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du genre Axinella. C’est également un cas de commen-
salisme (1). .

Nous ferons remarquer, en terminant cette note, que tous
les travaux viennent corroborer I'opinion que nous avons
exprimée depuis longtemps sur la nature des Eponges. —
L’Eponge n’est autre chose qu’un Polype, avons-nous dit
encore en dernier lieu au Congrés de Hanovre, Polype
dont la partie active est réduite 3 un tube membraneux
dont I'orifice est dépourvu, contrairement a ce quis’observe
chez les autres animaux de sa classe, de tentacules pré-
henseurs. (est Uanimal du type polype reduit a sa plus
simple expression, ai-je dit depuis longtemps dans la
Zoologie medicale que )’a1 publiée en collaboration avec
M. P. Gervais (2). |

Remarques sur équation x™ —1 =20; par M. E. Catalan,
associé de I’Académie.

Soit m = pq, les facteurs p, q étant premiers entre
eux. De

(22— 1) [x' 7P 4 . 4 2P+ 1
= (27— 1) ['*™ 4 ... 4+ 27+ 1],

b

xm ,l

on tire, en supprimant x —1 :

(14+x+22+ .4+ [1 + a? + 2% + .., + x@7]
— 1+ x+ 2+ .. + Y[ + 2 + 2% + ...+ gle=Ne],

—c———

(1) Die Spongien des Adriatischen Meeres. Leipzig, 1862.
(2) Zooloyie médicale, Paris, 1839, t. 2, p. 594.
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Les polynomes
e I e IR (I S S e

sont premiers entre eux; done I'égalité précédente devient

| 2P+ 0P - 20 4 gt x®y P X, (1)
— — iR 8

{4+, + 39! Nripicpiy apten - loop S

X étant un polynome entier.

11.

Lorsque les nombres p, ¢ sont un peu grands, chacune
des divisions indiquées est presque impraticable. 11 est
néanmoins facile, non-seulement de calculer X dans cha-
que cas particalier, mais encore de trouver I'expression
de ce polvnome. | |

On a

ou

ou encore

X=(1—x)(1 — xr1) Yot (5)

a, b étant des nombres entiers quelconques.
Le dernier terme de X est, d’apreés la formule (2),

Pt —r—¢ — (1) (¢—1)

Par conséquent, on peut faire abstraction du facteur
(1 —x"), pourvu que, dans le produit (1 —x)ZIx"™ on
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neglige les termes dont le degré surpasse (p =3 (q—1).
S1, par exemple, p="1, g=29, d’ou résulte

Ef‘%ﬂz | R L L T B By, L B S

“l" miﬂ + IlT + -’x%i + Ty "'l'_ $15+ Iﬂa'—!- "W :I:Eﬂ_}— lll;

on trouve, en multipliant par 1 — x et supprimant (— x23):

X—1 2305 — g% - g" = gb o g tmg e

i (4)

1™ o M 16 T 8 g 419 B, 2

Tel est le quotient de

1 + 2/ + ' 4+ 2 3 o*8

par
(S R R SR
et de
1+ a® + 2" + 2" + 2 + 2% + 2%
par

§ - ' x4t et e

iil.

501t @ (n) le nombre des solutions, en nombres entiers,
de 'équation
pa + qb=mn,

n étant eégal ou mftérieur a (p —1) (¢q—1). D’aprés une
propri¢té connue, o(n)=1 ou 0. Donc, dans le poly-
nome X, les coefficients sont +~1,—1 ou 0. En outre,
on peut remplacer la régle ci-dessus par la formule sui-
vante :

n=(p—1)(g—1)

‘(:E l_*T:«(H) - :j.:r(?lf—'])lif”. (5)

H—1)
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On sait, et cela résulte d’ailleurs des égalités (1), que
les coeflicients des termes de X, également ¢loignés des
extrémes, sont égaux entre eux. Donc

o) —g(n—1)=¢[(p—1) (g—1)—n] —¢[(p—1) (¢ —1)—n—1],

ou

sy +e[(p—1) (g=1)—n—1 ]=s(r=1) | (p ~1) (1)~ 2],

ou plutot

a(my -+ ellp—1)(g—1)—n ——-fl] = consl.

Lorsque n=0, le premier terme est 1, le second est
nul (*); done enfin

@t eipg—p -4 n—1 (6)
Ainsi : des équations
ap +bg=n, ap+bg=pg—p—q—n,

Cune admet une solution en nombres entiers, Uaulre n’en
admet pas (**).

