual-
ity histograms of those meshes. The curvature-adapted meshes are computed by defining the mesh
size h.Ex/ as follows:

h.Ex/D
2�R.Ex/

Np
, with R.Ex/D

1

N�.Ex/
, (9)

where N�.Ex/ is the mean curvature that is computed from the initial nodes of the STL triangulation
with the algebraic point set surface method (based on the local fitting of algebraic spheres [23]) and
Np is the number of points chosen for the radius of curvature (Np D 50).

The overall remeshing procedure for both STL examples takes 21 s: 16 s for the automatic tri-
angular remeshing procedure and only 5 s for the blossom-Quad algorithm. The remeshing was

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.8. Examples 75

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1115

= 84.3% = 85.6%

Figure 14. Isotropic mean-curvature-based quad meshes of 13,000 elements for the STL bunny model (left)
and 17,000 elements for the aneurysm model (right).

Figure 15. Quality histograms (element quality � (3) and normalized edge length lh (1)) for the Blossom-
Quad remeshing of the bunny and aneurysm models.

performed on a MacBook Pro clocked at 2.66 GHz. This quad-remeshing procedure is extremely
fast compared with the quad-dominant meshes of Lévy and Liu [24] for which the remeshing of the
Stanford bunny takes 271 s.

8.3. Quadrilateral mesh generation applied to parametric CAD models

We consider the solid model of a human bone. The model contains 11 non-uniform rational
B-spline surfaces. The mesh size field is based on surface curvature: we use formula (9) with
Np D 35. The total time for surface meshing was 26 s for generating 10,134 quadrilateral elements.
The time for computing all 11 perfect matchings and doing optimization does not exceed 10 s. The
average quality of the finite element mesh is N�D 73.3%, and the efficiency is � D 80.2%. The model
still contains one element of bad quality, with �D 0.01 (Figure 16).

Gmsh allows direct access to the CAD model, allowing us to compute exactly the principal
directions of curvature together with minimal and maximal curvature. This allows us to define an
anisotropic mesh size field [7]. Here, we use formula (9) with Np D 35 in each of the directions
of principal curvature. An anisotropic triangular mesh is initially built using the anisotropic metric
provided by the curvature. Then, the Blossom-Quad algorithm is applied to it. The resulting mesh
is presented in Figure 17. The quadrilateral mesh naturally aligns itself to the principal directions of
curvature, allowing us to build an anisotropic quadrilateral mesh without effort.

8.4. Quadrilateral meshes for ocean modeling

Our research team has developed the first multiscale hydrodynamic model of the whole Great Barrier
Reef. The Great Barrier Reef is on the continental shelf of the Australian northeastern coastline and

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.8. Examples 76

1116 J.-F. REMACLE ET AL.

Bone

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y
Element quality

0

Figure 16. Isotropic quad mesh of the bone geometry with a quality plot.

Figure 17. Anisotropic mesh of the bone geometry.

contains over 2500 coral reefs in a strip that is about 2600 km in length and 200 km in width. The
mesh size field h.Ex/ is defined as a function of the bathymetry and the distance to the shore.

We have performed 24 h of simulations of the water circulation on the Great Barrier Reef shelf.
The physical model is described in [25]. The equations are discretized with PDG1 discontinuous
finite elements combined with a second-order multirate explicit Runge–Kutta temporal integrator
as in [26]. A plot of the velocity vectors and the sea surface elevation is presented in Figure 18.
Tidal jets and eddies due to the interaction of the flow with the topography near the open-sea bound-
ary are clearly visible. The same simulation on a triangular mesh ('250,000 triangles) was 2.7 times
slower than on the corresponding Blossom-Quad quadrilateral mesh ('119,000 quads).

9. CONCLUSIONS

The main contribution of this paper is to have introduced a well-known result of graph theory (the
Blossom algorithm for minimum-cost perfect matching) in the domain of unstructured quadrilateral
mesh generation. We have presented a new algorithm—dubbed Blossom-Quad—that takes advan-
tage of this result to produce high-quality quadrilateral meshes in a robust and efficient manner, and
we have applied it in different contexts: from planar geometries to parametric CAD models to STL
remeshing to multiscale ocean models.

Possible further improvements to the proposed algorithm are numerous. For example, the cost
function that has been used could be modified in order to align the quadrilateral mesh with some
preferred directions. (We have already presented a simple example to that effect in Section 4.3.)
Also, in this paper, we have used triangulations with vertices distributed fairly uniformly as input
to the recombination procedure. Recent developments [24, 27] allow us to align those vertices with
some prescribed directions. Coupling both approaches could potentially lead to even higher-quality

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.9. Conclusions 77

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1117

Sea Surface Elevation and Velocity

-19°45’S

-20°45’S

-20°15’S

-20°30’S

-20°45’S
148°30’E 148°45’E 149°00’E 149°15’E 149°30’E

Figure 18. Quadrilateral mesh of the Great Barrier Reef. Two successive zooms of the Whitsunday Islands
Archipelago. Sea surface elevation (color levels) and bidimensional velocity field (arrows).

Figure 19. Blossom-Quad algorithm applied to a triangular surface mesh that has been smoothed using the
Lp centroidal Voronoï tessellation technique of Lévy and Liu [24].

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.9. Conclusions 78

1118 J.-F. REMACLE ET AL.

quadrilateral meshes. As an example, we have applied the Blossom-Quad algorithm (without opti-
mization) to a triangular surface mesh that has been smoothed using the Lp centroidal Voronoï
tessellation technique of Lévy and Liu [24]. The resulting mesh is presented in Figure 19. There,
quadrangles do not form patches that are randomly aligned but follow a regular pattern.

In the longer run, the very challenging problem of automatic generation of hexahedral-dominant
meshes could be approached using an indirect technique of this kind. In this case, more than two
tetrahedra have to be merged in order to form one hexahedron. Here again, we think that graph
theory could maybe help us in finding some kind of optimal matching.

ACKNOWLEDGEMENTS

This work has been partially supported by the Belgian Walloon Region under WIST grants ONELAB
1017086 and DOMHEX 1017074.

Authors gratefully thank F. Glineur and J. Hendricks from the Applied Mathematics Department of the
Université Catholique de Louvain for the discussions and hints about graph theory.

Authors also acknowledge P. Frey of Université Paris VI for authorizing us to include one of the
illustrations of his paper [3] (Figure 13, top left).

Authors finally deeply acknowledge B. Levy of LORIA Nancy for providing us with the triangulation and
the smoothing algorithm used to produce Figure 19.

REFERENCES

1. Blacker TD, Stephenson MB. Paving: a new approach to automated quadrilateral mesh generation. International
Journal for Numerical Methods in Engineering 1991; 32:811–847.

2. Lee CK, Lo SH. A new scheme for the generation of a graded quadrilateral mesh. Computers and Structures 1994;
52:847–857.

3. Borouchaki H, Frey P. Adaptive triangular–quadrilateral mesh generation. International Journal for Numerical
Methods in Engineering 1998; 45(5):915–934.

4. Owen SJ, Staten ML, Canann SA, Saigal S. Q-morph: an indirect approach to advancing front quad meshing.
International Journal for Numerical Methods in Engineering 1999; 9:1317–1340.

5. Edmonds J. Maximum matching and a polyhedron with 0–1 vertices. Journal of Research of the National Bureau of
Standards 1965; 69B:125–130.

6. Edmonds J, Johnson EL, Lockhart SC. Blossom I: a computer code for the matching problem. Report, IBM T.J.
Watson Research Center, Yorktown Heights, New York, 1969.

7. Frey P, George PL. Mesh Generation—Application to Finite Elements. Wiley: Hoboken, 2008.
8. Edmonds J. Paths, trees, and flowers. Canadian Journal of Mathematics 1965; 17:449–467.
9. Lawler EL. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart, and Winston: New York, NY,

1976.
10. Gabow H. Implementation of algorithms for maximum matching on nonbipartite graphs. PhD Thesis, Stanford

University, 1973.
11. Gabow H, Galil Z, Micali S. An o(ev log v) algorithm for finding a maximal weighted matching in general graphs.

SIAM Journal on Computing 1986; 15:120–130.
12. Gabow HN. Data structures for weighted matching and nearest common ancestors with linking. Proceedings of the

1st Annual ACM-SIAM Symposium on Discrete Algorithms, 1990; 434–443.
13. Cook W, Rohe A. Computing minimum-weight perfect matchings. INFORMS Journal on Computing 1999;

11(2):138–148.
14. Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and

post-processing facilities. International Journal for Numerical Methods in Engineering 2009; 79(11):1309–1331.
15. Bommes D, Zimmer H, Kobbelt L. Mixed-integer quadrangulation. SIGGRAPH ‘09: ACM SIGGRAPH 2009 papers.

ACM: New York, NY, USA, 2009; 1–10, DOI: 10.1145/1576246.1531383.
16. Tutte WT. A family of cubical graphs. Proceedings of the Cambridge Philosophical Society 1947; 43:459–474.
17. Pemmaraju S, Skiena S. Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica
r. Cambridge University Press: New York, NY, USA, 2003.

18. Kasteleyn PW. Dimer statistics and phase transitions. Journal of Mathematical Physics 1963; 4:287–293. DOI:
10.1063/1.1703953.

19. Oum S. Perfect matchings in claw-free cubic graphs. ArXiv e-prints, Jun 2009.
20. Sarrate J, Huerta A. An improved algorithm to smooth graded quadrilateral meshes preserving the prescribed element

size. Communications in Numerical Methods in Engineering 2001; 17(2):89–99.
21. Daniels J, II, Silva CT, Cohen E. Localized quadrilateral coarsening. SGP ’09: Proceedings of the Symposium on

Geometry Processing. Eurographics Association: Aire-la-Ville, Switzerland, 2009; 1437–1444.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.9. Conclusions 79

QUADRILATERAL MESH GENERATOR USING PERFECT MATCHING 1119

22. Marchandise E, de Wiart C, Vos W, Geuzaine C, Remacle J. High-quality surface remeshing using harmonic
maps—part III: surfaces with high genus and of large aspect ratio. International Journal for Numerical Methods
in Engineering 2011; 86:1303–1321.

23. Guennebaud G, Germann M, Gross M. Dynamic sampling and rendering of algebraic point set surfaces. Computer
Graphics Forum 2008; 27:653–662.

24. Lévy B, Liu Y. Lp centroidal Voronoi tessellation and its applications. ACM Transactions on Graphics (SIGGRAPH
Conference Proceedings), 2010.

25. Lambrechts J, Hanert E, Deleersnijder E, Bernard PE, Legat V, Wolanski JFRE. A high-resolution model of
the whole great barrier reef hydrodynamics. Estuarine, Coastal and Shelf Science 2008; 79(1):143–151. DOI:
10.1016/j.ecss.2008.03.016.

26. Constantinescu EM, Sandu A. Multirate timestepping methods for hyperbolic conservation laws. Journal of Scientific
Computing 2007; 33:239–278. DOI: 10.1007/s10915-007-9151-y.

27. Hausner A. Simulating decorative mosaics. Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, 2001; 573–580.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 89:1102–1119
DOI: 10.1002/nme

A.9. Conclusions 80

APPENDIX B
Paper II: Sequential

decision-making approach for
quadrangular mesh generation

81

ORIGINAL ARTICLE

Sequential decision-making approach for quadrangular mesh
generation

Amaury Johnen • Damien Ernst • Christophe Geuzaine

Received: 3 July 2014 / Accepted: 14 October 2014

� Springer-Verlag London 2014

Abstract A new indirect quadrangular mesh generation

algorithm which relies on sequential decision-making

techniques to search for optimal triangle recombinations is

presented. In contrast to the state-of-art Blossom-quad

algorithm, this new algorithm is a good candidate for

addressing the 3D problem of recombining tetrahedra into

hexahedra.

Keywords Finite element mesh generation �
Quadrangular meshes � Recombination � Sequential

decision-making

1 Introduction

Finite element methods are numerical techniques largely

used for solving physical problems governed by partial

differential equations (PDEs). Those methods require the

domain of interest to be discretized into a mesh, i.e. a set of

discrete subdomains called elements [21]. In 2D, those

elements are triangles or quadrilaterals.

Triangular meshes are largely used in finite element

simulations because of the existence of fast, robust and

automatic techniques to generate high-quality elements,

even with size constraints. However, quadrilateral meshes

are sometimes considered as superior to triangular meshes

[5]. Nonlinear mechanics in particular have element mod-

els that only work with quadrangular meshes; in fluid

dynamic simulations, quads are also often sought after to

discretize boundary layers.

Automatic generation of quad meshes is not an easy

problem. For a long time, existing techniques either were

complex or produced poor-quality elements (quadrangles

with very acute or obtuse angles and/or quadrangles that

are poorly aligned with desired directions)—often in areas

of the domain where good meshes were critically needed.

At present, there are essentially two approaches for

automatically generating quad meshes with size con-

straints: direct methods and indirect methods. With direct

methods, quadrilaterals are constructed at once, either by

using advancing front techniques [2], using regular grid-

based methods (quadtrees) [6] or partitioning the domain

[10]. Indirect methods, on the other hand, rely on an initial

triangular mesh (Fig. 1a) and apply merging techniques to

recombine the triangles of the initial mesh into quadrangles

(Fig. 1b) [3, 11]. Other more sophisticated indirect meth-

ods use a mix of advancing front and recombination

techniques [16, 20].

The performance of such indirect methods crucially

depends on the technique used to generate the initial tri-

angular mesh. Indeed, triangular mesh algorithms usually

aim at producing close to equilateral triangles, which is not

optimal for recombination [17]. One recent original

approach relies on Delaunay-frontal algorithms in L1-

norm to generate close to right-angled triangles, facilitating

the construction of high quality quadrangulations [12, 17].

The main shortcoming of classical recombination tech-

niques is the difficulty of generating globally high quality

meshes [13, 20]. Greedy recombination of triangles into

quads (that merges triangles leading to the best quad first,

then continues with the remaining triangles) always leads

A. Johnen � D. Ernst � C. Geuzaine (&)

Department of Electrical Engineering and Computer Science,

University of Liège, Liège, Belgium

e-mail: cgeuzaine@ulg.ac.be

A. Johnen

e-mail: a.johnen@ulg.ac.be

D. Ernst

e-mail: dernst@ulg.ac.be

123

Engineering with Computers

DOI 10.1007/s00366-014-0383-9

B.1. Introduction 82

to orphaned triangles which have to be subdivided into

poor-quality quads. Other techniques using advancing

fronts produce poor-quality elements at meeting fronts.

Blossom-quad proposed an elegant solution by using a

minimum-cost perfect matching algorithm [18]. Blossom-

quad guarantees that if a triangle-to-quad recombination

exists, it will generate a full quad mesh that is optimal

according to a quality functional. However, the best

implementation of this algorithm is Blossom V [9], which

runs in Oðn2
M
Þ where nM is the number of triangles.

Moreover, Blossom-quad does not allow for any other

‘‘action’’ than the merging of two triangles into a quad, and

it cannot be extended to 3D meshes (to recombine tetra-

hedra into hexahedra).

In this paper we propose a new indirect method for

generating quads. This method can in principle work with

any initial triangular mesh, and allows for the use of a great

variety of topological and geometrical operations to gen-

erate high quality quadrangulations. The time complexity

is OðnMÞ and there are a priori no difficulties to extend it to

the 3D problem. The conceptual basis of the method relies

on looking at the recombination problem as an optimal

sequential decision-making problem.

The paper is organized as follows: After stating the

problem in Sect. 2, we formulate it as a sequential deci-

sion-making problem in Sect. 3. In Sects. 4 and 5, we

present two ways of solving the sequential decision-making

problem by using look-ahead trees. Finally, the results are

presented in Sect. 6 and we conclude in Sect. 7.

2 Problem statement

The goal of the mesh generation process in which the

recombination algorithm takes part is, starting from a tri-

angular mesh, to create a mesh made of quadrilaterals that

has controlled element sizes and shapes. We assume that

the initial triangular mesh fulfills the size requirements. In

this paper, we only consider the topological operation of

recombining two triangles into one quadrangle and no

other topological (swap, collapse) or geometrical

(smoothing) operations. This algorithm does not alter the

size of edges, so the aim of the recombinations is to pro-

duce quadrangles with the best shape quality.

There exist many different shape quality definitions for

quadrangles in the literature. The method we propose is not

specific to a particular definition, and we will not enter into

the debate about which shape quality measure should be

used. In this paper, we will use the definition given in [3].

Consider a quadrilateral element Q and its four internal

angles ak; k ¼ 1; 2; 3; 4 (Fig. 2). The shape quality gðQÞ of

Q is defined as:

gðQÞ ¼ max 0; 1� 2

p
max

k

p
2
� ak

�
�
�

�
�
�

� �� �

: ð1Þ

This quality measure is equal to 1 if the element is a

rectangle and 0 if one of those angles is either � 0 or � p.

We define the global quality q of a meshM as the sum

of shape quality of every quadrangle:

qðMÞ ¼
X

Qi2Q
gðQiÞ; ð2Þ

where Q is the set of quadrangles of M. With this defi-

nition, the initial triangular mesh has a global quality of

zero.

The problem that we want to solve is the following:

from an initial triangular mesh M0, find, by recombining

all triangles into quadrangles, a mesh M� that maximizes

q, i.e. qðM�Þ� qðMÞ; 8M. Note that we only consider

initial triangular meshes that can be fully recombined into

quads.

