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Jouer avec les mots, pourquoi et comment ?

Michel Rigo*

Résumé

Ce texte reprend l’essentiel de ma présentation a la Brussels Math. Summer
School du 4 aotit 2015. Il s’agit d’'une courte introduction a la combinatoire des
mots. A I'instar de Raymond Queneau et ses cent mille milliards de poemes,
nous construisons des suites aux propriétés surprenantes. Pour ne pas allon-
ger le texte, nous avons décidé d’éviter 'emploi d’automates finis.

Les premiers résultats en combinatoire des mots remontent au début du
siécle précédent, avec les travaux du mathématicien norvégien Axel Thue.
Cette branche des mathématiques étudie la structure et les arrangements ap-
paraissant au sein de suites finies, ou infinies, de symboles appartenant a un
ensemble fini.

Un carré est la juxtaposition de deux répétitions d'un méme mot. On dira
qu’un mot comme “taratata” contient un carré. Il est aisé de vérifier que, si on
dispose uniquement de deux symboles, alors tout mot de longueur au moins 4
contient un carré. Cette observation ameéne de nombreuses questions simples
a formuler : Avec trois symboles, peut-on construire un mot arbitrairement
long ne contenant pas de carré? Si on se limite a deux symboles, peut-on
construire un mot arbitrairement long sans cube, i.e., évitant la juxtaposition
de trois répétitions d’'un méme mot ? En fonction de la taille de 'alphabet,
quels motifs doivent nécessairement apparaitre et quels sont ceux qui sont
évitables ? Que se passe-t-il si on autorise certaines permutations ?
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1 Exemple introductif

Dans cette premiére section, nous partons d’'un simple exercice pour motiver
I'introduction des notions de mots (finis et infinis) et de morphismes qui seront
définies rigoureusement dans les sections suivantes.

Soit n > 0 un entier. Commencons par un exercice d’échauffement, a savoir
I’étude du signe, sur 'intervalle [0, 7t], de la fonction

Fp(x) := sin(x)sin(2x)sin(4x)--- sin(2"x)

obtenue comme produit de n facteurs ott I'on double, a chaque fois, 'argument.
Pour n = 0, la fonction Fp(x) = sin(x) est trivialement positive1 sur l'intervalle
considéré. Pour n = 1, tout comme sin(2x), la fonction Fy(x) est positive sur
[0,7t/2] puis négative sur [rt/2,7t]. La figure 0.1 reprend les quatre fonctions a
multiplier pour déterminer le signe de F3.

Ficure 0.1 — Les quatre fonctions définissant F3.

Pour n quelconque, on s’aper¢oit rapidement qu’il convient de diviser 'inter-
valle [0, 7] en 2" sous-intervalles
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puisque la fonction sin(2"x) change 2" — 1 fois de signe.

Remarque 1. L'idée de ce petit exercice introductif est due a Jean-Paul Allouche,
voir [2]. Contrairement a la duplication des sinus, une ‘formule directe’ existe
pour la duplication des cosinus

sin(2"*1y)

cos(x)cos(2x)cos(4x)--- cos(2"x) = 2”“7()
sin(x

1. On doit comprendre positive ou nulle, mais les points ou la fonction F,, est nulle sont facilement
caractérisés par les bornes j7/2" des intervalles I, ; et ne nous intéresseront donc pas.



Dans la table 0.1, nous avons retranscrit, pour les premicres valeurs
de n, la suite des 2" signes pris par F, sur les sous-intervalles successifs
In0:In1,---,1n2n-1. De fagon symbolique, on notera simplement + ou — selon
le cas.

P0+

Fl+-

F2+--+

F3 |+ - - + - + + -

Fao |l + - - + - 4+ + - - + + - + - - +

TasLe 0.1 — Signes de F,, sur la subdivision ad hoc de [0,7], n=0,1,2,3,4.

On peut dés lors poser la question suivante : est-il possible de caractériser ‘fa-
cilement’ le signe de Fy sur l'intervalle I j, et ce, quel que soit n? Bien sir, par
facilement, il faut entendre a la suite d’un calcul (ou d’un algorithme) dont le
nombre d’opérations (la complexité) soit “petit” par rapport a n, par exemple,
que ce nombre soit proportionnel a logn. En guise d’illustration, pourriez-vous
déterminer le signe de F3( dans l'intervalle 130,17893617 ?

