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1 Glossary 

AD: Anaerobic Digestion 

Al: Aluminium 

APC: Air Pollution Control 

BTF: Bio Trickling Filter 

CaO: Calcium oxide 

CH4: Methane 

CHP-unit: Combined Heat and Power unit 

CO2: Carbon dioxide 

CSDU: Centre de Stockage des Déchets Ultimes 

C/N ratio: Carbon to nitrogen ratio 

DM: Dry Matter 

EBPR: Enhanced Biological Phosphorus Removal 

Fe: Iron 

FeCl3: Iron (III) chloride 

GAC: Granule Activated Carbon 

HC: Hydrocarbon 

hrs: Hours 

H2O: Water 

H2S: Hydrogen sulfide 

kg/d: Kilogram per day 

kg/m³.d: Kilogram per cubic meter per day 

kg/t: Kilogram per ton 

kg CaO/t: Kilogram of calcium oxide per ton 

kg K2O/t: Kilogram of potassium oxide per ton 
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kg MgO/t: Kilogram of magnesium oxide per ton 

kg N/t: Kilogram of nitrogen per ton 

kt P/y: Kiloton of phosphorus per year 

kV: Kilovolt 

kW: Kilowatt 

kWe: Kilowatt electric 

kWh: Kilowatt hour 

kWh/d: Kilowatt hour per day 

m³: Cubic meter 

m³/d: Cubic meter per day 

m³/h: Cubic meter per hour 

MAP: Magnesium Ammonium Phosphate 

mbar: Millibar 

mg/L: Milligram per liter 

mm: Millimeter 

MWe: Megawatt electric 

MWh/d: Megawatt hour per day 

MWth: Megawatt thermal 

µm: Micrometer 

µS/cm: Micro-siemens per centimeter 

N: Nitrogen 

NaOH: Sodium hydroxide 

Nm³: Normal cubic meter 

Nm³/h: Normal cubic meter per hour 

N2: Molecular nitrogen 
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P: Phosphorus 

Sm³/h: Standard cubic meter per hour 

t/y: Ton per year 

UASB: Upstream Anaerobic Sludge Blanket 

UK: United Kingdom 

VFG waste: Vegetable, Fruit and Garden waste 

WWTP: Wastewater treatment plant 

<: Inferior to 
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2 Introduction 

Domestic and industrial waste streams such as wastewater and organic waste contain a lot of 

valuable macronutrients (e.g. nitrogen, phosphorus and potassium) and micronutrients (e.g. heavy 

metals and rare earth elements). In the past, most of these materials were just landfilled or 

discharged, causing environmental damage and losses in nutrients. An advanced system of domestic 

waste collection, sorting and recycling has been applied for years in most European countries, 

leading to a gradual shift to sustainable resource management. Furthermore, industry is making 

efforts to gain a green image and invest in recycling and recovery techniques. 

The Interreg IVB project BioRefine aims at facilitating the shift to a circular, bio-based economy in 

North Western Europe by using an action-oriented approach consisting in providing applied 

technological solutions for improved recycling and recovering of valuable minerals from different 

wastestreams. This report gives an overview of the most popular techniques (full-scale or under 

development) for nutrient recovery applied to solids and liquids of domestic or industrial origin. 

 

3 State-of-the-art nutrient recovery techniques from household 
and industrial wastes  

Different techniques can be applied to household and industrial wastes. Here, we will consider 

different types of wastes, including sewage sludge, leachate from landfills and other organic 

materials. Liquid and solid states will be considered. 

 

3.1 Composting of organic domestic waste 

3.1.1 General context 

The vegetable, fruit and garden (VFG) waste left over by households can be composted on a small 

scale at home (the so-called small cycle) or selectively collected and composted on a large scale. The 

collection can be organized by inter-municipal waste agencies, as is the case in Belgium, from door-

to-door or at the communal waste recycling depot. Some regions collect both VFG and green waste 

(from parks, gardens, nature reserves, roadside verges, etc.) together, others collect them separately 

(Vlaco vzw, 2015). Vegetable, fruit and garden (VFG) wastes can also be collected selectively and 

used for the production of heat and electricity through anaerobic digestion. From an energetic point 

of view, this is the most effective route, since both energy as heat and electricity and a valuable 

residual product, digestate, are developed. Digestate can be composted and results in a sufficiently 

hygienized product. In Flanders, the quality of the compost obtained is certified by the Flemish 

Composting Organization (Vlaco vzw), which means that quality is ensured and so, the compost can 

easily be marketed. Besides composting, the digestate can also be processed by mechanical 

separation, drying, filtration, etc. as described in the BioRefine report ‘Recovery techniques from 

digestate and digestate derivatives’. 
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3.1.2 Description of the technique 

The professional composting process consists of different processing steps. Pre-treatment is 

necessary for effective composting. This step includes mixing, size reduction and piling, and is shown 

in Figure 1. The optimal shape of the pile depends on the composting system. In general, the volume 

has to be large enough to prevent cooling and drought at the edges. The composting process is 

conducted by bacteria and fungi already present in the organic material. As long as there is oxygen 

inside the pile, the microflora and  -fauna compost very intensively ,causing a temperature rise up to 

50-77 °C.  During the process, oxygen is used, which results in an incomplete oxidation of the carbon 

compounds, causing the formation of fatty acids and other organic acids. This pH decrease causes 

the process to slow down. By turning over the pile and if necessary moisturizing it, more oxygen is 

brought into the system and the water content is optimized, causing decomposition.  A major 

advantage of high temperature in combination with high moisture content is that weed seeds lose 

their germinating power. In this way, a ‘hygienized’ product is obtained. In general, the composting 

of green waste takes place in open air, while the composting of vegetable, fruit and garden waste 

takes place in an enclosed space (Vlaco vzw, 2015). 

In a third phase, the ripening process, the microfauna causes a structural and biological 

transformation of the material in the compost and plays a role in the mixing process of organic and 

mineral compounds. Depending on the process, the post-ripening phase lasts from 3 weeks to 3 

months. The last phase, called post-treatment, includes the refinement of the compost, which 

consists in sifting unusable parts and splitting the compost into different granulometric fractions 

depending on the end-use. In practice, this is done through drum or star sieves. The benefit of 

sieving is that possible contaminants (rocks, metal, plastic, etc.) remain in the sieve. At least one part 

of the sieve remainders will be transferred to the beginning of the process. In this way, enough 

structural material remains in the process and the starting material is inoculated with already active 

organisms (Vlaco vzw, 2015). 

The process parameters of the composting process are monitored with great accuracy. The 

regulation of humidity, temperature (around 55 - 70 °C) and ventilation is completely computerised. 

It is important to keep these conditions as optimal and stable as possible to ensure a decent 

bacteriologic composting process. In the case of the process used by EcoWerf, which collects the 

VGF-biomass from about 27 communities and has about 45,000 tons of VGF wastes composted each 

year in Flanders, the biomass is subdivided in different flows after the composting step: 

- The biggest parts are not recuperated and will be disposed of as such after removal of the 

plastics. 

- The smaller parts that fall through the first sieve will then be separated again by another 

sieve, which leads to two flows of materials: 

o The biggest particles are those which have not completely finished the composting 

process and will therefore be used as inoculation material at the beginning of the 

pre-treatment. This also provides some structure to the fresh VGF wastes. 
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o The smallest particles (size of about and less than 1 mm) are the actual compost. At 

this stage, the compost is not ready for use, as it needs some further maturation. 

 

 

 

Figure 1: Compost post-treatment. 

Source: Vlaco vzw 

 

 

3.1.3 Unit operations 

The case described below is the set-up that is actually implemented at EcoWerf in Vlaams-Brabant 

(Belgium).  

 

Reception / Storage volume (A) 

The collected VGF will be dumped in this volume straight from the collection vehicle. In Flanders, a 

lot of VGF-composting units have developed a separate collection strategy, so there is no direct 

interference with other (non-organic) household wastes at this stage.  

The presence of the VGF-biomass during this storage step is rather limited in time: in order to obtain 

an optimal composting process and prevent rotting and production of odorous gases, it is necessary 

to have the biomass treated within short notice (max. 48 hrs). The biomass is taken from these 

bunkers with grip arms and placed on belt conveyors for transportation between the different 

treatment steps. 

 

 

 



Techniques for nutrient recovery from household and industrial wastes 

  

BIOREFINE – WP2 – A5 – P1, 2, 8 – D 9

Rotating sieve (B) 

The sieve in the pre-treatment stage will do a first screening of the particles based on their size. A 

mesh-size of around 16 mm is usually used. The particles that fall through the sieve (< 16 mm) can 

go straight to the composting unit. The bigger particles will have to pass the crusher (see Unit 

Operation D) to decrease in size.   

 

Ferro Detector (C) 

Throughout the process, there are different places where the metals present in the biomass (e.g. 

knives, forks, etc.) are removed. This is done by using a magnet moving above the biomass (without 

actually touching it). 

 

Crusher (D) 

In the composting process, it is important to have a good surface/volume-ratio. As it is a 

microbiological process, the bacteria need the surface to cling to.  An increase of the surface-volume 

ratio is obtained by crushing the bigger particles at the inlet. 

 

Wooden branches remover (E) 

This is a claw-shaped device that removes the branches that fell through the sieve from the biomass. 

The wood that is recovered here can be chopped and used as structure material in the composting 

unit or to fill the bio-filters for the odour treatment. 

 

Composting (F) 

Dependent on the type of biomass that is composted, one can decide between open-air composting 

and indoor composting. In the VGF’s composting applications, only indoor composting is in use.  

There are different ways to actually implement indoor composting, but the 2 most popular ones are 

done either in big halls or in tunnels.  EcoWerf’s choice fell on indoor composting. The biomass will 

remain for about 5 weeks in the “composting zone” in which it is turned around on a weekly basis so 

as to allow “passive” aeration.  

In order to obtain a highly effective bacterial activity, it is essential to use optimal process 

parameters: the right moisture content, oxygen level and temperature are of the utmost 

importance. In order to keep the moisture content at a high level, fluid is sprayed over the 

composting material – this can be fresh water, but whenever it is possible, it is the percolate liquid 

from the storage of the biomass that is used. The oxygen level is controlled by the ventilation of air 

through the biomass. As this ventilation greatly impacts the temperature of the composting 

biomass, the type of ventilation will depend on the temperature: if the biomass temperature is too 
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high, outside air will be ventilated through the composting hall. If it is too low, the inside air will be 

recirculated and used for aeration.  

The air inside the composting hall has about 45°C and relative moisture of 100%. During the process, 

there will/can be an accumulation of odour in the air, which makes it necessary for it to be treated 

before being discharged to the open air. This is done by a bio-filter system filled with wooden 

material that is also collected by EcoWerf. 

 

Plastics removal (G) 

After the composting step, the plastic materials are removed by using a wind-shifter that uses the 

differences in density to lift out the plastics. 

 

Sieve 1 - composted material (H) 

In a first step, the separation of the bigger material from the composted material is achieved. This 

material contains too big particles for recirculation and will be disposed of “as such”. 

 

Sieve 2 - composted material (I) 

The next step is the separation of the actual compost from the inoculation material. All particles 

exceeding 10 to 15 mm in diameter are seen as inoculation material. Inoculation materials are 

“compostable” but not yet fully composted – this part of the biomass will be recirculated to the start 

of the process where it will be mixed together with the fresh incoming compost. 

The smaller particles (< 10 to 15 mm) are considered to be actual compost, and will go through a 

maturation phase in order to ensure the stability of the material. 

 

Maturation (J) 

The final step of the composting process is the maturation phase, which lasts about 5 weeks. Here, 

the composting process slowly goes on in the most resistant parts of the biomass. This can be done 

either indoors or outdoors, though it is more common for it to be done in a covered area. The 

necessity of turning over the material remains for the sake of aeration. Some additional aeration and 

moistening might even be required to ensure the continuation of the process. 

The process scheme is shown in Figure 2. 
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3.1.4 Process scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Process scheme of compost production. 

Source: EcoWerf 
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3.1.5 Characterization of end product 

Compost is a stable, hygienized and humus rich end product. It has a high content of stable organic 

matter and nutrients which become gradually available for plants. The composition of certified 

compost (according to Vlaco vzw) is shown in Table 1. 

 

Table 1: Average composition of Vlaco certified compost obtained from VFG and green wastes. 

 

 VFG compost Green compost 

Dry matter (kg/ton) 700 600 

Organic matter  (kg/ton) 250 200 

Electroconductivity (µS/cm) 2500 1000 

pH-H2O 8 8 

Total nitrogen (kg N/ton) 12 7 

Total phosphorus (kg P2O5/ton) 7 2.8 

Total potassium (kg K2O/ton) 10 6 

Total calcium (kg CaO/ton) 23 16 

Total magnesium (kg MgO/ton) 5 3 

C/N ratio 12 17 

Germinative seeds Absent Absent 

Pathogens Absent Absent 

 

Source: Vlaco vzw 

 

3.1.6 Useful contact(s) for further information 

EcoWerf (Belgium) 

Email address: see the website www.ecowerf.be 

 

Vlaco vzw (Belgium) 

Email addresses: elke.vandaele@vlaco.be, wim.vanden.auweele@vlaco.be 
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3.2 Composting combined with energy production 

3.2.1 General description 

This second process is very similar to the previous one, but with an additional treatment step in 

between. In this case, the production of composting material from VGF waste will be combined with 

the production of renewable energy. 