The dual graph of the mesh is the graph GðV;EÞ for

which every vertex vj is a triangle Tj and every edge eij

represents the adjacency of two neighbour triangles Ti and

Tj. It has been shown that the problem of recombining

triangles is connected to the problem of finding a matching

in the dual graph [18], i.e., a subset of edges that do not

a

→

b

→

c

Fig. 1 The triangles can be

recombined in order to get

quadrangles. After that, a

smoothing operation can be

applied in order to relocate

nodes in better places (b ! c)

α1

α2

α3
α4

Fig. 2 Quadrilateral with its

four internal angles

Engineering with Computers

123

B.2. Problem Statement 83

share any vertices. Let us consider a mesh of a closed

surface with zero genus, for which every triangle has three

neighbours. This is among the worst cases in terms of the

ratio between the number of possible recombinations over

the number of triangles. The dual graph of such a mesh is a

cubic planar graph, i.e. all vertices have degree three and it

can be drawn on a plane in such a way that its edges do not

intersect. In this case it has also been proven that the

number of perfect matchings N (matchings which do not

leave any unmatched vertex in the graph) grows expo-

nentially with the number of vertices in that graph [7]:

3 unM=72�N� 2nM ;

where u is the golden ratio (’ 1:62). As a result, the

number of possible solutions also grows exponentially with

the size of the mesh.

Among all the possible solutions, Blossom-quad [18]

allows to find the one that maximizes q in polynomial time.

However, as stated in the introduction, Blossom-quad

cannot be extended to the 3D problem of recombining

tetrahedra into hexahedra. Indeed, the formulation of the

problem as a minimum-cost perfect matching works in 2D

where a pair of triangles forms a quadrangle. In 3D, at least

five tetrahedra are required to form a hexahedron. This

motivates the formulation of the problem as a sequential

decision-making problem.

3 Formulation as a sequential decision-making

problem

Recombinations can be seen as actions that are applied step

by step to the mesh. This implies that the overall problem

can be seen as a discrete-time system for which one seeks a

sequence of actions at (the recombinations) that maximizes

the sum of the rewards rðatÞ defined as the shape quality of

the created quadrangles Qt, i.e. rðatÞ ¼ gðQtÞ 2 ½0; 1�. The

generic dynamics of this discrete system is given by

equation Mtþ1 ¼ f ðMt; atÞ, where the mesh Mt 2 X is a

state of the system and where at 2 AðMtÞ. X is called the

state space and AðMtÞ is called the action space. We define

Xf � X as the set of final states (meshes for which no

allowed recombination remains).

Definition 1 The ‘‘polder set’’ containing a triangle T ,

denoted PðT;MÞ, is the set of triangles containing at least

T for which the dual graph is a connected component of the

dual graph of the whole mesh.

Definition 2 Recombination criterion: a recombination

between a triangle T and one of its neighbours is forbidden

if it separates the set PðT ;MÞ into two odd-cardinality

disjoint polder sets.

In practice, it is easy to understand that an action that

leads to a mesh with isolated triangles (or leftover cavities

that have an odd number of edges on their boundary) is

highly suboptimal. Therefore in the following, we will

exclude these actions by taking AðMtÞ as being equal to

the set of actions of Mt that do not violate the recombi-

nation criterion (see Definition 2). As a consequence, X is

restricted to the set of all meshes obtained by recombining

triangles of the initial mesh and for which there is no odd-

cardinality polder set.

With this formulation, the optimal solution could be found

by computing the tree for which every node corresponds to a

state M 2 X and every edge corresponds to a possible

transition. The leaves of the tree would be the final states and

among them we could find the optimal solution. But we

showed in Sect. 2 that the size of Xf grows exponentially

with the number of initial triangles, and so does the size of the

tree. In the next section, we propose an algorithm for navi-

gating into these large trees efficiently. We also relax the

original problem statement to allow for non-fully recom-

bined meshes, in which case we consider the percentage of

recombinations with respect to the optimal solution as a

criterion to evaluate the performance of a the algorithm.

4 Uniform look-ahead tree

The uniform look-ahead tree (LT) can be seen as a com-

putationally efficient way for exploring the tree made of all

possible sequences of actions. A uniform LT T hðMtÞ
expanded from the meshMt with a horizon h is a tree for

which the root y0 is Mt and every node of depth d 2
f0; . . .; hg corresponds to a state that is reachable fromMt

after d transitions (see Fig. 3). Let yleaf
k , k ¼ 1; 2; . . .;Nleaf

y0

y1 y2 y3 y4

y
n
+
1

y
n
+
2

y
n
+
3
...

= xt – d = 0

– d = 1

– d = 2

Fig. 3 Uniform look-ahead tree

of horizon 2 where n is the

number of nodes at depth 1 (i.e.

the size of the action space

AðMtÞ)

Engineering with Computers

123

B.3. Formulation as a sequential decision-making problem 84

denote the leaf nodes, i.e. the nodes that are at depth h. At

each leaf node yleaf
k is associated the sequence of h actions

ak
s; s ¼ t; . . .; t þ h. We define the optimal sequence of

actions as the one that corresponds to maxk

Ptþh
s¼t rðak

sÞ.
The action that is applied at time t, at, is then taken as the

first action of the optimal sequence.

The uniform LT has been applied to the mesh of a

sphere that contains 2,152 initial triangles (see Fig. 4).

We compute the quality of the final state as a percentage

of the quality obtained with Blossom-Quad [18]. For a

horizon of 1, we obtain a quality of 87.6 % in 0.16 s.

For a horizon of 2, the quality is poorer with 85.1 %,

and the computation time is much greater with 225.6 s.

Thus the result is worse in both quality and time. Note

that on our computer (Macbook Pro Retina, Mid 2012)

we have been unable to test the uniform LT for larger

horizons.

One explanation for the lack of performance is the fact

that with such small horizons the uniform LT algorithm

behaves almost similarly to the greedy algorithm that

recombines at each step the two triangles leading to the

best quad. The fast increase in computation time is

explained by the high branching factor, which is of the

order of the number of remaining triangles.

In the next section, we define a different way to con-

struct the LT that gives better performances.

Fig. 4 The triangular mesh of a sphere (a) is recombined with a

uniform LT of horizon 1 (b) and 2 (c). The initial mesh contains 2,152

triangles. With horizon 1, 1,850 triangles are recombined for a

quality of 87.6 %. With horizon 2, 1,780 triangles are recombined for

a quality of 85.1 %

y0

y1 y2 y3

y4 y5 y6 y7 y8 y9

= xt

Fig. 5 Selective look-ahead tree of horizon 2. In this example, the

triangle selected for y0 has three possible recombinations, so the root

has 3 branches. Triangles selected at depth 1 have all two possible

recombinations

Fig. 6 The triangular mesh of the sphere (Fig. 4) is recombined with

the selective LT of horizon 3. On the 2,152 initial triangles, 2,120 are

recombined for a quality of 93.8 %

Table 1 The uniform and selective LT are compared on the test case

of the sphere

Horizon Quality % recombinations Time (s)

Uniform 1 87.6 86 0.16

2 85.1 82.7 225.6

Selective 1 91.8 98.2 0.037

2 92.8 98.3 0.084

3 94 98.7 0.146

Results for the selective LT are presented as the median of 100 runs.

The quality is presented as a percentage of the quality obtained with

Blossom-Quad. A mesh obtained with the selective LT of horizon 3 is

showed at Fig. 6

Engineering with Computers

123

B.4. Uniform look-ahead tree 85

5 Selective look-ahead tree

The tree made of all possible sequences of actions has

intrinsically a large branching factor which hinders the

performances of uniform LT techniques. In this section, we

propose to apply another form of LT that works with a

smaller branching factor allowing to exploit larger depths.

We named it selective look-ahead tree.

Let us first introduce some definitions. For a given state

y, PkðyÞ, k ¼ 1; . . .; 3 is the set of all available triangles in y

that take part in exactly k recombinations of AðMtÞ. We

define PminðyÞ as the first non-empty set, i.e. equal to PlðyÞ
if Pk\lðyÞ ¼ ; and PlðyÞ 6¼ ;, or equal to an empty set if

PkðyÞ are all empty. The construction of the selective LT is

carried out as follows (see Fig. 5):

First, we make the root y0 to be the current state Mt.

Then we randomly select a triangle T0 that has the mini-

mum of recombinations, i.e. we select T0 in Pminðy0Þ, and

we create a child for every possible recombination of T0.

For every child node yi, we compute N MðyiÞ, the set of

triangles that can be recombined and are neighbours of the

quadrangles created in the sequence from y0 to yi. There

are then two situations: either N MðyiÞ is empty and Ti is

taken in Pminðy0Þ (like the root node) or N MðyiÞ is not

empty. For the latter, we compute the first non-empty set of

PkðyÞ \ N MðyiÞ; k ¼ 1; 2 and randomly select Ti in it.

Then, we branch on every possible recombination of Ti.

The rationale behind this is that if the optimal solution

corresponds to a full recombination, those selective LT,

deployed with the maximum possible depths, would also

contain an optimal sequence of actions while still having a

much smaller branching factor (bounded by 3 for the root

and by 2 for the children). Note that if the optimal solution

does not correspond to a fully recombined mesh, it may be

reasonable to assume that those new LT may still contain a

sequence of actions which is not far from the optimal one.

6 Results

6.1 Mesh of the sphere

We applied the selective LT algorithm to the mesh of

the sphere described in Sect. 4. The results are presented at

Table 1. We can see that the selective LT shows better

Fig. 7 Borouchaki test: initial

mesh and a typical solution of

our algorithm with a horizon of

5 (top, global mesh, bottom

zoom of the top right corner).

The solution has a quality of

93.17 and 98.8 % of elements

are recombined

Engineering with Computers

123

B.5. Selective look-ahead tree 86

performances than the uniform LT on the three criterions:

quality, number of recombinations and computation time.

On the other hand, both quality and number of recombi-

nations are increased from horizon 1 to 3.

6.2 Borouchaki mesh

We present the results of the selective LT algorithm

obtained for a test case proposed by Borouchaki and Frey

[3]. The domain is a unit square with a circular hole of

radius 0.15 centred at (0.75, 0.75) with a non-uniform mesh

size field (see Fig. 7). The initial triangular mesh has been

generated with the delquad algorithm [17] and contains

34,562 triangles (Fig. 7a).

In order to make a comparison with a reference mesh,

the triangular mesh has been recombined with the Blos-

som-quad algorithm using the same quality criterion and

without making any additional topological or geometrical

optimizations. This is the optimal solution of our search

and we take the obtained quality of 10,451.61 as reference.

Quality results presented below are all given as percentages

of this reference value.

We applied our algorithm for every horizon between 1

and 10. Since triangles are taken randomly, we have, for

each horizon, run our algorithm 128 times. Quality, number

of recombined elements and computation time are pre-

sented as ‘‘box and whiskers’’ graphs in Fig. 8. The first

two graphs show that both the quality and the number of

recombined elements increase significantly when the

horizon increases from 1 to 6. In the third graph, high-

horizon values are shown to lead to an average branching

factor of 100:49=4 ¼ 1:33. The asymptotically linear

behaviour suggests that the recombination process has a

computational complexity of nMah, where a is the

branching factor.

The computation time (around 1:6 s at horizon 1 and

3:4 s at horizon 2) can be compared to the naive greedy

recombination algorithm, which simply recombines tri-

angles by selecting pairs to be recombined in decreasing

order of quality of the resulting quads. Without additional

constraint, the greedy approach takes 0:98 s to make

15,472 recombinations. Since the remaining triangles are

mostly isolated, the quality cannot be compared. The

same greedy approach, with the additional constraint of

definition 2 (which is equivalent to the uniform LT of

Sect. 4 with a horizon equal to 1), is computed in 1.32 s

and leads to a quality of 88:5 with 86 % of recombina-

tions. This confirms the usefulness of the sequential

decision-making approach, especially in view of its future

applicability to 3D problems as well as of its natural

handling of additional topological and geometrical

actions.

7 Conclusion

We designed a new algorithm to recombine triangular

meshes into quadrangular meshes that relies on decision-

making techniques. The main advantage of this new

approach is that it can produce good quality quad meshes

with size constraints in linear time. We showed that the use

of selective look-ahead trees instead of uniform look-ahead

trees greatly improves the computation time as well as the

quality of the final mesh. We also showed that the solution

is improved by increasing the horizon of the selective look-

ahead trees. The complexity of the algorithm was found

2 4 6 8 10

90

92

94

Horizon

Q
ua

lit
y

2 4 6 8 10
98

98.5

99

Horizon

%
R

ec
om

bi
ne

de
le

m
en

ts

2 4 6 8 10

0.5

1

1.5

2

4

.49

horizon

lo
g 1

0
(t

im
e

[s
])

Fig. 8 Box and whiskers plots for the Borouchaki test, with medians

as red lines, interquartile ranges (IQR) as blue boxes, and whiskers in

black. Red crosses depict outliers that are 1:5	 IQR above or below

the IQR. Whiskers only extend to the most extreme data points not

considered as outliers. 128 runs have been performed for every

horizon from 1 to 10 (colour figure online)

Engineering with Computers

123

B.7. Conclusion 87

experimentally to be nMð1þ ahÞ, where a� 2. Unlike

Blossom-quad, our algorithm does not guarantee that all

triangles are recombined. However, the remaining triangles

are grouped and can easily be replaced by quadrangles in

post-processing using an adaptation of Bunin’s algorithm

[4].

Ongoing research focuses on three extensions. First,

more advanced tree navigation techniques published in the

machine learning literature are investigated [8, 14]. Sec-

ond, instead of considering topological and geometrical

operations (such as edge swaps, collapses or node reloca-

tion) as post-processing operations, they could be added

directly as actions in the sequential decision-making pro-

cess. Third, the algorithm could also be extended to

recombinations of tetrahedra into hexahedra [1, 15, 19].

Acknowledgments This research project was funded in part by the

Walloon Region under WIST 3 grant 1017074 (DOMHEX).

References

1. Baudouin TC, Remacle JF, Marchandise E, Henrotte F, Geuzaine

C (2014) A frontal approach to hex-dominant mesh generation.

Adv Model Simul Eng Sci 1(1):1–30

2. Blacker TD, Stephenson MB (1991) Paving: a new approach to

automated quadrilateral mesh generation. Int J Numer Methods

Eng 32(4):811–847

3. Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral

mesh generation. Int J Numer Methods Eng 41(5):915–934

4. Bunin G (2006) Non-local topological clean-up. In: Pébay PP

(ed) Proceedings of the 15th International Meshing Roundtable.

Springer, pp 3–29

5. D’Azevedo E (2000) Are bilinear quadrilaterals better than linear

triangles? SIAM J Sci Comput 22(1):198–217

6. Frey PJ, Marechal L (1998) Fast adaptive quadtree mesh gener-

ation. In: Proceedings of the Seventh International Meshing

Roundtable, pp 211–224

7. Jiménez A, Kiwi M (2011) Counting perfect matchings in the

geometric dual. Electron Notes Discret Math 37:225–230

8. Jung T, Wehenkel L, Ernst D, Maes F (2013) Optimized look-

ahead tree policies: a bridge between look-ahead tree policies and

direct policy search. Int J Adapt Control Signal Process. Avail-

able as preprint at: http://onlinelibrary.wiley.com/ doi:10.1002/

acs.2387/full

9. Kolmogorov V (2009) Blossom V: a new implementation of a

minimum cost perfect matching algorithm. Math Program Com-

put 1(1):43–67

10. Kowalski N, Ledoux F, Frey P (2013) A PDE based approach to

multidomain partitioning and quadrilateral meshing. Springer,

pp 137–154

11. Lee CK, Lo SH (1994) A new scheme for the generation of a

graded quadrilateral mesh. Comput Struct 52(5):847–857

12. Lévy B, Liu Y (2010) Lp centroidal voronoi tessellation and its

applications. ACM Trans Graph 29(4): 119:1–119:11

13. Lo S, Lee C (1992) On using meshes of mixed element types in

adaptive finite element analysis. Finite Elem Anal Des

11(4):307–336

14. Maes F, St-Pierre D, Ernst D (2013) Monte carlo search algo-

rithm discovery for single-player games. IEEE Trans Comput

Intell AI Games 5(3):201–213. doi:10.1109/TCIAIG.2013.

2239295

15. Meshkat S, Talmor D (2000) Generating a mixed mesh of

hexahedra, pentahedra and tetrahedra from an underlying tetra-

hedral mesh. Int J Numer Methods Eng 49(1–2):17–30

16. Owen SJ, Staten ML, Canann SA, Saigal S (1999) Q-Morph: an

indirect approach to advancing front quad meshing. Int J Numer

Methods Eng 44(9):1317–1340

17. Remacle JF, Henrotte F, Carrier-Baudouin T, Bechet E, Mar-

chandise E, Geuzaine C, Mouton T (2013) A frontal delaunay

quad mesh generator using the lnorm. Int J Numer Methods Eng

94(5):494–512

18. Remacle JF, Lambrechts J, Seny B, Marchandise E, Johnen A,

Geuzaine C (2012) Blossom-quad: A non-uniform quadrilateral

mesh generator using a minimum-cost perfect-matching algo-

rithm. Int J Numer Methods Eng 89(9):1102–1119

19. Yamakawa S, Shimada K (2003) Fully-automated hex-dominant

mesh generation with directionality control via packing rectan-

gular solid cells. Int J Numer Methods Eng 57(15):2099–2129

20. Zhu J, Zienkiewicz O, Hinton E, Wu J (1991) A new approach to

the development of automatic quadrilateral mesh generation. Int J

Numer Methods Eng 32(4):849–866

21. Zienkiewicz O, Taylor R (2000) The finite element method—the

basis, vol 1. Elsevier

Engineering with Computers

123

B.7. Conclusion 88

APPENDIX C
Paper III: Geometrical validity of

curvilinear finite elements

89

Geometrical validity of curvilinear finite elements

A. Johnen a, J.-F. Remacle b, C. Geuzaine a,⇑
a Université de Liège, Department of Electrical Engineering and Computer Science, Montefiore Institute B28, Grande Traverse 10, 4000 Liège, Belgium
b Université catholique de Louvain, Institute of Mechanics, Materials and Civil Engineering (iMMC), Place du Levant 1, 1348 Louvain-la-Neuve, Belgium

a r t i c l e i n f o

Article history:
Received 23 December 2011
Received in revised form 3 July 2012
Accepted 31 August 2012
Available online 16 September 2012

Keywords:
Finite element method
High-order methods
Mesh generation
Bézier functions

a b s t r a c t

In this paper, we describe a way to compute accurate bounds on Jacobian determinants of
curvilinear polynomial finite elements. Our condition enables to guarantee that an element
is geometrically valid, i.e., that its Jacobian determinant is strictly positive everywhere in
its reference domain. It also provides an efficient way to measure the distortion of curvilin-
ear elements. The key feature of the method is to expand the Jacobian determinant using a
polynomial basis, built using Bézier functions, that has both properties of boundedness and
positivity. Numerical results show the sharpness of our estimates.