(*) En effet, il est visible que I’équation
pla+1—=g¢)+qb+1)=0

n'admet aucune solution en nombres entiers.
(**) On ne doit pas oublier que n est compris entre 0 et (p —~1) (g —1),
inclusivement,
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Soit ¢ < p. On trouve, directement :

2(0)=1, (1)=0, (2)=0....,3(¢—1)=0, s(q)=1.
Done, par I'équation (6) :

fpg —P—9=0, olpg—p—9— =18 (

Par exemple, p étant égal a4 7, g égal a 5 :
(25)=0, (22)=1, »(21)=1, #(20)=1, +(19)=1, #(18)=0.

En effet, le développement de Zx™™, trouvé ci-dessus,
contient x22, x2! 220, 219 il ne conlient ni 223 ni x'8.

VL

Le dernier terme de X étant x*~""“~" on a, par la for-
- mule (5),

Lp— 1) (g —1)]— s[pg —p — gl =},
ou, d’apres 'une des remarques précédentes :
{(p—1)(g—1)]=1.

Ainsi, I'équation ap + bq=(p—1) ((—1) admet tou-
jours une solution en nombres entiers (*).

(*) Lebesgue, Exercices d’analyse numerique, p. 54.
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VII.

Lorsque n surpasse (p—1) (¢q—1), le coefficient de x~,
dans X, est nul. Or ce coefficient a pour valeur, a cause
de la multiplication par (1 — x) (1 — x™) :

7(n) —¢(n—1) —2(n — pg) + ¢(n — pq — 1);
donc
o(n) — p(n — 1) = 5(n — pq) — 5(n — pg — 1);

et, si 'on suppose n=opg+ (3

i —1)—o(f] — oif— 1
On tire aisément, de cette équation,
#(n) — 2 (epg) = #(B) — #(0).
Mais :

olapg)—2 -1, 2(0)=—1;
done enfin

2 (n) =a 4+ ¢ (B).

Ainsi, le nombre des solutions non négatives de 'équa-
(zon
ap + bq=apg + B,

est eqgal au nombre des solutions de

ap + bg =28,
avgmenté de o (*).

P — - i

(*) Cette proposition peul étre demontrée directement (Mélanges ma-
thématiques, p. 22). |
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1l résulte encore, des relations précédentes, que I'équa-
lion ik
ap + bg = n

admetl une seule solulion en nombres entiers, quand n est
compris entre (p — 1) (@ — 1) et pq — 1 (inclusivement).

VIII.

Si, dans X, on change x en , ce polynome devient

(1 — a) (1 — xP9) X
(I G xp) (I e If;)x(p—l}{q—-l) m{p—t} (g—1) ;

X e .
Done —=— reste invariable, si 'on y remplace x par

T 2
%. Autrement dit, 'équation X =0, de degré pair, est réci-

’ . r (p—1 — 1) .
proque (*): on la réduit au degré £ }f ', en faisant

i
li::::t}:—l"'—}
4

{
Al'i. e — .L'FI -+_ —— [
:I:H

En supposant p el g impairs, prenons
p=2p.+1, g=—2q9" + 1:

i'égalité (1) donne

.X. l = = Zaﬂ "“" Lﬂ}? + T ‘+" ﬂ‘_{r}.ly
2P | +Z,+ 2L+ ...+ Z,

¥ | +Z, + Z, + ... + Z,,

] -~ Zl —— ZJ__:I = s ""':I._'l ZPJ

(*) Cette propriéte, bien connue, a éte indiquée ci-dessus (1V).
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Ainsi, chacune des derniéres [ractions est réductible d
un polynome entier

| 2y’
7 — Eﬂ A7 (9)
dans lequel
A, =o(2p'¢—n) —(2p'¢ —n —1). (10)

En effet, le coefficient de Z,, dans 7., éqgale le coefficient
gexx "1t dans X.

I’exemple ci-dessus conduit a

1+Z7+Zi,i, ’]’]“zfi‘**ztn_hzlﬁ 1

_Jl +ZI+ZE_ 1 +Zi+Zﬂ'+Z;
=r1—'z‘l+zﬂ__zi i ZH_ZE'—’_-ZT_Z““"_ZIQ.

=

(11)

. T hT W

IX.

