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Abstract. A great majority of widely used ferrite ceramics exhibit a relatively high temperature 

of order-disorder phase transition in their magnetic subsystem. For applications related to the 

magnetization process of superconductors, however, a low value of Tc is required. Here we report 

and analyze in detail the thermal properties of bulk Ti-doped Cu-Zn ferrite ceramics 

Cu0.3Zn0.7Ti0.04Fe1.96O4 and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4. They are characterized by a Curie 

temperature in the range 120-170 K and a maximum DC magnetic susceptibility exceeding 20 

for the Cu0.3Zn0.7Ti0.04Fe1.96O4 material. The temperature dependence of both the specific heat Cp 

and of the thermal conductivity κ, determined between 2 and 300 K, are found not to exhibit any 

peculiar feature at the magnetic transition temperature. The low-temperature dependence of both 

κ and the mean free path of phonons suggests a mesoscopic fractal structure of the grains. From 

the measured data, the characteristics of thermally actuated waves are estimated. The low 

magnetic phase transition temperature and suitable thermal parameters make the investigated 

ferrite ceramics applicable as magnetic wave producers in devices designed for magnetization of 

high-temperature superconductors. 
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1. Introduction 

Due to the combination of excellent magnetic properties at high frequency and low price, ferrite 

materials have become essential materials in a wide range of electrical engineering applications 

including chip components, filters, telecommunication systems, sensors [1-5] and extending to 

biomedical applications and energy storage [6-8]. This present work deals with ferrites to be inserted in 

an innovative low-temperature application related to the magnetization of type-II superconductors used 

as permanent magnets [9,10]. Unlike a classical ferromagnet where the magnetization is limited 

physically by the alignment of all microscopic magnetic moments, the remnant magnetization of a type-

II irreversible superconductor is generated by macroscopic (resistanceless) supercurrent current loops 

[11,12]. When prepared in bulk form, e.g. monolithic disks of a few centimeters in diameter [13-16], 

superconductors are able to trap magnetic flux densities exceeding 3 teslas [11, 17-19], which opens up 

new horizons in terms of applications [20-22]. One of the main issues, however, is that these 

superconducting materials need to be magnetized before their use. In addition to the well-established 

magnetization techniques, - namely, zero field cooling (ZFC), field cooling (FC) and pulse field 

magnetization (PFM) [23] -, there is a growing interest in applying the so-called “flux pump” technology 

[24] to the magnetization of bulk superconductors [25,26]. Flux pumping involves creating a travelling 

magnetic field wave that guides magnetic flux lines toward the center of the superconducting element. 

The technique can be applied to films, bulk samples or coils [27]. The travelling wave can be produced 

by a moving magnet [26], a three-phase coil system [28] or by making use of the so-called “Thermally 

Actuated Magnetization” (TAM) [9,10,25]. In the latter, the bulk superconductor is placed below a 

magnetic disk exhibiting a clear phase transition at some (Curie) temperature Tc, as shown schematically 

in figure 1(a). Periodic heating and cooling of the magnetic material at its periphery generates a thermal 

wave that travels radially. If the two extrema of the temperature oscillations are respectively below and 

above Tc, the corresponding periodic changes of permeability of the magnetic material in a DC 

background field results in a travelling magnetic field wave. The application of travelling wave to 

superconducting bulks or films gives rise to vortex migration and to several phenomena of interest for 

the understanding of physics of type-II superconductors [29]. 

 

The key element of a thermally actuated magnetization system is the magnetic material in which the 

wave is produced. It should ideally exhibit a sharp change of permeability at the ordered-disordered 

phase transition temperature and this temperature should be between room temperature and the operating 

temperature of the superconductor (e.g. 77 K or lower). With a critical temperature of 292 K [30,31], 

gadolinium (Gd) has been shown to be an efficient thermal material [25]. One of the disadvantages is 

that the magnetic actuation needs to be performed around room temperature, while the superconductor 

is kept at its operating (cryogenic) temperature, thereby requiring efficient thermal insulation between 

both. In order to scale up the system for various superconductor sizes at reasonable cost as well as to 

improve its performances, several magnetic materials with lower transition temperatures were  
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Figure 1. (a) Schematic diagram of the thermally actuated magnetization system: the bulk 

superconductor is placed below a ferrite material heated repeatedly by an electric heater placed along 

its lateral surface. A ferromagnetic yoke is used to close the magnetic circuit. (b) SEM image of the 

surface of the investigated Cu0.3Zn0.7Ti0.04Fe1.96O4 sample. (c) SEM image of the surface of the 

investigated Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 sample.  