! 2012 Elsevier Inc. All rights reserved.

1. Introduction

There is a growing consensus in the finite element community that higher-order discretization methods will replace at
some point the solvers of today, at least for part of their applications. These high-order methods require a good accuracy
of the geometrical discretization to be accurate—in other words, such methods will critically depend on the availability of
high-quality curvilinear meshes.

The usual way of building such curvilinear meshes is to first generate a straight sided mesh. Then, mesh entities that are
classified on the curved boundaries of the domain are curved accordingly [1–3]. Some internal mesh entities may be curved
as well. If we assume that the straight sided mesh is composed of well shaped elements, curving elements introduces a
‘‘shape distortion’’ that should be controlled so that the final curvilinear mesh is also composed of well shaped elements.
The optimization of the shape distortion is a computationally expensive operation, especially when applied globally over
the full mesh. It is thus crucial to be able to get fast and accurate bounds on the distortion in order to (1) evaluate the quality
of the elements during the optimization process; and (2) reduce the sets of elements to be optimized, so that the optimiza-
tion can be applied locally, i.e., only where it is necessary.

In this paper we present a method to analyze curvilinear meshes in terms of their elementary Jacobian determinants. The
method does not deal with the actual generation/optimization of the high order mesh. Instead, it provides an efficient way to
guarantee that each curvilinear element is geometrically valid, i.e., that its Jacobian determinant is strictly positive every-
where in its reference domain. It also provides a way to measure the distortion of the curvilinear element. The key feature
of the method is to adaptively expand the elementary Jacobian determinants in a polynomial basis that has both properties
of boundedness and positivity. Bézier functions are used to generate these bases in a recursive manner. The proposed meth-
od can be either used to check the validity and the distortion of an existing curvilinear mesh, or embedded in the curvilinear

0021-9991/$ - see front matter ! 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2012.08.051

⇑ Corresponding author.
E-mail addresses: a.johnen@ulg.ac.be (A. Johnen), jean-francois.remacle@uclouvain.be (J.-F. Remacle), cgeuzaine@ulg.ac.be (C. Geuzaine).

Journal of Computational Physics 233 (2013) 359–372

Contents lists available at SciVerse ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp

C.1. Introduction 90

mesh generation procedure to assess the validity and the quality of the elements on the fly. The algorithm described in this
paper has been implemented in the open source mesh generator Gmsh [4], where it is used in both ways.

2. Curvilinear meshes, distortion and bounds on Jacobian determinants

Let us consider a mesh that consists of a set of straight-sided elements of order p. Each element is defined geometrically
through its nodes xi; i ¼ 1; . . . ;Np and a set of Lagrange shape functions LðpÞi ðnÞ; i ¼ 1; . . . ;Np. The Lagrange shape functions
(of order p) are based on the nodes xi and allow to map a reference unit element onto the real one:

xðnÞ ¼
XNp

i¼1

LðpÞi ðnÞ xi: ð1Þ

The mapping xðnÞ should be bijective, which means that it should admit an inverse. This implies that the Jacobian determi-
nant det x;n has to be strictly positive. In all what follows we will always assume that the straight-sided mesh is composed of
well-shaped elements, so that the positivity of det x;n is guaranteed. This standard setting is presented on Fig. 1(left) for the
quadratic triangle.

Let us now consider a curved element obtained after application of the curvilinear meshing procedure, i.e., after moving
some or all of the nodes of the straight-sided element. The nodes of the deformed element are called Xi; i ¼ 1 . . . Np, and we
have

XðnÞ ¼
XNp

i¼1

LðpÞi ðnÞ Xi: ð2Þ

Again, the deformed element is assumed to be valid if and only if the Jacobian determinant JðnÞ :¼ det X;n is strictly positive
everywhere over the n reference domain. The Jacobian determinant J, however, is not constant over the reference domain,
and computing Jmin :¼minnJðnÞ is necessary to ensure positivity.

The approach that is commonly used is to sample the Jacobian determinant on a very large number of points. Such a tech-
nique is however both expensive and not fully robust since we only get a necessary condition. In this paper we follow a dif-
ferent approach: because the Jacobian determinant J is a polynomial in n; J can be interpolated exactly as a linear
combination of specific polynomial basis functions over the element. We would then like to obtain provable bounds on
Jmin by using the properties of these basis functions.

In addition to guaranteeing the geometrical validity of the curvilinear element, we are also interested in quantifying its
distortion, i.e., the deformation induced by the curving. To this end, let us consider the transformation X(x) that maps straight
sided elements onto curvilinear elements (see Fig. 1). It is possible to write the determinant of this mapping in terms of the n

coordinates as:

det X;x ¼
det X;n

det x;n
¼ JðnÞ

det x;n
: ð3Þ

We call X(x) the distortion mapping and its determinant dðnÞ :¼ det X;x the distortion. The distortion d should be as close to
d ¼ 1 as possible in order not to degrade the quality of the straight sided element. Elements that have negative distortions
are of course invalid but elements that have distortions d$ 1 or d% 1 lead to some alteration of the conditioning of the
finite element problem. In order to guarantee a reasonable distortion it is thus necessary to find a reliable bound on Jmin

and Jmax :¼ maxnJðnÞ over the whole element.
Note that many different quality measures can be defined based on the Jacobian determinant J. For example, one could

look at the Jacobian determinant divided by its average over the element instead of looking at the distortion. Obtaining

Fig. 1. Reference unit triangle in local coordinates n ¼ ðn;gÞ and the mappings xðnÞ; XðnÞ and X(x).

360 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.2. Curved meshes, distortion and bounds on Jacobian det. 91

bounds on Jmin and Jmax is thus still the main underlying challenge. Other interesting choices are presented and analyzed in
[5].

3. Bounds for second order planar triangles

We start our analysis with the particular case of second order planar triangles for which a direct computation of Jmin is
relatively easy. The determinant JðnÞ ¼ Jðn;gÞ for a planar triangle at order p is a polynomial in n and g of order at most
2 ðp& 1Þ. For quadratic planar triangles, Jðn;gÞ is therefore quadratic at most in n and g.

The geometry of the six-node quadratic triangle is shown in Fig. 1. Inspection reveals two types of nodes: corners (1, 2 and
3) and midside nodes (4, 5 and 6). If Ji is defined as Jðn;gÞ evaluated at node i, it is possible to write the Jacobian determinant
exactly as a finite element expansion whose coefficients are the Jacobian determinants at the nodes:

Jðn;gÞ ¼ J1 ð1& n& gÞð1& 2n& 2gÞ|ffl{zffl}
Lð2Þ1 ðn;gÞ

þ J2 nð2n& 1Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Lð2Þ2 ðn;gÞ

þJ3 gð2g& 1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Lð2Þ3 ðn;gÞ

þJ4 4ð1& n& gÞn|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Lð2Þ4 ðn;gÞ

þ J5 4ng|{z}
Lð2Þ5 ðn;gÞ

þ J6 4ð1& n& gÞg|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Lð2Þ6 ðn;gÞ

: ð4Þ

In Eq. (4), the functions Lð2Þi ðn;gÞ are the equidistant quadratic Lagrange shape functions that are commonly used in the finite
element community [6].

We first show how to compute the exact minimal Jacobian determinant Jmin. Then we examine different bounds that can
be provided on Jmin by exploiting the properties of the basis used in the expansion.

3.1. Exact computation of Jmin

From Eq. (4), the stationnary point of J can be computed by solving

@J
@n
¼ @J
@g ¼ 0; ð5Þ

which leads to the following linear system of two equations and two unknowns nsta and gsta:

4ðJ1 þ J2 & 2J4Þ 4ðJ1 & J4 þ J5 & J6Þ
4ðJ1 & J4 þ J5 & J6Þ 4ðJ1 þ J3 & 2J6Þ

" #
nsta

gsta

$ %
¼
&ð&3J1 & J2 þ 4J4Þ
&ð&3J1 & J3 þ 4J6Þ

$ %
: ð6Þ

Algorithm 1 allows to compute the minimal Jacobian determinant over one quadratic planar element exactly. If the min-
imum of the function is outside of the element, it computes the minimum on its border assuming a function MINQða; b; cÞ
that computes

MINQða; b; cÞ ¼ min
x2½0;1)

ax2 þ bxþ c: ð7Þ

Algorithm 1. Exact computation of Jmin over a quadratic triangle

Although Algorithm 1 is quite simple, applying similar techniques for higher order elements would become extremely
expensive computationally. For example, for a third order triangle, the Jacobian determinant is of order 4 and the algorithm
requires the solution of a system of cubic equations; at order 4, it requires the solution of a system of quintic equations. In-
stead of trying to evaluate Jmin directly, we should try to compute (the sharpest possible) bounds in a computationally effi-
cient manner.

3.2. The principle for computing bounds on Jmin

It is obvious that a necessary condition for having Jðn;gÞ > 0 everywhere is that Ji > 0; i ¼ 1; . . . ;6. Yet, this condition is
not sufficient. The expression (4) does not give more information because the quadratic Lagrange shape functions Lð2Þi ðn;gÞ
change sign on the reference triangle. What polynomial basis should we chose to obtain usable bounds?

The first idea is to expand (4) into monomials, which gives:

A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372 361

C.3. Bounds for second order planar triangles 92

Jðn;gÞ ¼ J1 þ ð&3J1 & J2 þ 4J4Þnþ ð&3J1 & J3 þ 4J6Þgþ 4ðJ1 & J4 þ J5 & J6Þngþ 2ðJ1 þ J2 & 2J4Þn
2 þ 2ðJ1 þ J3 & 2J6Þg2:

ð8Þ

Every monomial being positive on the reference triangle, we have now a set of sufficient conditions that can be written as

4J4 P 3J1 þ J2; 4J6 P 3J1 þ J3; J1 þ J5 P J4 þ J6; J1 þ J2 P 2J4; J1 þ J3 P 2J6:

However these constraints do not provide a usable bound on Jmin and break the symmetry of the expression with respect to a
rotation of corner nodes.

A second idea is to expand (4) in terms of the second order hierarchical basis functions wiðn;gÞ; i ¼ 1; . . . ;6, which are also
positive on the triangle [7]:

Jðn;gÞ ¼ J1 ð1& n& gÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
w1ðn;gÞ

þJ2 n|{z}
w2ðn;gÞ

þJ3 g|{z}
w3ðn;gÞ

þð4J4 & 2J1 & 2J2Þ ð1& n& gÞn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
w4ðn;gÞ

þð4J5 & 2J3 & 2J2Þ ng|{z}
w5ðn;gÞ

þ ð4J6 & 2J1 & 2J3Þ ð1& n& gÞg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
w6ðn;gÞ

: ð9Þ

This last expression has the right symmetry, and leads to the following validity conditions:

J1 P 0; J2 P 0; J3 P 0; 4J4 P 2J1 þ 2J2; 4J5 P 2J2 þ 2J3; 4J6 P 2J3 þ 2J1: ð10Þ

Jðn;gÞ is a degree two polynomial, therefore it has an expression in the (Wi) basis. Let Ki denote the coefficients in this basis.
Writing Jðn;gÞ :¼

P6
i¼1wiðn;gÞKi, we have

min
n;g

Jðn;gÞ ¼min
n;g

X

i

wiðn;gÞKi

 !
P min

n;g

X

i

wiðn;gÞ
 !

min
i

Ki ¼min
i

Ki;

because
P

iwi ¼ 1þ nþ g& n2 & g2 & ng has its minimum on the corner nodes (where its value is equal to 1). And since
Ki; i ¼ 1; . . . ;3 are values of the Jacobian determinant (at the three corners), they form an upper bound on it. Thus, expansion
(9) leads to the following estimate for the minimum of the Jacobian determinant over the triangle:

minðJ1; J2; J3; 4J4 & 2J1 & 2J2; 4J5 & 2J2 & 2J3; 4J6 & 2J3 & 2J1Þ <¼ Jmin <¼minðJ1; J2; J3Þ: ð11Þ

It is easy to see that the estimate is however of very poor quality: for an element that has a constant and positive J, (11)
simply tells us that Jmin P 0.

In order to find a sharper estimate, instead of the hierarchical quadratic functions wiðn;gÞ, we can use the quadratic tri-
angular Bézier functions Bð2Þ2 ðn;gÞ [8]:

Jðn;gÞ ¼ J1 ð1& n& gÞ2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Bð2Þ1 ðn;gÞ

þJ2 n2
|{z}
Bð2Þ2 ðn;gÞ

þJ3 g2
|{z}
Bð2Þ3 ðn;gÞ

þ 2J4 &
1
2
ðJ2 þ J1Þ

$ %
2n ð1& n& gÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Bð2Þ4 ðn;gÞ

þ 2J5 &
1
2
ðJ3 þ J2Þ

$ %
2ng|ffl{zffl}
Bð2Þ5 ðn;gÞ

þ 2J6 &
1
2
ðJ1 þ J3Þ

$ %
2g ð1& n& gÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Bð2Þ6 ðn;gÞ

: ð12Þ

Since
P6

i¼1B
ð2Þ
i ðn;gÞ ¼ 1 and Bð2Þi ðn;gÞP 0, we obtain the following estimate

min J1; J2; J3; 2J4 &
J1 þ J2

2
; 2J5 &

J2 þ J3

2
; 2J6 &

J3 þ J1

2

$ %
<¼ Jmin <¼ min J1; J2; J3f g: ð13Þ

One can show that this estimate is always better than the one using the hierarchical basis. It provides two conditions on
the geometrical validity of the triangle: a sufficient condition (if min J1; J2; J3; 2J4 &

J1þJ2
2 ; 2J5 &

J2þJ3
2 ; 2J6 &

J3þJ1
2

n o
> 0, the ele-

ment is valid) and a necessary condition (if minfJ1; J2; J3g < 0, the element is invalid). However, these two conditions are
sometimes insufficient to determine the validity of the element, as the bound (13) is often not sharp enough (having
min 2J4 &

J1þJ2
2 ; 2J5 &

J2þJ3
2 ; 2J6 &

J3þJ1
2

n o
< 0 does not imply that the element is invalid).

A sharp necessary and sufficient condition on the geometrical validity of an element can be achieved in a general way by
refining the Bézier estimate adaptively so as to achieve any prescribed tolerance—and thus provide bounds as sharp as ne-
cessary for a given application.

4. Adaptive bounds for arbitrary curvilinear finite elements

In order to explain the adaptive bound computation let us first focus on the one-dimensional case, for ‘‘line’’ finite ele-
ments. Since Bézier functions can be generated for all types of common elements (triangles, quadrangles, tetrehedra, hexa-
hedra and prisms), the generalization to 2D and 3D elements will be straightforward.

362 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.4. Adaptive bounds for arbitrary curvilinear finite elements 93

4.1. The one-dimensional case

In 1D the Bézier functions are the Bernstein polynomials:

BðnÞk ðnÞ ¼
n
k

$ %
ð1& nÞn&k nk ðn 2 ½0;1); k ¼ 0; . . . ;nÞ; ð14Þ

where n
k

$ %
¼ n!

n!ðn&kÞ! is the binomial coefficient. The Bézier interpolation requires n + 1 control values b
i
. We have

JðnÞ ¼
XNn

k¼0

BðnÞk ðnÞ bk: ð15Þ

Bernstein–Bézier functions have the nice following properties: (i) they form a partition of unity which means thatPn
k¼0B

ðnÞ
k ðnÞ ¼ 1 for all n 2 ½0;1) and (ii) they are positive which means that BðnÞk ðnÞP 0 for all n 2 ½0;1). This leads to the well

known property of Bézier interpolations:

min
n2½0;1)

JðnÞP bmin ¼min
i

bi and max
n2½0;1)

JðnÞ 6 bmax ¼max
i

bi: ð16Þ

Moreover, the control values related to the corner nodes of the element are equal to the values of the interpolated function.
In what follows we assume that these ‘‘corner’’ control values are always ordered at the Kf first indices. We then have

min
n2½0;1)

JðnÞ 6 min
i<Kf

bi and max
n2½0;1)

JðnÞP max
i<Kf

bi: ð17Þ

Since Lagrange and Bézier functions span the same function space, computation of the Bézier values bi from the nodal
values Ji (and convertly) is done by a transformation matrix. The tranformation matrix T ðnÞB!L, which computes nodal values
from control values, is created by evaluating Bézier functions at sampling points:

T ðnÞB!L ¼

BðnÞ0 ðn0Þ . . . BðnÞn ðn0Þ
BðnÞ0 ðn1Þ . . . BðnÞn ðn1Þ

..