Remarque 2. Si on dispose de la suite des 2" signes pris par F,, alors on trouve
aisément la suite des 2"*! signes pris par F,,1. En effet, puisque

Fa1(x) = Fp(x) sin(2" 1)

et que, sur l'intervalle I;; ;, la fonction sin(2"*1 x) est d’abord positive puis néga-

tive, on en déduit que si Fy, est positive (resp. négative) sur I j, alors Fy,1 est

positive (resp. négative) sur Int1,2j puis négative (resp. positive) sur Int1,2j+41-
A ce stade, cette remarque nous permet uniquement de déterminer la suite

de 21 signes associés a F,,1 a partir de la suite de 2" signes associés a F,,. Il
faut donc conserver une quantité d’information tres importante !

2 Un brin de formalisme

Commencons par présenter quelques définitions élémentaires (mots finis et in-
finis). Comme ouvrages de référence en combinatoire des mots, citons [16, 18].

Définition 3. Un alphabet est un ensemble fini. Ainsi,
{a,b,c}, {9,0,4,4}, {0,1},{—, <, 1,1}

ou encore {+,—} sont des alphabets. Les éléments d’un alphabet sont appelés
lettres ou symboles.

Définition 4. Soit A un alphabet. Un mot (fini) sur A est une suite finie (et or-
donnée) de symboles, i.e., une application de {0,...,n — 1} dans A. Par exemple,
abbac et ba sont deux mots sur l'alphabet {a,b,c}. La longueur d’'un mot w est le
nombre de symboles constituant ce mot; on la note |w|. Ainsi,

labbac| =5 et |ba| = 2.



L'unique mot de longueur 0 est le mot correspondant a la suite vide. Ce mot
s’appelle le mot vide et on le note ¢. U'ensemble des mots sur A est noté A*. Par
exemple,

{a,b,c}* ={¢,a,b,c,aa,ab,ac,ba,bb,bc,ca,cb, cc,aaa,aab,...}.

Remarque 5. L'ensemble A* des mots finis sur A muni de l'opération de concaté-

nation est un monoide 2 dont le neutre est ¢. Sans donner de définition formelle,
voici un exemple de concaténation :

bon - jour =bonjour.
On remarque que |u - v| = |u|+|v| pour tous u,v € A*.

Définition 6. Soit A un alphabet. Un mot infini sur A est simplement une appli-
cation w : N — A, i.e., une suite d’éléments de A. Ainsi, de fagon classique, on

notera AN I'ensemble des mots infinis sur A. Pour rappel, AP dénote I'ensemble
des applications de B dans A. Par exemple, voici le préfixe d’'un mot infini sur
I’alphabet {0,...,9} (le développement décimal de 77— 3) :

14159265358979323846264338327950288419716939937---.

Dans ces notes, pour distinguer les mots infinis des mots finis, nous utilise-
rons des lettres en gras.

Nous voudrions a présent définir la notion de suite de mots infinis conver-
geant vers un mot infini limite, puis une suite de mots finis convergeant vers un

mot infini limite. Pour ce faire, nous munissons l’ensemble AN d’une distance
d: AN x AN [0, +00]

définie comme suit. Si x et y sont deux mots infinis, alors x Ay désigne leur plus
long préfixe commun. Si x =y, alors on pose d(x,y) = 0, sinon

d(x,y) =271, (1)
Exemple 7. Soient les mots u =abab--- et v=aabb---.On a
d(u,v)=1/2.

On voit que deux mots sont “d’autant plus proches” qu’ils ont un long préfixe
commun.

On vérifiera aisément qu’il s’agit bien d’une distance. Autrement dit, il faut
vérifier les propriétés suivantes (exercice ot il suffit de raisonner sur les préfixes).
Proposition 8. Pour tous mots infinis X,y,z € AN

1. d(x,y) >0,

2. d(x,y) =0si et seulement six =y,

3. d(xy) =d(y,x),

2. i.e,, on dispose d’'une opération binaire interne et partout définie, associative et possédant un
neutre. Ainsi, un monoide dans lequel tout élément est inversible est un groupe.



4. d(x,z) <d(x,y) +d(y,z) (inégalité triangulaire).

Cette distance possede une propriété supplémentaire (exercice du méme

type que le précédent), elle est ultramétrique 3 (on utilise parfois le terme non-
archimédienne) : elle vérifie

Vx,y,z € AV d(x,z) < max{d(x,y),d(y,z)}.

Ayant a notre disposition un espace métrique (AN,d), comme dans n’'importe
quel cours d’analyse, on peut parler de boules, de suites convergentes, etc.

Définition 9. Soit (x,),>0 une suite de mots infinis sur A. Cette suite converge
versy € AN si

Ye>0,AN : Vn>N,d(x,,y) <e.
Vu (1), cette définition se paraphrase comme suit. Pour toute longueur ¢, il existe

une borne N telle que pour tout n > N, les mots infinis x,, ont tous le méme préfixe
de longueur €.

