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Abstract: This paper presents a new, simple, and exact solution to the formation keeping of satellites when the relative distance between
the satellites is so large that the linearized relative equations of motion no longer hold. We employ a recently proposed approach, the
Udwadia-Kalaba approach, which makes it possible to explicitly obtain the desired control function without making any approximations
related to the nonlinearities in the underlying dynamics. We use an inertial frame of reference to describe the motion of a satellite and
since no approximations are made, the results obtained apply to situations even when the distance between the satellites is arbitrarily large.
The paper deals with a projected circular formation, but the methodology in this paper can be applied to any desired configuration or
orbital requirements. Numerical simulations confirm the brevity and the accuracy of the analytical solution to the dynamical control
problem developed herein.
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Introduction

Formation flying technology has been extensively investigated as
a means to get better performance than a single monolithic satel-
lite. This technology guarantees a reduction in cost and has many
applications such as the optical interferometry, distributed sens-
ing, gravitational field measurements, ionospheric observation,
earth observation, and 3D mapping for planetary explorers. One
of the central problems of formation flying is the proper descrip-
tion of the relative dynamics between satellites, which is the basis
of formation design and control. Conventionally, linearized equa-
tions of relative motion such as Hill-Clohessy-Wiltshire �HCW�
equations �Hill 1878; Clohessy and Wiltshire 1960�, which are
linearized about a reference orbit or the formation center, have
been used due to their simplicity. In the presence of perturbations,
however, the formation configuration based on linearized equa-
tions would be destroyed. Therefore, control forces must be ap-
plied to maintain the desired configuration for a specific mission.
This formation-keeping problem for multiple satellites has been
widely investigated by various researchers. Yan et al. �2000� de-
signed a pulse-based periodic controller to keep a formation using
the HCW equations and the linear quadratic regulation technique.
The main drawback to this paper is that the earth oblateness grav-
ity perturbation is neglected, hence, Sparks �2000� proposed a
feedback control strategy in the presence of this perturbation. He
designed a controller using discrete time linear quadratic regula-
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tor laws based on the HCW equations. Based on the HCW equa-
tions, Sabol et al. �2001� investigated several satellite formation
flying designs and their evolution through time. Using the varia-
tion of orbital elements, they designed formation-keeping
schemes in the presence of various perturbations. Armellin et al.
�2004� developed a real-time control strategy that includes both
reconfiguration and formation keeping. They solved these two
problems by generating a control sequence based on a discretiza-
tion of the differential constraints and a parametrization of the
controls. Qingsong et al. �2004� solved this formation-keeping
problem by using a low-thrust fuzzy control method. However,
Yan and others �Yan et al. 2000; Sparks 2000; Sabol et al. 2001;
Armellin et al. 2004; Qingsong et al. 2004� made use of the
linearized equations of relative motion, and hence the methods
thus derived are suitable only for very close formations.

Although, as pointed out earlier, there has been an extensive
literature regarding formation flying to date, the effects that result
from the nonlinearities remain yet to be fully modeled. Karlgaard
and Lutze �2003� approached the problem using spherical coordi-
nates and perturbation techniques to extend the HCW equations
that are correct to second order. Richardson and Mitchell �2003�
obtained the solution that includes the third-order nonlinearities
by enforcing periodic motion. Kasdin et al. �2005� used a Hamil-
tonian formulation to solve the problem to include second-order
nonlinearity effects, but with J2 perturbations.

In this paper, assuming unbounded and time-varying low-
thrust burns throughout the maneuver, the formation-keeping
problem is exactly and explicitly solved without any restriction
about the distance between satellites. Also, this paper derives the
exact control force to maintain the configuration of the formation.
We use a new approach for constrained dynamic systems pro-
posed by Udwadia and Kalaba �Udwadia 2000, 2002, 2003, 2005,
2008; Kalaba and Udwadia 1993; Udwadia and Kalaba 1992,
2002�, which is based on Gauss’s principle. The Udwadia-Kalaba
equation unlike the Lagrange’s equation handles both holonomic
and nonholonomic constraints with equal ease. This equation con-
tains the generalized Moore-Penrose inverse �Udwadia and

Kalaba 1999� and has been applied to highly constrained prob-
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lems in various fields of study such as robotics �Peters et al. 2005�
and astrodynamics �Schutte and Dooley 2005�. The major contri-
bution of this paper is the ability to explicitly solve the complete
nonlinear dynamics and control problem as a whole without the
use of any approximations. In previous research, the linearized
equations of relative motion described in a local moving frame or
their approximate versions �that are valid only to second or third
order� have been used to solve the formation-keeping problem, so
it has been very challenging to obtain an exact solution.