The plant that is described below is the plant of Méthavalor (Sydème) in Morsbach (France). This site 

has been operational since 2011 and treats about 42,000 tons of waste per year (385,000 

inhabitants). About 32,000 tons of that waste consist of VGF waste disposed of by the inhabitants of 

surrounding regions, 5,000 tons of organic waste come from restaurants and similar businesses and 

the remaining 5,000 tons are green wastes. In the installation, 1 ton of VGF is converted to 100 m3 of 

biogas (which corresponds to 70 litres of gasoil) and 200 kg compost. 

 

“Multiflux” sorting 

The collection of the waste is slightly different from the traditional collection process: inhabitants 

have to put their wastes in plastic bags of different colours. Green bags are meant for biological 

waste (VGF), orange bags are for plastics and metals and blue bags are for all other types of 

domestic wastes. All these bags are collected simultaneously, which contributes to reducing 

collection expenses, since waste is collected only once instead of 3 times. 

When all the bags are delivered to the site, they are sorted optically and directed to the sites they 

are meant for: the green bags are sent to the biomethane recovering unit, the orange bags are sent 

to “recyclable waste” stock (recycling is done on a different site), and the blue bags will be further 

treated (landfilled) at the “Centre de Stockage des Déchets Ultimes (CSDU)”.  

 

Preparation of the biodegradable waste 

After the separation of the green bags from the other waste, the preparation of the bio-waste for 

use in the biogas production starts. As mentioned above, there are several types of bio-wastes that 

will be processed in the biogas production: (1) VGF from households (green bags) (2) organic waste 

from restaurants, markets, etc. that arrive in bulk (3) green waste and (4) liquid waste (e.g. fats, food 

oil). Each type of waste is treated differently: 

- VGF from households (in bags) 

The first step is the opening of the plastic green bags. Once opened, the contents are spread 

on a moving sieve, while the plastic bags are removed by a wind-shifter. This way all the 

bags are collected and can be collected. All the material that gets through the sieve will be 

directed straight to the intermediate storage unit. The material that is oversized will first go 

through a shredder. The materials are also removed by magnets located above the conveyor 

belts. 
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- Organic waste (in bulk) 

This type of waste is free of plastics as it comes straight from alimentary sources. The 

material is guided straight to the shredder system before being sent to the intermediate 

storage unit. 

- Green waste 

This type of waste is also crushed to smaller particles in the shredder.  

- Liquid waste 

There is no actual pre-treatment of the liquid waste. This type of bio-waste is stored and will 

go through the process, in which the different flows and the recycled flow from the 

digestate will be mixed together. 

 

Mixing step 

At this point, all the above-mentioned flows are mixed together to the actual “feedstock” for the 

digester. But before this incoming organic biomass can be converted into biogas in the digesters, it is 

important to obtain a feeding mix that meets the process requirements of the digester. To have an 

optimal biogas production, several conditions must be fulfilled:  

- The incoming biomass (and consequently also the content of the digester) must show an 

optimal dry matter (DM) content. This is essential in order to ensure a good mixing and 

dynamics within the digester. As this is a “dry digester” type, it can take a higher DM 

content, which means that some problems might come up if the material is too dry. 

- There must be some inoculation of the “fresh” biomass with a recycle-flow coming from the 

digester. This contributes to speeding up the digestion process. 

In order to meet these requirements, several precautions have been taken:  

- There is a constant flow from the digestate treatment to this mixing point (= recycled flow) 

which ensures the inoculation of the fresh material and a lowering of the DM concentration. 

Only the liquid part of the digestate (after the separation step) is recycled. 

- Also the liquid waste is added in order to lower the DM content. If there is too little liquid 

waste to obtain a good DM-content, it is possible to add some fresh water. 

From this point, the mixture (= fresh input material + water + recycled flow) is directed to the 

digesters.  

 

Digesters  

The characteristics of the input material (i.e. a higher DM-content, about 30 to 35 % DM) require the 

implementation of a dry digester, which has the advantage of being able to operate with a higher 

DM-content: digestate of 25 to 35 % DM against up to 15 % DM in a “wet digester”. The need to add 

water is therefore limited in this system. 



Techniques for nutrient recovery from household and industrial wastes 

  

BIOREFINE – WP2 – A5 – P1, 2, 8 – D 15

At Méthavalor, there are 3 parallel horizontal digesters. Each digester treats about 15,000 ton/year. 

Multi-line work provides optimal flexibility and capacity throughout the year. 

Within the digester, the biomass is converted into biogas through the anaerobic process. On 

average, a biogas production of 110 to 120 Nm3 per ton of VGF material is achieved. There are 

seasonal variations in the biogas-production: in winter, the material coming from households does 

not contain garden waste, which generates a higher biogas production. In summer, a bigger fraction 

of the incoming VGF is composed of garden waste (grass, weeds, etc.) which have a lower biogas 

potential. This difference of composition leads to an overall lower biogas production per ton of VGF. 

There are 2 outputs from a digester: biogas and digestate. On the site of Méthavalor, both these 

flows are further processed for recovering. 

 

Digestate treatment 

The raw digestate coming from the digester is processed in order to separate the l liquid from the 

thick fraction. This is done by using a 2-step separation system. Digestate first goes through 3 screw 

presses working in parallel. The second step consists in having 2 centrifuges take out as much as DM 

as possible from the liquid fraction. This liquid fraction is collected by farmers and applied on land as 

a fertilizer. The thick fraction will go through a complete composting process in a tunnel composting 

unit. The final compost is sold either in bulk or in small bags. 

 

Biogas valorisation 

On the Méthavalor site, there are 2 different ways of recovering biogas: either through a 

cogeneration unit or a biogas production one. These two plants are located on the site: 

- Cogeneration 

Part of the biogas is burned in a cogeneration unit to produce electricity and heat. The 

overall electricity production capacity is about 1.7 MWe. This electricity is primarily used to 

provide power to all the equipment on the site and the non-consumed electricity is directed 

to the grid. The heat produced by this cogeneration unit (about 2 MWth) is used to heat the 

digesters. It can also contribute to heating other applications either on the site or elsewhere. 

One Nm3 of biogas corresponds to about 2.4 kWe and 2.8 kWth when burnt in a 

cogeneration unit. 

- Biomethanisation 

The part of the biogas that is not burnt in the cogeneration unit will be “upgraded” to a level 

similar to the one of natural gas. In order to do this, CO2 and other impurities have to be 

removed from the biogas. This purification is achieved in different steps: 

o Drying of the biogas (removal of water), 

o Purification with active coal (removal of H2S), 

o Compressing by increasing the pressure from 16 mbar to 10 bar, 

o 2-step Pressure Swing Adsorption (removal of CO2), 
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o Filter (final H2S removal). 

The bio-methane that is produced has to be odourised so that people can smell the gas in 

case of accidental release into the air. On the Méthavalor site, this bio-methane is used as 

fuel.  For each Nm3 of biogas that goes into the system, about 0.5 Nm3 of bio-methane is 

produced. The CO2 that is separated from the methane will be recycled in the digesters. 

 

3.2.2 Unit operations 

“Multiflux” sorting (A) 

The “Multiflux” system will ensure the separation of the different types of coloured bags towards 

the right treatment system. It is a set of cameras and optical sensors combined with conveyor belts. 

There is always an additional “control step”, and in case 2 bags are accidentally misdirected, they 

will automatically be returned to the bulk storage. 

 

Bag Opener (B) 

All the organic waste coming from households is delivered in plastic bags which are taken to the 

ripper head on conveyor belts. The ripper head consists of ripper tines. The ripper head (rotor) 

holding the tines rotates in the opposite direction to the flow of material. 

 

Plastic Removal (C) 

Plastic (from the bags and similar objects) is removed by a wind-shifter. 

 

Sieve (D) 

As with the standard composting process, the particles that go into the system have to be small 

enough to ensure good interactions with the bacteria (both in the anaerobic treatment and in the 

composting unit.). Therefore, it is important to crush the parts that are too big. Normally, the size of 

the particles that go into the system should be less than 16 mm. All the particles that fall through the 

sieve go straight to the intermediate storage unit. The bigger parts go through the crusher. In this 

case, the sieving device is part of the conveyor belt. 

 

Crusher (E) 

Particles the size of which is superior to 16 mm will be crushed to a smaller size. 

 

Ferro Detector (F) 

Metals are removed by using big scale magnets that are located around the conveyor belts. 
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Sieve (G) 

With a mesh size of 12 to 16 mm, this will subdivide into smaller particles that can be stored in the 

intermediate storage unit for further processing and bigger ones that will be sent to the crusher 

again. 

 

Intermediate storage (H) 

The intermediate storage unit is a place in which all incoming organic flows (except the liquid ones) 

can be kept until further treatment. Given the fast decomposition of the material, it is essential (e.g. 

for the biogas production) for the retention time in this intermediate storage phase to be as low as 

possible. 

 

Mixer (I) 

At this point, the feed mix for the digesters is prepared, with a certain level of DM content and 

required inoculum. In this step, the mixing of incoming solid organic waste, incoming liquid organic 

waste and part of the thin fraction of the digestate is achieved. Water can be added to the mix if 

necessary to regulate the water content. 

 

Digester (J) 

Three dry digesters (type Kompogas) are used. These reactors are all plug-flow digesters that work 

non-stop, which makes it more convenient to manage both the manpower involved and the 

downstream located biogas-recovering equipment. The retention time of the organic material varies 

from 14 to 20 days. A low-speed agitator prevents the sedimentation of dense media materials and 

will take the material to the exit of the digester. The temperature inside the digesters is 50 – 55 °C, 

which corresponds to thermophilic conditions. The advantages of this higher temperature 

(compared to the one measured in mesophilic reactors) is that the conversion and digestion process 

occurs faster and that the material is free of spores, germs and micro-organisms after passing 

through the digester. On the other hand, the system is more sensitive to calamities and instabilities, 

which means that a closer monitoring of the system is required. 

 

First separation (K) 

A first division of the digestate is done with 3 screw presses. In this process, about 25 – 40 % of the 

DM are removed from the digestate. The thick fraction is sent to composting whereas the thin 

fraction will be further treated. It is important to note that, at this point of the process, there is a lot 

of odour production due to the loss of pressure and therefore a release of ammonia. This factor 

must be taken into account for the set-up of a similar plant, as this will require an adequate odour 

treatment system. 
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Second separation (L) 

In the second separation step, the DM that remained in the liquid fraction coming from the screw 

presses will be further removed. As in this phase the DM-removal effectiveness needs to be higher, 2 

parallel centrifuges have been installed. The removal potential of a centrifuge is normally about 75 % 

of the DM. 

 

Composting (M) 

The thick fraction coming from the screw presses and the centrifuges will be further composted. This 

is done in the same way as in the stages described before. The fully matured compost is sold in bulk 

or in bags. 

 

Cogeneration unit (N) 

Part of the biogas produced in the digester is transformed into heat and electricity in a cogeneration 

unit or in a combined heat and power plant (CHP unit). The total capacity of Méthavalor is 1.7 MWe. 

The heat produced is used to heat the digesters and other equipment or even buildings in the 

district. The heat produced by a CHP unit is available at different levels: the higher temperature level 

corresponds to the heat coming from the exhaust gases of the engine. The temperature of these 

exhaust gases at the outlet of the engine varies from 400 to 450 °C. About 20 – 25 % of the incoming 

energy is converted into heat. The lower temperature results from the heat coming from the cooling 

water from the engine. This heat is available at 55 or 90 °C.  As this second type of heat is part of the 

cooling system, the cooling away of this heat is crucial for the smooth running of the CHP-engine. In 

case the heat is not consumed, it will be cooled away in air-coolers. About 20 – 25 % of the incoming 

energy is converted into this lower level heat. The power is used all over the plant – the remaining 

part is sent to the electricity grid. About 40-45 % of the energy generated by biogas is converted into 

electricity in the CHP-unit. Working with 2 CHP-engines (700 kWe and 1000 kWe) has the advantage 

that in case of maintenance of one of the devices, the other one can ensure enough energy 

production to keep the plant running. 

 

Drying (O) 

The biogas that is not burned in the CHP unit will be dried in order to remove the water it contains. 

This is done by cooling, leading to water condensation. After that, the condensed water is removed 

and the biogas is heated up again. 

 

Active Coal (P) 

Active coal is used to remove different kinds of impurities from biogas, among which H2S, siloxanes 

and other volatile organic compounds. 
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Compressor (Q) 

The pressure in the digesters is only 16 mbar, which is not sufficient to pass the complete processing 

unit and to obtain actual bio-methane. In this process, a pressure of about 10 bar is required. The 

rise (in pressure) from 16 mbar to 10 bar is obtained with the help of a biogas compressor. 