 

investigated: these including manganites [32] or ferrites [33]. Among the several chemical compositions 

investigated in Ti-doped Ni-Zn and Cu-Zn ferrites, the most promising results were obtained from 

Cu0.3Zn0.7Ti0.04Fe1.96O4 and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 stoichiometry [9,10]. Their critical 

temperature is much lower than that of commercial ferrites, while their magnetic properties remain 

weakly affected. In addition to their magnetic properties and the implications when ferro- or ferri- 

magnets and superconductors are brought together [34,35], thermal properties of these materials are 

likely to play an important role in the magneto-thermal actuation process. The aim of the present work 

is to investigate in detail the physics of the thermal properties of these ferrite ceramics and to draw 

conclusions as to the implications for the characteristics of thermally actuated waves when used for the 

magnetization of bulk superconductors. 

 

2. Experiment 

Ti-doped Cu-Zn ferrite ceramics were prepared using the solid-state reaction method described in details 

in references [9,10]. High-purity powders of CuO, ZnO, TiO2 and FeC2O4 ⋅ 2 H2O were mixed 

homogeneously and progressively heated to 1200°C with an intermediate grinding. This method can be 

used routinely to obtain resulting ferrite pellets are disks of 22 mm in diameter and 11 mm in height. 

The stoichiometry of the two compounds studied in this work is Cu0.3Zn0.7Ti0.04Fe1.96O4 and 
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Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4. X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analyses 

confirm that no secondary phase was present in the samples [9]. A typical scanning electron microscope 

(SEM) image of the cross-section of both ferrite samples is shown in figure 1(b) and 1(c). Their 

microstructure is typical of well-sintered materials. For Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4, individual grains 

can be distinguished easily, with an average size of about 1-5 micrometers. The structure of a grain itself 

was reported in a previous work [36]. The Cu0.3Zn0.7Ti0.04Fe1.96O4 and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 

form a cubic crystal structure with 32 oxygen atoms in a unit cell and the cell parameter amounting to ~ 

8Å. The typical electrical resistivity of the investigated ferrite materials lies in the range 104-105 Ωm. 

Magnetic measurements as a function of temperature were performed in a Quantum Design Physical 

Property Measurement System (PPMS). Small rectangular prisms of typical dimensions 0.65 × 0.65 × 

7 mm were carefully excised from the main ferrite pellet using a wire saw. In each measurement, the 

magnetic field was always applied along the long axis of the sample. The large aspect ratio 

(length/average diameter) ensured that the demagnetization factor D is small enough, so that the 

measured magnetic susceptibility is not bounded by a temperature-independent limit given by 1/D 

[37,38]. Unlike fluxmetric methods involving a search coil wound around the central part of the sample 

[39], the magnetic susceptibility of the ferrite (volume V) is determined through measurement of the 

magnetic moment m, from which the magnetization M = m/V is deduced [38]. The intrinsic magnetic 

susceptibility χint is then determined from the measured (apparent) susceptibility χext = M/Ha, where Ha 

is the uniform applied field, using magnetometric demagnetization factors for rectangular prisms [40-

42]. In order to take into account of the magnetic susceptibility dependence of the demagnetization 

factor, the iterative method suggested in ref. [42] was followed. The corresponding magnetometric 

demagnetization factors were found to be less than 0.042.  

Specific heat and thermal conductivity measurements were also carried out using Quantum Design 

Physical Properties Measurement System (PPMS). The specific heat was measured with a dynamic 

method while the thermal conductivity coefficient dependence on temperature of the investigated 

materials was determined by steady state heat flow method. The thermal properties were measured in 

the temperature range 2-300 K. 

 

3. Results and discussion 

In this section we present and discuss the magnetic properties and the thermal properties (specific heat, 

thermal conductivity and thermal diffusivity) of the ferrite compounds investigated. It should be noted 

here that several physical properties of ceramics such as their thermal, mechanical electric or magnetic 

properties are closely related to the structure and texture transitions which take place during the process 

of long-term sintering of the materials. The change of dimensions of the grains is an effect of diffusive  
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Figure 2. Temperature dependence of the DC magnetic susceptibility for the Cu0.3Zn0.7Ti0.04Fe1.96O4 

(squares) and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 ferrites (triangles). Data (corrected for demagnetizing 

effects) are measured for an applied field of 10 mT in Zero-Field Cooled (ZFC) procedure.  