Exemple 10. Dans {0,...,9}, considérons les développements décimaux des
premiers convergents du développement en fractions continues * de 77— 3 :

1
z 142857142857142857142857 142857142857 ---
! T 141509433962264150943396226415094339---
7+ -
15
! T 141592920353982300884955752212389380---
7+ 1
15+ —
1
1
I 14159265301190260407226149477372968400---
7+ 1
15+ - T
292

On a d’une part (colonne de gauche), une suite de nombres rationnels conver-
geant vers le réel w—3 et d’autre part, on a une suite de mots infinis convergeant,
au sens de la définition 9, vers un mot infini limite. A chaque étape, nous avons
souligné le préfixe stabilisé.

On notera que (AN, d) est un espace métrique complet et compact [18].

Remarque 11. Disposant d’une distance ultramétrique, la topologie associée est
intéressante : tout point d’une boule en est le centre, deux boules ont une inter-
section non vide si et seulement si I'une est incluse dans l'autre, tout triangle est
isocéle, etc. Pour s’en convaincre, il suffit d’observer qu'une boule du type

{x e AN d(y,x) < 2—”}

3. On rencontre notamment ce type de propriété en analyse p-adique. Voir, par exemple, I’excellente
introduction [13].
4. Consulter n'importe quel ouvrage classique de théorie des nombres comme [10].



est I’ensemble des mots infinis partageant avec y le méme préfixe de longueur n.

Soit z une lettre n‘appartenant pas a A. On peut plonger A* dans (AU {z})N en
identifiant le mot fini w € A* avec le mot infini wz® := wzzz--- € (AU {z})N. Cette
identification faite, il est licite de parler d’une suite de mots finis convergeant
vers un mot infini limite.

Définition 12. Soit (x,),>0 une suite de mots finis sur A. Soit z ¢ A. Cette suite
converge vers y € AN, si la suite (x,2%),s0 converge vers y.

Exemple 13. La suite (x,),>1 de mots finis ou x, est le préfixe de longueur n du
développement décimal de 7w — 3 converge vers le mot infini correspondant :

xp =1, x5 =14, x3 = 141, x4 = 1415, x5 = 14159, x4 = 141592, ...

3 Mots morphiques

Pour un alphabet A contenant au moins deux symboles, AN est un ensemble non

dénombrable. En effet, il existe une surjection de {0, 1Y dans I'intervalle [0,1]. 10
suffit de considérer I'application qui a xgxqx, -+ associe le nombre réel

+00

R

i=0

Cependant, les “algorithmes pouvant engendrer un mot infini de AN” —
on entend par la, un programme auquel on fournit un entier n en entrée, par
exemple écrit en base 2, et I'algorithme calcule en nombre fini d’'opérations le n-
ieme symbole du mot — forment un ensemble dénombrable. Il n’existe en effet,
sur un alphabet fixé, qu'un nombre dénombrable de textes possibles, donc de
“programmes”. Voir par exemple [21] ou Turing s’intéresse aux nombres calcu-
lables.

Nous allons dés lors nous concentrer sur une classe de mots infinis pour les-
quels on dispose d’une représentation succincte (et qui permet de répondre a de
nombreuses questions de nature combinatoire). Présentée de facon informelle, la
complexité de Chaitin—-Kolmogorov classe les mots infinis en fonction de la lon-
gueur minimale d’un programme permettant d’en engendrer un préfixe de lon-
gueur n. Dans cette section, nous allons définir les mots purement morphiques.
Pour ces derniers, en se donnant uniquement les images des lettres de I’alphabet
par le morphisme, on peut alors engendrer un préfixe de longueur arbitraire (a
partir d'un programme de longueur constante). Par opposition, tout programme
engendrant les n premiers symboles d’une suite ‘aléatoire’ de 0 et de 1 sans la
moindre ‘structure’ doit contenir ces n symboles et a donc une longueur propor-
tionnelle a n.

Soit A* le monoide des mots finis sur A. Un morphisme est une application
f A" —> A" telle que f(uv) = f(u)f(v) pour tous u,v € A*. En particulier, on doit
avoir f(e) = e. Autrement dit, il s’agit d’un homomorphisme compatible avec le
produit de concaténation de mots.



Définition 14. Un morphisme f : A* — A* prolongeable sur a est tel que
— f(a)=au ol u # ¢ est un mot fini et
im0 f(a)] = o,

Nous profitons de ce premier exemple pour définir la notion de morphisme
de longueur constante.