 

Pressure Swing Adsorption (PSA) (R) 

Pressure Swing Adsorption (PSA) is a dry method used to separate gases thanks to physical 

properties. The raw biogas is compressed and fed into an adsorption column. In this column, CO2 

(carbon dioxide) is retained but methane (CH4) is not. If the column is saturated with CO2, the 

pressure is released and the CO2 will be desorbed and led into an off-gas stream. In order to be able 

to work in a continuous mode, it is important to work with multiple columns in parallel, which will 

alternately be closed and opened. The Méthavalor PSA-installation has a capacity of about 100 

Nm3/h (input biogas flow). 

 

Filtration (S) 

Just before the biogas can be turned into engine fuel, a removal of all remaining impurities is 

necessary. 

 

Odourisation (T) 

Methane (CH4) as such is odourless and cannot be smelled by humans. Therefore, in order to 

prevent unnoticed accidental releases, the bio-methane can be made detectable thanks to 

odourising agents. 

The treatment is presented in Figures 3 and 4. 
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3.2.3 Process scheme 

 

 
 

 

Figure 3: Process scheme of Méthavalor (part 1). 

Source: Sydeme-Méthavalor 

 

 



Techniques for nutrient recovery from household and industrial wastes 

  

BIOREFINE – WP2 – A5 – P1, 2, 8 – D 21

 
 

 

Figure 4: Process scheme of Méthavalor (part 2). 

Source: Sydeme-Méthavalor 

 

3.2.4 Additional comments 

The overall investment cost of the Méthavalor site is significant (about 40,000,000 €). Nevertheless, 

the operating company would like to extend the amount of digesters and to increase the capacity of 

the plant. 
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3.2.5 Useful contact(s) for further information 

DLV Innovision (Belgium) 

Email address: lies.bamelis@dlv-innovision.be 

 

Sydeme-Méthavalor (France) 

Email address: see website www.sydeme.fr/site/equip_methanisation1.php 

 

3.3 Anaerobic digestion – Rainbarrow farm plant 

3.3.1 General description 

In 2012, the first commercial anaerobic digestion process generating biomethane connected to Grid 

Plant in England was started at Rainbarrow farm, in Cornwall. The anaerobic digester at Rainbarrow 

farm is fed with maize, grass, potato waste, whey and small amounts of food waste (chocolate and 

muesli) from local factories. The plant uses around 41,000 tons of maize grass and potato waste 

from local farmers as well as organic waste (e.g. chicken manure) from local farms and factories such 

as Dorset Cereals and the House of Dorchester Chocolate Factory (Lermen, 2013). 

About 850 standard cubic metres/hour (Sm³/h) of biogas production can be achieved in the 

Rainbarrow plant. The gas produced (with approximately 53 % CH4) is shared between the energy 

generator and the biogas upgrading system (gas grid injection). About 200 Sm³/h of biogas is used to 

fuel a 400 kW generator. Around 50 % of the generated energy is used on site to supply the 

installation and the rest is exported. 

Up to 650 Sm³/h of biogas is led to the DMT Carborex® MS biogas upgrading plant, which cleans out 

the CO2 from the gas stream with a multistage system of membranes so as to reach a gas with a 

content of 98.4 % CH4. Before entering the gas networks, biomethane gets into the Net Entry Facility 

(NEF unit) where about 4 % propane is added to increase the biogas potential. At this stage, a 

specific gas odour is also added to the biomethane in order to match the quality of natural gas. The 

biomethane flow produced in Rainbarrow is around 400 Sm3/h which is enough to provide gas for 

4,000 houses in winter. Moreover, the plant produces 8,000 tons/year of digestate which can be 

used as a fertiliser (Langerak, 2013). 

 

3.3.2 Unit operations 

The Rainbarrow multi-stage system makes use of highly selective membranes making it possible to 

optimize methane production (98% CH4), reduce propane addition and obtain pure CO2 (>99.5 % 

pure). It is the only upgrading technology that also removes significant amounts of oxygen (up to 70 

%) (Langerak, 2013). 
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After anaerobic digestion, the gas produced goes over to the upgrading plant where 

desulphurisation, removal of carbon dioxide and dehumidification are done (Dirkse, 2015). 

 

Biogas compression 

The incoming biogas is compressed to 8-10 bar. Since biogas usually contains small amounts of 

hydrogen sulphide, an oil-free compressor is needed. The compressed biogas is cooled with water 

obtained via a cooling system. 

 

Removal of carbon dioxide and hydrogen sulphide 

After the cooling phase, carbon dioxide and hydrogen sulphide are removed in a scrubber. The 

scrubber is designed for mass and heat transfer. The gases are absorbed together with the water at 

a low and constant temperature. The recirculation water is fed into the absorber at the top, while 

the biogas flows through the absorber in the opposite direction. They come into contact in the 

absorber and the carbon dioxide and hydrogen sulphide in the biogas are reduced. Carbon dioxide 

and hydrogen sulphide dissolve better than methane in water. Some methane will also be absorbed, 

but this can be recycled in the gas-freeing phases. 

 

Gasses’ removal from circulation water 

Used circulation water with dissolved gases goes through a flash vessel at a 2-bar pressure in order 

to reduce the methane losses. The water is partly degased and the gas from the flash tank is 

recirculated to the inlet of the upgrading plant. The gas inside the multi-stage membrane system 

separates CO2 from CH4 thanks to different permeation rates. The methane losses are controlled by 

adjustments of the pressure in the flash tank. 

 

The recirculation water out of the absorber is recycled by gas freeing in three steps. 

 

- The recovered gas stream, with CO2, H2S and CH4 goes through the various pressure stages 

for methane separation. In the meantime, the recirculation water coming from the absorber 

is recycled by freeing gas, while water pressure is reduced from 10 to 2-4 bar so as to release 

more gases. The gas recovered then goes through the pressure stages. 

- The gas resulting from the lowest gas-freeing circuit with high concentration in CO2 either 

goes through the pressure stages again or is used as industrial raw gas. 

- The recirculation water coming from the methane recovery tower is sent into an air-

stripping unit in order to release CO2 and H2S. In the air-stripping tower, the air coming from 

outside is blown into a desorption tower where the recirculation water flows down the 

other way. Most of the CO2 and H2S is removed by stripping. The treated recirculation water 

is pumped back to the absorber. The air coming from the air-stripping unit is sent to a Bio 

Trickling Filter (BTF) in order to reduce H2S contamination biologically. The BTF is a biological 

filter for the treatment of wastewater and air and consists of a cylindrical tank filled with 
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plastic materials which act as biofilm carriers. The wastewater is fed into the filler at the top, 

whilst the air flows through the filter. Intensive mixing takes place in the filter and the 

contaminations in the air and water are reduced by the biofilm. 
 

Biogas drying 

An absorption dryer is installed behind the water absorption column to extract water from the 

upgraded biogas. The dryer is self-regenerating and consists of two columns containing a drying 

agent. The post-absorption upgraded biogas is dried and polished prior to  delivery to the gas grid by 

vessels filled with a drying agent and activated carbon. The drying vessels self-regenerate by guiding 

approx. 5-10 % of the dried gas through the regenerating column. 

 

Biogas purification 

Before the dried gas is led into the column, it goes through a heat exchanger. The regeneration 

pressure is approximately 200 mbar, which means that the gas is quite fit to absorb the water in the 

drying agent. Granular Activated Carbon (GAC) vessels purify the upgraded biogas from H2S, 

siloxanes and traces of HC. In order to optimize the process, CO2, CH4, H2O and H2S are measured 

continuously. A programmable system controls the process according to the gas analyses results. 

 

The scheme of the process is shown in Figure 5. 
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3.3.3 Process scheme 

 

 

 

Figure 5: Process scheme of the DMT Carborex MS system. 

Source: Lems R. and Dirkse E.H.M., (2010) 

 

3.3.4 Useful contact(s) for further information 

University of Leeds (United Kingdom) 

Email addresses: M.A.Camargo-Valero@leeds.ac.uk, A.B.Ross@leeds.ac.uk 

 

3.4 Anaerobic digestion – Nestlé’s Fawdon factory 

3.4.1 General description 

Nestlé’s Fawdon factory is one of the UK’s main confectionery production sites. The former 

Rowntree factory (Nestlé's second largest UK site) produces a range of confectionery brands. 

Fawdon factory set off an anaerobic digestion plant for the treatment of its wastewater. This plant is 

part of an initiative aiming at reducing the carbon footprint from the factory, and was started in 

August 2013 with a production of 300 kWe. 

The anaerobic digestion plant treats liquid effluents, reject, confectionery and residual ingredients 

(mainly fed to pigs). By digesting these materials the plant is able to supply renewable energy to the 

factory, reducing disposal and power costs. 

 



Techniques for nutrient recovery from household and industrial wastes 

  

BIOREFINE – WP2 – A5 – P1, 2, 8 – D 26

3.4.2 Unit operations 

Nestlé’s liquid AD facility uses a wide range of techniques developed by Clearfleau (see Erreur ! 

Source du renvoi introuvable.), including several steps. 

 

Feedstock supply 

Two tanks balance variable flows. Solid residues are dissolved into the effluent before being fed into 

the reactor. 

 

Anaerobic Reactor 

A 1,500 m3 tank is fed with 275 m3/d of mixed feedstock. A separator returns degradable solids to 

the outside mixing digester. 

 

Biogas Handling 

The biogas generated in the digester and stored in the gas dome is cleaned prior to burning in the 

CHP located alongside the AD plant. At present, most AD plants produce renewable electricity from 

Combined Heat and Power (CHP) engines along with surplus heat. The electricity generated can be 

used on site (to replace bought-in power) or sold to the national power grid. 

 

Process Control 

In the middle of the plant, the control system includes simulation tools of all the key elements of the 

process linked to the site’s supervisory control and data acquisition system. 

 

The project is beginning to lower the site’s CO2 emissions and helping to control energy costs. It is 

part of an investment programme aiming at noticeably reducing its environmental footprint and 

enhancing sustainable production (Clearfleau, 2015; Gueterbock, 2014a; Gueterbock, 2014b; 

Clearfleau, 2013). The process scheme is shown in Figure 6. 
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3.4.3 Process scheme 

 

 

 

 

Figure 6: Nestlé’s Fawdon Anaerobic Digestion Process. 

Source: Gueterbock R., (2014 a) 

 

3.4.4 Useful contact(s) for further information 

University of Leeds (United Kingdom) 

Email addresses: M.A.Camargo-Valero@leeds.ac.uk, A.B.Ross@leeds.ac.uk 

 

3.5 Nutrient recovery from landfill leachate  

Municipal landfill leachate results from the percolation of rainwater through solid waste and is seen 

as a wastewater type with one of the greatest environmental impacts because of high 

concentrations of ammonium, salts and organic matter. The conventional nitrification–

denitrification is not very suitable for leachate treatment. Since the level of ammonia is high, high 

hydraulic residence times (and thus large reaction volumes) are required to reduce the toxicity 

coming from ammonia. 

Recent investigations have shown that ammonium can be recovered from landfill leachate by 

struvite, magnesium ammonium phosphate (MAP) and precipitation (Oloibiri, 2013). The limitation 

of this way of recovering is that an external source of magnesium and phosphate is needed given the 

fact that landfill leachate is deficient in magnesium and phosphorus. Li and Zhao (2001) obtained a 
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reduction of the ammonium concentration in ammonium rich landfill leachate from 5,600 mg/L to 

110 mg/L through struvite precipitation at a pH of 8.5 to 9.0. Results from Di Iaconi et al. (2010) 

showed that 95 % ammonium removal was achieved with a Mg:NH4:PO4 ratio of 2:1:1, at pH 9. 

Similar studies confirmed that ammonium removal efficiencies of up to 90% can be achieved by 

struvite precipitation, involving addition of a magnesium and phosphorus source followed by pH 

adjustment (Kim et al., 2007). Struvite precipitation from landfill leachate is a technique under 

investigation and is not yet subject to full-scale implementation. 

 

3.6 Phosphorus recovery from sewage sludge: general ities 

3.6.1 Potentialities of sewage sludge in the United Kingdom: a case study 

Phosphorus (P) is a nutrient indispensable to the growth of plants and the production of food. 

Modern agriculture uses mineral fertilizers which are derived from phosphate rock and need to be 

applied regularly to stimulate production. Since phosphate rocks are non-renewable, there is 

growing concern over a lack of phosphorus and subsequent sustainability of agriculture and food 

security (Cooper and Carliell-Marquet, 2013). 

Cordell et al. (2009) reported that phosphate rock reserves are decreasing more and more in 

addition to being located in few countries (Morocco, China, USA and Western Sahara). The discharge 

of treated or untreated wastewater into bodies of water with high nitrogen and phosphorus 

concentrations has also caused eutrophication. Owing to this, it is necessary to recover P from waste 

streams and reuse it to various purposes. 

Since the UK relies on imported phosphorus, it is crucial to optimize its use and find out ways of 

recovering it most effectively.  Figure 7 shows the imports and exports of phosphorus in the UK in 

2009 (Cooper and Carliell-Marquet, 2013). 
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Figure 7: Global overview of UK imports and exports. 