. . .
. ..

.

BðnÞ0 ðnnÞ . . . BðnÞn ðnnÞ

2

666664

3

777775
:

Those sampling points are taken uniformly, i.e., at the location of the nodes of the element of order n. The inverse transfor-
mation is T ðnÞL!B ¼ T ðnÞB!L

&1
and from the expression of the interpolation of the Jacobian determinant (15), we can write

J ¼ T ðnÞB!L B

B ¼ T ðnÞL!B J; ð18Þ

where B and J are the vectors containing respectively the bi’s and the Ji’s.

4.2. Adaptive subdivision

Let us assume that the domain ½0;1) is subdivided into Q parts. The interpolation J½q)ðn½q)Þ on the qth subdomain ½a; b)
(0 6 a < b 6 1) must verify

J½q)ðn½q)Þ ¼
XNn

k¼0

BðnÞk ðn
½q)Þ b½q)k ¼

XNn

k¼0

BðnÞk ðnðn
½q)ÞÞ bk ðn½q) 2 ½0;1)Þ; ð19Þ

with nðn½q)Þ ¼ aþ ðb& aÞ n½q).
Considering the nodes n½q)k such that n½q)k ¼ nk ðk ¼ 0; . . . ;nÞ (i.e., such that they are ordered like the sampling points), the

expression (19) reads

T ðnÞB!L B½q) ¼

BðnÞ0 ðaþ ðb& aÞn0Þ . . . BðnÞn ðaþ ðb& aÞn0Þ
BðnÞ0 ðaþ ðb& aÞn1Þ . . . BðnÞn ðaþ ðb& aÞn1Þ

..

. . .
. ..

.

BðnÞ0 ðaþ ðb& aÞnnÞ . . . BðnÞn ðaþ ðb& aÞnnÞ

2

666664

3

777775
B ¼ T ðnÞB!L

½q)
B;

where B½q) is the vector containing the control values of the qth subdomain. This implies that

B½q) ¼ T ðnÞL!BT ðnÞB!L
½q)h i

B ¼M½q)B: ð20Þ

Each set of new control values bounds the Jacobian determinant on its own subdomain and we have:

A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372 363

C.4. Adaptive bounds for arbitrary curvilinear finite elements 94

b0min ¼min
i;q

b½q)i 6 Jmin 6 min
i<Kf ;q

b½q)i ð21Þ

and

max
i<Kf ;q

b½q)i 6 Jmax 6 b0max ¼max
i;q

b½q)i : ð22Þ

If an estimate is not sufficiently sharp, we can thus simply subdivide the appropriate parts of the element. This leads to a
simple adaptive algorithm, exemplified in Fig. 2. In this particular case the original estimate (16) and (17) is not sharp en-
ough (Jmin 2 ½&3;1)). After one subdivision, the Jacobian determinant is proved to be positive on the second subdomain. The
first subdomain is thus subdivided once more, which proves the validity. In practice, as will be seen in Section 5, a few levels
of refinement lead to the desired accuracy. The subdivision has quadratic speed of convergence [9,10].

Note that in a practical implementation (in finite precision arithmetic) we must take care of a tricky situation. If the mini-
mum of the Jacobian determinant is too close to zero but positive, then the upper bound is positive while the lower bound
might never get positive. In order to avoid this situation, we limit the number of consecutive subdivisions that can be ap-
plied. The undetermined elements are then considered as invalid. Another way of getting rid of this issue is to relax the con-
dition of rejection as explained in Section 4.4.

4.3. Extension to higher dimensions

The extension of the method to higher dimensions is straightforward, provided that Bézier functions can be generated
and that a subdivision scheme is available. Jacobian determinants J are polynomials of n; g in 2D and of n; g; f in 3D.

For high order triangles, the Bézier triangular polynomials are defined as

T ðpÞi;j ðn;gÞ ¼
p
i

$ %
p& i

j

$ %
ni gj ð1& n& gÞp&i&j ðiþ j 6 pÞ:

It is possible to interpolate any polynomial function of order at most p on the unit triangle n > 0; g > 0; nþ g < 1 as an ex-
pansion into Bézier triangular polynomials. Recalling that, for a triangle at order p, its Jacobian determinant Jðn;gÞ is a poly-
nomial in n and g at order at most n ¼ 2ðp& 1Þ, we can write

Jðn;gÞ ¼
X

iþj6n

bijT ðnÞi;j ðn;gÞ:

Fig. 2. Top left: one-dimensional element mapping xðnÞ. Top right: Exact Jacobian determinant JðnÞ (black), control values on the original control points
(green) and two adaptive subdivisions (blue and red). Bottom: estimates of Jmin at each step in the adaptive subdivision process. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

364 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.4. Adaptive bounds for arbitrary curvilinear finite elements 95

It is also possible to compute J in terms of Lagrange polynomials

Jðn;gÞ ¼
X

i

JiL
ðnÞ
i ðn;gÞ;

where the Ji are the Jacobian determinants calculated at Lagrange points. It is then easy to find a transformation matrix Tn
LB

such that

B ¼ Tn
LBJ;

where B and J are the vectors containing respectively the control values of the Jacobian determinant bij and the Ji’s. As an
example, for quadratic triangles we obtain

Table 1
Order of the Jacobian determinant and number of coefficients in the expansion for an element of order
p.

Order (n) of J Number of coefficients

Line p& 1 nþ 1
Triangle 2ðp& 1Þ ðnþ 1Þðnþ 2Þ=2
Quadrangle 2p& 1 ðnþ 1Þ2

Tetrahedron 3ðp& 1Þ ðnþ 1Þðnþ 2Þðnþ 3Þ=6
Prism 3p& 1 ðnþ 1Þ2ðnþ 2Þ=2
Hexahedron 3p& 1 ðnþ 1Þ3

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

x

y

0

0.5

1

0

0.5

1

−0.5

0

0.5

1

1.5

2

ξ
η

J

0

0.5

1

0

0.5

1

0

0.5

1

1.5

2

ξ
η

J

Fig. 3. Top: third-order planar triangle. Bottom left: exact Jacobian determinant and control values (dots) on the original control points; the validity of the
element cannot be asserted. Bottom right: exact Jacobian determinant and control values (dots) after one subdivision; the element is provably correct.

A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372 365

C.4. Adaptive bounds for arbitrary curvilinear finite elements 96

T2
LB ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
&1=2 &1=2 0 2 0 0

0 &1=2 &1=2 0 2 0
&1=2 0 &1=2 0 0 2

0

BBBBBBBB@

1

CCCCCCCCA

; ð23Þ

which directly provides the estimate (13).
Other element shapes can be treated similarly. For quadrangles, tetrahedra, prisms and hexahedra, the Bézier are func-

tions respectively:

QðpÞi;j ðn;gÞ ¼ B
ðpÞ
i ðnÞ B

ðpÞ
j ðgÞ ði 6 p; j 6 pÞ;

Fig. 4. Two-dimensional mesh with sixth order triangles; 47.5% of the elements are curved. The straight elements are in green and the curved ones are
colored in function of the minimum of the distortion. The valid elements (dmin > 0) are colored in blue. The invalid ones are colored in red if dmin is near 0
and in black if dmin < &1:5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

366 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.4. Adaptive bounds for arbitrary curvilinear finite elements 97

T ðpÞi;j;kðn;g; fÞ ¼
p
i

$ %
p& i

j

$ %
p& i& j

k

$ %
ni gj fk ð1& n& g& fÞp&i&j&k ðiþ jþ k 6 pÞ;

PðpÞi;j;kðn;g; fÞ ¼ T
ðpÞ
i;j ðn;gÞ B

ðpÞ
k ðfÞ ðiþ j 6 p; k 6 pÞ

and

HðpÞi;j;kðn;g; fÞ ¼ B
ðpÞ
i ðnÞ B

ðpÞ
j ðgÞ B

ðpÞ
k ðfÞ ði 6 p; j 6 p; k 6 pÞ:

Matrices of change of coordinates can then be computed inline for every polynomial order, and bounds of Jacobian determi-
nants computed accordingly. Table 1 summarizes the order of the Jacobian determinant and the number of coefficients in its
expansion for all common element types. In all cases the subdivision scheme works exactly in the same way as for lines. Fig.
3 shows the first level of subdivision for a third-order triangle.

4.4. Implementation

As mentioned in Section 2, the bounds on the Jacobian determinant can be used to either make the distinction between
valid and invalid elements with respect to a condition on Jmin, or to measure the quality of the elements by systematically
computing Jmin and Jmax with a prescribed accuracy.

In both cases the same operations are executed on each element. First, the Jacobian determinant is sampled on a deter-
mined number of points Ns, equal to the dimension of the Jacobian determinant space, and so to the number of Bézier func-
tions. Second, Bézier values are computed. Then adaptive subdivision is executed if necessary. Algorithms 2 and 3 show in
pseudo-code the algorithm used to determine whether the Jacobian determinant of the element is everywhere positive or
not.

Algorithm 2. Check if an element is valid or invalid

Algorithm 3. Compute the control values of the subdivisions

A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372 367

C.4. Adaptive bounds for arbitrary curvilinear finite elements 98

Algorithm 3 could be further improved by optimzing the loop on line 5, by first selecting q for which we have the best
chance to have a negative Jacobian determinant (line 4, algo 3). In practice this improvement is not significant since the only
case for which we can save calculation is for invalid elements—and the proportion of them which require subdivision in or-
der to be detected is usually small (about 3% for the mesh depicted in Fig. 4). Note that we may also want to find, for exam-
ple, all the elements for which the Jacobian determinant is somewhere smaller than 20% of its average. We then just have to
compute this average and replace the related lines (4 and 7 for Algorithm 2).

Another possible improvement is to relax the condition of rejection. We could accept elements for which all control va-
lues are positive but reject an element as soon as we find a Jacobian determinant smaller than a defined percent of the aver-
age Jacobian determinant. The computational gain can be significant, since elements that were classified as good and which
needed a lot of subdivisions (and have a Jacobian determinant close to zero) will be instead rapidly be detected as invalid.

More interestingly, the computation of sampled Jacobian determinants and the computation of Bézier control values in
Algorithm 2 can easily be executed for a whole groups of elements at the same time. This allows to use efficient BLAS 3 (ma-
trix–matrix product) functions, which significantly speeds up the computations.

The algorithm used for all the tests in the next section is implemented in the open source mesh generator Gmsh [4] as the
AnalyseCurvedMesh plugin.

5. Numerical results

We start by comparing the new adaptive computation of bounds on Jacobian determinants with the brute-force sampling
of the Jacobian determinant for the detection of invalid high-order triangles.

The points at which we sample the Jacobian determinant for the brute-force method are taken as the nodes of an element
of order k, for k ¼ 1; . . . ;65, leading to a number of sampling points comprised between 3 and 2211. In order to make the
comparison as fair as possible, we have implemented the brute-force computation as efficiently as possible, i.e., for
k ð> nÞ sufficiently large we sample the Jacobian determinant on the points computed for an element at order n (the order

Table 2
On the left, number of curved elements detected as valid or invalid at each stage of the adaptive algorithm; at the first stage, 8309 elements can be classified as
invalid due to a negative value of at least one of the 66 sampling points. Then Bézier coefficients are computed and 29,715 elements are classified as valid
because those coefficients are positive. The 1224 (3.14%) remaining elements need to be subdivided adaptively. On the right, computation time; most of the
time is spent on sampling the Jacobian determinant and computing the first Bézier coefficients.

Curved element classification # Elements analysed at given stage CPU time for given stage[s]

Valid elements Invalid elements Undertermined elements

First stage 29,715 8,039 1,224 38,978 1.865
1 subdiv. +787 +0 437 1,224 1.16e&1
2 subdiv. +285 +17 135 437 8.40e&2
3 subdiv. +56 +15 64 135 4.02e&2
4 subdiv. +16 +22 26 64 2.40e&2
5 subdiv. +5 +15 6 26 1.10e&2
6 subdiv. +1 +2 3 6 4.34e&3
7 subdiv. +1 +2 0 3 1.47e&3

Subtotal 30,866 8,112 2.146
Total 38,978

102 103

100

101

102

Sampling points

U
nd

et
ec

te
d

in
va

lid
 e

le
m

en
ts

Fig. 5. Number of undetected invalid elements using brute-force sampling of the Jacobian determinant. The five red data points correspond to the correct
result, i.e., when no invalid triangle is left undetected. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

368 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.5. Numerical results 99

of the Jacobian determinant) and then compute the desired Jacobian determinant values by a matrix–vector product, just like
in our own adaptive method.

We consider the two-dimensional microstructure with oval holes depicted in Fig. 4, meshed with 82,009 sixth-order tri-
angles. In this mesh 38,978 triangles are curved, and 8112 are invalid. The new algorithm successfully detects all the 8112
invalid elements in 2.146 s on a 2.4 GHz Core 2 Duo laptop computer.1 Some elements needed as much as 7 levels of subdivi-
sions in order to be classified: see Table 2. The brute-force approach required 1,596 sample points per triangle (k = 55) in order
to detect all the invalid elements, and took more than 7 times longer. But far worse, increasing the number of sampling points
beyond 1,596 can actually lead to a decreased accuracy of the prediction, as shown in Fig. 5.

Let us now examine the use of the adaptive bounds in the curvilinear meshing algorithm. We consider the boundary layer
mesh of the B-Spline CAD model of a tri-part wing: see Fig. 6. The cubic triangular mesh is generated as follows. We first
generate a straight-sided mesh (Fig. 6(a)). Then, every mesh edge that is classified on a model edge is curved by snapping
their center vertices on the model edge. High order nodes are then inserted on every edge and in the middle of every face
(Fig. 6(b)). This simple procedure does not guarantee that the final mesh is valid. In our case, 66 elements are invalid. Then,
an optimization is applied globally (Fig. 6(c)). The final curvilinear mesh contains about 31% of curved elements. During the
meshing process, the adaptive bound computation allowed to detect all invalid elements (the worst minimum of the distor-
tion that was observed was dmin ¼ &27:72). After optimization, the final mesh is composed of elements that have dmin > 0:64.

Fig. 6. Distortion of the curvilinear mesh of a wing (p3 triangles) before and after optimization.

1 Note that for completeness the algorithm also analyzes straight-sided elements, which is unnecessary in practice.

A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372 369

C.5. Numerical results 100

Finally, a 3D mesh is considered. The CAD model of an A319 plane is meshed with 168,884 p3 tetrahedra (see Fig. 7 and 8).
Without executing any optimization, 76 elements are invalid. The new algorithm detects them in 9.88 s on a 2.4 GHz Core 2
Duo laptop computer. The worst elements in term of their Jacobian determinant are located around leading edges, where the
curvature is the most important. 999 elements have dmin 6 :7 and the worst distortion is dmin ¼ &7:74.

6. Conclusions and perspectives

In this paper we presented a way to compute accurate bounds on Jacobian determinants of curvilinear finite elements,
based on the efficient expansion of these Jacobian determinants in terms of Bézier functions.

The overall idea can be summarized as follows:

Fig. 7. The geometry of a A319 plane is meshed with p3 tetrahedron without executing optimization. The curved elements are all shown in the figure at the
bottom. For the figure at the center, only elements for which d 6 0:7 are shown. On 168,884 elements, 24,691 are curved and 76 are invalid.

370 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.6. Conclusions and perspectives 101

1. The Jacobian determinant of a polynomial element is also a polynomial (of higher order).
2. The Bézier polynomial basis satisfies the convex hull property, which means that any polynomial expressed in this basis is

bounded by the values at the control nodes.
3. By a change of polynomial basis (e.g. from Lagrange to Bézier), one naturally gets the bounds of the Jacobian determinant.
4. If the bounds are not accurate enough, one can subdivide the element, and once again, with a change of polynomial basis,

obtain a more accurate bound in each sub-element (and so on and so forth until enough precision is reached).

The proposed algorithm can either be used to determine the validity or invalidity of curved elements, or provide an effi-
cient way to measure their distortion. Triangles, quadrangles, tetrahedra, prisms and hexahedra can be analyzed using the
same algorithm, which is available in the open source mesh generator Gmsh. Numerical tests show that the method is ro-
bust, and a user-defined error tolerance permits to adjust the accuracy vs. computational time ratio.

Perspectives for future work are numerous. We are currently investigating two related areas: first, we are working on a
generalization of the bounds presented in this paper to the case of surface meshes embedded in 3D (curved surfaces). Sec-
ond, we are investigating the use of various optimization strategies to generate meshes with provably good qualities.

Acknowledgements

This research Project was funded in part by the Walloon Region under WIST 3 Grant 1017074 (DOMHEX).
Authors gratefully thank E. Bechet from the University of Liège and K. Hillewaert from Cenaero for insightful discussions

about Bézier functions and curvilinear mesh generation. Authors also thank V. D. Nguyen for providing the microstructure
geometry used in Fig. 4.

Fig. 8. The top figure shows a cut of the mesh of the A319 plane (figure 7). The two bottom figures show same invalid elements. On the left, elements are
colored in function of their distortion. Here, we can clearly see that some faces intersect each other. In some cases, the Jacobian determinant is negative only
inside the element so as it is not possible to see it visually.