We consider a satellite called the “chief” orbiting a central
body, and require that a “deputy” satellite maintain a given re-
quired formation relative to this chief. We employ herein the two-
body equation of motion described in an inertial frame of
reference, and then incorporate the station-keeping requirements
as constraints to obtain a simple equation of motion that com-
pletely captures all the nonlinearities. This equation exactly yields
the given constrained motion and also gives an exact control force
�as an explicit function of the state and time� required to maintain
the formation. The results obtained can apply to the case even
when the distance between satellites is so large that the linearized
relative equations of motion no longer hold. The dynamics once
described in the inertial frame are then recast, for convenience,
into a local moving frame by the use of a transformation matrix.
As a practical constraint we choose the relative configuration that
is circular when projected on the local horizontal plane, which is
generally called the projected circular orbit �PCO� �Vaddi et al.
2003�. This projected circular formation is based on the solutions
to the linearized equations, and hence the nonlinear behavior of
relative motion will break down this configuration. To avoid this
break down of configuration, the need to use a control force
arises, which will be solved for in detail. Also, this new approach
gives a general methodology that can be easily applied to any
type of relative configuration.

The analysis in this paper is summarized as follows: in the
section Udwadia-Kalaba equation, we briefly discuss the funda-
mental equation of motion for a constrained system. Next, in the
section Unconstrained motion, the acceleration for the uncon-
strained motion is depicted, which also serves as a solution for the
relative motion in the two-body problem. In the section Con-
strained motion, the constraint equation and the exact control
force are derived in the inertial frame which forces the deputy to
maintain the required PCO configuration. Finally, in the section
Numerical simulations, numerical simulations are presented to
demonstrate the brevity and the accuracy of the method.

Udwadia-Kalaba Equation

This section deals with the fundamental equation for a con-
strained system, which we will call the Udwadia-Kalaba equation.
Consider a point-mass satellite in the inertial Cartesian coordinate
frame. When the initial position and velocity of the satellite are
known, the vectors of displacement and velocity are denoted by
the following:

x = �x1,x2,x3�T; ẋ = �ẋ1, ẋ2, ẋ3�T �1�

The forces impressed on the satellite are denoted by a 3 by 1
vector, and denoted by

F�t� = �F1�t�,F2�t�,F3�t��T �2�

The unconstrained motion of the system can be expressed as a 3

by 1 matrix equation
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Mẍ = F�x�t�, ẋ�t�,t� �3�

or

ẍ = M−1F�x�t�, ẋ�t�,t� = a�t� �4�

where M=mI3�3=diagonal mass matrix; m=mass of the satellite;
I3�3=3 by 3 identity matrix; and a�t�=acceleration at the time t
of the unconstrained system. Furthermore, the system is con-
strained through the application of the following set of consistent
constraint equations:

A�x�t�, ẋ�t�,t�ẍ = b�x�t�, ẋ�t�,t� �5�

where the matrix A=m by 3 matrix and b=m by 1 vector, where
m is the number of constraints. The application of constraints on
the unconstrained system causes additional forces to be applied to
the unconstrained system and the equation of motion of the con-
strained system becomes

Mẍ�t� = F�x�t�, ẋ�t�,t� + Fc �6�

where Fc=additional constraint force vector that arises due to the
application of the constraints. Udwadia and Kalaba proposed the
following equation of motion for the constrained system
�uniquely described at each instant of time� �Udwadia and Kalaba
2008�:

Mẍ = F + M1/2�AM−1/2�+�b − Aa� �7�

where the superscript “+” represents the generalized Moore-
Penrose inverse. In this paper, Eq. �7� is referred to as the
Udwadia-Kalaba equation. It is important to note that the
Udwadia-Kalaba equation should be described in the inertial
frame of reference. Then, the constraint force vector Fc�t� is de-
scribed as