Les racines imaginaires de x”— 1 = 0 sont données
par les équations

L2+ . a5 —=0, (12)
i +% 1 ...3+27=0, | (13)
0 (1%)
que 'on peut réduire a

'+ ¥, 54 ..+ 2, —0, (15)
|l +Z + 2, + ... +Z,=0, (‘I[i)
Z = 0. | (17)

Lorsque m = 35, ces derniéres équations sont :
1 +7Zy+Z,+272,=0, 1+ 72, +72,—=0, 4
rl""Zi+Zﬂ‘—‘“zi_i_z_ﬁ'_‘ztzl"l-ZT““ZH“"‘ZIEZ{ ({)

!
|
2™° SERIE, TOME XXIX. 15



D’ailleurs :

li=2, Ly==2"—2, Z,—=72— 3z, I =gk =iuus
Zy—z>— bz’ + 52, Z,—7z"— 62* + 92 — 2,
2,—=2"—T7z° +1475°— 7z, Z3=2z—8z°+ 20z' — 162>+ 2,
Zo— 12 — 92" + 272% — 302° 4+ 9z,

Zj— z%— 1028 + 352° — 50z + 252° — 2 ’

Li—z"— 1122 + kb7’ 772" -+ bz ==

Zo— 72— 12+ Bz — 11922 + 105z — 56z 2

Par conséquent, les reduiles (18) deviennent

2 +22—22—4 =0, z2*+z—1=0,

glf_ 2 1929 ¢ 4112° + Bh® — 45z — 1132 o =)
+ 140z2* — 462> — 40z* + 8z + 1 = 0.

X.

On peut prendre, comme racine primiiive de 1'équa-
tion (12) :

O - Ay A
o — c0sS— -+ V' — 1sin — ¢!
P P

De méme , une racine primitive de I'équation (13) est

ﬂf ——

=

!?Jﬂﬁ'q

Soit maintenant

(??;+E?F) T -

v est racine primilive de la proposee.
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En effet, supposons '=v*', ou y*"=1,v, 7, 7" élant
moindres que m. La derniére égalité conduit a

H(QTE Q?r)
VN— + — | = 2ur,
P q
on a
p+q 2
Pq

résultat absurde, attendu que la fraction E;—:iest irreduc-
tible ().

l.a formule
x = ok (20)

donne toutes les racines de Uéquation (14), et seulement
ces racines, si Uexposant A w’est divisible ni par p ni par q:
c’est ce que 'on reconnait aisément. Si I'on identifie alors
le polynome X avec le produit II(x—7p*), composé de
(p—1) (q—1) facteurs, on pourra trouver des relations
simples entre les sommes des puissances de 7.

Par exemple, de

| — x4+ —a® 4+ —® + 2" — oM+ 2! — 5 4 gt
—x® 4 x® — 2 4 2P — 2P+ ¥ =

e g} —v) lE—9 )iz — ) & — ) {x—¢)
[ =) (& — ")z —9") (& — ")z — #'%) e (2 —);

(*) Si j’ai reproduit cette démonstration, c'est parce qu’ordinairement
on choisit, comme racine primilive, une expression beaucoup plus com-
pliquée que le produit 3.
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on conclut

o a0 08 ab g8 g a8 g8 g Sl SM2 g M5 g
ool g8 g9 L 022 L B U G 0T
G ?,51 e ?,52 . ?_,,53 4+ ,:,34 =0,

el

en supposant
S=1 4243544+ 06+8494. 4 3k=420=35X12.

L.a derniére relation est évidente; I'autre est facile a
vérifier.

X1I.

Les racines de I'équation (17) sont données par la for-
mule

2;
R s L (21)

P

dans laquelle %, tout au plus égal ¢ "=, ne doit étre

a2 3

divisible ni par p ni par q. En parliculie‘;‘, les racines de
'équation (19) sont :

24 487 127

:1:2(‘:0‘3 == :QZQQOS—;T; :;:;_}CGS': s
5% ) 5%

Y€~ | 144 192~

Za—2¢€08 —; Zz=2008——, zZ¢g=—2 05§ —,
29 D) 5%

216~ | 264 2847

=2 t0s—— 5 Z—2¢€05— Tg—'2€05—— &
29 99 D9

o12r 284 408 r

2— 2 'e0s N s Z— 2 Cus :
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ou, plus simpiement :