A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372 371

C.6. Conclusions and perspectives 102

References

[1] S. Dey, R.M. O’Bara, M.S. Shephard, Curvilinear mesh generation in 3D, Computer Aided Geometric Design 33 (2001) 199–209.
[2] M.S. Shephard, J.E. Flaherty, K.E. Jansen, X. Li, X. Luo, N. Chevaugeon, J.-F. Remacle, M.W. Beall, R.M. O’Bara, Adaptive mesh generation for curved

domains, Applied Numerical Mathematics 52 (2005) 251–271.
[3] S.J. Sherwin, J. Peiró, Mesh generation in curvilinear domains using high-order elements, International Journal for Numerical Methods in Engineering

53 (2002) 207–223.
[4] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International

Journal for Numerical Methods in Engineering 79 (11) (2009) 1309–1331.
[5] X. Roca, A. Gargallo-Peiró, J. Sarrate, Defining quality measures for high-order planar triangles and curved mesh generation, in: Proceedings of the 20th

International Meshing RoundTable, 2012, pp. 365–383.
[6] T. Hughes, The Finite Element Method, Dover, 2003.
[7] I. Babus̆ka, B. Szabó, R.L. Actis, Hierarchic models for laminated composites, International Journal for Numerical Methods in Engineering 33 (1992)

503–535.
[8] G.E. Farin, Curves and Surfaces for CAGD: A Practicle Guide, Morgan-Kaufmann, 2002.
[9] J.M. Lane, R.F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Transactions on

Pattern Analysis and Machine Intelligence 2 (1) (1980) 35–46.
[10] E. Cohen, L.L. Schumacker, Rates of convergence of control polygons, Computer Aided Geometric Design 2 (1985) 229–235.

372 A. Johnen et al. / Journal of Computational Physics 233 (2013) 359–372

C.6. Conclusions and perspectives 103

APPENDIX D
Paper IV: Geometrical validity of

high-order pyramidal finite
elements

104

Journal of Computational Physics 299 (2015) 124–129

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Short note

Geometrical validity of curvilinear pyramidal finite elements

A. Johnen, C. Geuzaine ∗

Université de Liège, Department of Electrical Engineering and Computer Science, Montefiore Institute B28, Grande Traverse 10,
4000 Liège, Belgium

a r t i c l e i n f o

Article history:
Received 26 November 2014
Accepted 26 June 2015
Available online 3 July 2015

Keywords:
Finite element method
High-order methods
Mesh generation
Bézier functions

1. Introduction

A method to efficiently determine the geometrical validity of curvilinear finite elements of any order was recently pro-
posed in [1]. The method is based on the adaptive expansion of the Jacobian determinant in a polynomial basis built using
Bézier functions, that has both properties of boundedness and positivity. While this technique can be applied to all usual
finite elements (triangles, quadrangles, tetrahedra, hexahedra and prisms), it cannot readily be applied to pyramids, due to
non-polynomial nature of pyramidal finite element spaces.

In this short paper, we extend the results from [1] to pyramidal elements, by making use of the high-order nodal
pyramidal finite element proposed by Bergot et al. [2], which exhibits optimal convergence properties in H1-norm.

The paper is organized as follows. We begin by briefly recalling the pyramidal finite element space in Section 2, before
constructing the function space of the Jacobian determinant in Section 3. Section 4 then introduces a generalized Bézier
function basis, which can be used to obtain adaptive bounds on the pyramidal Jacobian determinant. Numerical results
showing the sharpness of the estimates are given in Section 5.

2. Pyramidal finite element space

Let (ξ, η, ζ) denote the coordinates of the reference space and let Pr denote the pyramidal finite element space at order
r > 0 defined in [2]. The space Pr can be expressed as the union of the classical tetrahedral finite space and the product of
the triangular finite element space with powers of the non-affine term ξη

1−ζ :

Pr :=
{
ξ iη jζ k

∣∣∣∣ i + j + k ≤ r
}⋃

{

ξ iη j
(

ξη

1 − ζ

)r−l ∣∣∣∣ i + j ≤ l, l ≤ r − 1

}

. (1)

* Corresponding author.
E-mail addresses: a.johnen@ulg.ac.be (A. Johnen), cgeuzaine@ulg.ac.be (C. Geuzaine).

http://dx.doi.org/10.1016/j.jcp.2015.06.033
0021-9991/© 2015 Elsevier Inc. All rights reserved.

D.1. Introduction 105

A. Johnen, C. Geuzaine / Journal of Computational Physics 299 (2015) 124–129 125

Fig. 1. Visualization of the three subfunctions that generate the pyramidal nodal space.

In the previous expression all the indices (i, j, k, l) are assumed to be integers greater than or equal to 0. (The same
convention is used for all indices throughout the paper.) The previous definition can be rewritten in a more convenient
form:

P ′ r :=
{(

ξ

1 − ζ

)i (η

1 − ζ

) j

(1 − ζ)k
∣∣∣∣ i, j ≤ k, k ≤ r

}

= Pr . (2)

Proof. We can separate the space P ′ r into two subspaces, one for which k ≥ i + j and the other for which k < i + j. We
have

P ′ r
∣∣∣
k≥i+ j

=
{
ξ iη j (1 − ζ)K

∣∣∣∣ i + j + K ≤ r
}

,

which is the tetrahedral space. Let us rewrite the second contribution in terms of ξ Iη J
(

ξη
1−ζ

)K
. We then have i = I + K ,

j = J + K and k − i − j = −K , which implies:

P ′ r
∣∣∣
k<i+ j

=
{

ξ Iη J
(

ξη

1 − ζ

)K ∣∣∣∣ I + J + K ≤ r, 1 ≤ K

}

.

By substituting r − l for K , we obtain the non-affine part of Bergot’s pyramidal space. And thus eventually P ′ r = Pr . ✷

In addition to being more convenient for the developments of Section 3, the form (2) offers the advantage of showing
that functions of the pyramidal space are generated by the product of integer powers of three elementary subfunctions:

ξ
1−ζ , η

1−ζ and 1 − ζ (see Fig. 1). The first, ξ
1−ζ , is equal to one on face ξ = 1 − ζ and equal to zero on face ξ = 0. The

second, η
1−ζ , is equal to one on face η = 1 − ζ and zero on face η = 0. The third, 1 − ζ , is equal to 1 on face ζ = 0 and

equal to 0 on the top corner. It is thus similar to what we have for tetrahedra or hexahedra, whose finite element spaces
are spanned by the product of integer powers of the subfunctions ξ , η and ζ .

It is easy to see in form (1) that the basis functions are continuous since ξη
1−ζ is well-defined at the top corner (0, 0, 1). In

the second form (2), the functions
(

ξ
1−ζ

)i
and

(
η

1−ζ

) j
are not well-defined but their product with (1 − ζ)k is well-defined

since k ≥ max(i, j).
The pyramidal finite element is characterized by the mapping between a reference pyramid and the actual pyramid in

the mesh. To be valid, this mapping should be bijective, which implies that the Jacobian determinant should be positive
everywhere inside the domain of definition [1]. This is why, in the following two sections, we first construct the function
space of the Jacobian determinant and then present its Bézier expansion.

3. Pyramidal Jacobian determinant space

Let J r denote the Jacobian determinant space. We have by definition J r = Pr
,ξ × Pr

,η × Pr
,ζ , where Pr

,• is the space
obtained by differentiating all the elements of space Pr with respect to •. From (2), we obtain:

Pr
,ξ =

{(
ξ

1 − ζ

)i1
(

η

1 − ζ

) j1

(1 − ζ)k1

∣∣∣∣ i1 ≤ k1, j1 ≤ k1 + 1, k1 ≤ r − 1

}

Pr
,η =

{(
ξ

1 − ζ

)i2
(

η

1 − ζ

) j2

(1 − ζ)k2

∣∣∣∣ i2 ≤ k2 + 1, j2 ≤ k2, k2 ≤ r − 1

}

Pr
,ζ ⊂

{(
ξ

1 − ζ

)i3
(

η

1 − ζ

) j3

(1 − ζ)k3

∣∣∣∣ i3, j3 ≤ k3 + 1, k3 ≤ r − 1

}

.

D.3. Pyramidal Jacobian determinant space 106

126 A. Johnen, C. Geuzaine / Journal of Computational Physics 299 (2015) 124–129

The inclusion in the last expression arises from a simplification: we do not discard the case in (2) corresponding to k −
i − j = 0, which should be discarded when differentiating with respect to ζ . Considering the real space of Pr

,ζ would only
complicate further developments, and not provide any other advantages.

The product of the three spaces leads to the following expression for the Jacobian determinant space:

J r ⊂
{(

ξ

1 − ζ

)I (η

1 − ζ

) J

(1 − ζ)K
∣∣∣∣ I, J ≤ K + 2, K ≤ 3r − 3

}

, (3)

which implies that J r is a subset of P3r−3 ×
{(

ξ
1−ζ

)i (η
1−ζ

) j ∣∣∣i, j ≤ 2
}

, whose dimension is
∑3r−3

k=0 (k + 3)2 = r/2 ×
(3r + 1)(6r + 1) − 5. We see that, while for other element types the Jacobian determinant space is contained in their
finite element space of a higher order [1], for pyramids, this is not the case.

The pyramidal Jacobian determinant is not well-defined at the top corner: K can be smaller than the maximum of I
and J in which case the term (1 − ζ)K cannot fully compensate the two other terms. As a consequence, one should never
sample the Jacobian determinant at the top corner of the pyramid.

4. Bézier basis for the pyramidal Jacobian determinant

While the use of Bézier interpolation to parametrize curves and surfaces is very common in computer graphics, it is less
so to expand general functions. One property of Bézier expansion that is useful for our problem is that the interpolant is
located inside the convex hull of the control values. This property allows to provide bounds on the interpolant. All positive
basis functions that sum up to 1 have this property but, intuitively, the Bézier basis is the one for which the size of the
convex hull is the smallest (thus, for which the bounds are the sharpest). Another desired property of Bézier expansion is
that it can be recursively “subdivided” [1] which allows to sharpen the bounds.

Polynomial Bézier bases are based on the Bernstein polynomials. At order n, the n + 1 Bernstein polynomials are defined
as

B(n)
k (λ) :=

(
n
k

)
λk (1 − λ)n−k (k = 0, . . . ,n),

where
(

n
k

)
= n!

n!(n−k)! is the binomial coefficient. They sum up to 1 and they are positive on the domain [0, 1]. In order

to compute bounds in the non-polynomial pyramidal Jacobian determinant space, we will search for a basis that can be
written as product of a generalization of Bernstein polynomials.

4.1. Generalized Bézier basis for pyramids

Let %ref ⊂ R denote the uncentered pyramid, for which (ξ
1−ζ , η

1−ζ , 1 − ζ) ∈ [0, 1]3. (As usual for Bézier interpolation we
will define the Jacobian determinant basis functions on this uncentered pyramid %ref instead of the centered pyramid that is
often used in finite element methods.) From (3), we easily identify the Jacobian determinant basis written with generalized
Bernstein functions:

J r
i, j,k(ξ,η, ζ) := B(k+2)

i

(
ξ

1 − ζ

)
B(k+2)

j

(
η

1 − ζ

)
B(3r−3)

k (1 − ζ) , (ξ,η, ζ) ∈ %ref. (4)

Like for hexahedra and prisms, the Jacobian determinant of the first-order pyramid is not constant. However it is a function
of only ξ

1−ζ and η
1−ζ . This means that sampling of the Jacobian determinant can be done on the ζ = 0 plane, and that

recursive subdivision works in the same way as for the quadrangle element [1].
For high-order pyramids, definition (4) is relevant if subdivision is not required (e.g. for optimization). But as explained

in the following subsection, recursive subdivision with respect to the ζ -axis does not hold, which motivates the definition
of an enriched basis.

4.2. Enriched generalized Bézier basis for pyramids

Let %bot denotes the bottom subdomain obtained when cutting the reference pyramid by the plane ζ = 1/2. We note
Mbot : %bot → %ref the mapping between the bottom subdomain and the reference pyramid. We have:

Mbot :

⎧
⎪⎨

⎪⎩

ξ ′ *→ ξ = ξ ′ 1−2ζ ′
1−ζ ′

η′ *→ η = η′ 1−2ζ ′
1−ζ ′

ζ ′ *→ ζ = 2ζ ′
.

Recursive subdivision is possible for the bottom if the Jacobian determinant can be expanded into the basis whose functions
are Sr

i, j,k := J r
i, j,k ◦ Mbot. Those functions are defined on %bot and have properties of positivity and partition of unity. Their

expression is:

D.4. Bézier basis for the pyramidal Jacobian determinant 107

A. Johnen, C. Geuzaine / Journal of Computational Physics 299 (2015) 124–129 127

Fig. 2. The pyramid can be seen as a shrunk cube with the transformation ξ *→ ξ
1−ζ and η *→ η

1−ζ .

Fig. 3. Three-dimensional mesh with second-order elements. The geometry consists of a cube with spherical holes. Pyramids (in orange) make the transition
from the hexahedra (in blue) that fill the holes to the tetrahedra (in green) that fill the rest of the volume. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Sr
i, j,k(ξ,η, ζ) = B(k+2)

i

(
ξ

1 − ζ

)
B(k+2)

j

(
η

1 − ζ

)
B(3r−3)

k (1 − 2ζ) , (ξ,η, ζ) ∈ %bot, (5)

but it can be shown that they do not span the Jacobian determinant space due to the dependence on k of the two first
Bernstein functions. We therefore define the enriched Jacobian determinant basis functions by removing this dependence:

Er
i, j,k(ξ,η, ζ) := B(3r−1)

i

(
ξ

1 − ζ

)
B(3r−1)

j

(
η

1 − ζ

)
B(3r−3)

k (1 − ζ) , (ξ,η, ζ) ∈ %ref. (6)

These functions correspond to the ones one would obtain by considering a “shrinked” cube (Fig. 2). The corresponding basis
can be recursively and adaptively subdivided.

As described in [1], fast computation of Bézier coefficients can be achieved by using a transformation matrix that com-
putes control values from nodal values. The Jacobian determinant is sampled at the location of the nodes of a pyramid of
order 3r − 1, excepted the node at the top and the four nodes directly below the top. Subdivision works in exactly the same
way as for other element types, provided that for the first-order pyramid, subdivision is only necessary along the base of
the pyramid.

5. Results

We present the results of our algorithm applied to a three-dimensional microstructure. The structure contains spherical
holes that are meshed with second order hexahedra. In order to make the transition with the second-order tetrahedra that
are used for the rest of the geometry, second-order pyramids have been generated, around those holes (see Fig. 3). We
measure the minimum of distortion δmin, i.e. the minimum of the determinant of the mapping between the straight-sided
element and the curved element, as defined in [1]. The analyzed mesh is composed of 180,356 tetrahedra for which 31,696
are curved and 5809 curved pyramids.

We improved the algorithm presented in [1] in order to compute δmin with a given input tolerance ε and detect the
invalid elements at the same time. First, we compute the Bézier coefficients of the whole element. Then we enter in a loop:

1. Compute δsup
min and δinf

min (upper and lower bound on δmin) as in [1]
2. If δsup

min − δinf
min ≤ ε and δsup

min δinf
min ≥ 0, then go to 4

3. Subdivide the (sub)domain that contains the smaller Bézier coefficient and go to 1
4. Return δinf

min (NB: the element is invalid if δinf
min ≤ 0, else it is valid)

D.5. Results 108

128 A. Johnen, C. Geuzaine / Journal of Computational Physics 299 (2015) 124–129

Fig. 4. Validity of the mesh. Valid elements are between green and blue and invalid elements are between red and black. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Analysis of 186,165 second-order elements.

Fig. 4 presents the results on the mesh. Our algorithm successfully detects the 4989 invalid pyramids and the 82 invalid
tetrahedra (elements in red to black).

Fig. 5 compares the computation time versus the maximal error of our algorithm and the brute-force sampling of the
Jacobian determinant. For our algorithm, we measure the time taken to compute bounds with an input tolerance of ε =
10−e , e = {1, . . . , 7}. For the brute-force sampling, the Jacobian determinant is sampled at an increasing number of points.
In the case of tetrahedral elements, the sampling points are chosen as the nodes of a tetrahedron of order k. For pyramidal
elements, the points are taken as the nodes of a pyramid of order k + 1 for which we remove the five top nodes, i.e., the
same way we sample the Jacobian determinant for our method. The order k is ranged from 1 to 12 which involves that
the number of sampling points is comprised between 4 and 455 for tetrahedra and between 9 and 2352 for pyramids. We
measured the computation time and the maximal (elementary) error between minsampling(δ) and the best approximation of
δmin taken as the value computed by our algorithm at tolerance 10−7. Tests have been performed on a Macbook Pro Retina,
Mid 2012 @ 2.3 GHz.

The brute-force sampling needs more time than our algorithm to reach a maximal error smaller than 4 × 10−3. But
worse, similarly to the results reported in [1] for other element types, the brute-force algorithm is not able to find all
invalid pyramids for k = {1, . . . , 12}, the maximum number of invalid pyramids found being 4971 (instead of 4989) at
k = 12.

6. Conclusion

In this paper we adapted the computation of accurate bounds on Jacobian determinants of curvilinear finite elements to
the pyramidal case. The proposed algorithm can either be used to determine the validity or invalidity of curved pyramids,
or to provide an efficient way to measure their distortion. The complete implementation of the algorithm is available in the
open source mesh generator Gmsh [3] as the AnalyseCurvedMesh plugin. Ongoing research includes adaptation of the
algorithm to the computation of accurate bounds on a quality measure of the elements based on the metric.

D.6. Conclusion 109

A. Johnen, C. Geuzaine / Journal of Computational Physics 299 (2015) 124–129 129

Acknowledgement

This research project was funded in part by the Walloon Region under WIST 3 grant 1017074 (DOMHEX).

References

[1] A. Johnen, J.-F. Remacle, C. Geuzaine, Geometrical validity of curvilinear finite elements, J. Comput. Phys. 233 (2013) 359–372.
[2] M. Bergot, G. Cohen, M. Duruflé, Higher-order finite elements for hybrid meshes using new nodal pyramidal elements, J. Sci. Comput. 42 (3) (2010)

345–381, http://dx.doi.org/10.1007/s10915-009-9334-9.
[3] C. Geuzaine, J. Remacle, Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Numer. Methods Eng. 79 (11)

(2009) 1309–1331.