Fc�t� = M1/2�AM−1/2�+�b − Aa� �8�

Since the generalized Moore-Penrose inverse of a matrix is
unique, the control force is uniquely and explicitly calculated by
Eq. �8�, regardless of whether the constraints given by Eq. �5� are
holonomic or nonholonomic. It is straightforward to show that the
Udwadia-Kalaba equation satisfies the constraint Eq. �5�. Using
the fact that M=mI3�3 in this paper, as we are concerned with
only a single deputy satellite, the Udwadia-Kalaba equation can
be further simplified to �Udwadia and Kalaba 2008�

ẍ = a + A+�b − Aa� �9�

Mẍ = F + MA+�b − Aa� �10�

Unconstrained Motion

The unconstrained motion represents the relative motion without
the application of a control force on the system of satellites. The
chief and the deputy satellites move only under the influence of
gravity, and hence we consider “unconstrained” motion and “un-
controlled” motion to have the same meaning. In the case of
constrained motion, proper control forces are needed to be ap-
plied on the unconstrained system to meet the constraint require-
ments. Hence, we consider “constrained” motion and “controlled”
motion to also have the same meaning.

When a point-mass satellite is orbiting around the Earth, the
unconstrained acceleration of the system is expressed in the iner-

tial coordinate system as follows �Prussing and Conway 1993�:
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a = −
GM

�X2 + Y2 + Z2�3/2�X

Y

Z
� �11�

where G=universal gravitational constant and M =mass of a cen-
tral body, the Earth in this paper. Eq. �11� is described in the
inertial frame, more precisely the Earth-centered inertial �ECI�
frame. This coordinate frame originates at the center of the Earth,
the X axis points toward the vernal equinox, the Z axis extends
through the North Pole, and the Y axis completes the right-handed
rule �Fig. 1�.

Constrained Motion

Assuming the chief satellite is in a circular orbit with a fixed
inclination under no perturbation, our goal is to maintain the dis-
tance between the chief and deputy to be constant, say �, when
projected on the local horizontal plane. Also, to prevent the x
coordinate from diverging, another constraint between x and z
coordinates is applied. To describe these constraints, it is conve-
nient to define a new coordinate frame, called the Hill frame or
the local-vertical and local-horizontal frame. The origin of this
frame is located at the chief, the x axis lies in the radial direction,
the y axis is in the along-track direction, and the z axis lies along
the orbital angular momentum vector, thus completing a right-
handed coordinate system �see Fig. 1�. In this frame, the con-
straint equations can be written as

y2 + z2 = �2 �12a�

2x − z = 0 �12b�

where �=constant distance between the chief and the deputy. Eq.
�12b� is added to make the relative motion to be bounded in every
axis, and it also matches with the solutions of the HCW equations
satisfying the constraint Eq. �12a� �Sabol et al. 2001�. Since Eqs.
�12a� and �12b� are holonomic constraints, we differentiate Eqs.

Fig. 1. ECI frame �X-Y-Z� and Hill frame �x-y-z�. The distance
between the chief and the deputy must be maintained to be � in the
yz-plane of the local, rotating coordinate frame x-y-z.
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�12a� and �12b� twice with respect to time and the equations
become

yÿ + zz̈ = − ẏ2 − ż2 �13a�

2ẍ − z̈ = 0 �13b�

where x, y, and z=described in the Hill frame. Since the Hill
frame is a rotating or noninertial frame, we must transform Eq.
�13� into the one described in the ECI �inertial� frame.

The transformation can be accomplished as follows: first, we
rotate by � about the Z axis of the ECI frame where � is the
longitude of the ascending node of the chief, the angle between
the X axis and the line of node. We will denote this rotation
matrix by R3��� where the subscript 3 means the rotation about
the third axis, Z axis in this case

R3��� = � cos��� sin��� 0

− sin��� cos��� 0

0 0 1
� �14�

Next, we rotate the system by i about the first axis, where i is the
inclination of the chief, the angle between the equatorial plane
and the chief’s orbital plane. We denote this rotation matrix as
R1�i�

R1�i� = �1 0 0

0 cos�i� sin�i�
0 − sin�i� cos�i�

� �15�

It is important to note that both � and i are constant because the
chief is in a circular orbit under no perturbation, so both R3���
and R1�i� are constant. Then, we rotate the system by � about the
third axis, where � is the argument of latitude of the chief, the
angle measured between the ascending node and the chief’s po-
sition vector. We denote this rotation matrix as R3���

R3��� = � cos��� sin��� 0

− sin��� cos��� 0

0 0 1
� �16�

Note that � is not constant because the chief is moving. � can be
represented as

� = �0 + n�t − t0� �17�

where �0=argument of latitude at the initial time, t0, and n de-
notes the constant mean motion of the chief

n =�GM

r0
3 �18�

Here, r0=radius of the chief’s circular orbit. Finally, we translate
the system by −r0 along the x axis to coincide the origin with the
chief’s position. Then, the final transformation equation which
maps the ECI frame �X ,Y ,Z� to the Hill frame �x ,y ,z� becomes

�x + r0

y

z
� = R3���R1�i�R3����X

Y

Z
� �19�

Let us define the total rotation matrix as R

R � R3���R1�i�R3��� �20�

Using Eqs. �14�–�16�, we get
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R = � cos���cos��� − sin���cos�i�sin��� sin���cos��� + cos���cos�i�sin��� sin�i�sin���
− cos���sin��� − sin���cos�i�cos��� cos���cos�i�cos��� − sin���sin��� sin�i�cos���

sin���sin�i� − cos���sin�i� cos�i�
� �21�

The first constraint equation �Eq. �13a�� contains only y and z, so we use only the last two rows of the matrix R and define the following
matrix:

R � 	− cos���sin��� − sin���cos�i�cos��� cos���cos�i�cos��� − sin���sin��� sin�i�cos���
sin���sin�i� − cos���sin�i� cos�i� 
 �22�

Differentiating the matrix R once and twice with respect to time, we get the following:

Ṙ = 	− n cos���cos��� + n sin���cos�i�sin��� − n cos���cos�i�sin��� − n sin���cos��� − n sin�i�sin���
0 0 0


 �23�

R̈ = 	n2 cos���sin��� + n2 sin���cos�i�cos��� − n2 cos���cos�i�cos��� + n2 sin���sin��� − n2 sin�i�cos���
0 0 0


 �24�

Also, the second constraint equation �Eq. �13b�� contains only x and z, so we use only the first and third rows of the matrix R and define
the following matrix:

R̃ � 	cos���cos��� − sin���cos�i�sin��� sin���cos��� + cos���cos�i�sin��� sin�i�sin���
sin���sin�i� − cos���sin�i� cos�i� 
 �25�

Differentiating the matrix R̃ once and twice with respect to time, we get the following:

Ṙ̃ = 	− n cos���sin��� − n sin���cos�i�cos��� − n sin���sin��� + n cos���cos�i�cos��� n sin�i�cos���
0 0 0


 �26�

R̈̃ = 	− n2 cos���cos��� + n2 sin���cos�i�sin��� − n2 sin���cos��� − n2 cos���cos�i�sin��� − n2 sin�i�sin���
0 0 0


 �27�
If the chief is in an equatorial orbit, then its inclination is zero, the
line of nodes does not exist, so � and � cannot be defined. In this
case the X axis is considered as the node, therefore �=0, i=0,
and � is just the angle between the X axis and the position of the
chief. Hence, the transformation matrix R is simply given by

R = R3��� = � cos��� sin��� 0

− sin��� cos��� 0

0 0 1
� �28�

Also

R = 	− sin��� cos��� 0

0 0 1

 ;

Ṙ = 	− n cos��� − n sin��� 0

0 0 0

 ;

R̈ = 	n2 sin��� − n2 cos��� 0

0 0 0

 �29�

and

R̃ = 	cos��� sin��� 0

0 0 1

 ;

Ṙ̃ = 	− n sin��� n cos��� 0

0 0 0

 ;

R̈̃ = 	− n2 cos��� − n2 sin��� 0 
 �30�

0 0 0
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from Eq. �19�, y and z components in the Hill frame are related by

	y

z

 = R�X

Y

Z
� �31�

Differentiating Eq. �31� once and twice yields the following:

	ẏ

ż

 = Ṙ�X

Y

Z
� + R�Ẋ

Ẏ

Ż
� �32�

	ÿ

z̈

 = R̈�X

Y

Z
� + 2Ṙ�Ẋ

Ẏ

Ż
� + R�Ẍ

Ÿ

Z̈
� �33�

Eq. �13a� can be represented in a matrix form

�y z �	ÿ

z̈

 = − �ẏ ż �	ẏ

ż

 �34�

Substituting Eqs. �31�–�33� into Eq. �34�, we get the first con-

straint equation described in the ECI frame
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�X Y Z �RT�R̈�X