Source: Cooper J. & Carliell-Marquet C., (2013) 

 

Around 60% of the P concentration in wastewaters comes from anthropogenic sources, since 

humans excrete most of the phosphorus they consume. Cooper and Carliell-Marquet (2013) 

determined that 48 % (55 kt P/y) of P net imports end up in the UK wastewater treatment plants 

(see Figure 8) whereas only 40.9 % of this wasted P are recovered for use in agriculture and 23.5 kt 

P/y are discharged into water bodies. 

The dried solids resulting from the sewage sludge generated by the wastewater treatment contain P 

and N and are used in the UK agricultural process. These fertilisers have the advantage of releasing P 

more slowly than standard fertilizers and manures, which makes them more effective. Around 1 

million of tons of dry solids are applied on land each year with the advantage of being inexpensive 

and more profitable for environment than incineration or landfill (Environment Agency, 2012).  

Another way to remove P and N is the chemical addition of FeCl3, a conventional and well-known 

technology widely used in the UK (95 % of the wastewater treatment plants in the UK use this 

method). The main disadvantages are that it needs other processes, e.g. tertiary filtration. The use of 

FeCl3 also involves a mix with the sludge, which could prove expensive due to the addition of the 

flocculating agent (cost estimated at £3.3 million/year for Wales). A last problem lies in the fact that 

P is considered a pollutant and not a resource (Environment Agency, 2012; Vale, 2013). 
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Figure 8: Phosphorus flows through UK wastewater treatment plants. 

Source: Cooper J. & Carliell-Marquet C., (2013) 

 

Phosphorus and Nitrogen recovery as struvite (magnesium ammonium phosphate) is a new trend in 

resources recovery from wastewater and involves the addition of MgCl2 at high pH for the 

production of struvite salts. Struvite recovery is only practicable at high P concentrations and with 

small water volumes. Profitability is only possible with plants exceeding 75,000 population 

equivalents (one population equivalent corresponds to a five-day biochemical oxygen demand 

(BOD5) of 60 g per day) and P concentrations higher than 75 mg/L. To reach these levels, Biological 

Nutrient Removal is advisable. The payback for some P recovery technologies can be as little as five 

years (Environment Agency, 2012). Phosphate removal and recovery will not just decrease the rising 

P concentration in UK rivers and pollution. It can also result in the production of struvite-type 

material which is rich in nutrients and can be sold as a fertiliser. It also contributes to lessening 

struvite-related damage to equipment. Besides, struvite has been classed as a product rather than 

waste by the UK regulations and consequently has a high market value (Ofwat, 2005). 

 

3.6.2 Wastewater treatment plants as phosphorus sources 

The existing phosphate recovery techniques from domestic wastewater can be applied at different 

points throughout the wastewater flow at the treatment plant (Schoumans et al., 2015; Desmidt et 

al., 2015). As shown in Figure 9, phosphate can be recovered from the liquid phase, from the sludge 

phase or from sewage sludge ashes. Since in wastewater treatment plants without phosphorus 

recovery, about 90-95% of the total phosphorus load is retained in the sewage sludge, the 

theoretical P recovery potential from sludge is higher than in the liquor phase (<50-60 %) (Cornel 

and Schaum, 2009). However, most current techniques aim at recovering phosphate from 

dewatering streams, since the low concentration of suspended solids makes it relatively easy to 

separate the phosphate precipitates from the wastewater (Desmidt et al., 2015). 
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Figure 9: Overview of the possible locations for phosphorus recovery from municipal wastewater 

(Ewert et al., 2014). 1 Direct agricultural utilization of dewatered sludge; 2a P recovery from 

anaerobically digested sludge before dewatering; 2b P recovery from anaerobically digested 

sludge liquor after dewatering; 3 P recovery from sludge ash after incineration. 

Source: Ewert W. et al., (2014) 

 

3.6.3 Global overview of the techniques applicable to the recovery of nutrients from 

sewage sludge 

P-recovery from the liquid phase 

The phosphorus recovery methods from the liquid phase are implemented in a wastewater 

treatment plant with a biological phosphorus removal process, since the method requires the 

presence of free phosphates. The polyphosphate stored in the microorganisms after EBPR are partly 

released under anaerobic conditions, which causes an increase of the free phosphate content in the 

sludge systems, while if the phosphorus had been removed chemically with iron or aluminium salts, 

the phosphates would remain have remained bound to these metals after anaerobic treatment. The 

phosphorus rich water goes into a precipitation/crystallization tank where magnesium or calcium 

salts and, if necessary, seed crystals are added to remove phosphorus as calcium phosphate or 

magnesium ammonium phosphate (Cornel and Schaum, 2009), just like in struvite recovery from 

industrial wastewater. 
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P-recovery from the sludge phase 

Phosphorus can be recovered from the sludge phase by a wet chemical or thermal technology. In a 

wet chemical treatment, phosphorus and all metals are extracted from the sludge. After being 

dissolved, the phosphate and metal ions are precipitated separately to obtain an uncontaminated 

phosphate fertilizer which can be used in agriculture as it is (Sartorius et al., 2012). This process, 

however, requires large amounts of chemicals and special acid-resistant equipment. Furthermore, 

many different residuals are produced and have to be disposed of at high costs (Sartorius et al., 

2012). Struvite recovery from biologically treated sludge after anaerobic digestion has also been 

tested by Aquafin nv (Belgium). The technique is described in the Biorefine report ‘Recovery 

techniques from digestate and digestate derivatives’. 

 

P-recovery from sewage sludge ashes 

The phosphorus contained in sewage sludge ash can also be treated chemically or thermally. The 

wet chemical treatment involves re-dissolution by adding acid or base. In most cases, (heavy) metals 

are re-dissolved as well. After removal of the insoluble compounds, phosphates can be removed 

from the liquid stream through precipitation, ion exchange, nanofiltration, liquid-liquid extraction, 

etc. (Cornel and Schaum, 2009). Thermochemical treatment of sewage sludge ash removes heavy 

metals and improves the availability of phosphorus for plants. Ashes are exposed to chlorine salts, 

such as potassium chloride or magnesium chloride, and thermally treated. A large fraction of the 

heavy metals is turned into heavy metal chlorides which vaporize and are captured during gas 

treatment (Cornel and Schaum, 2009). A typical wet chemical process (Leachphos process) is 

described below. 

 

3.7 Wet chemical treatment of sewage sludge ash 

3.7.1 General description - Leachphos process 

The Leachphos process as described by the P-REX project partners Adam et al. (2015) consists of two 

sequential steps: a leaching one and a precipitation one (see Figure 10). The sewage sludge ash is 

leached with dilute sulphuric acid in a stirred batch reactor. About 70-90 % of the total phosphorus 

content in the ash ends up in the leachate. The leaching process is followed by a solid/liquid 

separation (filtration) step using a vacuum belt filter or a filter press. The leached sewage sludge ash 

filter cake is withdrawn and must be disposed of. The phosphorus rich liquid stream is then pumped 

into a second stirred reactor in which the dissolved P is precipitated by dosing lime (CaO) or caustic 

soda (NaOH). If precipitation is conducted mainly with lime, phosphorus is present as calcium 

phosphate as well as aluminium phosphate. First results indicated that the P compounds are present 

in an amorphous form. Once the product has been purified, the liquid stream requires an additional 

treatment involving a pH increase (obtained by adding lime) and a sulphidic metal precipitation 

(obtained by dosing an organosulphide precipitation agent in a third reactor) followed by an 

additional solid/liquid separation step using a filter press. In this way, the metals in the wastewater 
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are removed almost completely. Afterwards, the pH is adjusted to 7 and the wastewater is 

discharged into a WWTP or a collecting water body. 

3.7.2 Process scheme - Leachphos process 

 

 

 

Figure 10: Flow chart of the Leachphos P recovery process. 

Source: Adam C. et al., (2015) 

 

3.7.3 General description - Mephrec process 

The Mephrec process is described by the P-REX project partners Adam et al. (2015). The input for the 

process is dried sewage sludge, sewage sludge ash, coke and other additives for slag formation (such 

as limestone, cement, etc.). The process can treat dried sludge, ash or a mixture of sludge and ash. 

As shown in Figure 11, if dried sludge is used, the dewatered sewage sludge (25 % DM) is first dried 

to 80 % DM with a low-temperature dryer or screw dryer. The dried sewage sludge is then 

compacted to briquettes by means of a high pressure press. When sewage sludge ash is used as raw 

material, it is mixed with 10 % water in a mixer before briquetting. The briquettes, coke and other 

additives are weighed, mixed and added at the top of the Mephrec reactor by means of a bucket 

system. This implies that a quasi continuous supply of the reactor is guaranteed. In the reactor, the 

material is heated up to more than 1450 °C and moves from the top of the furnace down to the 

bottom where the melt metal and the melt slag are separated by the action of gravity. The liquid 

metal melt is tapped discontinuously. The slag melt continuously flows out of the siphon straight 

into a water basin. Thanks to the scraper in the water basin, a uniform grain size is obtained. The 

process step aiming at transforming the P-rich slag into a marketable fertilizer includes granulation 
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and ideally the addition of other nutrients to produce complex fertilizers. The produced iron alloy is 

enriched with phosphorus and can be used in the metal industry. 

 

3.7.4 Process scheme - Mephrec process 

 

 

Figure 11: Flow chart of the Mephrec P recovery process. 

Source: Adam C. et al., (2015) 

 

3.7.5 Useful contact(s) for further information 

European Sustainable Phosphorus Platform (ESPP) 

Email addresses: info@phosphorusplatform.eu 

 

P-REX project 

Email address: christian.kabbe@kompetenz-wasser.de 
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3.8 Production of struvite from sewage sludge: PHOS PAQ® process 

3.8.1 General description 

Severn Trent Water have started the construction of a full-scale P and N recovery plant in Stoke 

Bardolph, Nottingham (UK) - using the PHOSPAQ®™ process - where they are planning to extract 

around 500 tons/year of phosphate contained in struvite from 2014 (Hadden, 2009; Vale, 2013). 

PHOSPAQ®™ is a cost-effective technology compared to e.g. dosing of iron salts. Moreover, the 

struvite produced is an excellent slow release fertilizer for N, P and Mg. 

The PHOSPAQ®™ process removes biological degradable COD, phosphate (PO4
3-) and ammonium 

(NH4
+) from wastewater. With oxygen, the COD is biologically converted into new biomass and CO2. 

By adding magnesium oxide (MgO), phosphate and ammonium precipitate as struvite 

(MgNH4PO4.6H20 or MAP). The struvite granules are removed from the water phase, and are fit for 

agricultural use (fertilizer) (Driessen, 2014). Severn Trent Water has come to an agreement with a 

fertilizer producer who will blend the struvite with nitrogen to produce fertilizer with the required 

nutrient balance (Hadden, 2009). 

The treatments used in wastewater treatment plants usually involve: 

- A preliminary treatment - so as to remove grit and gravel as well as screen large solids, 

- A primary treatment - to settle larger suspended matter (mainly organic), 

- A secondary treatment - to biologically break down and reduce residual organic matter, 

- A tertiary treatment - to get rid of different pollutants using different treatment processes, 

- A sludge treatment – to treat the sludge by anaerobic digestion for the production of 

methane and bioenergy. 

 

PHOSPAQ® Process 

Severn Trent Water’s Stoke Bardolph STW, Nottingham, UK use PHOSPAQ®, UASB+ and ANAMMOX® 

techniques in a combined process. The sludge dewatering liquors are first treated in a phosphate 

removal reactor (PHOSPAQ®™), while the sludge stream is treated in a UASB+ reactor for biogas 

production. Both streams are then combined and treated in a nitrogen removal reactor 

(ANAMMOX®) (Durose and Jeffcoat, 2014). 

The PHOSPAQ® process is used to recover phosphate from effluents such as struvite. Phosphate is 

becoming limited and PHOSPAQ® is considering a technology less expensive than the one consisting 

in dosing iron salts. Furthermore, the struvite obtained is an excellent fertilizer containing N, P and 

Mg (Durose and Jeffcoat, 2014). 

In the BIOPAQ® UASB bioreactor, organic compounds are transformed into biogas by bacteria in 

anaerobic conditions. The main advantages of this process are the production of power-generating 

biogas, a high effectiveness in COD removal, a small reactor height and a closed system with no 

odour emissions. It is anticipated that BIOPAQ® UASB reactor will produce approximately 3 MW 

hour/day, which is enough to power 200 houses (Durose and Jeffcoat, 2014). 
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After treatment of the sludge dewatering liquor by the PHOSPAQ® reactor, the effluent is combined 

with a nutrient-rich trade liquor and subsequently treated by an ANAMMOX® reactor for the 

removal of nitrogen (Driessen, 2014). The process offers several advantages such as low energy use, 

non-clogging of pipes by struvite because of P removal and an operational cost benefit of £165K per 

year when compared with a conventional aerobic wastewater treatment (Wild, 2014). 