11~ 157 _ 2r
Zy=—2C05——>5 Z;3=—2€05——»3 2Zz3=2 05—
55 29 5%
9r b 17 =
G——2¢05—> Z=—2¢€05 —; Zo=—2008——
29 5% 58
- O 167 37
:7:2(‘05_’1 :3:—::“05:",_'3 Iq:ﬂCOS:u
)e) ) JJ
5% w 12~
B——2€0S—3 zZp=——2005-—-7 Zp=—20€05 _—

Quand l'exposant m, supposé impair, est décomposé en
plusieurs facteurs, premiers entre eux deux a deux, les
considérations précédentes sont encore applicables; mais
les résultats se compliquent rapidement. Si, par exemple,
on fait m = pqr, on trouve d’abord

l Soeqlks :I:FH

: = et ot ) (bt R T a et K (22
—x

X, élant un polynome entier; puis
xi — (l ] JT.)EEIHP-}—GQ—J—{‘P: (2*})

pourvu que, dans le produil, on néglige les termes donf
le degré surpasse m — p — q — r + 2 = p. Enfin, s1 I'on
désigne par o(n) le nombre des solutions de I'équation

ap + bg + cr =mn,

exprimees par des nombres enliers, on a anssi
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XIV.
L égalité

X =g - Xy
Lt — a1 =)

peut étre écrite sous les trois formes

A—x)(1 —x") 1 —x)(1 — x*)

X‘_(l—-a,w (1 —a?) (1 —ax)(d—z)
X i 1—x)(1—x) (1 —x) (1 —x7)
i (1 —x?) (1 —x%) (1—ad -—-st:'*"')Sl
C (—m(—2v) (1 —2)(1 —a”)
T =) (1 —a) (1 —a?) (1 —an)

Par conséquent, si 'on fait

(1 — x) (1——:::’*‘""**’) B :(l——:;r:) (1 — a?)
T PR T N e T e T
(1 —x) (1 — =) (=) (1 —a)
Q_(i-——m"?) (1— a9) Q‘“(l —a’) (1 —a?)’ e
(1 —2x)(1 — ™) (1 — x) (1 — ™)
S —a(l—a) O (l—a)(—a1)
Ol aura .
X, = PP, = QQ, =RR,. (26)

Les quantitées P, Py, Q, Q,, R, R;, analogues a la
fraction (2), sont, comme celle-ci, réductibles a des
polynomes entiers : en particulier, R; = X. Donc le poly-
nome X, est decomposable, de (rois manieres differentes,
en un produit de deux facteurs eniiers, dont les lermes

ont pour coefficients +1 ou —1.
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Cette propriété n’exige pas que 'exposant m soit impair.

Afin de la vérifier dans un cas simple, prenons p =25,
q=—9, r= 2. Nous aurons

(L —ax) (1 —2®) 142" +Fa3°+2°+ 2™

P— ==
(1 —=x°)(1 — «°) 1 4+ 2+ x* 4+ 2° + o
=] — 2+t — T+ 20— g gy ¥
5 (1 —x) (1 — xf) 1+ &° l g
— —— — ] — x + 2°
S o) (i——f) 14+ x i
0 (t—a2)(1 —2*) 1+ 5%+ 5%
(1 —2°)(1—a%) 142+ 2°
— | —x+x’— ria— 74— M gt Tt
‘ | —x) (1 — ™ 1 + x° =
le( 2 ,,) = — = e gh gl g et
(1— %) (1 — =°) 1=
1—x) (1 —a®) 4+ ¥
= —2Y) 1z
==t — X xt T xt— g gl
— gt 2 15 .:t:”?
. 1—2)(1—2¥) 1 + x°+ x
: (i)l —4) A+
—d— 7 3 — 2" e 2 — 2"+ 2
puis
X,— 1 — 2% 4+ 9% — 2% + 2% — 28 4+ a® — 2% + x'© — 2"

e 23 M 16 1T 19 9420 92 29 (*)

(*) Le coefficient de z* est 2, tandis que, d’apres la formule (24), il
devrait étre égal a 1. Pour expliquer cette divergence, il suffit de rappeler
que la derniére formule suppose p, ¢, r impairs, et, par consc¢quent,
supérieurs a 2.
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XV.

Les relations (25) seraient absurdes si les polynémes
P, Py, Q, ... étaient premiers. 1l est facile de prouver que
R R P 5
ST i Gl i W“Q_w,@n
R! Q| Pi Rl | Qi pl

A, B, C étant des polynomes enliers.