D.6. Conclusion 110

APPENDIX E
Paper V: Computing the extrema

of a shape quality measure for
curvilinear finite elements (Draft)

111

Computing the Extrema of a Shape Quality

Measure for Curvilinear Finite Elements (Draft)

A. Johnen1, T. Toulorge2 and C. Geuzaine1

December 17, 2015

1 Introduction

With recent developments in the field of high-order finite element meth-
ods [1], such as discontinuous Galerkin [2] or spectral [3, 4] methods, there is
a renewed interest for high-order (curved) mesh generation.

The classical finite element method, a.k.a. the h-version, uses linear ele-
ments to discretize the geometry and a refinement of the mesh is performed
in order to increase the accuracy of the solution. It has been established
that the p-version of the finite element, for which the order of the functions
is increased in order to improve the accuracy, may provide better conver-
gence [5]. Eventually, “super-convergence” can be obtained by a mix of the
two approaches [6]. There has thus been a frenzy in the 1980s to develop
such methods, but developers encountered several difficulties which ham-
pered their momentum [7]... and consequently most of the current industrial-
grade and commercial finite element packages are still based on at most
second-order meshes. One reason is that during the process of generating
a high-order curvilinear mesh, invalid (tangled) elements are often created,
and untangling those is not a trivial task. Recent methods have improved
the robustness of the untangling procedure through optimization, albeit at
a high computational cost [8]. For this reason, the tendency is to apply the
technique only on small groups of elements in the neighborhood of the in-
valid elements to untangle. It is therefore crucial to be able to detect invalid
and poor-quality curvilinear elements.

A finite element is defined by the position of its nodes through a mapping
between a reference element and itself. Its validity can thus be assessed by
verifying the positivity of the determinant of the Jacobian of this mapping.
It was thought for years that the only way to determine with certainty the

1

E.1. Introduction 112

validity of non-trivial elements would be by computing the Jacobian deter-
minant at an infinite number of points [9, 10]. Recent developments based
on Bézier curves showed that it is nothing of the sort. A first step has been
taken in [11] where it is shown that it is possible to compute bounds on the
Jacobian determinant of second order tetrahedra; those bounds are however
not sharp. References [12, 13] provided a complete solution by developing
an adaptive technique for efficiently computing the minimum and the maxi-
mum of the Jacobian determinant of any type and any order of elements, up
to any prescribed tolerance. This method subsequently allows to guarantee
the validity of any element.

Validity is one aspect that influences the accuracy of solution. Another
aspect is the quality of the finite elements. A distinction can be made
between geometric quality measures and Jacobian-based quality measures.
Geometric quality measures have been used since the very early days of finite
element modeling and are constructed from geometric characteristics such
as the area/volume of the element, the length of the edges or the radii of the
inscribed and circumscribed circles/spheres [14, 15]. These geometric qual-
ity measures are however not easily generalizable to curved elements—see
e.g. [11] for the extension to quadratic tetrahedra. Jacobian-based measures
are a more natural fit, since the Jacobian matrix is defined for every order
and every type of element. A framework that allows the construction, clas-
sification, and evaluation of such measures defined on linear elements has
been proposed in [16, 17]. It is important to understand that Jacobian-based
measures are essentially pointwise (within the element). For the linear tri-
angles and tetrahedra, this is not a problem since the Jacobian matrix is
constant. For other elements, an element-wise measure has to be extracted
from the pointwise measure. In the two reference above, it is proposed to
compute the measure at the corners of linear quadrangles and hexahedra and
to take the minimum or the harmonic or geometric average. Similarly, for
quadratic triangles, the element-wise measure can be computed as the min-
imum, maximum or the pth power-mean of the pointwise measure sampled
at the six nodes of the elements, although it is shown that in some situations
this constitutes a poor approximation of the true minimum, maximum or
pth power-mean [10].

Recent works have focused on defining a quality measure for curved sim-
plicial finite elements of any order [18, 19]. The general approach is to con-
sider an algebraic quality measure as proposed in [16], which constitutes the
pointwise measure, and to compute the L2-norm as the element-wise qual-
ity measure. This measure however cannot be used as a validity test. It is
mentioned in [20] that this technique, although developed only for simplicial

2

E.1. Introduction 113

elements, can be extended to non-simplicial elements.
In this paper, we propose to extend the method that efficiently computes

the extrema of the Jacobian determinant [12, 13] to a Jacobian-based quality
measure. Instead of computing the element-wise quality measure by simply
taking a norm, we aim at finding the actual bounds of the pointwise measure.

The paper is organized as follows. In Section 2, we begin by recalling the
Jacobian matrix of the different mappings of an element before establish-
ing a Jacobian-based quality measure. In Section 3, we present the Bézier
expansion, we recall the algorithm for computing bounds on the validity of
the elements [12] and we give some properties of Bézier expansions that are
useful for computing bounds on the quality measure. In Sections 4 and 5, we
explain how to compute the bounds for respectively 2D and 3D elements.
An improvement for 3D elements is then presented in Section6. Finally,
results are presented in Section 7 and we conclude in Section 8.

2 A quality measure based on the metric eigenval-
ues

Let us consider a 2D or 3D mesh of order n, which consists of a set of
curved physical elements that can either be triangles or quadrangles for a
2D mesh and tetrahedra, hexahedra, prisms or pyramids for a 3D mesh. Let
dm and ds denote respectively the dimension of the mesh and the dimension
of the physical space in which the mesh is embedded. The couple (dm, ds)
is equal to (3, 3) for a 3D mesh and for a 2D mesh it can be equal to
(2, 2) or (2, 3), meaning that the 2D mesh can either live in the xy-plane
or be embedded inside a non-planar 3D surface. Each physical element is
defined geometrically through its nodes nk ∈ Rds , k = 1, . . . , N and a set
of Lagrange shape functions Ln

k(ξ) : Ωref ⊂ Rdm → R, k = 1, . . . , N . These
are polynomial functions that allow to map a reference unit element, whose
domain of definition is Ωref, onto the physical one (see Fig. 1):

x(ξ) =
N∑
k=1

Ln
k(ξ)nk.

Since we also consider pyramids, saying that the shape functions are La-
grange functions and thus polynomials is an abuse of language. But it has
be shown that computing bounds on the Jacobian determinant of pyramids
using the technique described in [12] is done as if it was a polynomial [13].
For simplicity, we will consider that all the elements have polynomial shape
functions.

3

E.2. A quality measure based on the metric eigenvalues 114

ξ1

ξ2

Reference
ξ1

ξ2

Ideal

x

y

Physical

Jp

Ji

W

Figure 1: We consider three mappings, each of them is characterized by
a Jacobian matrix: (1) Jp for the mapping between the reference and the
physical element, (2) Ji for the mapping between the reference element and
the ideal element and (3) W for the mapping between the ideal and the
physical element. The latter is the one used to construct quality measures.

The Jacobian matrix of this mapping, denoted by Jp, is a matrix-valued
function, and we have Jp : Ωref → Rds×dm : ξ 7→ Jp(ξ). It is by definition
the matrix of the first-order partial derivatives, i.e. (Jp)ij = ∂xi

∂ξj
which are

polynomials. Jp contains all the information of the element deformation with
respect to the reference element and can naturally be used to construct a
shape quality measure. However, as explained in [16], a quality measure
should compare the physical element to an ideal element which defines the
ideal shape, volume and/or orientation. The nature of the ideal elements is
problem-dependent. For instance, the ideal triangle is usually the equilateral
triangle but it can be an elongated triangle if the physics implies that those
triangles give a better precision for the solution. The ideal element is thus
either defined by the user or by the mesh generator. We denote the Jacobian
matrix of the mapping between the reference and the ideal element, whose
dimension is dm × dm, by Ji.

The product W := Jp J
−1
i gives the Jacobian matrix of the mapping

between the ideal and the physical element and can be used in order to con-
struct a quality measure. In this paper, we make the assumption that Ji is
a constant matrix. The ideal elements we consider are therefore linear, have
planar faces and, when appropriate, parallel opposite sides. For instance,
our ideal quadrangle can be a parallelogram but not a trapeze. This implies

4

E.2. A quality measure based on the metric eigenvalues 115

that the elements of W remain polynomials, which is a necessary condition
for computing the bounds the way it is described in this paper.

Now, let us consider the following quantity defined on any element E:

µpw(E, ξ) =
1

||W ||2 ||W−1||2
ξ ∈ Ωref ,

where || · ||2 is the 2-norm of the matrix. As stated in Proposition 9.4 of [16],
this corresponds to the distance of W to the set of singular matrices (ma-
trices whose determinant is zero) and thus, µpw measures the pointwise dis-
tance to a locally degenerate element. It is thus a positive quantity which
reaches the maximum value of 1 when the element is locally the furthest
away possible from being degenerate. It follows also from Propositions 8.6
and 9.3 of the same paper that this quantity is a shape quality measure. In
order to define an element-wise measure µ, we take the minimum of µpw:

µ(E) = min
ξ∈Ωref

1

||W ||2 ||W−1||2
.

Geometric interpretation The product W TW defines a squared matrix
called the metric tensor which we denote by M. A known result of matrix
algebra is that ||W ||2 is equal to the square root of the maximum eigenvalue
of M [21]. Let λ− and λ+ be respectively the minimum and the maximum
eigenvalue of M. Those eigenvalues being positive, it is easy to demonstrate
that

1

||W ||2 ||W−1||2
=

√
λ−
λ+

.

We denote the ratio λ−
λ+

by R. Thus the element-wise measure we want

to compute is µ(E) = minξ∈Ωref

√
R(ξ). In the geometrical point of view,

it is well-known that the square root of the minimum (resp. maximum)
eigenvalue of M corresponds to the smallest (resp. largest) length ||Wu||
that can be obtained with a unit vector u (see, e.g., [8]). It follows that
R(ξ) = 1, which corresponds to λ− = λ+, implies that the element is locally
isotropic; and the more R(ξ) approaches 0, the more the element is locally
anisotropic.

Before introducing the Bézier expansion, we establish an result that will
be helpful in this paper: when the Jacobian matrix is square, the product
of the eigenvalues of M is equal to the square of the Jacobian determinant.
Indeed, we have

∏dm
i=0 λi = det(M) = det(W TW) = det(W)2.

5

E.2. A quality measure based on the metric eigenvalues 116

3 Bézier expansion

Let Bν
i (ξ) : Ωref ⊂ Rdm → R, i ∈ Iν denote a Bézier function of order ν.

We use the multi-index notation: i = (i1, . . . , idm) is an ordered tuple of
dm indices. Iν , which depends on the type of element, is the index set of
the Bézier functions and {Bν

i }i∈Iν defines the Bézier basis. The analytical
expression of Bézier functions for linear, triangular, quadrangular, tetrahe-
dral, hexahedral and prismatic elements are given in [12] and the expression
for pyramidal elements is given in [13]. Let fi denote the coefficients of the
expansion. They are also known as the control values. For any polynomial
function f : Ωref ⊂ Rdm → R of order at most ν, one can compute the
control values such that we have the following equality:

f(ξ) =
∑
i∈Iν

fiB
ν
i (ξ),

where the right member is the Bézier expansion of the function f .
The Bézier functions are positive and sum up to one which implies the

well-known convex hull property. In our case, the convex hull property says
that f is bounded by the extrema of the control values, i.e. mini fi ≤ f(ξ) ≤
maxi fi. In addition to that, there are control values that are actual values
of the expanded function. Those control values are “situated” on the corners
of the element 1 and we refer to their index set by Iν

c . As a consequence, the
control values allow to bound the two extrema of the function from below and
above. For example, for the minimum we have: mini fi ≤ fmin ≤ mini∈Iν

c
fi.

It has been shown that those bounds, computed from the Bézier expan-
sion, are not necessarily sharp. However, they can be sharpened by sub-
dividing, i.e. by expanding the same function defined on a smaller domain
(called a subdomain). The smaller the subdomain, the sharper the bounds.
This subdivision can be implemented in a recursive and adaptive manner
which makes the method very efficient [12]. The algorithm for computing
sharp bounds on polynomial functions consists of four steps:

1. Sampling of the function on a given set of points.

2. Transformation of those values into Bézier coefficients (by a matrix-
vector product).

1Let ξc be the reference coordinates of one of those corners. For any Bézier basis, there
exists an index j such that Bν

j (ξc) = 1 and Bν
k(ξc) = 0, ∀k ∈ Iν \ {j}. We have thus the

following equality: f(ξc) = fj .

6

E.3. Bézier expansion 117

3. Computation of the bounds. If the sharpness is reached, return the
bounds.

4. Subdivision (through a matrix-vector product). For each subdomain,
go to step 3. Gather the “subbounds” and compute and return the
global bounds.

We propose to adapt this algorithm to the computation of bounds of R. As
it will be seen later, only the third step has to be adapted. Additional prop-
erties of the Bézier expansion will be needed and are given in the following.

Property 1. Any Bézier function (even pyramidal) is of the canonical form
Bν

i (ξ) = αν
i m

ν
i (ξ), where the coefficient αν

i is a product of binomial coeffi-
cients and mν

i is the elementary function.

As an example, let us consider the triangular Bézier functions:

T ν
i1,i2(ξ, η) =

(
ν

i1

)(
ν − i1
i2

)
ξi1 ηi2 (1− ξ − η)ν−i1−i2 .

Its coefficient is αν
i1,i2

=
(
ν
i1

)(
ν−i1
i2

)
and its elementary function is mν

i1,i2
(ξ) =

ξi1 ηi2 (1− ξ − η)ν−i1−i2 .

Property 2. The product of two elementary functions mν
i and mµ

j is an

elementary function equal to mν+µ
i+j .

Example:

mν
i1, i2 mµ

j1, j2
= ξi1+j1 ηi2+j2 (1− ξ − η)ν+µ−(i1+j1)−(i2+j2) = mν+µ

i1+j1, i2+j2
.

Corollary 3. The product of two Bézier functions of order ν and µ is a
Bézier function of order ν + µ with an adjustment coefficient:

Bν
i B

µ
j =

αν
iα

µ
j

αν+µ
i+j

Bν+µ
i+j .

Proposition 4. Let f and g be two polynomial functions of respective order
ν and µ and let fi, i ∈ Iν and gj , j ∈ Iµ be their respective control values.
The product of f and g is a polynomial function of order ν+µ whose control
values hk, k ∈ Iν+µ are equal to:

hk =
∑
i∈Iν

j∈Iµ

i+j=k

fi gj
αν
iα

µ
j

αν+µ
k

.

7

E.3. Bézier expansion 118

Proof. Using the definition of the Bézier expansion and Corollary 3, we have
the following equalities:

h = fg =
∑
i∈Iν

j∈Iµ

fi gj
αν
iα

µ
j

αν+µ
i+j

Bν+µ
i+j =

∑
k∈Iν+µ

∑
i∈Iν

j∈Iµ

i+j=k

fi gj
αν
iα

µ
j

αν+µ
k

Bν+µ
k .

Proposition 5. Relaxation: Let f and g be two polynomial functions of
order ν and let fi and gi, i ∈ Iν be their respective control values. In order
that f(ξ) ≤ g(ξ), ∀ξ ∈ Ωref, it is sufficient that fi ≤ gi, ∀i ∈ Iν .

Proof. Since every Bézier function is positive,

fi ≤ gi ⇒ fiB
ν
i ≤ giB

ν
i ∀i ∈ Iν .

The last proposition can be used to compute bounds on more complex
functions. The following sections explain how to do it for rational functions
and functions that are similar to a quadratic mean, i.e. that are written√

f2
1 + f2

2 + . . . where the fk are polynomial functions.

3.1 Computing bounds on rational functions

It is possible to compute bounds on rational functions whose denominator
is strictly positive or strictly negative. There are four cases depending if
we want to compute a lower or an upper bound and if the denominator is
positive or negative. In the following, we detail the method for computing a
lower bound in the case of a strictly positive denominator. The adaptation
for other cases is straightforward.

Let f
g be the rational function, with f and g > 0 two polynomial func-

tions. Let fi and gi, i ∈ Iν be the control values of their respective Bézier
expansion and let rm denote the lower bound we want to compute. Since g is
strictly positive, we can write that the lower bound has to satisfy rm g ≤ f .
Taking advantage of the relaxation (Proposition 5), we can compute a bound
that satisfies the following inequalities:

rm gi ≤ fi ∀i ∈ Iν .

Note that the gi’s can take negative values even if g is strictly positive.
We have to differentiate several cases. Every inequality for which gi = 0

8

E.3. Bézier expansion 119

and fi ≥ 0 is satisfied whatever the value of rm. On the other hand, the
inequalities for which gi = 0 and fi < 0 cannot be satisfied at all. If this
happens, the lower bound cannot be computed using this technique.

When gi is different from zero, it can be passed on the right-hand side
and we have rm ≤ fi/gi. In function of the sign of the fraction, the inequality
constitutes an upper bound or a lower bound for rm. Let us define S+ (resp.
S−) as the set of indices i for which gi is strictly positive (resp. strictly
negative). We have rUB

m = mini∈S+ fi/gi and rLBm = maxi∈S− fi/gi
2. Again,

there are two cases to differentiate. When rLBm > rUB
m , it is not possible

to find a value for rm that satisfies the upper and lower bound and this
technique fails. In the other case, rm is set to the best possible value, i.e.
rUB
m .

