Results
Median FU was 36 months and 25% of patients had a FU of at least 60 months. The 5y-Cif of cGVHD was 58%. Sex mismatch (F>M) increased risk of cGVHD (HR: 1.41, P=0.02). The 5y-Cif of relapse was 34% and was higher with MUD than MUD (39% vs. 24%, P=0.038). Only MUD=60y resulted in significant higher risk of relapse than MUD (HR: 2.46, P=0.006) while MUD <60y had similar risk. The 5y-NRM was 26%. MUD vs. MUD was associated with higher NRM (HR: 1.84, P=0.005). The 5y-OS was 46% and was similar with MUD and MRD. MDR=60y appeared to have notable low 5y-OS (6%, 6%). Transplantation from MDR=60y was associated with higher risk of late (=18 months) mortality (HR: 4.36, P=0.007) than MUD (Fig. 1).

Conclusion
After PB SCT, MUD provided higher NRM but better disease control and similar OS than MUD. A sex mismatched donor (F>M) was associated with higher risk of cGVHD. We observed notable poor outcome for patients transplanted with MRD=60y. One may thus question HCT with old MUD when a younger MUD is available.

O.4 Combination of regulatory T cells injection with rapamycin for treatment of chronic Graft-versus-Host disease
L. Belle, M. Binsfeld, M. Hannon, J. Caers, A. Briquet, M. Menten, Y. Beguin, S. Humblet-Baron, F. Baron
University of Liège

Background
Chronic graft-versus-host disease (cGVHD) occurs up to 50 % in long-term survivors and is one of the main complications after allo-HSCT. Donor CD4+ and regulatory T cells (Tregs) are the key-players in its pathogenesis. Moreover, rapamycin, a mTor inhibitor, could suppress activation and proliferation of effector T cells and expand in vitro Tregs.

Aims
To assess the combined treatment of Tregs and rapamycin injections in vivo for cGVHD.

Results
Lethally irradiated Balb/C mice were injected with 10x10^6 bone marrow cells and 70x10^6 splenocytes from B10.D2 donor mice. Twenty-one days later, the treatments were started (PBS, rapamycin 1 mg/kg/Day, Tregs 1.10^6 cells) or rapamycin 1 mg/kg/Day + Tregs 1.10^6 cells). No significant differences were observed between survival of PBS-treated (Median: 40 days) compared to rapamycin alone or Tregs alone (Median: 46 days, p=0.1390; Median: 46 days, p=0.2450 respectively) while survival of mice receiving rapamycin and Tregs was increased (p=0.0074). Twenty-one days after starting the treatment, number of CD4+ T cells was significantly decreased in Tregs (37.0010.00; Median: 46 days, p=0.0303) and Tregs + rapamycin-treated (27.0056.00; p=0.0293) compared to PBS mice (95.00100.50). Proliferation of CD4+ T cells (assessed by flow cytometry unsing Ki67) was only significantly decreased in Tregs + rapamycin-treated mice (19.609.17 versus 36.8012.40; p=0.0043). Number of cells per microliter and proliferation of both effector and central memory T2 cells loaded with agonist peptide, was observed. In vitro proliferation of CD4+ T cells was significantly decreased in Tregs + rapamycin-treated mice (15.353.80, no significant differences were seen in the number per microliter.

Conclusion
Regulatory T cells injection combined with rapamycin daily administration seems to treat cGVHD in vivo by combining the beneficial effect of these treatments.

O.5 In vitro generation of antigen-specific T-cells from hematopoietic progenitor cells: a new and promising immunotherapeutic strategy
Ghent University

Introduction
Transfer of high-affinity tumor-specific T-cell receptor (TCR) genes into polyclonal peripheral blood T-cells is an attractive immunotherapeutic strategy against malignancies and viruses. However, inappropriate cross-pairing between introduced and endogenous TCR chains can result in suboptimal activity and unpredicted, potentially harmful antigen-specificities. Efficient in vitro generation of antigen-specific T-cells from CD34+ hematopoietic progenitor cells (HPCs) may eliminate these restrictions, based on the hypothesis that early introduction of rearranged TCRα and TCR chains might result in allelic exclusion of the endogenous TCRα and/or TCR locus. We and others have previously shown that HPCs commit to the T-cell lineage and become CD4+CD8+ double positive (DP) precursors when cultured on OP9-DL1 stromal cells.

Results
CD34+ HPCs from human postnatal thymus were retrovirally transduced to express the TCRα and TCR chains of HLA-A2 restricted TCRs recognising epitopes of cytomegalovirus (CMV pp65) or Wilms’ tumour 1 (WT1). Differentiation in transduced cultures was studied. We confirmed earlier reports showing that terminal maturation of TCR-transduced DP cells to mature CD8+ single positive (SP) cells occurs, albeit at low efficiency. We hypothesised that the observed maturation involved selection by TCR binding to HLA class I/peptide complexes present in culture. Therefore, we added the respective agonist peptide to the cultures. This induced rapid phenotypical maturation to CD27+CD1 of the majority of TCRα+ DP cells. Antigen presentation by HLA-A2+ dendritic cells, HLA-A2+ tumour cell lines, and even cross-presentation by HLA-A2+ T-cell progenitors, but not by HLA-A2 cells, induced this maturation process. The mature cells are CD8α+ or CD8αa5P and CD4+CD8- cells. These cells expanded upon culture with PHA and IL-2 on irradiated feeders, indicating functionality. Upon activation, specific killing of T2 cells loaded with agonist peptide, was observed. In vitro generated T-cells showed clearly higher percentages of tetramer-positive cells compared with TCR-transduced peripheral blood T-cells. Spectratyping revealed major inhibition of endogenous TCRa and TCR gene rearrangements.

Conclusion
In vitro generation of functional antigen-specific T-cells from CD34+ HPCs is a promising new immunotherapeutic strategy.

O.6 Infusion of CliniMACS® (Miltenyi Biotec) enriched regulatory T-cells delays experimental xenogeneic graft-versus-host disease.
M. Hannon1, C. Lechanteur1, J. Somja1, S. Lucas1, L. Belle1, F. Bruck1, E. Baudoux1, Y. Beguin1, S. Humblet-Baron1, F. Baron1