The PHOSPAQ®™ reactor works with a continuous aeration and stirring system with magnesium 

addition for the formation of struvite. The chemical reaction can be described as follows (Equation 

1): 

Mg2+ +NH4
+ + HPO4

2- + 6H2O � MgNH4PO4.6H2O + H+ 

Eq.1: Formation of Magnesium ammonium phosphate (MAP): NH4-struvite 

For the stimulation of struvite crystallization, pH must be raised to 8/8.5 by stripping the carbon 

dioxide (CO2) (≈ 90 Nm³/h; 60 kWh/d) and adding magnesium oxide (MgO, 125 kg MgO/d) in a 50 m3 

reactor (7 m in height, 3 m in diameter). The addition of MgO instead of MgCl2 is preferred because 

it is more economical and helps to raise the pH, which also eliminates the need for additional NaOH 

(Wild, 2014). PHOSPAQ® reactor has shown recovery percentages of 95 % of phosphate and around 

22 % of ammonia in some wastewater treatment plants (Remy, 2014). 

Furthermore, Severn Trent Water uses the ANAMMOX® process for the removal of ammonia and 

nitrites as N2 gas to meet the N discharge limitations (Driessen, 2009). After the removal of nitrogen 

and phosphates by struvite, the one-step ANAMMOX® reactor converts ammonium and nitrites by 

associating nitritation and the ANAMMOX® process linked bacteria without requiring an external 

carbon supply and a low oxygen consumption as shown in the equation below (Equation 2): 

2NH4
+ + 1.7O2 � 1.14NO2- + 0.86NH4

+ � 0.88N2 + 0.24NO3
- + 2H+ + biomass 

Eq.2: Removal of ammonia and nitrite using the ANNAMOX® process 

A red granular biomass is generated owing to specific enzymes.  The reactor is continuously aerated 

and can be controlled by measuring nitrite and ammonium. 

The ANAMMOX® process is appropriate for different types of liquors, such as  sewage sludge 

digestion liquors, dewatering liquors from Thermal Hydrolysis Plants and anaerobic effluents from 

industry (Driessen and Reitsma, 2014). An ANAMMOX® reactor is around 55 m3, 6 m in height, 3.5 m 

in diameter, with a load of 2.2 kg N/m3·d, a fine bubble aeration (≈180 Nm³/h, 100 kWh/d) and 96 % 

N removal (Remy, 2014). 

According to Remy (2014), the combination of PHOSPAQ® and ANAMMOX® treatments can achieve 

a struvite production of 212 tons (expressed in DM) per year with 95 % phosphate  recovery (73 

kg/d) and 75 % ammonium removal rates. 
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3.8.2 Unit operations 

1) Conventional wastewater treatment process 

Wastewater collection (1) 

Wastewater goes down into a pipe which takes it to a larger sewer pipe under the road. The sewer 

joins the sewage network which then takes the wastewater to a sewage treatment plant. 

 

Screening (2) 

The first stage of wastewater treatment is the removal of large objects such as face wipes, sanitary 

items, rocks, plastics, etc.  that may block or damage equipment, or be unsightly if allowed back into 

the catchment water surface. The liquid flows through a number of sieves which remove these 

materials. 

 

Primary treatment (3) 

After removal of big debris, the wastewater is sent into large settlement tanks, which causes the 

solids (sludge) to settle on the bottom of the tank. These tanks have a circular shape and large arms 

(scrapers) which move slowly around the tank to push the sludge to the bottom. The sludge is 

pumped away for further treatment. The effluent overflows out of the tank and is taken to the next 

stage of the treatment process. 

 

Secondary treatment (4) 

The effluent from the primary sedimentation is sent to rectangular tanks called ‘aeration lanes’. The 

secondary treatment is an aerobic treatment (air is pumped to maintain a concentration of oxygen 

in the reactor) where a consortium of bacteria break down the organic materials in the water. The 

products from the aerobic sewage treatment are carbon dioxide, water and nitrogen gas. The 

effluent flows out of the tanks to be directed to further settling tanks. 

 

Secondary sedimentation (5) 

The treated wastewater is taken to a final settlement tank, where the bacteria sink to the bottom. 

The sludge on the bottom of the tank is recycled back to the aerobic treatment stage to keep an 

optimal concentration in bacteria and the rest is sent to sludge treatment. The clean water 

overflows out of the settlement tank for disposal, although additional treatment is sometimes 

needed before disposal. 

 

Polishing (6) 

To meet some standards relating to specific pollutants and the removal of small particles, cleaned 

water is often filtered through shallow gravel or sand beds as a final step. 
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Treated water discharge (7) 

After the whole treatment, wastewater is clean and sent back to local rivers and streams. The quality 

of the treated wastewater depends on the legal constraints of the country concerned. 

 

Sludge thermal treatment (8) 

The sludge collected from the primary and secondary sedimentation tanks is then treated by a 

hydrothermal process to obtain a high degree of hydrolysis of carbohydrates, proteins, lipids and 

bacterial cell wall biomass. The hydrothermal process is energy-effective, reaches high digestion 

levels and raises biogas production. Sewage sludge treated by hydrothermal process (165 °C, 10 bar, 

30 min) has been used amply as feedstock for methane production with good yields and productivity 

in many countries, including the UK,  the USA, Norway, Germany, etc. (Abu-Orf et al., 2011; Kepp et 

al., 2000; Panter, 2001; Ross et al., 2010). Thermal hydrolysis increases biogas yield, destroys 

salmonella and 99.9999 % of the pathogens. These bio-solids are approved by Water UK and the 

British Retail Consortium for use as a soil conditioner for all types of crops. The biogas produced by 

the anaerobic digestion process can be used as fuel in a combined heat and power (CHP) plant or 

cleaned and injected straight into the national gas grid (Tillier, 2013). 

 

Anaerobic Digestion (AD) (9) 

After going through the hydrothermal process, the waste activated sludge is sent to bioreactors for 

anaerobic digestion. AD is a natural process in which a consortium of microorganisms breaks down 

organic matter in anaerobic conditions for the production of biogas (CO2 and CH4) and digestate (a 

nitrogen-rich fertilizer). Biogas is normally used to power engines for CHP, burnt to produce heat, or 

can be cleaned and used as natural gas or as a vehicle fuel. In addition to that, digestate can be used 

as a fertilizer or soil conditioner. AD is no new technology and has been widely used in the UK for the 

treatment of sewage sludge for over 100 years (DEFRA, 2011). Around 660,000 dry tons of 

separated, treated solids return to environment as sludge every year. Thames Water uses the sludge 

for anaerobic digestion where bacteria grow at 35 oC for at least 12 days, turning organic matter into 

gas which is burnt in engines. 

 

2) PHOSPAQ® Process 

Stirring and Aeration (1) 

The water rejected from the anaerobic digester is sent to the PHOSPAQ® reactor for the sake of 

stirring and aerating with CO2. CO2 bubbling increases the pH to about 8.0-8.5. 

 

Magnesium addition (2) 

When pH is about 8, magnesium salts are added to stimulate the controlled formation of struvite, as 

shown in the previous reaction. Due to high pH, struvite crystallization is facilitated. 
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Struvite Separation (3) 

The PHOSPAQ®™ reactor is equipped with an internal separator especially designed for the retention 

of struvite crystals. The average size of the struvite crystals collected from the PHOSPAQ® reactors is 

0.7 mm (Driessen, 2014). Big struvite crystals can settle and are collected from the bottom of the 

reactor, whereas small crystals are kept in suspension in the reactor by the aeration. These small 

crystals in suspension are used as nuclei for further struvite crystallization. 

 

Extraction (4) 

Struvite is extracted from the bottom of the reactor and then dewatered. It is dewatered by a belt-

filter or a screw press down to 55 - 65 % dry struvite. During storage, the DM content increases to 

over 70 %. Long term full-scale experience has shown the PHOSPAQ® process to be a reliable way to 

remove and recover phosphorus from industrial wastewater (Driessen, 2014). 

 

BIOPAQ® UASB bioreactor (5) 

This reactor converts organic compounds into biogas which is then used for the CHP engines onsite 

and produces approximately 3 MWh/day, contributing 7 % to the energy-neutral site’s total gas 

output (Durose and Jeffcoat, 2014). BIOPAQ® bioreactor is based on a three-phase separator. It 

separates gas, water and sludge mixtures under high turbulence conditions and can work with high 

loading rates of 10 – 15 kg/m³·d. 

 

ANAMMOX® digestion (6) 

The effluent of the PHOSPAQ® reactor is sent to the ANAMMOX® reactor. This reactor is aerated 

(bubble aeration ≈ 180 Nm³/h, 100 kWh/d) and contains granular biomass and a biomass retention 

system. The aeration provides high contact with the biomass and oxygen supply in order to facilitate 

the conversion into N2 gas (Equation 2). 

 

Granular biomass separation (7) 

The treated wastewater leaves the reactor by passing the biomass retention system at the top of the 

reactor. The granular biomass is separated from the cleaned wastewater and returned to the reactor 

to ensure a high biomass content. A high biomass content provides high conversion rates, which 

means that a small reactor volume is required. 

 

3.8.3 Process scheme 

The system used by Severn Trent Water is presented in Figure 12. Figure 13 represents the system 

used in the PHOSPAQ® Reactor. 
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Figure 12: Full scale Phosphorus Recovery system used by Severn Trent Water. 

Source: Wild R., (2014) 

 

 

Figure 13: Principle of a PHOSPAQ® reactor. 

Source: Remy M., (2014) 
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3.8.4 Useful contact(s) for further information 

P-REX Project 

Email address: christian.kabbe@kompetenz-wasser.de 

 

Severn Trent Water (United Kingdom) 

Email address: see the website www.stwater.co.uk 

 

University of Leeds (United Kingdom) 

Email addresses: A.B.Ross@leeds.ac.uk, cndrr@leeds.ac.uk, M.A.Camargo-Valero@leeds.ac.uk 

 

3.9 Production of struvite from sewage sludge: OSTA RA® process 

3.9.1 General description 

Severn Trent Water and Thames Water (White Slough treatment plant, Berkshire, United Kingdom) 

are currently using the fluidized bed reactor Pearl® process from OSTARA®. The final product from 

Pearl process is known as Crystal Green® and is pelletized and ready for usage (Akinola, 2013; 

OSTARA®, 2013; Wentworth, 2014). Struvite usage is preferable to the use of bio-solids from treated 

sludge since it allows up to 40 % more P to be recovered (Vale, 2013). The removal of struvite makes 

it possible to recover phosphorus and other nutrients from wastewater and recycle them into an 

environment-friendly, high-quality commercial fertilizer free from harmful chemicals. For example, 

in the UK, the Pearl® struvite product contains very low heavy metal concentrations but it is still a bit 

expensive (at ≈ £1000/ton) for use in agriculture (Akinola, 2013). It is estimated that by the end of 

2015, Severn Trent Water will have over 600 plants removing P and 20 plants using Biological 

Nutrient Removal (Environmental Agency, 2012). 

Besides the conventional wastewater treatment process, P and N recovery can be achieved via 

OSTARA® process by a slow-release fertilizer called Crystal Green® (MAP). Severn Trent Water's 

Derby Sewage Treatment Works began operating an OSTARA® pilot plant  in 2009 for a biological 

phosphorus removal and the recovering of valuable materials from wastewater (Hadden, 2009, Vale, 

2012). OSTARA® Pearl reactor adopts the same chemical principle for the formation of struvite: 

continuous aeration, high pH and magnesium addition. 

OSTARA®'s struvite recovery process claims to be able to both lower operating costs in the 

wastewater treatment plants and meet environmental regulations. Moreover, the recovery of 

pollutants (P and N) that are recycled into environment-friendly  and slow-release fertilizer is 

another advantage (Hadden, 2009). Among the Crystal Green® fertilizer advantages are: certified 

product that can be used in horticulture and especially agriculture, 100 % sustainable and renewable 

production process, small fraction of heavy metals, more effective nutrients uptake by plants, low 
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overflow to surface waters due to P and N slow release, freedom from dust, right particle size and no 

chemical coatings (Morgenschweis, 2011). Crystal Green® pellets are periodically collected from the 

plant, subsequently dried and packed as Crystal Green®, and delivered as a ready-to-use product to 

distributors and blenders. Crystal Green® production figures for a plant vary from 200 to 1,000 tons 

per year, i.e. enough to fertilize 1,000 to 5,000 soccer play grounds. 

The advantages of the OSTARA® process are: P removal higher than 85 %, process stability, up to 40 

% N, reduced aeration, alkalinity for nitrification, reduced carbon demand for denitrification, 

reduced chemical consumption (Fe/Al), lower energy consumption and smaller quantity of sludge for 

disposal (Britton, 2009). 

 

3.9.2 Unit operations 

Magnesium addition 

The liquor resulting from sludge dewatering is sent to the Pearl process unit (fluidized bed reactor) 

for struvite crystallization. A magnesium chloride solution is fed into the reactor to maintain a molar 

ratio of Mg:PO4:P equal to 1.3:1 inside the reactor (Britton et al., 2005). 

 

pH control 

Struvite formation is influenced by pH, so NaOH can be added to improve nutrient removal 

performance. A reactor recycle pump controls hydraulic conditions and fluidization energy inside the 

bed. The saturation point of a solution is strongly influenced by pH, which should ideally be kept 

between 7 and 8. In some cases, additional NaOH is required. 