3.2 Computing bounds on quadratic mean-like functions

Computing bounds with the square root relies on the following lemma:

Lemma 6. Let f and g be two polynomial functions of order ν and let fi
and gi be their control values. Let H be the function whose control values

are Hi =
√

f2
i + g2i . Then, we have

√
f(ξ)2 + g(ξ)2 ≤ H(ξ) ∀ξ.

Proof. Since the two members of the inequality are positive, we can square
the expression:(∑

i

fiB
ν
i (ξ)

)2

+

(∑
i

giB
ν
i (ξ)

)2

≤

(∑
i

√
f2
i + g2i Bν

i (ξ)

)2

⇔
∑
i,j

(fi fj + gi gj)B
ν
i (ξ)B

ν
j (ξ) ≤

∑
i,j

√
f2
i f

2
j + f2

i g
2
j + g2i f

2
j + g2i g

2
j B

ν
i (ξ)B

ν
j (ξ).

By the relaxation of Proposition 5, it is sufficient to prove the following
inequalities:

fi fj + gi gj ≤
√

f2
i f

2
j + f2

i g
2
j + g2i f

2
j + g2i g

2
j ∀i, j.

The right-hand member is positive. This implies that the relation is satisfied
if the relation hold when the members are squared. We obtain:

2 fi fj gi gj ≤ f2
i g

2
j + g2i f

2
j ∀i, j

⇔ 0 ≤ (fi gj − gi fj)
2 ∀i, j,

2Note that the sets S− and/or S+ can be empty in which cases we have mini∈∅ fi/gi =
+∞ and maxi∈∅ fi/gi = −∞.

9

E.3. Bézier expansion 120

which is true.

This allows to compute an upper bound on the square root that is equal
to the maximum control value ofH. Note that this lemma can be generalized
to any function of the form

√
f2
1 + f2

2 + . . . where the fk are polynomial
functions.

4 Computing bounds of the measure in 2D

Here we first obtain the expression of the eigenvalues of the metric in function
of quantities that can be sampled on the element. We identify the polynomial
functions for which the steps 1, 2 and 4 of the algorithm can be directly
applied (see Section 3). Then we explain how to compute the bounds of
Rmin in replacement of the 3rd step.

Let us consider that x(ξ) defines the mapping between the ideal and the
physical element. The 2D metric tensor reads

M(ξ) :=

(
||x,ξ||2 x,ξ · x,η

x,ξ · x,η ||x,η||2
)
.

The expression of the eigenvalues are easily computed from the characteristic
equation. By resolving the second order equation and after simplification,
we obtain:

λ±(ξ) =
||x,ξ||2 + ||x,η||2

2
±

√√√√(||x,ξ||2 − ||x,η||2

2

)2

+ (x,ξ · x,η)
2.

Due to the presence of the square root, they are not polynomials. However,
x,ξ and x,η are polynomials and so are their norm and their scalar product.
The above expression can be written to let appear three polynomial functions
q, s and t:

λ±(ξ) = q(ξ)±
√

s(ξ)2 + t(ξ)2.

The first function, q, is greater or equal to 0 while the two others take their
values in R. One can calculate the extrema of the square root and find that√
s2 + t2 ∈ [0, q] which is in accordance with the fact that the eigenvalues

of M are positive or zero. The functions q, s and t are of order 2n, where
n is the order of the element. They can be expanded into a Bézier basis of
order 2n. The steps 1, 2, and 4 of the algorithm given in Section 3 can be
applied to these functions. It remains to adapt the third step, i.e. to find a
way to compute a bound of the quality from the control values.

10

E.4. Computing bounds of the measure in 2D 121

We note qi, si and ti the control values of the polynomial functions.
Since it is possible to compute an upper bound for the square root (see
Sect. 3.2), the two following bounds can be computed:

λLB
− = min

i

[
qi −

√
s2i + t2i

]
and λUB

+ = max
i

[
qi +

√
s2i + t2i

]
.

Note that the eigenvalues are positive but λLB
− can sometimes be negative

in which case it is set to zero. Those bounds are useful if one want to
get bounds on the eigenvalues alone. For the quality measure we consider
(defined in Equation (??)), we have to compute a lower and an upper bound
of Rmin := minξ∈Ωref

R(ξ). The upper bound is computed from the corner
values:

RUB
min = min

i∈Iν
c

qi −
√

s2i + t2i

qi +
√

s2i + t2i

.

A lower bound is given by the ratio λLB
− /λUB

+ but it is easy to understand
that this bound is poor since the point at which λ− takes its minimum is
in general not the same that the point at which λ+ takes its maximum. In
order to obtain a sharp bound, we introduce a(ξ) = q√

s2+t2
∈ [1,+∞[so

that we can write :

R(a) =
a− 1

a+ 1
.

Thankfully, this function increases monotonically which implies that Rmin =
R(amin). We see that we can compute RLB

min = R(aLBmin) where aLBmin is the
bound computed. The method to bound rational functions (see Section 3.1)
cannot be applied to a since the denominator is a square root. However,
since a is positive, we have the following equality minξ a

2 = [minξ a]
2. We

can thus compute a lower bound of a2 and take its square root.
The numerator, q2, and the denominator, s2 + t2, are expanded into the

Bézier basis of order 4n by relying on Proposition 4. This allows to apply
the method to bound rational functions. Let rm be the computed bound. If
the method fails to provide a bound, rm is simply set to 1. At the end, the
returned lower bound of a is

√
max(1, rm).

5 Computing bounds of the measure in 3D

Like in 2D, we first derive the expression of the eigenvalues, then we explain
how to compute the bounds of Rmin.

11

E.5. Computing bounds of the measure in 3D 122

The characteristic equation of a 3× 3 matrix is a cubic equation that is
not easily solved. Thankfully, the metric tensor is symmetric and a simple
expression can be obtained for the eigenvalues. The key is to make an affine
transform that in fine leads to a trigonometric solution [22]. Let us introduce
three functions, q, p and ϕ: q(ξ) := tr(M)/3, p(ξ) :=

√
tr[(M− qI)2] / 6

and ϕ(ξ) ∈ [0, π3]. Their complete expression is given in Appendix A. The
eigenvalues of M are written:

λk(ξ) = q(ξ) + 2 p(ξ) cos

(
ϕ(ξ) + k

2π

3

)
, k ∈ {0, 1, 2},

with (λ− =)λ1 ≤ λ2 ≤ λ0 (= λ+). Since the metric tensor is real and sym-
metric, its eigenvalues are also real. The function q is a positive polynomial
function and is the equivalent of the 2D function q. The function p is the
equivalent of the function

√
s2 + t2. Each term of the square root is polyno-

mial and, as in 2D, p ∈ [0, q]. A more convenient expression can be obtained
for ϕ. Let J denote the Jacobian determinant. Its square is equal to the
product of the eigenvalues: λ0λ1λ2 = det(M) = det(W TW) = J2, and
by replacing the eigenvalues by their expression, one can get the following
formula:

ϕ =
1

3
arccos

(
1

2

[
J2 − q3 + 3p2q

p3

])
.

The functions J , p and q are thus the polynomial functions that are used for
steps 1,2 and 4 of the algorithm. Due to the presence of the cosine and the
inverse cosine, computing bounds on the 3D eigenvalues alone is much more
complex than in 2D. However, we can still compute bounds on R due to a
substantial simplification it brings. Similarly to what we did in 2D, let us
introduce a(ξ) = q/p ∈ [1,+∞[. Let us also introduce K(ξ) = J2/p3 ∈ R+.
Now, the ratio λ−/λ+ reads:

R(a,K) =
a+ 2 cos(ϕ+ 2π

3)

a+ 2 cos(ϕ)
,

where ϕ = 1/3 arccos(w), with w = 1/2
[
K − a3 + 3a

]
. Figure 2 shows the

graph of R(a,K). Its domain of definition is defined by the existence of ϕ.
Mathematically, we have ΩR = {(a,K) ∈ [1,+∞[×R+ : w(a,K) ∈ [−1, 1]}.
Note that the denominator is strictly positive since cos(ϕ) ∈ [12 , 1], thus R
is well defined.

Let us clarify those definitions: we have two mappings. The first asso-
ciates a point

(
a(ξ),K(ξ)

)
∈ ΩR to each point ξ ∈ Ωref of the reference ele-

ment. This mapping depends on the node position of the physical element.

12

E.5. Computing bounds of the measure in 3D 123

a
1 1.5 2 2.5

K

0

1

2

3

4

5

6

7

Figure 2: R(a,K): Its domain of definition is limited by the black curves
and its value is represented by isovalues.

The second is element-independent and associates a value R(a,K) ∈ [0, 1]
to each point (a,K) ∈ ΩR. We see that Rmin can theoretically be computed
in two steps: (1) computation of ΩaK , the region of the aK-plane that the
element affects, i.e. ΩaK =

{(
a(ξ),K(ξ)

)
∈ ΩR : ξ ∈ Ωref

}
and (2) compu-

tation of the minimum of R restricted to the domain ΩaK . It is proved in
Appendix C that this minimum is located on the boundary of ΩaK . Yet,
computing this boundary is a complex problem that is certainly too costly
to be interesting in practice. The strategy we use instead is to compute a
bounding box Ω̃ that includes ΩaK and for which it is easy to compute the
minimum of R.

The bounding box is constructed thanks to the lower and upper bounds
of a and K. Figure 3 shows an example of ΩaK and a possible bounding
box. Let am and Km denote the lower bounds and aM and KM the upper
bounds. Computing am is done exactly the same way than in 2D (Section 4),
provided that

√
s2 + t2 is replaced by p. The adaptation of this technique

for computing aM does not present any difficulty, so the details are omitted
for brevity. In the following subsections, we first explain how to compute the
bounds of K. Then we explain how to determine the minimum of R inside
the bounding box and finally, we explain the limitations of the bounding
box approach.

13

E.5. Computing bounds of the measure in 3D 124

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Figure 3: The region that the element affects, ΩaK (in black) can be bounded
by a box (in blue).

5.1 Computing a lower bound of K

The technique to compute a lower bound for K is very similar to the tech-

nique of Section 4. Let p
(k)
i , k ∈ {1, . . . , 6}, i ∈ I2n be the control values of

the six terms of p. We define the following function:

P (ξ) :=
∑

i∈I2n

Pi B
2n
i (ξ), with Pi :=

√√√√ 6∑
k=1

[
p
(k)
i

]2
.

Due to the generalization of Lemma 6, we have p(ξ) ≤ P (ξ) ∀ξ ∈ Ωref. This
implies that K ≥ J2/P 3 and if we compute a lower bound for J2/P 3, it
will be a lower bound for K. In order to do that, we apply the method for
computing bounds on rational functions. The numerator is expanded into
the Bézier basis of order 6n by applying the Proposition 4. The denominator
is a multiplication of three functions but Proposition 4 can easily be adapted
to this case. We define σν

i,j,k := αν
iα

ν
jα

ν
k/α

3ν
i+j+k and the set Eν

3 (l) :=
{(i, j,k), i, j,k ∈ Iν : i + j + k = l}. The denominator is thus expanded
into the Bézier basis of order 6n with the following control values:

P ′
l =

∑
(i,j,k)∈E2n

3 (l)

PiPjPk σ2n
i,j,k.

14

E.5. Computing bounds of the measure in 3D 125

Finally, the lower bound is computed by using the technique for rational
functions (Section 3.1). If the technique fails, the lower bound is set to 0.

5.2 Computing an upper bound of K

If we compute an upper bound for J2/P 3, it would not necessarily be an
upper bound for K since we have K ≥ J2/P 3. There are two other possi-
bilities. We can either compute (J2)UB/(p3)LB or compute an upper bound
for K2 by applying the same technique as in Section 4. The latter would be
sharper but it would require to expand the functions into the Bézier basis of
order 12p. The number of coefficients to compute would be proportional to
this order cubed as we have |Iν | = O(ν3) for 3D elements (where | · | stands
for the cardinality of a set). In consequence, it would be more costly to
compute this bound than the others, whereas it is not the most important.
We thus prefer to compute the first one, i.e. (J2)UB/(p3)LB.

For the numerator, it can be easily demonstrated that maxi∈I3p J2
i con-

stitutes an upper bound of J2. Computing a lower bound on p3 relies on the
fact that if a and b are positive, then a ≤ b ⇔ aν ≤ bν if ν is a real positive
number. We can then compute a bound rm that satisfies 0 ≤ rm ≤ p2 for

which we know that r
3/2
m will be a lower bound of p3. By expanding p2 into

the Bézier basis of order 4n and by relaxing, we obtain:

r⋆m = min
k∈I4n

∑
(i,j)∈E2n

2 (k)

[
6∑

l=1

p
(l)
i p

(l)
j

]
αν
iα

ν
j

α2ν
i+j

and rm = max(0, r⋆m).

5.3 Computing the minimum of R inside the bounding box

Finding the location of the minimum relies on the gradient of R and the first
derivatives of R are given in Appendix B. As can be deduced from Figures 2
and 4, it can be proved that dR/da is zero on a curved line, is negative on
the left of this line and positive on the right. Similarly, it can be proved that
dR/dK is zero on another curved line (located to the right of the previous
one), is negative below and positive above. This implies that there are 5
possible locations for the minimum of R (see Figure 4). Computing the first
derivative of R at the corners of the bounding box allows to determine the
location. Alternatively, one can compute the zero of dR

da (a,Km), which we

refer as a0, and the zero of dR
dK (am,K), which we refer as K0, and compare

those quantities to the bounds of the box. As an example let us consider

15

E.5. Computing bounds of the measure in 3D 126

the fourth case: it arises when Km < K0 < KM (and a0 < am ≤ aM). In
this case, the solution is RLB

min = R(am,K0).

a
2.35 2.4 2.45

K

5

5.1

5.2

5.3

5.4

5.5

Figure 4: There exists 5 different cases for the location of the minimum of
R inside the bounding box.

The expression of K0 can be calculated and is the following:

K0 = 2 cos

(
3 arccos

(
− 1

am

)
− π

)
+ a3m − 3 am.

However, due to the complex expression of dR
da , a0 is computed numerically.

5.4 Limitations of the bounding box strategy

Let us consider the example of the tetrahedron and its corresponding Ωa,K

shown in Figure 5. We can see that Ωa,K is very elongated, nearly in the
direction of the isovalues of R. Although the element is only slightly curved
(R(ξ) is between 0.2186 and 0.2462), the lower bound computed from the
bounding box technique is 0.1044 which is not sharp at all. Obviously,
a sharp bound will be obtained by subdivision (step 4 of the algorithm),
however, it will be at the cost of high computational efforts. In particular,
20, 899 subdivisions and a running time of 1, 32 seconds is necessary to
compute the measure at a tolerance of 10−2. This is because each subdivision
consists in splitting the tetrahedron into 8 sub-tetrahedra for which the
bounds have to be computed and every subdomain must be subdivided
again if the tolerance is not reached. This case is not rare and shows that
the subdivision technique can lead to an enormous number of subdomains
if poor bounds are provided. As will be shown in the results, it is worth

16

E.5. Computing bounds of the measure in 3D 127

computing better bounds, even if each computation is more expensive, which
is the subject of the following section.

a
2 2.1 2.2 2.3 2.4

K

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

Figure 5: A slightly curved tetrahedra (of order 3) and the corresponding
region Ωa,K that the element affects. The bounding box technique for this
kind of element is highly inefficient.

6 A bounding curve for the domain ΩaK

In order to improve the bounds, we seek to compute an additional bounding
curve that will cut the bounding box. Many of them can be identified:

1. K = κ a: It is the simplest curve we can think of. It passes through
the origin and has a slope κ. The latter is a parameter but it can
be seen as the function κ(a,K) = K/a = J2/qp2 for which the lower
bound, κm, and the upper bound, κM , can easily be computed using
the rational function bounding technique. As a result, the two curves
K = κma and K = κMa constitute bounding curves for the domain
ΩaK . They are however of poor quality because the slope cannot be
chosen. They can greatly improve the bound of R by luck but most of
the time they will not.

2. K = κ a+ c: In order to overcome the drawback of the first proposed
curve, we can specify the slope κ and bound c(a,K) = (J2 − κ qp2)/p3.
Like for computing the lower bound ofK (Sect. 5.1), the denominateur
can be replaced by P 3 which allows to compute a lower bound if the
numerator is strictly positive. If the numerator is strictly negative,
then it is an upper bound that can be computed. Moreover, no bound

17

E.6. A bounding curve for the domain Ω𝑎𝐾 128

can be computed if the numerator takes positive and negative values.
It is still always possible to find a slope that allows to compute a lower
or an upper bound on c (in function of what is needed) but the choice
is greatly limited. Like for the upper bound of K (Sect. 5.2), we could
consider computing the bound differently but either the bound would
be poor or the computation would be time consuming. The best choice
is to consider the next curve.

3. K = β a3 + κ a: This curve have the advantages of the two preceding
curves without the disadvantages. Indeed, since there are two param-
eters, we have a control on the slope of the curve. Morevover, by
specifying κ, we have to compute bounds on β(a,K) = (J2 − κ qp2)/q3

which is as easily done as for the first curve.

It is proved in Appendix D that the function R(a,K)|K=βa3+κa admits a
unique global minimum. In addition to the bounding box, the new algorithm
computes the parameter κ⋆ such that the curve that passes through the
bottom left corner of the bounding box have the same slope that the isovalues
of R; this way the minimum of R(a,K)|K=βa3+κ⋆a would be located at the
bottom left corner in this case. Then a lower bound βmin of (J2 − κ⋆ qp2)/q3 is
computed. The curve K = βmin a

3 + κ⋆ a constitutes the bounding curve.
In order to locate the minimum of R in the new bounding region, the slope
of R(a,K)|K=βa3+κ⋆a at the intersections of the bounding curve with the
bounding box is computed. If the function increases when going inside the
bounding box, then the minimum of R is located on the bounding box and
is computed as previously explained. If the function decreases when going
inside the bounding box, the minimum of R is computed on the curve using
a Newton-Raphson technique.