 

transfer of mass between the grains remaining in mechanical contact. The process results in an increase 

of volume of some grains at the expense of the neighbouring ones. This leads to a decrease in size, and 

sometimes a complete disappearance of the grain and the formation of amorphous structures filling the 

in-between grain volume [43]. All of the processes and therefore the features of the structure strongly 

influence the specific heat and the thermal transport processes in ceramics. For this reason, the 

interpretation of the thermal properties experimental results is rather difficult and is usually limited to 

the simple classical models. 

 

3.1. DC magnetic susceptibility  

Figure 2 shows the temperature dependence of magnetic DC susceptibility χ of the two ferrite 

compounds measured for an applied field of 10 mT in Zero-Field Cooled (ZFC) procedure. Both 

materials exhibit an ordered – disordered phase transition at a temperature Tc that can be determined 

from the inflection point of the χ(T) curves. This procedure leads to Tc ≈ 160 K. for 

Cu0.3Zn0.7Ti0.04Fe1.96O4 and Tc ≈ 125 K for Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4. The role of the Mg dopant for 

the Cu-Zn ferrite appears clearly since the transition temperature is reduced by ~ 35 K. This decrease is 

beneficial for driving the operating temperature of the thermally actuated material closer to operating 

temperature of the superconductors of interest, e.g. 77 K for the YBa2Cu3O7 compound [12-15].  
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Figure 3. Temperature dependence of specific heat of Cu0.3Zn0.7Ti0.04Fe1.96O4 (squares) and 

Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 (triangles) ferrites. The solid line is a plot of the function 𝐶𝐶𝑝𝑝 =

0.68𝑇𝑇1.25[J kg-1 K-1], which approximates the Cu0.3Zn0.7Ti0.04Fe1.96O4 sample specific heat data. An 

absence of any noticeable singularity at the temperatures of the magnetic phase transition, 160 K and 

125 K for Cu0.3Zn0.7Ti0.04Fe1.96O4 and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 respectively, testifies for negligible 

contribution of thermal excitations in the magnetic subsystem of both ferrites. 

 

 

The change in magnetic susceptibility ∆χ, however, that can be expected by sweeping the ferrite 

temperature by 10 K below and above Tc is found to be much smaller for Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 

(∆χ = 2.03) than for Cu0.3Zn0.7Ti0.04Fe1.96O4 (∆χ = 6.37). This feature can be attributed to both the higher 

magnetic moment and narrower transition for the Cu0.3Zn0.7Ti0.04Fe1.96O4 compound. The latter is to be 

preferred, therefore, for thermal actuation. The maximum intrinsic susceptibility of this compound, at 

T = 101 K, was found to be χint = 20.8 (cf. figure 2) and is comparable in magnitude to the values 

reported for gadolinium [30]. In the present case, we emphasize that the maximum external magnetic 

susceptibility (χext = 13.9) is significantly smaller than the demagnetizing-limited value estimated at this 

temperature (1/D ≈ 41.7, where D is the magnetometric demagnetization factor). This gives confidence 

that the numerical values displayed in figure 2 are not bounded by geometric effects, as can be the case 

when small single crystals with low aspect ratio are studied [44], and is further confirmed by the clear 

temperature dependence observed in figure 2. 
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Figure 4. Temperature dependence of thermal conductivity coefficient of Cu0.3Zn0.7Ti0.04Fe1.96O4 

(squares) and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 (triangles) ferrites. The solid lines show the results of fitting 

of a power function to the data obtained for Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 sample, for the temperatures 

below 20 K and above 100 K. The slope of the lines is 1.6 and 0.13, respectively. The inset shows the 

same experimental data in double-linear coordinates. 

 

 

3.2. Specific heat  

The results of the measurements of the specific heat Cp of the samples of both investigated ferrites 

carried out in the temperature range 2 – 270 K are shown in figure 3. Unlike magnetic data, the specific 

heats of the two compounds are found to be almost identical at the investigated temperatures. The 

temperature dependence can be roughly approximated with Cp ~T  1.25. Such a dependence indicates 

that in the investigated ceramics the excitations of phonons such as those described by the Debye and 

Einstein models, do not contribute significantly to the specific heat. Also, in the dependence, there is no 

evidence of change of magnetic ordering at the transition temperature (Tc = 125 K and 160 K), unlike 

the behaviour observed for gadolinium [44] or other Zn-Mn or Zn-Ni ferrites [45]. This seems to indicate 

that the magnetic component of the specific heat may be negligibly small. 

 

3.3. Thermal conductivity  

Figure 4 shows the measurements of the thermal conductivity coefficient κ dependence on temperature 

for Cu0.3Zn0.7Ti0.04Fe1.96O4 and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 ceramics. The main plot of the data is 
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shown in logarithmic coordinates while the same set of data is depicted in linear coordinates in the inset. 