 

Pellets formation 

Fertilising pellets are first microscopic struvite crystals (created in the reactor). They then grow as 

layers of struvite deposit on the particle surface. The result is extremely pure. These crystalline 

struvite pellets are collected from the reactor when they are big enough for sale as a fertiliser. The 

crystals collected are then air-dried in a final step (OSTARA®, 2014). The pellets contain more than 

99.9% pure struvite and have the right size and hardness to be used as a fertiliser. 

The process scheme is presented in Figure 14. 
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3.9.3 Process scheme 

 

 

 

Figure 14: OSTARA®’s Pearl Process. 

Source: Britton A. et al., (2005), P-REX project, (2015) 

 

3.9.4 Useful contact(s) for further information 

P-REX Project 

Email address: christian.kabbe@kompetenz-wasser.de 

 

Severn Trent Water (United Kingdom) 

Email address: see the website www.stwater.co.uk 
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Thames Water (United Kingdom) 

Email address: see the website www.thameswater.co.uk 

 

University of Leeds (United Kingdom) 

Email addresses: A.B.Ross@leeds.ac.uk, cndrr@leeds.ac.uk, M.A.Camargo-Valero@leeds.ac.uk 

 

3.10 Phosphorus precipitation from industrial waste water 

3.10.1 General description 

Phosphorus can be recovered as struvite from industrial wastewater by the NuReSys® (Nutrient 

Recovery System) technique, which is used on a full scale in a German dairy and in two potato 

processing companies in Belgium. The reactors are shown in Figure 15. 

 

 

 

Figure 15: Struvite recovery reactors (right: stripping reactor, left: crystallization reactor). 

Source: NuReSys®, (2015) 

 

3.10.2 Description of the technique 

After treating the wastewater in a UASB (upstream anaerobic sludge blanket) reactor, the anaerobic 

effluent is aerated to strip CO2 out of the liquid stream in a first reactor (stripping tank), which 

results in a pH rise (see Figure 16). In the second reactor (crystallization tank), a 29 % NaOH solution 

is added to obtain an optimal pH (pH 8-8.5) and MgCl2 is added to recover phosphate as struvite 

(Desmidt et al., 2015). In the crystallization tank, a simple blade impeller and a specific automated 

control algorithm ensure the optimal pH value, reagent dosing and mixing intensity. The struvite 
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crystals are removed from the crystallization reactor through intermittent purging (Moerman et al., 

2009). 

 

3.10.3 Process scheme 

 

 
 

Figure 16: Schematic overview of the NuReSys® phosphorus recovery process. 

Source: Moerman W. et al., (2009) 

 

 

3.10.4 End-product 

The end-product is BIOSTRU®, a commercially available struvite (magnesium ammonium phosphate) 

product (5 % N – 28 % P2O5 – 10 % Mg, see Figure 17), a clean product that can safely be used as a 

slow release phosphorus fertilizer or soil amendment in agriculture and horticulture (NuReSys, 

2015). Part of the struvite produced is exported to France for use in wine growing while another part 

is mixed with compost (Desmidt et al., 2015). 

 

 

 

Figure 17: Struvite obtained with the process developed by NuReSys. 

Source: NuReSys, (2015) 



Techniques for nutrient recovery from household and industrial wastes 

  

BIOREFINE – WP2 – A5 – P1, 2, 8 – D 46

3.10.5 Useful contact(s) for further information 

NuReSys (Belgium) 

Email address: cd@nuresys.be 

 

3.11 Production of pellet fertilizer from sewage sl udge 

3.11.1 General description 

The Wastewater Treatment Plant of Wavre (Station d’épuration de la vallée de la Dyle, Belgium) 

possesses an original treatment unit applied to sewage sludge. The treatment applied to waste 

water in the common process consists of a preliminary treatment (screening and grit removal, de-

oiling), a biological treatment and a tertiary treatment (phosphorus removal by addition of FeCl3). 

The capacity of the WWTP has now reached a population equivalent of more than 200,000. The 

treatment of sewage sludge consists of three parts: 

- Anaerobic digestion with a cogeneration unit, 

- Thermal drying of sewage sludge, 

- Pelletizing and storage on site (capacity of 6 months production). 

After that, the pellets containing nitrogen, phosphorus and potassium can be used as fertilizers. 

 

3.11.2 Unit operations 

Here, the process of water treatment will not be described as it is a common process used in many 

WWTPs. We will focus on the sludge treatment only. 

 

Sludge thickening step (A) 

The sewage sludge coming from the different treatment steps (primary, secondary and tertiary 

sludge) is collected in two thickening ponds. The concentration in DM is more or less doubled (from 

2 to 4.5 % of DM). The aim of this step is to concentrate the material before the anaerobic digestion. 

 

Anaerobic digestion (B) 

Anaerobic digestion is based on the degradation of organic matter without oxygen caused by specific 

microorganisms. The degradation process is composed of three main phases: hydrolysis-

fermentation, acetogenesis and methanogenesis. The products of this anaerobic digestion are 

digestate, water and biogas made up of bio-methane and carbon dioxide. The digestion tank can 

take an input flow of about 14,000 kg of DM and produces about 5,000 Nm³ of biogas per day. About 

35 % of DM is degraded through the anaerobic digestion process. 
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Biogas storage and cogeneration (C) 

The biogas produced is used to mix the input flow coming into the anaerobic digestion tank, and a 

further part is used to provide the plant with electricity through a cogeneration device. The 

cogeneration motor is powerful (366 kWh) and decreases the emissions of greenhouse gases from 

the plant. This device made WWTP eligible for green certificates. 

 

Liming step (D) 

The liming phase consists in adding lime to the digestate to avoid undesired microbiological 

activities. It also prevents the development of bad smells. The input flow of digestate has a DM 

concentration of about 15 %. 

 

Thermal drying (E) 

The thin layer thermal dryer is 10.5 metres long and 1.2 metre wide and can take about 100 kg of 

matter. The dryer has a double envelope into which a heat transfer fluid (250-260 oC) brings energy 

to evaporate the water contained in the limed digestate. The sludge is distributed over the thin layer 

by a turbine, which makes water evaporate. The circulation speed can be adjusted by an axis 

equipped with mobile vanes. Another flow of hot gas is sent onto the digestate to improve the 

drying process. About 3,300 kg of wet sludge come into the dryer per hour and about 2,600 kg of 

water are evaporated, which produces 800 kg of powder (dried digestate) with about 90 % of DM. 

 

Pelleting (F) 

The pelletizing phase consists in making pellets of dried digestate. Those pellets are taken to the 

storage room, with a maximal capacity of about 2,500 m³, which corresponds to the quantity of 

pellets produced after 6 months of activity. The DM content is multiplied by 30 (from 3 % to 90 % of 

DM) throughout the whole process. The pellets can be easily transported and used as fertilizers in 

the fields. 

The process scheme is presented in Figure 18. 
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3.11.3 Process scheme 

 

 
 

Figure 18: Process of pellet production from sewage sludge. 

Source: Station d’épuration de la Vallée de la Dyle, Société Publique de la Gestion de l’Eau 

 

3.11.4 Useful contact(s) for further information 

Intercommunale du Brabant Wallon (IBW) (Belgium) 

Email addresses: vgooris@ibw.be, fdedoyard@ibw.be 

 

Société Publique de la Gestion de l’Eau (Belgium) 

Email address: Christian.DIDY@spge.be 
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3.12 Incineration and metal recovery from household  and industrial wastes 
(designed by SELCHP, UK) 

South East London Combined Heat and Power (SELCHP) is an advanced Energy Recovery Facility built 

through a partnership between the public and private sectors. Opened in 1994 in South London, 

SELCHP is now regarded as an example of industry best practice, with similar facilities modelled on 

its design being constructed around the world. 

 

3.12.1 General description 

SELCHP receives waste from households and businesses. The waste is tipped into a bunker, where a 

crane grabs it and places it into the feed hopper. It then drops down a feed chute onto a sloping 

grate where it is constantly turned over so as to allow all combustion phases (such as drying, ignition 

and combustion itself) to happen simultaneously and a constant high temperature to be maintained. 

Ash from the burning process is transferred by an ash discharger and residue handling system to the 

ash pit. During the transfer, ferrous metals are removed for recycling and the purified ash is recycled 

as material for road building or construction use. 

The hot gases produced in the combustion process pass through a water tube boiler where they are 

cooled. The heated water is transformed into steam. A turbo-generator uses the steam to produce 

electricity for the National Grid. 

The gases from the boiler go through a complex flue gas cleaning process, involving the injection of a 

dilute ammonia solution to reduce nitrogen oxides to nitrogen and water, lime milk to neutralise 

acid gases and activated carbon to absorb heavy metals and potential remaining dioxins. 

Finally, the dust particulates are removed from the gas stream by a bag filter before the cleaned gas 

is released into the air. The resultant material known as Air Pollution Control Residue (APC Residue) 

is sent to a licensed hazardous waste site for disposal. 

The power is generated when the steam leaves the boilers at a 395 °C temperature and a 46 bar 

pressure , and is fed directly into a single 35 MW steam turbine generator. The turbine rotates the 

generator to produce electricity. The steam from the turbine is also used to pre-heat the combustion 

air for the waste burning process. 

The exhaust steam from the turbine is recycled as water (returning into the process) by air-cooled 

condensers. Electricity is generated at 11kV and transformed up to 132 kV for export to the London 

Electricity system which passes very close to the SELCHP facility. No supplementary fuel is required 

to maintain combustion, just refuse and controlled addition of air. 

 

Accepted Waste 

SELCHP facility is designed to handle and treat normal domestic refuse and similar waste. This is 

defined 'acceptable' and 'unacceptable' waste. 'Acceptable' waste is household and commercial 

waste which is considered suitable for incineration. 
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The type of waste that is accepted at SELCHP for incineration is: 'rubbish and refuse normally 

collected and disposed of by residential households and commercial or institutional establishments'. 

This does not include wastes in quantities and concentrations which need special handling when 

processed and disposed of. Those include bulky items, waste oil and other items of 'unacceptable' 

waste. 

Acceptable wastes include leaves, twigs, grass and offcut from plants, paper, plastics, ferrous and 

non-ferrous metals, glass and other materials present in household refuse. In order to avoid errors, 

Hazardous Waste as defined by the Hazardous Waste Directive (Council Directive 91/689/ECJ) is 

seen as unacceptable waste. 

 

Unaccepted Waste 

Processing any of the following materials may cause severe injury and damage: 

- builders waste, liquid waste, non-burnable construction material, demolition debris 

especially, plaster plates, 

- gas cylinders, beer kegs or any other pressure cylinders, 

- petrol, oils, greases, solvents or paints, 

- animal or human remains or waste, 

- acid or caustic substances, 

- clinical, pathological and biological wastes, 

- asbestos substances, 

- tree trunks, 

- large quantities of sulphur containing materials, 

- machinery other than small household items, 

- drugs or poisons, 

- motor vehicle batteries, motorcycles, motor engines, transmissions, rear ends, springs, 

fenders and major parts of motor vehicles, trailers, agricultural equipment, boats and ships, 

farm and other large machinery, 

- items weighing more than 25 kg each, 

- items larger than 1.2 m, 

- items larger than 1.2 m x 0.15 m x 0.15 m, 
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- domestic 'white goods' such as fridges, freezers, washing machines, etc. 

 

3.12.2 Unit operations 

Air-Cooled Condenser (1) 

The eight electrically powered fans push air through the finned tubes of the condenser so as to cool 

the low pressure steam from the turbine exhaust. Cooling condenses the steam back to water which 

is recycled back into the boilers, therefore minimising water usage in normal operating conditions. 

 

Steam Turbine and Generator (2) 

Steam arrives from the boilers, driving the turbine, which rotates the generator in order to produce 

electricity. The electricity leaves via 11,000 volt cables lying across the floor. 

 

Tipping Hall (3) 

Vehicles drive up a slope into the tipping hall. They then reverse to the edge of the pit and empty 

their contents into it. 

 

Refuse Bunker (4) 

Two semi-automatic cranes transfer refuse to boilers which burn up to 29 tons per hour. Each grab 

lifts up to 5 tons of refuse. Normally there are 4,500 tons of refuse in the bunker. The bunker can 

hold up to 6,000 tons. 

 

Feed Hopper (5) 

The refuse from the crane grabs is dropped here and fed onto the incineration grate in a controlled 

manner. 

 

Incineration Grate (6) 

By pulling down the handle on the right-hand side of the viewing port and looking up at 45 oC to 

observe the combustion of refuse, it is possible to see the ash falling into the cooling bath below. 

 

Steam Boiler (7) 

Refuse is dropped into the chutes. Hydraulic rams feed refuse onto the grate, where it burns at 

temperatures over 850 °C. Heat energy is released into a multi pass boiler where 76 tons of steam 

are produced each hour at 395 °C and 46 bar. 
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Gas Treatment Scrubber (8) 

As the hot combustion gases pass here, they are mixed and cooled with a measured amount of lime 

milk sprayed in at the top. The lime falls through the gases, reacting with them, removing the acid 

ones and reaching the bottom, where it is removedin powder form. The incoming acid gas content is 

continuously measured to make sure the right amount of lime is added. 

