

Desiccation cracks formation in claybarrier for nuclear waste disposal

J. Hubert¹ – N. Prime³ – E. Plougonven² – A. Leonard² – F. Collin¹

¹ Université de Liège – Dep.t ArGEnCo
 ² Université de Liège – Dept. Chimie appliquée
 ³Université Savoie Mont-Blanc LOCIE

Thesis director : Frédéric Collin

Tuesday 16th of February

SUMMARY OF THE PRESENTATION

- Nuclear waste disposal
- Material and method
- Drying kinetics
- Shrinkage
- Conclusions

1

- High activity long life radioactive wastes need to be isolated for a long period of time ⇒ Deep geological disposal
 - Stable and low permeability rock formation required

 \Rightarrow in **Belgium** the studied formation is **Boom Clay**

- High activity long life radioactive wastes need to be isolated for a long period of time ⇒ Deep geological disposal
 - Stable and low permeability rock formation required

 \Rightarrow in **Belgium** the studied formation is **Boom Clay**

Julien Hubert

NUCLEAR WASTE DISPOSAL

16/02/2016

- High activity long life radioactive wastes need to be isolated for a long period of time ⇒ Deep geological disposal
 - Stable and low permeability rock formation required

 \Rightarrow in **Belgium** the studied formation is **Boom Clay**

- Deep geological storage
 - Burial shaft and multi barrier principle:

Andra 2005

Craye et al., 2009

SUMMARY OF THE PRESENTATION

- Nuclear waste disposal
- Material and method
- Drying kinetics
- Shrinkage
- Conclusion

4

MATERIAL AND METHOD

Samples preparation

Initial core	Extracted samples	Saturation	Optimization	Finished samples
	/ samples		/	/

MATERIEL AND METHOD

MATERIAL AND METHOD

- Convective drying test
 - Sample weighed every 30 seconds in the convective dryer

Drying conditions			
Temperature	25°C		
Humidity	3,5 %		
Air flow	0,8 m/s		

MATERIAL AND METHOD

- Data acquisition and image processing
 - Shrinkage and cracking measurement

16/02/2016

Julien Hubert

MATERIEL AND METHOD

SUMMARY OF THE PRESENTATION

- Nuclear waste disposal
- Material and method
- Drying kinetics
- Shrinkage
- Conclusion

8

Theory of porous media drying kinetics

Julien Hubert

DRYING KINETICS

Theory of porous media drying kinetics

Julien Hubert

DRYING KINETICS

9

16/02/2016

Theory of porous media drying kinetics

Julien Hubert

DRYING KINETICS

16/02/2016

Experimental results

Porous medium

Julien Hubert

DRYING KINETICS

Julien Hubert

DRYING KINETICS

• Limit layer model

NUMERICAL STUDY OF THE DRYING KINETICS

- Integration of limit layer model into a FEM framework :
 - Use of a special kind of finite element :

Boundary conditions

Gerard & al, 2008

16/02/2016

- Water pressure at the environment node : $p_c = -\frac{\rho RT}{M} ln(HR)$
- **Temperature** at the environment node : $T = 25^{\circ}C$
- Transfer coefficients :

 α [m/s]
 β [W/m²/K]

 0.048
 53

NUMERICAL STUDY OF THE DRYING KINETICS

Numerical results:

SUMMARY OF THE PRESENTATION

- Nuclear waste disposal
- Material and method
- Drying kinetics
- Shrinkage
- Conclusion

DRYING SHRINKAGE

Experimental results

NUMERICAL STUDY OF THE DRYING SHRINKAGE

- Numerical mechanical model
 - 3D Orthotropic hydro-mechanical model

MECHANICAL PARAMETERS (DIZIER, 2011)				
E_{\parallel}	700	[MPa]		
E_{\perp}	350	[MPa]		
$ u_{\parallel\parallel}$	0.25	[-]		
$ u_{\parallel\perp}$	0.125	[-]		
$G_{\parallel\perp}$	1.4	[MPa]		
$ ho_s$	2670	$[kg/m^3]$		

17

NUMERICAL STUDY OF THE DRYING SHRINKAGE

Numerical results

CONCLUSION

Dessication cracking

References

Andra (2005a). Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Technical report, Paris, France.

Bastiens W., Demarche M., 2003. The extension of the URF HADES: realization and observation. Proceedings of the WN'03 Conference, Tucson, USA.

Craeye B., De Schutter G., Van Humbeeck H., Van Cotthem, 2009. *Early age behaviour of concrete supercontainers for radioactive waste disposal.* Nuclear Engineering and Design, 239, 23-35.

Gerard P., Charlier, R, Chambon, R, & Collin, F. 2008. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water resources research, 44(5), W00C02.

Léonard A., Étude du séchage convectif de boues de station d'épuration. Suivi de la texture par microtomographie à rayons X. Thèse de doctorat, Université de Liège, Faculté des Sciences appliquées, 2003.

SCK-CEN. R and D for the geological disposal of medium and high level waste in the Boom clay, 2009. URLence.sckcen.be/en/Projects/Project/RD_waste_disposal/Geological_disposal.

Thank you !

julien.hubert@ulg.ac.be

SATURATION CONTROL

Skempton coefficient

MATERIALS AND METHODS

- X-Ray tomography characteristics
 - Cross section acquisition using a X-Ray microtomography

Skyscan 1172

Source Voltage = 100 kV

Filter = Al 0.5 mm

4x4 binning = 900x666 pixel radiograms

Pixel size = $27.27 \,\mu m$

180° rotation

Exposure time = 510 ms

2 vertically-connected scans

Scan duration = 8 minutes

Rotation Step (deg)= 0.65

Experimental results

Numerical filter

Julien Hubert

QUESTIONS

WATER RETENTION CURVE

- Samples put into chamber with controlled suction (saline solution)
- Water content measured \Rightarrow saturation degree deduced


```
Van Genuchten formulation :
```

$$S_{r,w} = S_{res} + (S_{sat} - S_{res}) \left[\left(1 + \frac{p_c}{\alpha} \right)^{n_{vG}} \right]^{-m_{vG}}$$

VAN GENUCHTEN FORMULATION				
Sres	0	[-]		
S_{sat}	1	[-]		
$lpha_{vg}$	15	[MPa]		
m_{vg}	0.449	[-]		
n_{vg}	1.70	[-]		

Julien Hubert

DRYING SHRINKAGE

Quickly homogeneous on the whole sample

NUMERICAL STUDY

• Parameters used :

PARAMETERS	VALUES	UNITS			
Hydraulic Parameters					
$k_{sat,\perp}$	8.10 ⁻¹²	[m/s]			
$k_{sat, \parallel}$	2.10^{-12}	[m/s]			
n	0.39	[-]			
	Mechanical Parameters				
E _{II}	700	[MPa]			
E_{\perp}	350	[MPa]			
$ u_{\parallel\parallel}$	0.25	[-]			
$ u_{\parallel\perp}$	0.125	[-]			
$G_{\parallel\perp}$	1.4	[MPa]			
$ ho_s$	2670	$[kg/m^3]$			
	Thermal Parameters				
C_S	2080	$\left[\frac{J}{kg * K}\right]$			
$ ho_s$	2670	$[kg/m^3]$			
C _W	4185	$\left[\frac{J}{kg * K}\right]$			
$ ho_w$	1000	$[kg/m^3]$			
Ca	1004	$\left[\frac{J}{kg * K}\right]$			
$ ho_a$	1.2	$[kg/m^3]$			