In the temperature range of 2 – 300 K the coefficient changes monotonically from 0.2 Wm-1K-1 at the 

lowest temperature to approximately 2.5 – 3 Wm-1K-1 at the highest investigated temperature. These 

high-temperature values are close to the majority of other ferrite materials [46]. Initially, up to ~ 30 K 

the thermal conductivity changes ~ T 1.6. Such low temperature dependence resembles the dependence 

of thermal conductivity coefficient on temperature of solids featuring a fractal structure. It was shown 

[47,48] that for these solids κ~T n, with n = d+1-2d/E, where E and d denote the structural fractal and 

the spectral dimension, respectively, for a mesoscopic fractal structure the value of the exponent n will 

be close to the one found in our experiment [49]. 

At the temperatures above 30 K the thermal conductivity coefficient of Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 

shows a slightly higher value than that found for Cu0.3Zn0.7Ti0.04Fe1.96O4. In the temperature range 100 – 

300 K the difference remains constant and amounts to ~ 0.4 Wm-1K-1. This difference is most likely 

related to the difference of masses of Mg and Cu ions. In addition, no anomaly is found at the transition 

temperature, unlike the behaviour observed e.g. for the ferrite material Mn3O4 [50]. 

Both Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 and Cu0.3Zn0.7Ti0.04Fe1.96O4 are characterized by high electrical 

resistivity values [36], as is the case for other undoped Cu-Zn ferrites [51]. Additionally, from specific 

heat measurements there is no evidence of meaningful energy of magnon excitations. It can be assumed, 

therefore, that the heat transport in the investigated ceramics is realized mostly by phonons [52]. In such 

a situation, the thermal conductivity coefficient can be written in terms of phonon mean path ℓ (T) by 

the kinetic equation: 

κ(T)=1/3ϑCvol(T)ℓ(T),     (1) 

where Cvol(T) is the volumetric specific heat and ϑ is the phonon group velocity averaged over 

longitudinal and transverse phonons. The phonon mean free path (being a value averaged over phonon 

frequencies and polarizations) dependence on temperature found from the above equation for 

Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 and Cu0.3Zn0.7Ti0.04Fe1.96O4 is shown in figure 5. For the calculations the 

data obtained in thermal conductivity and specific heat experiments were used (Cvol = 𝜌𝜌Cp, where ρ = 

4600 kgm-3 is the density of the ferrite material). For the velocity of phonons an arbitrary taken value of 

a typical sound velocity in ceramics ϑ = 4000 ms-1 [53] was applied. From the data plotted in figure 5 

one can notice that the phonon mean free path in the whole investigated temperature range is at least 

two orders of magnitude smaller than the linear dimensions of crystallites forming the ferrite. Grain 

boundary scattering, therefore, is not the most important phonon scattering mechanism even at the 
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Figure 5. Temperature dependence of the phonon mean free path in the investigated 

Cu0.3Zn0.7Ti0.04Fe1.96O4 (squares) and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 (triangles) ferrites. The high 

temperature part of the dependence is well approximated by a function ~𝑇𝑇−1, which is shown 

schematically with a solid line. Such temperature dependence of the phonon mean free path found for 

both samples may be considered as an evidence of domination of U-processes in phonon scattering 

processes in this temperature region. 

 

lowest investigated temperatures. Such a short low-temperature phonon mean free path, again seems to 

confirm the fractal structure of the grain of the investigated ferrites [49]. In the temperature range 20 – 

180 K the dependence can be roughly approximated by T -1. This may be considered as evidence of 

dominating phonon-phonon interactions in U-processes in these temperatures [54]. 

 

3.4. Thermal diffusivity  

The value of the thermal diffusivity is of great importance in case of functional materials which are 

designed for generating travelling waves. The thermal diffusivity coefficient is given by the following 

expression  
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Figure 6. Temperature dependence of the thermal diffusivity coefficient for the investigated 

Cu0.3Zn0.7Ti0.04Fe1.96O4 (squares) and Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 (triangles) ferrites. 

 

 

𝛼𝛼(𝑇𝑇) = 𝜅𝜅(𝑇𝑇)/�𝜌𝜌𝐶𝐶𝑝𝑝(𝑇𝑇)�.    (2) 

It can be seen clearly that the thermal diffusivity coefficient depends linearly on the mean free path of 

the phonons. The dependence of the coefficient on temperature, found for the investigated samples, was 

calculated with the above equation. Results are shown in figure 6. The thermal diffusivity over the whole 

investigated temperature range is a little higher for Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 than for 

Cu0.3Zn0.7Ti0.04Fe1.96O4 ferrite and both are comparable to the group of ceramics showing rather low 

thermal diffusivity coefficient [46]. 