 

Bag House Filter (9) 

The bag house contains around 3,000 individual bag filters. All the gases from the waste combustion 

pass through the filter bags and all dusts are captured on the filter material. The cleaned gases are 

then emitted from the chimney stack. The dust is periodically dislodged from the bags by a pulse of 

compressed air. This removed dust becomes part of the Air Pollution Control residue. 

 

Induced Draught Fan (10) 

A powerful adjustable fan draws all the gases through the plant, keeping the whole process under a 

slight vacuum and ensuring there are no leaks. 

 

Residue Handling Crane (11) 

This device transfers the bottom ash and recovered ferrous metal to loading chutes prior to 

discharge into lorries for removal from site. 

 

Bottom Ash Handling (12) 

After combustion, the volume of the original refuse is reduced by 90 % and the mass by 70 %. From 

this remaining bottom ash, an off-site joint venture business recycles a further 1.5 % of ferrous 

metal and up to 1.5 % of non-ferrous metal such as aluminium, copper and brass. The off-site 

business also processes the bottom ash to produce a high performance aggregate, sold for use in 

road construction and other purposes. 

 

Under Fire Fan (13) 

These large ducts draw air from above the waste pit through the concrete wall to the west. The air is 

fed into the furnace via fans from both below and above the flames. This air is vital to maintain the 

correct combustion of the waste. Drawing the air from around the waste pit also stops smells from 

spreading through the neighbourhood. 
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Water Treatment Plant (14) 

Two exchange units treat incoming mains water at the rate of 10 tons per hour per unit. The treated 

water is then used in the boilers for the production of steam intended to drive the turbine. 

The process scheme is shown in Figure 19. 

 

3.12.3 Process scheme 

 

 

 

Figure 19: Process scheme of the South East London Combined Heat and Power Plant. 

Source: Website of South East London Combined Heat and Power Plant 

 

3.12.4 Useful contact(s) for further information 

South East London Combined Heat and Power Plant (United Kingdom) 

Email address: see website http://www.selchp.com/ 

 

University of Leeds (United Kingdom) 

Email addresses: A.B.Ross@leeds.ac.uk, cndrr@leeds.ac.uk, M.A.Camargo-Valero@leeds.ac.uk 
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3.13 Incineration and metal recovery from household  and industrial wastes 
(designed by LondonWaste) 

3.13.1 General description 

LondonWaste provides waste management services across London. The facilities recycle materials, 

compost organic waste and recover energy from waste. Waste considered unsuitable for other 

methods of recycling is sent to the Energy Centre. Here, waste is incinerated to produce energy. The 

heat generated from the process turns water into steam which drives turbines to create electricity. 

This is fed into the National Grid.  The export is around 85 % of the electricity generated in 

LondonWaste, which represents enough to power 72,000 homes throughout the year. The 

remaining 15 per cent power all the EcoPark centres. From 1994, when LondonWaste Ltd was 

awarded the NLWA contract, till the end of 2013, more than 9 million tons of waste have been 

diverted from landfill. 

 

3.13.2 Unit operations 

Waste Input (1) 

Residual Waste is delivered to the Energy Centre, generally by refuse collection vehicles and 

deposited into the bunkers. 

 

Bunkers (2) 

There are five bunkers, each about 25 m deep and 14 m². 

 

Overhead Grab Cranes (3) 

There are three grabs which lift the waste from the bunkers and place it into one of the five feed 

chutes. The boilers are fed at a rate of 15 tons per hour. 

 

Boiler Feed Chute (4) 

The waste is put onto the boiler grates at a pace controlled by a hydraulic ram. 

 

Boiler grate (5) 

Waste is burnt on the grate at temperatures over 1000 °C. 
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Boiler (6) 

Above the grate is the tube area where the hot gas is used to generate superheated steam from 40 

tons of water every hour. The steam from the boiler is used to drive turbines and generate 

electricity. 

 

Ash (7) 

Ash from the boiler grates is sent to an on-site ash recycling plant. The processors remove any 

further metals for re-use and then grade and screen the ash for use as an aggregate in road building 

and contruction. 

 

Economiser (8) 

To ensure that the maximum amount of energy is recovered from the waste, the hot gases from the 

boiler flow into the economiser where they heat the incoming boiler water. 

 

Precipitator (9) 

The gases, now cooled to about 180 °C, carry on into the first part of the gas cleaning plant, the 

precipitator. Wires and plates in the precipitator are charged with electrostatic electricity where 

they attract the dust out of the flue gas. 

 

Flue gas treatment plant (10) 

The purpose of the flue gas treatment plant is to clean the flue gas before it enters the atmosphere. 

The first part of the process cools the gas to 140 °C by adding water. Lime and activated carbons are 

then injected into the gas stream to neutralize any acidity and absorb other pollutants. 

 

Fabric Filter (11) 

All the gas is filtered through an extremely fine fabric to remove remaining dust and lime before 

flowing through the 100 metre high chimney. 

 

Chimney (12) 

All the gases are continuously monitored to ensure compliance with very strict regulations. A slight 

plume, which is only water vapour, may be visible under some conditions. 

 

 



Techniques for nutrient recovery from household and industrial wastes 

  

BIOREFINE – WP2 – A5 – P1, 2, 8 – D 56

Alternator (13) 

After supplying the internal needs, more than 85 % of the electricity generated by the plant are 

exported to the National Grid. The export reaches 35,000 KW of power per hour. 

The process scheme of the treatment is shown in Figure 20. 

 

3.13.3 Process scheme 

 

 

 

Figure 20: Process scheme of the LondonWaste Plant. 

Source: Website of LondonWaste 

 

3.13.4 Useful contact(s) for further information 

LondonWaste Plant (United Kingdom) 

Email address: recycling@londonwaste.co.uk 

 

University of Leeds (United Kingdom) 

Email addresses: A.B.Ross@leeds.ac.uk, cndrr@leeds.ac.uk, M.A.Camargo-Valero@leeds.ac.uk 
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3.14 Removal of heavy metals from sludge  and sedim ents 

3.14.1 General description 

The CTP (Centre Terre et Pierre) is located in Tournai (Wallonia, Belgium). Its activities consist in 

treating ores, industrial minerals, recycling solid materials, and contaminated soils, sediments and 

dredging spoils. The analysis lab of the CTP is able to achieve complete physical, chemical and 

mineralogical analyses of mineral materials. The center is also an authorized laboratory for waste 

analysis by the Walloon Region. The 3,400 m² center is equipped with different types of 

comminution and sorting devices able to treat up to several tons of materials. 

The aim of the SOLINDUS platform is to validate recycling techniques applied to solid materials on a 

partly industrialized scale. The treatment presented in this section explains a method which leads to 

different fractions with defined and homogeneous particle size distribution, and complementary unit 

operations can be added to the original technique. This process can be used to remove heavy metals 

from silt-like materials obtained after wet treatment of different types of sludge or soil, and 

therefore be used to purify the materials and increase their quality as fertilizers. Industrial sludge 

and sediments can be treated, but ashes should also be considered.  

The treatment is mainly composed of 8 important stages: 

- Removal of big particles (> 2mm), 

- Removal of particles the size of which is superior to 250 µm, 

- Removal of particles the size of which is superior to 63 µm, 

- Removal of particles the size of which is superior to 15 µm, 

- Purification of the muddy fraction, 

- Flocculation/decantation of the clayey fraction, 

- Dehydration of the different fractions, 

- Water treatment (not described here). 

The raw material is taken to a first trommel by hydraulic excavators through a grid that retains 

blocks bigger than 20 mm. This trommel divides the material into two fractions depending on their 

sizes. Two fractions are obtained: one made of wastes the size of which is superior to 4 mm, and one 

composed of wastes the size of which is inferior to 4 mm. After that, a vibrating sieve makes it 

possible to obtain a finer fraction (size inferior to 2 mm). The two fractions composed of the biggest 

elements are put together to make up the first waste fraction (Fraction 1, size superior to 2 mm). 

The finest fraction is then homogenized and mixed with water before being sent to a curved sieve. 

This results in a second fraction (Fraction 2) mainly composed of sand particles (between 250 µm 

and 2 mm). A further unit operation consisting in magnetic separation can be achieved in Fraction 2 

if it contains ferromagnetic materials. The materials are then sent to a vessel in which the pulp 

density is modified and adjusted to the right value. 
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The pulp, which is composed of particles the size of which is inferior to 250 µm, is then sent to a 

hydro-cyclone combined with a screw classifier. This combined system leads to a fine fraction 

(particle size inferior to 63 µm) and Fraction 3, composed of fine sands. This third fraction then goes 

through further stages: attrition (optional) and spiral gravity separation, after which the material is 

dehydrated by big bag filters. 

The finest fraction is then composed of particles the size of which is inferior to 63 µm. The pulp is 

sent to two parallel hydro-cyclones, which generates a muddy fraction (particle size from 15 to 63 

µm) and a clayey fraction (size inferior to 15 µm). The muddy fraction is next purified in a flotation 

tank so as to separate metallic and organic pollutants with a technique based on their hydrophobic 

nature. Different substances are added to the pulp during this process in order to collect the 

pollutants in the foam (supposed to contain metals and organic pollutants). The purified muddy 

fraction is then decanted and filtered, giving Fraction 4. 

The clayey fraction is sent to a flocculation/decantation system. The pulp is mixed with flocculation 

reagents in a tank to improve and accelerate the sedimentation process. The pulp, which has been 

thickened, is next sent to a filter press to be dehydrated. This final stage provides the finest fraction 

of all, called Fraction 5. 

 

3.14.2 Unit operations 

Screening by a trommel (A) 

The first unit operation is a screening phase achieved with a trommel composed of a rotary drilled 

cylinder. The blades inside the cylinder mix the material. An aspersion device is also included in the 

system to facilitate the de-agglomeration of the material. The device can treat a maximal input flow 

of 1 to 1.5 m³/h, with a percentage of DM comprised between 50 and 60 %. Three fractions are 

obtained (particle size superior to 20 mm, manually removed from a grid at the feeding end of the 

trommel, inferior and superior to 4 mm, which is the size of the holes in the inner cylinder of the 

trommel). 

 

Screening by a vibrating sieve (B) 

The second unit operation is another screening stage achieved on a vibrating sieve. Water is brought 

to the material in order to facilitate the mass transfers. The device can treat a maximal input flow of 

1.5 to 2 m³/h, with a percentage of DM between 30 and 40 %. The output flow contains about 20 % 

of DM. Two fractions are obtained (particle size inferior and superior to 2 mm). 

 

Mixing stage (1) (C) 

A mixing stage is necessary to homogenize the material, added with water to obtain pulp. The 

maximal input flow can reach 2 m³/h. 
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Screening on a curved sieve (D) 

This separation device is composed of small metallic blades separated by gaps of 500 µm. The 

maximal input flow can reach 5 m³/h, with a percentage of DM varying from 10 to 20 %. Two 

fractions are obtained (particle size inferior and superior to 250 µm). 

 

Magnetic separation (E) 

A magnetic separator can be integrated into the process if necessary. It consists of a rotary device 

equipped with a permanent magnet. The magnetic particles are retained by the magnet before 

being released in a zone in which the magnetic field is weaker. The device can treat an input flow of 

5 m³/h with a percentage of DM from 10 to 20 %. 

 

Mixing stage (2) (F) 

A second mixing stage is needed to reach a specific density. The percentage of DM must be between 

5 and 10 % in the output flow. Water is added in the tank to dilute the pulp. The device can treat an 

input flow of 5 m³/h with a percentage of DM varying from 10 and 20 %. 

 

Screening by a combined system (hydro-cyclone/screw classifier) (G) 

A combined device composed of a hydro-cyclone and a screw classifier is used to treat the fraction 

the particle size of which is inferior to 250 µm. This system generates two fractions: the fine sands 

composed of particles with sizes between 63 and 250 µm and the fine fraction composed of the 

smallest particles (size inferior to 63 µm). The device can treat an input flow of up to 12 m³/h with a 

percentage of DM from 5 to 10 %. 

 

Attrition (optional) (H) 

This unit operation can be added to the process if necessary and is applicable to fine sands (size 

between 63 and 250 µm, G). This system is located at the end of the screw classifier and is 

composed of blades creating strong currents. Those currents allow to clean the particle surfaces and 

remove hydrocarbons, metal oxides, etc. The machine can treat a maximal input flow of 1 m³/h with 

a percentage of DM varying from 50 to 70%. 

 

Screening by a hydro-cyclone and spiral devices (I) 

This step is applicable to the fine sands obtained in (G). A hydro-cyclone is used to ensure a particle 

size varying from 63 to 250 µm. Two in-line spiral separators generate a fine water blade to separate 

the particles according to their weights. The heaviest particles (minerals) staying close to the axis of 

the spiral are collected by the inner valve at the bottom of the spiral while the lightest particles 

(organic matter) are collected by the outer valve. Small valves collect the different fractions. The 
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finest and lightest particles tend to go to the spiral extremity because of the turbulences combined 

with the centrifugal force. The system can treat an input flow of 5 m³/h with a percentage of DM 

varying from 5 to 10%. 