En effet,
: Q (l T xﬁ"?i') (1 L x:ﬂ) l T :qu 3 xi‘pg gD !I;'-'_i.lﬂ“i‘
RI W (1 i mq-ﬂ) (,1 ot :]:Pff) o8 ,l = Ip = :I:‘:ip g L x'i"_"IHJ 7

ou, si l'on fait x* =y :

Q) 1 + 9" + Yy + ..+ y '

5 (28)

g I +y+y* 4.+ y

et, d’apres la formule (1), le second membre est réductible
a un polynome entier.

XVI.

Dans cette meme formule (1), remplacons X par
F (p, ¢, x); de maniére que
(4 — ) (1 — x™)
(1 —2) (1 —av)

Fip, q; ) — (29)

Au moyen de cette notation, 1'égalité (28) devient

Q
R

—=Pla. v, x).

|
Ainst

A=F(¢gr,a"), B=F(r,p,a), C=F(p,qa"); (50)
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el, en conséquence : '
Xi = Fip, q, x)F(p, r; 2)F(q, T, 37),

X, = F(q, r, x)F(q, p, x)F(r, p, ='), J(EI)
Np=F(r, p.x)F (v, g 2} L (50 &) S

on, ce qui est équivalent,
{ X, — AQ,R, — BR,P, = CP,Q.. (52)
Le polynome X | est donc décomposable, de (rois manieres
differentes, en un systéme de trois facteurs enliers, analo-
ques, chacun, au polynome X.

Dans I'exemple ci-dessus :

A e e 1 a") - Tt et

5 5 =1 — 41:5 = | !
(1 —2®) (1 —2 1+ 2% + & 3

e —-aY)  1+a”

T T TR e v
(l i IE)(I T xﬁﬂ) ] 4 1% 20

_(]"'—'IIH) (i ——CCE)_ Y e

=y b S . 10 etE 16

Le polynome du vingt-deuxiéme degré, trouvé précé-
demment , se décompose donc comme 1l suit :

Xlz(l "IS—I-.IJW) ()1 “‘_‘}r'{";ﬂg_xﬁ-{--:ﬂ&) ( I**—*I g :["5—-*'1"{‘.4_‘1;5 ‘.I-T

-x®)”
(1—2 42—+ ") (1 —x+ 25— + 2" — 2" 4-2%) (1 —2x 4+ 2?)

|

(l—attat ' ra—a 'l =+ (=0 ¥ =gk hat).
De plus,

| —2+2"=1—oc+2°) (1l +x—o°— x*— 2° + 2" + 2,

1 —— ;I? £ Iﬁ-—-.'l'?ﬂ -+ Im-—,’r”-{—xm—:

(1—x+2>—a*+2°—2"+2°) (1 +ax — 2 —a*—2x° + "+ 2%);
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donc enfin
Xi=1—x+2)(1 —x + 2* — 2 + ')
(1+x—o— 2t — 2+ 2" +2°) (1— 2 +0° — z* -2 — 27+ 2%,

Il résulte, de cette derniére décomposition, que les
racines 1maginaires de x3° —1 =0 sont déterminées par
les équations : |

1+z4+2°—=0, 1—x+2*=0, 1+z2+2+2+2—0,
| —2+2*—2°+2*=0, 14+2z—2° —a*—2°+2"+2°—0,
l—z+ 22—z +2°— 2" + 2 =0.

Ces résultals connus servent de vérification aux calculs
précédents.

Liege, février 1870.

Note sur la nature du soleil, par M. G. Bernaerts.

L’étude de la constitution physique du soleil a fait de
orands progrés depuis quelques années. Grace a la bril-
lante théorie de M. Faye et du R. P. Secchi, une lumiére
toute nouvelle est venue se répandre sur cette question;
les véritables principes, longlemps méconnus, se sont fait
jour et ont écarté les idées anciennes qui n’expliquaient
ni la vive lumiére, ni la longue période d’incandescence
du soleil. Mais cette hypothése, quel que soit d’ailleurs
son mérite, a néanmoins donné lieu a une grave objec-
tion: Une sphére gazeuse élevée a une haute température
doit étre diaphane et a travers les éclaircies dela tache on
doit voir la partie opposée et brillante de la photosphére.

Pour échapper a cette difficulté et expliquer la couleur
sombre des taches, M. Fave suppose que les couches,