Y

Z
� + 2Ṙ�Ẋ

Ẏ

Ż
� + R�Ẍ

Ÿ

Z̈
�� = − �X Y Z �ṘT

+ �Ẋ Ẏ Ż �RT��Ṙ�X

Y

Z
� + R�Ẋ

Ẏ

Ż
�� �35�

Eq. �35� can be rearranged into the following:

�X Y Z �RTR�Ẍ

Ÿ

Z̈
� = − �X Y Z �RTR̈�X

Y

Z
�

− 2�X Y Z �RTṘ�Ẋ

Ẏ

Ż
�

− �X Y Z �ṘTṘ�X

Y

Z
�

− 2�X Y Z �ṘTR�Ẋ

Ẏ

Ż
�

− �Ẋ Ẏ Ż �RTR�Ẋ

Ẏ

Ż
� �36�

Next, let us consider the second constraint Eq. �12b�. Then,
from Eq. �19�, x- and z-components in the Hill frame are related
by

	x

z

 = R̃�X

Y

Z
� �37�

Differentiating Eq. �37� once and twice yields the following:

	ẋ

ż

 = Ṙ̃�X

Y

Z
� + R̃�Ẋ

Ẏ

Ż
� �38�

	ẍ

z̈

 = R̈̃�X

Y

Z
� + 2Ṙ̃�Ẋ

Ẏ

Ż
� + R̃�Ẍ

Ÿ

Z̈
� �39�

Eq. �13b� can be represented in a matrix form

�2 − 1 �	ẍ 
 = 0 �40�

z̈

JOURNA
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Inserting Eq. �39� into Eq. �40� yields the second constraint equa-
tion described in the ECI frame

�2 − 1 �R̃�Ẍ

Ÿ

Z̈
� = − �2 − 1 �R̈̃�X

Y

Z
� − �4 − 2 �Ṙ̃�Ẋ

Ẏ

Ż
� �41�

The two constraint equations �Eqs. �36� and �41�� can be repre-
sented in a form of Eq. �5�

A�x�t�, ẋ�t�,t�ẍ = b�x�t�, ẋ�t�,t�

More specifically, we obtain the following vector equation:

	A11 A12 A13

A21 A22 A23

�Ẍ

Ÿ

Z̈
� = 	b1

b2

 �42�

Then, each component of the matrices A and b can be written as
follows:

�A11 A12 A13 � = �X Y Z �RTR �43�

so that

A11 � X�cos���sin��� + sin���cos�i�cos����2 + sin2���sin2�i��

+ Y�cos���sin��� + sin���cos�i�cos�����sin���sin���

− cos���cos�i�cos���� − sin���cos���sin2�i��

+ Zsin���sin�i�cos�i� − sin�i�cos����cos���sin���

+ sin���cos�i�cos����� �44a�

A12 � X�cos���sin��� + sin���cos�i�cos�����sin���sin���

− cos���cos�i�cos���� − sin���cos���sin2�i��

+ Y�cos���cos�i�cos��� − sin���sin����2

+ cos2���sin2�i�� + Zsin�i�cos����cos���cos�i�cos���

− sin���sin���� − cos���sin�i�cos�i�� �44b�

A13 � Xsin���sin�i�cos�i� − sin�i�cos����cos���sin���

+ sin���cos�i�cos����� + Ysin�i�cos���

��cos���cos�i�cos��� − sin���sin����

− cos���sin�i�cos�i�� + Z�sin2�i�cos2��� + cos2�i��

�44c�

and

�A21 A22 A23 � = �2 − 1 �R̃ �45�

so that

A21 = 2 cos���cos��� − 2 sin���cos�i�sin��� − sin���sin�i�

�46a�

A22 = 2 sin���cos��� + 2 cos���cos�i�sin��� + cos���sin�i�

�46b�
A23 = 2 sin�i�sin��� − cos�i� �46c�
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In addition

b1 = − �X Y Z �RTR̈�X

Y

Z
� − 2�X Y Z �RTṘ�Ẋ

Ẏ

Ż
�

− �X Y Z �ṘTṘ�X

Y

Z
� − 2�X Y Z �ṘTR�Ẋ

Ẏ

Ż
�

− �Ẋ Ẏ Ż �RTR�Ẋ

Ẏ

Ż
� �47�

and

b2 = − �2 − 1 �R̈̃�X

Y

Z
� − �4 − 2 �Ṙ̃�Ẋ

Ẏ

Ż
� �48�

The generalized Moore-Penrose inverse of the matrix A can be
obtained in a following closed form �Udwadia and Kalaba 2008�:

A+ = ��A1
+ − �c+��c+� �49�

where

A1
+ =

1

A11
2 + A12

2 + A13
2 �A11

A12

A13
� �50�

� =
A11A21 + A12A22 + A13A23

A11
2 + A12

2 + A13
2 �51�

c+ =
1

A21
2 + A22

2 + A23
2 − �2�A11

2 + A12
2 + A13

2 ���A21

A22

A23
� − ��A11

A12

A13
��
�52�

Finally, substituting all these terms in the Udwadia-Kalaba equa-
tion �Eq. �9��

ẍ = a + A+�b − Aa� = −
GM

�X2 + Y2 + Z2�3/2�X

Y

Z
� + ��A1

+ − �c+��c+�

�	b1

b2

 +

GM

�X2 + Y2 + Z2�3/2 ��A1
+ − �c+��c+�	A11 A12 A13

A21 A22 A23



��X

Y

Z
� �53�

The constraint force that is needed to satisfy our constraints can

be explicitly obtained
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Fc = MA+�b − Aa� = m��A1
+ − �c+��c+�	b1

b2



+
GMm

�X2 + Y2 + Z2�3/2 ��A1
+ − �c+��c+�	A11 A12 A13

A21 A22 A23

�X

Y

Z
�
�54�

where m=mass of the deputy satellite. In Eqs. �53� and �54�, A1
+,

�, and c+ are explicitly given in Eqs. �50�–�52� as a closed form.

Numerical Simulations

In this section, the analytical results in the previous section are
verified by numerical simulations. The radius of the chief’s orbit
is assumed to be 7.0�106 m and the mean motion n is 0.001 078
rad/s. The deputy is desired to be maintained the PCO with �
=50 km. Since the value of � is not small, using the HCW equa-
tions is not a good idea to solve this problem. �, i, and �0 of the
chief are given as 30°, 80°, and 0°, respectively. Therefore the
initial condition for the chief in the ECI frame is given by

X0
� = �r0 cos���

r0 sin���
0

� = �6.062 � 106 m

3.5 � 106 m

0 m
� ;

Ẋ0
� = �− v0 cos�i�sin���

v0 cos�i�cos���
v0 sin�i�

� = �− 6.553 � 102 m/s
1.135 � 103 m/s
7.432 � 103 m/s

� �55�

where the subscript 0 means the values at the initial time, the
superscript � denotes the vector associated with the chief satellite
and v0 is the constant orbital speed of the chief, which is deter-
mined by the vis-viva equation �Prussing and Conway 1993�

v0 =�GM

r0
= 7.547 � 103 m/s �56�

Next, we must be careful when dealing with the initial condi-
tion of the deputy, because the initial condition must also satisfy
the constraint equations. In this paper, the constraints are holo-
nomic, so both Eqs. �12� and �13� must hold. Eqs. �12� and �13�
can be represented in the ECI frame as

�X Y Z �RTR�X

Y

Z
� − �2 = 0,�2 − 1 �R̃�X

Y

Z
� = 0 �57�

�X Y Z �RTṘ�X

Y

Z
� + �X Y Z �RTR�Ẋ

Ẏ

Ż
� = 0,�2 − 1 �Ṙ̃�X

Y

Z
�

+ �2 − 1 �R̃�Ẋ

Ẏ

Ż
� = 0 �58�
Then, the initial condition for the deputy satellite must satisfy the
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following equations:

�X0 Y0 Z0 �R0
TR0�X0

Y0

Z0
� − �2 = 0,�2 − 1 �R̃0�X0

Y0

Z0
� = 0

�59�

�X0 Y0 Z0 �R0
TṘ0�X0

Y0

Z0
� + �X0 Y0 Z0 �R0

TR0�Ẋ0

Ẏ0

Ż0

�
= 0,�2 − 1 �Ṙ̃0�X0

Y0

Z0
� + �2 − 1 �R̃0�Ẋ0

Ẏ0

Ż0

� = 0 �60�

For practical use, the general initial conditions that satisfy the
constraint equations �Eqs. �59� and �60�� are proposed by Vaddi et
al. �2003�

x0 =
�

2
sin �0; y0 = � cos �0; z0 = � sin �0

ẋ0 =
�

2
n cos �0; ẏ0 = − �n sin �0; ż0 = �n cos �0 �61�

where �=50 km; �0=phase angle between deputy satellites; and
the mean motion n is 0.001 078 rad/s as before. If we use �0

=0.55 rad, Eq. �61� will yield

x0 = 1.306 7 � 104 m; y0 = 4.262 6 � 104 m;

z0 = 2.613 4 � 104 m

ẋ0 = 22.978 4 m/s; ẏ0 = − 28.176 4 m/s; ż0 = 45.956 8 m/s
�62�

The initial conditions given by Eqs. �61� and �62� are designed
primarily to keep the PCO without any application of control
forces by assuming that the linearized HCW equations are valid,
and so these initial conditions under this assumption lead to a
circular orbit. However, we shall show that when the full nonlin-
ear system is considered, the orbit no longer remains circular, and
in what follows we will determine the explicit control force
needed to get a circular orbit.

Eqs. �61� and �62� are described in the Hill frame. To use the
Udwadia-Kalaba equation, we need to transform these values into
the ones in ECI frame by using Eq. �19�

X0 = �X0

Y0

Z0
� = �6.082 7 � 106 m

3.490 7 � 106 m

4.651 7 � 106 m
� ;

Ẋ0 = �Ẋ0

Ẏ0

Ż0

� = �− 651.304 1 m/s
1,082.1 m/s
7,426.4 m/s

� �63�

Also, we set three times the orbital period of the chief as the
simulation time in which the period is given by

P =
2�

= 5.828 � 103 s = 1.619 h �64�

n
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First, we simulate the unconstrained motion. The ODE solver
ODE45 in MATLAB was used to numerically integrate the sys-
tem, and the error tolerance was set to 10−12. The position vector
of the deputy X�t� can be obtained by directly integrating Eq. �11�
with the initial condition of Eq. �63�. The result is described in the
ECI frame. If the position vector is desired to be described in the
Hill frame, Eq. �19� can be used

�x

y

z
� = R�X

Y

Z
� − �r0

0

0
� �65�

Next, we simulate the constrained motion. The ODE solver
ODE45 in MATLAB was again used to numerically integrate the
system, and the error tolerance was set to 10−12 as before. The
position vector of the deputy X�t� can be obtained by directly
integrating Eq. �53� with the initial condition of Eq. �63�. Then,
we transform the position vector in the ECI frame into that in the
Hill frame using Eq. �65�.

Fig. 2 shows the trajectory of the deputy projected on the
yz-plane in the Hill frame without the constraint. The scale is
normalized to �, and the relative motion is unbounded and mov-
ing left in the y direction, which shows the necessity of the con-
straint, say, thrust. This means that the initial conditions given by
Eq. �61� fail to keep the desired circular orbit. This is because
these initial conditions assume that the linear HCW equations
hold, that is, that the relative distance between the deputy and the
chief is small. However, since we are dealing here with the large-
relative-distance case ��=50 km�, this assumption of linearity no
longer holds. In Fig. 3, the constrained motion of the deputy is
shown. Also, the scale is normalized to �. The trajectory is being
maintained very well with the relative distance of �=50 km.

Figs. 4 and 5 depict the trajectories of the deputy projected on
the xz-plane in the Hill frame without and with the constraint,
respectively. The scale is normalized to � as before. There is not
much difference between the trajectories in these two figures. In
Figs. 6 and 7 the three-dimensional trajectories in the Hill frame
without and with the constraint, respectively, are displayed. It is
critical to note that there is a large drift for the unconstrained case