 

Filtration (J) 

The finest fractions obtained thanks to the action of the spiral separators are dehydrated by big bag 

filters. 

 

Concentration of the heavy fraction by a hydro-cyclone and filtration (K) 

The heavy fraction collected by the spiral separators is next treated on a vibrating screen for 

dehydration. This combined device can treat a maximal input flow of 1 m³/h with a percentage of 

DM varying from 10 to 20 %. 

 

Mixing stage (3) (L) 

The finest fraction obtained in (G) by the action of the hydro-cyclone combined with the screw 

classifier (particle size inferior to 63 µm) is sent to a mixing vessel. This vessel is used to homogenize 

the material and dilute it with water. The maximal input flow which can be treated is 10 m³/h with a 

percentage of DM varying from 5 to 10 %. 

 

Screening by parallel hydro-cyclones (M) 

The finest fraction which has been homogenized is next sent to two parallel hydro-cyclones. This 

device leads to two fractions: a muddy fraction composed of bigger particles (size between 15 and 

63 µm) and a clayey fraction composed of small particles (size inferior to 15 µm). The system can 

treat a maximal input flow of 15 m³/h with a percentage of DM from 5 to 10 %. 

 

Purification of the muddy fraction by a hydro-cyclone (N) 

The muddy fraction resulting from the previous stage (M) is next sent to another hydro-cyclone 

before being treated in the flotation device. 

 

Purification by flotation (O) 

The aim of the flotation device is to remove the metallic and organic pollutants present on the 

muddy particles. Reagents are prepared separately before being fed into the flotation tank. Air is 

injected into the tanks and different types of reagents can be added: activating reagents, foaming 

reagents, etc. Two in-line tanks of 750 L allow the foam containing the concentrated pollutants to be 

collected at the surface. The maximal input flow can reach 1.5 m³/h, with a percentage of DM 
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varying from 20 to 30 %. The reagents are chosen according to their ‘ability’ to select the pollutants 

or nutrients to be removed and need a targeted preliminary study carried out in a laboratory. 

 

Decantation stage (P) 

The foam resulting from the flotation process and the clean muddy fraction are next sent to a 

decantation device consisting of two tanks of 4.9 m³. The first decantation tank treats the polluted 

foam (containing the metallic elements, or micronutrients), while the second one treats the clean 

fraction. 

 

Filtration (Q) 

Both fractions obtained in (P) after the decantation step are next sent to big bag filters. 

 

Flocculation and decantation of the clayey fraction (R) 

The natural decantation of the clayey fraction is very slow and requires flocculation reagents to be 

accelerated. Those reagents are prepared in a separate mixing tank by dissolving the powder. The 

flocculation agents are then added to the clayey fraction in pulp form. The material mixed with the 

flocculation reagents is sent to a decantation tank of 35 m³. A maximal input flow of 10 m³/h with a 

percentage of DM of about 5 % can be treated in this device. 

 

Dehydration of the clayey fraction (S) 

The flocculated particles are dehydrated by a filter press. The device consists of 30 units and the 

internal pressure can reach a maximal value of 15 bar, allowing to reach a final DM of 70% without 

any other additives. One dehydration cycle takes between 1 and 2 hours per ton of final material 

obtained. This final phase allows to recover the finest fraction of the raw material in the shape of 

compressed cakes which are easy to handle. 

The scheme of the process is shown in Figure 21. 
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3.14.3 Process scheme 

 

 

 
 

Figure 21: Scheme of the process used by the “Centre Terre et Pierre” to purify sludge and 

sediments. 

Source: Centre Terre et Pierre (Tournai, Belgium) 
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3.14.4 Additional comments 

Some unit operations can be added to the process if necessary. The magnetic separation (E) and the 

attrition stage (H) are optional. A water treatment process - which is not described here - is also part 

of the system. The pilot plant is being extended in order to integrate other unit operations such as jig 

separation (heavy/light fraction separation combined with granulometry-oriented separation in wet 

conditions) and will be fully operational in February 2016. 

All this data was kindly provided by the “Centre Terre et Pierre” in Tournai (Belgium). 

 

3.14.5 Useful contact(s) for further information 

Centre Terre et Pierre (Belgium) 

Email addresses: Herve.BREQUEL@ctp.be ; Benoit.GRYMONPREZ@ctp.be 

 

3.15 Removal of metallic compounds from ashes (IPAL LE, Belgium) 

3.15.1 General description 

The waste incinerator of Thumaide is managed by the inter-municipal organization IPALLE (Wallonia, 

Belgium). Its activities consist in recovering different types of materials through incineration. The 

plant processes bulky wastes, industrial and household wastes, medical and hospital wastes, plastics, 

cardboard, sewage sludge, etc. The post-incineration residue is clinker and its composition is quite 

variable because of the heterogeneity of the input flows. The plant treats about 300,000 tons of 

material every year. 

The aim of the clinker-generating plant is to separate the different fractions according to their sizes 

as well as their magnetic and metallic characteristics. It is possible to identify the techniques best 

suited to the various fractions. 

The treatment consists of 4 main kinds of processes: 

- Screening stages, 

- Magnetic separations, 

- Metallic separation based on an eddy current separator, 

- Mixing step. 

The raw material is brought to a first screening sieve to separate the input flow into two fractions: 

one made up of wastes the size of which is superior to 100 mm and one composed of wastes the size 

of which is inferior to 100 mm. 

The biggest fraction is next sent to a magnetic separator, producing a fraction of big magnetic 

particles (size > 100 mm) and a fraction of big non-magnetic particles (size > 100 mm). 
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The finest fraction is composed of the finest particles (size inferior to 100 mm). This flow is sent to a 

screening trommel which provides two fractions: the smaller one composed of particles the size of 

which is inferior to 20 mm and the bigger one made up of particles the size of which is varies from 20 

to 100 mm. 

The fraction is sent to another magnetic separator which generates a magnetic and a non-magnetic 

fraction of fine particles. The fine magnetic fraction is sent to a mixing tank while the non-magnetic 

flow is sent to an eddy current separator. This plant allows to separate the metallic compounds 

contained in the material. The eddy current separator generates a non-metallic flow of fine particles 

and a second fraction of non-magnetic metals (size inferior to 20 mm). 

The flow composed of medium-sized particles (size from 20 to 100 mm) resulting from the size-

bound separation achieved in the trommel is next sent to a magnetic separator. This device 

generates two fractions, a magnetic one and a non-magnetic one. The magnetic fraction is mixed 

with the finest particles in the mixing tank. This mix is then sent to another magnetic separator 

which creates two different flows: the fine magnetic particles (size inferior to 100 mm) and the fine 

non-magnetic particles (size between 20 and 100 mm). 

Finally, the non-magnetic fraction resulting from the magnetic separation following trommel 

screening is mixed with the above-mentioned non-magnetic fine particles. Those two combined 

flows are composed of medium-sized non-magnetic particles (size between 20 and 100 mm). 

 

3.15.2 Unit operations 

Primary screening sieve (A) 

The raw material is first sent through a primary sieve, which leads to two different flows. Those two 

fractions consist of a fine fraction (size < 100 mm) and of a big one (size > 100 mm). The input flow is 

composed of about 67 % of household wastes, 23 % of industrial wastes, 7 % of sewage sludge and 2 

% of hospital wastes. 

 

Magnetic separation (1) (B) 

A magnetic separator processes the biggest particles coming from the screening sieve, which results 

in a magnetic fraction of big particles and in a non-magnetic fraction of big particles (size superior to 

100 mm). 

 

Trommel screening (C) 

A screening trommel is used to separate the particles composing the finest flow coming from the 

primary sieve (size inferior to 100 mm). This screening device produces a fine fraction (size < 20 mm) 

and a big(ger) one (size comprised between 20 and 100 mm). 
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Magnetic separation (2) (D) 

A further magnetic separator is used for the finest fraction (size < 20 mm). The input flow is divided 

into a magnetic flow (next sent to a mixing tank (G)) and a non-magnetic flow which is sent to an 

eddy current separator. 

 

Eddy current separator (E) 

The principle of the eddy current separator is based on the magnetic properties of the elements but 

it is more complex than the one of a common magnetic separator. The swirl is due to a high-

frequency magnetic flux. A rotating device equipped with permanent magnets makes it possible to 

create specific magnetic fields. The magnets have alternating magnetic poles. The rotation of the 

device causes a variation in the magnetic field, which causes a repulsion of the metallic elements. 

The device creates both a flow of fine non-metallic particles and one of fine metallic elements 

(particle size inferior to 20 mm). 

 

Magnetic separation (3) (F) 

The intermediate fraction (size between 20 and 100 mm) obtained in (C) is then sent to another 

magnetic separator. The device generates a flow of fine magnetic particles and one of fine non-

magnetic particles (size between 20 and 100 mm). 

 

Mixing step (G) 

The aim of the mixing tank is to homogenize the magnetic fractions obtained in (D) and (F). Both 

fractions are mixed together in the tank before being sent to (H). 

 

Magnetic separation (4) (H) 

This final magnetic separator creates two flows: the magnetic fraction of fine particles (size inferior 

to 100 mm) and the non-magnetic fraction of fine particles. This flow is mixed with the one coming 

from (F). A blower is then used to remove the finest particles, generating a non-magnetic fraction of 

particles the size of which varies from 20 to 100 mm. 

The process scheme is shown in Figure 22. 
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3.15.3 Process scheme 

 

 

 

Figure 22: Scheme of the process used by IPALLE to purify ashes. 

Source: IPALLE (Belgium) 

 

3.15.4 Additional comments 

This plant is used to sort the different clinker fractions. It separates the magnetic elements from the 

non-magnetic ones but disregards macronutrients (phosphorus, nitrogen and potassium). 

All this data was kindly provided by the inter-municipal organization IPALLE (Belgium). 
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3.15.5 Useful contact(s) for further information 

IPALLE (Belgium) 

Email address: laurent.dupont@ipalle.be 
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4 List of useful contacts 

BELGIUM 

Ecowerf 

Aarschotsesteenweg 210, 3010 Kessel-Lo 

Contact: see the website www.ecowerf.be 

 

DLV InnoVision ESV 

Rijkelstraat 28, 3550 Heusden-Zolder 

Contact: Lies Bamelis, lies.bamelis@dlv-innovision.be 

 

Gembloux Agro-Bio Tech – University of Liège 

Passage des Déportés 2, 5030 Gembloux 

Contacts: Frank Delvigne, f.delvigne@ulg.ac.be ; Cédric Tarayre, cedric.tarayre@ulg.ac.be 

 

Intercommunale du Brabant Wallon (IBW) 

Rue de la Religion 10, 1400 Nivelles 

Contacts: Vincent Gooris, vgooris@ibw.be ; François Dedoyard, fdedoyard@ibw.be 

 

IPALLE 

Centre de valorisation des déchets de Thumaide 

Rue de Ribonfosse 9, 7971 Thumaide 

Contact: Laurent Dupont, laurent.dupont@ipalle.be 
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NuReSys 

Rooseveltlaan 108/1, 8790 Waregem 

Contact: Carl Dewaele, cd@nuresys.be 

 

Société publique de la Gestion de l’Eau (SPGE) 

Avenue de Stassart(NR) 15, 5000 Namur 

Contact: Christian Didy, Christian.DIDY@spge.be 

 

University of Ghent, Faculty of Bioscience Engineering 

Coupure Links 653, 9000 Gent 

Contacts: Erik Meers, Erik.Meers@UGent.be ; Evi Michels, Evi.Michels@UGent.be 

 

Vlaamse Compostorganisatie (VLACO) 

Stationsstraat 110, 2800 Mechelen 

Contacts: Elke Vandaele, elke.vandaele@vlaco.be ; Wim Vanden Auweele, 

wim.vanden.auweele@vlaco.be 

 

FRANCE 

Sydeme-Méthavalor 

Rue Jacques Callot 1, 57600 Morsbach 

Contact: see the website www.sydeme.fr/site/equip_methanisation1.php 

 

THE NETHERLANDS 

Nijhuis Water Technology 

Innovatieweg 4, 7007 CD Doetinchem 

Contact: Frank Delgorge, f.delgorge@nijhuis-water.com 
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UNITED KINGDOM 

LondonWaste EcoPark 

Advent Way, N18 3 AG London 

Contact: recycling@londonwaste.co.uk 

 

Severn Trent Water Ltd 

PO Box 5310, CV3 9FJ Coventry 

Contact: see the website www.stwater.co.uk 

 

South East London Combined Heat and Power 

SELCHP Energy Recovery Facility, Landmann Way Off Surrey Canal Road, SE14 5RS London 

Contact: see the website www.selchp.com 

 

Thames Water 

Clearwater Court, Vastern Road, Reading, RG1 8DB West Berkshire 

Contact: see the website www.thameswater.co.uk 

 

University of Leeds 

Faculty of Engineering, LS2 9JT Leeds 

Contacts: Miller A. Camargo-Valero, M.A.Camargo-Valero@leeds.ac.uk ; Andrew B. Ross, 

A.B.Ross@leeds.ac.uk 

 

EUROPE 

European Sustainable Phosphorus Platform (ESPP) 

Contact: info@phosphorusplatform.eu 
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