7 Results

The algorithm described in this paper is implemented in Gmsh and can be
tested through the plugin AnalyseCurvedMesh. We begin this section by
testing two linear hexahedra. Then we test an academic hexahedral mesh
with high differences in aspect ratio. After, we test a more realistic mesh
composed of curved tetrahedra. All the tests has been conducted on a
Macbook Pro Retina, Mid 2012 @ 2.3GHz.

18

E.7. Results 129

7.1 Single hexahedron test

Let us consider the case of a single hexahedron for which the nodes location
is given in Table 2 of reference [9]. This hexahedron has positive Jacobian
determinant on all the edges but is invalid. Our algorithm finds the correct
value of µ = 0 after one subdivision. Now let us consider a more interesting
case of a twisted hexahedron whose nodes location is given in Figure 6. This

i xi yi zi
1 −0.5 −1 −1
2 1 −1 −1
3 1 1 −1
4 −0.5 1 −1
5 1 −1 1
6 1 1 1
7 −1 1 1
8 −1 −1 1

1

2

3

4

5

6

7

8

Z

X
Y

Figure 6: Twisted hex: Location of the nodes. Note that the node order
is the same than Gmsh.

hexahedron is valid and the measure µ computed at a tolerance of 2e−7 is in
the range [0.2700452884, 0.2700453384]. The minimum of µpw at the corners
of the element is 0.3233, which is an error of 0.0533. In order to compare
with the basic method which consists in sampling the pointwise measure at
a large number of points, let us consider the nodes of an hexahedron of order
p. We sample the measure µpw at the location of those nodes and compute
the absolute error. As shown in Figure 7, the error decreases slowly. With
p = 25, which corresponds to 17, 576 sampling points, the error is still 7e−5.

7.2 Academic hexahedral mesh

We now test the measure on an academic mesh composed of linear hexa-
hedra. The mesh is generated with a mapping technique and presents high
differences in sizes and aspect ratio, see Figure 8. The tested mesh contains
1, 000, 000 hexahedra and 1, 030, 301 nodes. The measure µ takes 71 seconds
to be computed and ranges from 0 to 0.914, while the average is 0.208. As
said when we have introduced the measure, it is the distance from the de-
generacy of the element and the more an element is anisotropic, the nearer
it is to degeneracy. As can be inferred and as can be seen from the worst

19

E.7. Results 130

p
0 5 10 15 20 25

A
bs

ol
ut

e
er

ro
r

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

Figure 7: Twisted hex: Absolute error of the sampling of µpw at the nodes
of an hexahedron of order p.

elements presented in Figure 9 (left), this measure does not take into ac-
count the fact that hexahedra can be elongated in one of its three principal
directions without losing accuracy of the finite element solution.

Figure 8: Hex mesh: Coarse version (with only 8,000 hexahedra) of the
academic 1,000,000 hexahedra test case.

7.3 Realistic curved tetrahedral mesh

Finally, we experiment the measure on a more realistic geometry that is
meshed with third-order curved tetrahedra. A coarse and a fine mesh are

20

E.7. Results 131

Figure 9: Hex mesh: Worst (left) and best (right) quality elements of the
coarse mesh.

generated, optimized using the method presented in [8], see Figure 10. The
results are given in Table 7.3 and the worst elements are showed in Figure 11.

Figure 10: Curved tetrahedral mesh: The geometry models a sensor
for a steel cable and is composed of 4 coils (in orange), the cable (in blue)
and the mounting box (in red). In purple and in green are respectively the
interior and the exterior meshes of the voids. The geometry has been meshed
with tetrahedra of order 3. The coarse mesh contains 8,252 tetrahedra while
the fine mesh contains 293,776 tetrahedra.

21

E.7. Results 132

Geometry #elem #vert T gen T optim T qual µmin µavg

Magnet., p3 8,252 41,253 2.99 42.03 14.37 0.012 0.348
Magnet., p3 293,776 1,388,750 60.39 - 70.64 0.034 0.55

Table 1: Curved tetrahedral mesh: The time are given in seconds. The
generation time (T gen) comprises the creation of 1D, 2D and 3D elements,
the topological optimization (using Netgen [23]) and the curving of entities
that are classified on the boundaries. Note that no optimization was needed
for the fine mesh.

Figure 11: Curved tetrahedral mesh: Worst elements of the coarse mesh
which are unsurprisingly located in the mounting box.

8 Conclusion

A method for computing the minimum of a pointwise shape quality mea-
sure defined for any order and any type of common finite elements (including
pyramids) has been presented. The measure is based on the Jacobian matrix
and has a mathematical interpretation: it gives the distance of the element
to the degeneracy. Geometrically, it is a measure of the anisotropy of the ele-
ment. The computation is efficient and numerical experiments show that for
realistic third-order tetrahedral meshes the computation time of the quality
measure is of the same order as the mesh generation time.

The measure is useful for hexahedra as long as isotropic meshes are con-
sidered, or if the anisotropy can be considered constant over the element.
It is not however a good quality measure for curved high aspect ratio hexa-
hedra, as for example in boundary layer meshes high curvature. A possible

22

E.8. Conclusion 133

extension of the present method in such cases would then be to compute the
minimum of the scaled Jacobian.

A Expression of q, p and ϕ for the 3D eigenvalues

q(ξ) =
||x,ξ||2 + ||x,η||2 + ||x,ζ ||2

3

p(ξ) =
1√
6

√√√√√√
(
||x,ξ||2 − q

)2
+
(
||x,η||2 − q

)2
+
(
||x,ζ ||2 − q

)2
+2
[
(x,ξ · x,η)

2 + (x,ξ · x,ζ)
2 + (x,η · x,ζ)

2
]

ϕ(ξ) =
1

3
arccos

(
1

2
det

(
M− qI

p

))
We also express p in short as:

p =

√√√√ 6∑
k=1

[
p(k)
]2
,

with p(1) =
[
||x,ξ||2 − q

]
/
√
6, . . . and p(4) = [x,ξ · x,η] /

√
3,

B First and second derivatives of R

Let A = 1−a2√
1−w2

and C = 1 + a cos
(
ϕ+ π

3

)
. The expression of the first and

second derivatives of R are:

23

E.8. Conclusion 134

∂R

∂K
=

√
3

3 (a+ 2 cosϕ)2

[
C√

1− w2

]
∂R

∂a
=

√
3

(a+ 2 cosϕ)2

[
2 sin

(
ϕ+

π

3

)
+AC

]
∂2R

∂K2
=

√
3

6 (a+ 2 cosϕ)2 (1− w2)

[
1

3
a sin

(
ϕ+

π

3

)
− 4

3

C sinϕ

a+ 2 cosϕ
+

wC√
1− w2

]
∂2R

∂aK
=

√
3

3(a+ 2 cosϕ)2
√
1− w2

[
aA

2
sin
(
ϕ+

π

3

)
+

3

2

wAC√
1− w2

+ cos
(
ϕ+

π

3

)
− 2C

1 +A sinϕ

a+ 2 cosϕ

]
∂2R

∂a2
=

√
3

(a+ 2 cosϕ)2

[
−2aC√
1− w2

+
3

2

wA2C√
1− w2

+
aA2

2
sin
(
ϕ+

π

3

)
−2 (1 +A sinϕ)

a+ 2 cosϕ

[
2 sin

(
ϕ+

π

3

)
+AC

]]

C Proof that R takes its extreme values on the
boundary of a given region

For any ϕ⋆ ∈ [0, π3], let Ωϕ⋆ denote the domain of R restricted to ϕ(a,K) =
ϕ⋆. We construct the 1-dimensional function Rϕ⋆(a) = R(a,K)|(a,K)∈Ωϕ⋆

.
It derivative is

dRϕ⋆

da
=

2
√
3 sin(ϕ⋆ + π

3)

(a+ 2 cos(ϕ⋆))2
,

which involves that the function Rϕ⋆ increase monotonically with a. As a
consequence, the extreme value that R takes on ΩaK ∩ Ωϕ⋆ are exclusively
located on the intersection of the boundary of ΩaK with Ωϕ⋆ . It is true for
every ϕ⋆ which prove that the extrema of R inside ΩaK are to be found on
the boundary.

D Proof that the function R restricted to the bound-
ing curve admits a unique minimum

Let us consider the curve Cβ,κ ≡ K = βa3+κa of the aK-plane, where β and
κ are two real parameters, and let γ̄β,κ be a natural parameterization of this

24

E.8. Conclusion 135

curve. We seek to prove that the functions Rβ,κ
γ̄ (s) = R(γ̄β,κ1 (s), γ̄β,κ2 (s))

admit a unique global minimum.
First, let us remark that, for any point (a,K) of the domain ΩR, there

exists a unique curve that fulfill the two following conditions: (1) the curve
pass through the point and (2), at this point, the derivative of R in the
direction of the curve is zero or, equivalently, the curve is perpendicular to
the gradient of R. Indeed, this is possible because the curve is parameterized
by two parameters. Let β⋆(a,K) and κ⋆(a,K) be the parameters of the curve
that fulfills the conditions.

Also, for any parameterization γβ,κ of the curve, we define tβ,κγ as the
function that gives the parameter t from the coordinate of a point of the
aK-plane. We have that

t = tβ,κγ (a,K) ⇔

{
a = γβ,κ1 (t)

K = γβ,κ2 (t).

We also say that γβ,κ is equivalent to γ̄β,κ if there exists a continuously
differentiable bijective map ϕ, with ϕ′(t) ̸= 0 such that:

γ̄β,κ(ϕ(t)) = γβ,κ(t).

Lemma 7. Rβ,κ
γ̄ admits a unique minimum for any real parameters β and

κ if there exists a parameterization γβ,κ equivalent to γ̄β,κ for which:

∀(a,K) ∈ ΩR, β = β⋆(a,K), κ = κ⋆(a,K), t = tβ,κγ (a,K), D2
tR

β,κ
γ (t) > 0.

Proof. Let us suppose there exists such a parameterization and let us prove
that having a curve that admits more than one minimum is absurd. Since,
we take β = β⋆(a,K) and κ = κ⋆(a,K), we have that the first derivative

DtR
β,κ
γ (t) is zero and thus Rβ,κ

γ has an extremum in t. Since the second
derivative is positive, then it is a minimum. Now assume that there exists
another point (a′,K ′) of the curve for the two conditions, i.e. such that
β⋆(a′,K ′) = β and κ⋆(a′,K ′) = κ. Then, R restricted to this curve would
have at least two minima. But by continuity of the function, there should
be a maximum between the two minimum which is absurd since there are
no point at which the second derivative is negative.

We do not provide any analytical proof. However, the second derivative
that should be positive in the Lemma 7 can be computed numerically. We
have thus verified that the lemma works for the parameterization γβ,κ(t) =

25

E.8. Conclusion 136

(t, βt3+κt), which is equivalent to the natural parameterization. Note that
we have:

β⋆(a,K) = − 1

2

[
1

a2
∂aR

∂KR
+

K

a3

]
κ⋆(a,K) =

1

2

[
∂aR

∂KR
+ 3

K

a

]
and

Dt :=
∂a

∂t

∂

∂a
+

∂K

∂t

∂

∂K

D2
t :=

(
∂a

∂t

)2 ∂2

∂a2
+ 2

∂a

∂t

∂K

∂t

∂2

∂a ∂K
+

(
∂K

∂t

)2 ∂2

∂K2
+

∂2a

∂t2
∂

∂a
+

∂2K

∂t2
∂

∂K
.

Acknowledgement

This research project was funded in part by the Walloon Region under WIST
3 grant 1017074 (DOMHEX).

References

[1] Z. J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary,
H. Deconinck, R. Hartmann, K. Hillewaert, H. T. Huynh, et al. High-
order CFD methods: current status and perspective. International
Journal for Numerical Methods in Fluids, 72(8):811–845, 2013.

[2] R. M. Kirby, S. J. Sherwin, and B. Cockburn. To CG or to HDG:
a comparative study. Journal of Scientific Computing, 51(1):183–212,
2012.

[3] P. E. J. Vos, S. J. Sherwin, and R. M. Kirby. From h to p efficiently:
Implementing finite and spectral/hp element methods to achieve op-
timal performance for low-and high-order discretisations. Journal of
Computational Physics, 229(13):5161–5181, 2010.

[4] G. Karniadakis and S. Sherwin. Spectral/hp element methods for com-
putational fluid dynamics. Oxford University Press, 2013.

26

E.8. Conclusion 137

[5] I. Babuška, B. A. Szabo, and I. N. Katz. The p-version of the finite
element method. SIAM Journal on Numerical Analysis, 18(3):515–545,
1981.

[6] I. Babuška and B. Q. Guo. The h-p version of the finite element method
for domains with curved boundaries. SIAM Journal on Numerical Anal-
ysis, 25(4):837–861, 1988.

[7] R. H. MacNeal. Finite Elements. CRC Press, 1993.

[8] T. Toulorge, C. Geuzaine, J.-F. Remacle, and J. Lambrechts. Robust
untangling of curvilinear meshes. Journal of Computational Physics,
254:8–26, 2013.

[9] P. M. Knupp. On the invertibility of the isoparametric map. Computer
Methods in Applied Mechanics and Engineering, 78(3):313–329, 1990.

[10] P. Knupp. Label-invariant mesh quality metrics. In Proceedings of the
18th International Meshing Roundtable, pages 139–155. Springer, 2009.

[11] P. L. George and H. Borouchaki. Construction of tetrahedral meshes
of degree two. International Journal for Numerical Methods in Engi-
neering, 90(9):1156–1182, 2012.

[12] A. Johnen, J.-F. Remacle, and C. Geuzaine. Geometrical validity of
curvilinear finite elements. Journal of Computational Physics, 233:359–
372, 2013.

[13] A. Johnen and C. Geuzaine. Geometrical validity of curvilinear pyra-
midal finite elements. Journal of Computational Physics, 299:124–129,
2015.

[14] D. A. Field. Qualitative measures for initial meshes. International
Journal for Numerical Methods in Engineering, 47(4):887–906, 2000.

[15] J. R. Shewchuk. What is a good linear finite element? interpolation,
conditioning, anisotropy, and quality measures (preprint). Preprint,
2002.

[16] P. M. Knupp. Algebraic mesh quality metrics. SIAM journal on scien-
tific computing, 23(1):193–218, 2001.

[17] P. M. Knupp. Algebraic mesh quality metrics for unstructured initial
meshes. Finite Elements in Analysis and Design, 39(3):217–241, 2003.

27

E.8. Conclusion 138

[18] X. Roca, A. Gargallo-Peiró, and J. Sarrate. Defining quality measures
for high-order planar triangles and curved mesh generation. In Pro-
ceedings of the 20th International Meshing Roundtable, pages 365–383.
Springer, 2012.

[19] A. Gargallo-Peiró, X. Roca, J. Peraire, and J. Sarrate. Distortion and
quality measures for validating and generating high-order tetrahedral
meshes. Engineering with Computers, pages 1–15, 2014.

[20] A. Gargallo Peiró. Validation and generation of curved meshes for
high-order unstructured methods. PhD thesis, Universitat Politècnica
de Catalunya, 2014.

[21] C. D. Meyer. Matrix analysis and applied linear algebra. Siam, 2000.

[22] O. K. Smith. Eigenvalues of a symmetric 3× 3 matrix. Communications
of the ACM, 4(4):168, 1961.

[23] J. Schöberl. Netgen An advancing front 2d/3d-mesh generator based
on abstract rules. Computing and visualization in science, 1(1):41–52,
1997.

28

E.8. Conclusion 139

	Introduction
	State of the Art
	Quadrangular and hexahedral mesh generation
	Algorithm attributes
	Conformal all-quad/all-hex meshing constraints
	Core methods
	Geometry partition methods
	Octree-based methods
	Direct advancing front methods
	Indirect methods

	Curved finite element validity and quality
	Methods for asserting the validity
	Geometric and Jacobian-based quality measures

	Contributions
	Conclusions
	Bibliography
	Paper I: Blossom‐Quad: A non‐uniform quadrilateral mesh generator using a minimum‐cost perfect‐matching algorithm
	Introduction
	Mesh quality measures
	Non-optimal matching algorithm
	The new Blossom-Quad algorithm
	Existence of perfect matchings
	Optimization
	The Blossom-Quad algorithm
	Examples
	Conclusions

	Paper II: Sequential decision-making approach for quadrangular mesh generation
	Introduction
	Problem Statement
	Formulation as a sequential decision-making problem
	Uniform look-ahead tree
	Selective look-ahead tree
	Results
	Conclusion

	Paper III: Geometrical validity of curvilinear finite elements
	Introduction
	Curved meshes, distortion and bounds on Jacobian det.
	Bounds for second order planar triangles
	Adaptive bounds for arbitrary curvilinear finite elements
	Numerical results
	Conclusions and perspectives

	Paper IV: Geometrical validity of high-order pyramidal finite elements
	Introduction
	Pyramidal finite element space
	Pyramidal Jacobian determinant space
	Bézier basis for the pyramidal Jacobian determinant
	Results
	Conclusion

	Paper V: Computing the extrema of a shape quality measure for curvilinear finite elements (Draft)
	Introduction
	A quality measure based on the metric eigenvalues
	Bézier expansion
	Computing bounds of the measure in 2D
	Computing bounds of the measure in 3D
	A bounding curve for the domain aK
	Results
	Conclusion