Fig. 2. Unconstrained motion in the yz-plane
in the y direction.
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In Fig. 8 the required forces to maintain the desired formation
and their total magnitude are represented. They are described in
the ECI frame and calculated using Eq. �54�. The largest thrust is
in the Y direction, which dominates the total magnitude, and it
corresponds to about 1.3 mN per kg. According to Underwood et
al. �2003�, the Surrey SNAP-1 nanosatellite whose mass is only
6.5 kg can deliver 7.7 mN per kg. Therefore, we conclude that all
of the thrusts required are attainable by even this small satellite.
Fig. 9 shows the differences between the unconstrained and con-
strained motion for each axis. The displacements for the uncon-
strained motion are subtracted from the displacements for the
constrained motion. The time unit is normalized to the period of
the chief. The major drift is observed in the y direction, and this
means that without the application of a control force, the deputy
satellite will lag behind as time goes by and it would eventually

Fig. 3. Constrained motion in the yz-plane

Fig. 4. Unconstrained motion in the xz-plane
452 / JOURNAL OF AEROSPACE ENGINEERING © ASCE / OCTOBER 200
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fail to maintain the desired station keeping. At the final time, the
difference in the y direction approximately corresponds to 0.4
��=20 km. Figs. 10–13 represent errors described by Eqs. �57�
and �58�. The time unit is normalized to the period of the chief as
before. The largest displacement error corresponds to about
10−4 m or 0.1 mm. �Fig. 10� This is very small when compared
with the relative orbit size �=50 km. Also, the largest velocity
error corresponds to only about 3.6�10−7 m /s �Fig. 12�. We see
therefore that the errors are so small that the relative orbit is being
maintained very well as desired.

Conclusions

In this paper, a simple, new method for the formation-keeping
problem, which is not restricted to the relative size of the forma-
tion, is presented. We make use of a recently proposed
approach—the Udwadia-Kalaba equation—and this method cap-

Fig. 5. Constrained motion in the xz-plane

Fig. 6. Unconstrained motion in three dimensional
9
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tures the complete nonlinearities of the dynamical system. The
main conclusions of the paper are the following:
1. We obtain the exact closed-form solution to the problem of

formation keeping, something that has not been previously
known. This is because the proposed method does not linear-
ize the equations of relative motion. Unlike previous re-
search, we directly start from the nonlinear equation in the
ECI frame �Eq. �11�� and the simple exact solution is easily
obtained that completely captures all the nonlinearities. We
show that the approximate linearized HCW equations will
not lead to proper station keeping. With this new approach,
however, the constraints are automatically and exactly satis-
fied, and the exact control function can be explicitly obtained
in an easy and straightforward way.

2. While the problem has been solved here for the so-called
PCO, this method can be readily generalized to incorporate
other types of constraints as well. The strength of this paper

Fig. 7. Constrained motion in three dimensional

Fig. 8. Required control force in the E
JOURNA
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is that once the constraints could be given in a form of Eq.
�5�, we can analytically solve the highly nonlinear problem
in a very easy way. It should be noted again that the
Udwadia-Kalaba equation can handle both holonomic and
nonholonomic constraints with equal ease.

3. The Udwadia-Kalaba equation in this paper has been de-
scribed in the inertial frame of reference, and since visualiz-
ing the constrained motion in the Hill frame is easier than in
the inertial frame, the dynamical motion, after all the calcu-
lations are done, is eventually represented in the Hill frame.
Each coordinate frame can be easily transformed from the
other using Eq. �19�, which facilitates the use of the
Udwadia-Kalaba equation even when dealing with the prob-
lem, which has been traditionally investigated in the Hill
frame.

me along each axis and its magnitude

Fig. 9. Differences between the unconstrained and constrained
motion
CI fra
L OF AEROSPACE ENGINEERING © ASCE / OCTOBER 2009 / 453

 ASCE license or copyright; see http://pubs.asce.org/copyright



4. The fact that we have the exact solution to the nonlinear
dynamics and control problem is corroborated by the numeri-
cal examples that show that the formation is pretty well
maintained, as desired, even when the relative distance be-
tween the satellites is not small. The errors between the con-
trolled and desired values are extremely small.

5. Finally, we note that the methodology presented in this paper
does not include any other perturbations. Future work is
planned to consider J2 perturbations on the satellites and/or
situations where the chief is in a general elliptic �or hyper-
bolic� Keplerian orbit. Then, we will be able to have a solu-
tion to the formation-keeping problem that makes up for all
the weak points in the linearized HCW equations.

Fig. 10. Displacement error for the first constraint

Fig. 11. Displacement error for the second constraint
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