The thermal diffusivity values determined above can be used to estimate the characteristics of thermally 

actuated waves in the ferrite material. In the targeted application, the ferrite disk is heated repeatedly by 

a heater placed around its periphery, as shown schematically in figure 1(a). In the simplest analysis, we 

can assume the cylinder to be infinite. Due to the axisymmetric geometry, a 1D model where temperature 

is only function of radial distance and time, i.e. T(r,t), can be used. If the parabolic heat diffusion 

equation is assumed to hold, the temperature distribution within an infinite plain cylindrical sample 

(radius a) subjected to the steady-periodic surface temperature 𝑇𝑇(𝑎𝑎, 𝑡𝑡) = 𝑇𝑇0 + 𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  with 𝜔𝜔 = 2𝜋𝜋 𝜏𝜏0⁄  

is given by [55]  
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𝑇𝑇(𝑟𝑟, 𝑡𝑡) = 𝑇𝑇0 + 𝐴𝐴 𝐼𝐼0(𝑘𝑘𝑘𝑘)
𝐼𝐼0(𝑘𝑘𝑘𝑘)

𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖     (3) 

 

where I0 is the modified Bessel function of the first kind zero order and 𝑘𝑘² =  𝑖𝑖ω
𝛼𝛼

, where α is the thermal 

diffusivity. Note that this equation is only valid if the period of the applied excitation, 𝜏𝜏0, is much larger 

than the intrinsic thermal relaxation time (τ) of the material, otherwise more sophisticated models [56] 

and the hyperbolic form of the heat equation [57] should be used. In such a case one has 𝑘𝑘² =  �𝑖𝑖𝑖𝑖−𝜏𝜏𝜔𝜔
2�

𝛼𝛼
 

[55]. The order of magnitude of the thermal relaxation time estimated for metals, and semiconductors 

ranges between 10-12 s and 10-6 s [58]. Even if τ is probably larger for ceramics and at cryogenic 

temperature, its effect is likely negligible since the temperature excitation period 𝜏𝜏0, is of the order of 1 

second or more. From the formulas above, the thermal diffusion length µ is given by 

𝜇𝜇 = �2𝛼𝛼
𝜔𝜔

.     (4) 

 

Good working conditions require the thermal diffusion length to be of the order of the sample radius. 

Due to their thermal conductivity being significantly lower than gadolinium around its Curie 

temperature [59, 60], the thermal diffusivity of the ferrite compounds around their Tc is approx. 2.6 times 

smaller than that of gadolinium around its transition temperature. In order to activate the entire volume 

of the sample, therefore, the period of the temperature excitation for ferrites has to be increased 

accordingly. In practice, the real system involving a ferrite sample of finite height is more complex that 

a simple radial heat flow and numerical magneto-thermal simulations should be used [61]. The thermal 

property values determined in this work are therefore of definite interest for the finite-element modelling 

of the magnetization of superconductors using thermally actuated materials. 

 

4. Conclusion 

The measurements of magnetic susceptibility, specific heat and thermal conductivity coefficient 

dependencies on temperature of Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 and Cu0.3Zn0.7Ti0.04Fe1.96O4 ferrite 

ceramics were carried out in the temperature range 2 – 300 K. The investigated ferrites are characterized 

by a magnetic order-disorder phase transition in the temperature range 120 – 170 K. Neither specific 

heat, nor thermal conductivity, data show evidence of noticeable contribution of magnetic subsystem 

thermal excitation to the whole thermal energy of the investigated ferrites. This fact, along with high 

electrical resistivity of the ceramics, testifies to the dominant phononic character of thermal excitation 

and thermal transport in the ceramics. From the thermal parameters obtained in the experiment, phonon 

mean free path and thermal diffusivity dependencies on temperature were inferred. The low-temperature 
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dependence of the thermal conductivity coefficient on temperature and the value of the phonon mean 

free path at low temperatures suggest a mesoscopic fractal structure of the grains of the investigated 

ferrites. According to a theoretical estimation of the properties of thermal waves in cylindrical geometry, 

the magnetic and thermal characteristics of Mg0.15Cu0.15Zn0.7Ti0.04Fe1.96O4 and Cu0.3Zn0.7Ti0.04Fe1.96O4 

ferrite ceramics, which were specified in the current paper, make them good candidates for magnetic 

wave producers in devices for magnetization of high-temperature superconducting ceramics. 
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