Exemple 15. Considérons un morphisme de longueur constante, i.e., les images
de chacune des lettres ont méme longueur. Ainsi, t : + - +—, — = —+ est prolon-
geable sur + ou —. Pour tout 7, on a directement |¢"(+)| = 2.

Exemple 16. Soit le morphisme u : a > abc, b+ ac, ¢ — bac. Il est prolongeable
sur a uniquement. On vérifie que |u"1(a)| > 2|u"(a)|, pour tout n.

Exemple 17. Le morphisme f : a+ ab, b a, appelé morphisme de Fibonacci,
est prolongeable sur a. On vérifie, pour tout n, que |f"(a)| est le n-iéme nombre
de Fibonacci.

Exemple 18. Les morphismes g:a+> ba, b+ abet h:aw ab, b+ ¢ ne sont pas
prolongeables. En effet, on a [h"(a)| = 2 pour tout n > 1.

Proposition 19. Soit f : A* — A* un morphisme prolongeable sur a.
1. Si f(a)=au, alors pour tout n > 1,

£ @)= au f(u) f () F171 ()
2. f™a) est un préfixe de f™1(a);
3. la suite (f™(a))p>0 converge vers un mot infini limite noté f“(a);
4. f s'étend a AN et le mot infini f©(a) est un point fixe de f.

Démonstration. On procéde par récurrence sur n (exercice). Si x = xgx;xp---, on
définit f(x) comme la limite de la suite de mots finis (f(xg - X;))n>0-

Cette proposition rend licite la définition suivante.

Définition 20. Un mot infini x est purement morphique, s’il existe un morphisme
f prolongeable sur une lettre a tel que

x=f%a)= lim f"(a).

n—+oo

Si on reprend l'exemple 15, les premieres itérations de t sur + sont

tH+) = +-

t2(+) = +-—+

B3+ = At

tH4) = Attt — - ——+

Le lecteur devrait s’entrainer a calculer, a la main, ces quelques itérations
du morphisme t. Le commentaire fait par Cobham, dans son article fondateur
[9], nen serait que renforcé : ‘Adding a feedback feature which permits symbols
produced at early stages of the generating process to be re-examined at later stages



increases flexibility and the variety of sequences generable by devices so augmented
is substantially richer....Suppose we have generated symbols with index 0 through
2k — 1 and that our left hand points at the k-th of these, our right hand at the last.
We observe the symbol at which our left hand is pointing and write with our right the
2k-th and (2k + 1)-st as prescribed. Moving our left hand one symbol to the right, we
are in position to repeat the procedure.’

Autrement dit le symbole + en position 3 donne naissance, par application de
t, au facteur +— apparaissant aux positions 6 et 7, etc.

Si on reprend 'exemple 16, les premieres itérations de f sur a sont

u(a) = abc
u2(a) = abcachac
u3(a) = abcacbacabcbacacabcbac
u*(@) = abcacbacabcbacacabcbacabeacbacacabe--- bac

Ici aussi, chaque lettre x donne naissance a un facteur u(x) apparaissant plus loin
dans le mot.

4 Retour au probleme initial

Avec les notations de la premiére section, rappelons notre question ini-
tiale : est-il possible de caractériser ‘facilement’ le signe de F, sur [linter-
valle I ;? En particulier, doit-on déterminer le signe sur chaque sous-
intervalle pour déterminer le signe d’un seul d’entre eux ? Doit-on disposer de
sign(In,0),...,sign(ly,j—1) pour déterminer sign(ly j)? Ou encore, doit-on dispo-
ser de sign(I_1,0),---,5ign(Il,_1 pn-1_1)?

Pour répondre a cette question, l'observation faite a la remarque 2 est primor-
diale : le signe de Fj; sur l'intervalle I, j détermine entierement le signe de Fp11
sur les intervalles Iy1 5 et Iny1,2j4+1- Dés lors, pour tout n > 0, avec la définition
de t donnée dans l’exemple 15, la suite des 2" signes de F,, sur l'intervalle [0, 7]
décomposé en 2" sous-intervalles est donnée précisément par le mot ¢"(+).

Puisque t"(+) est préfixe de t"*!(+), il nous suffit donc de pouvoir répondre a
la question suivante : si on considére le mot infini t“(+) =ttty -, peut-on déter-
miner ‘facilement’ la valeur de t, ? Par exemple, que vaut t17893417 ?

Grace a la remarque 2, nous avons vu qu’il suffit d’itérer le morphisme t de
longueur constante 2. On en déduit immédiatement la proposition suivante.

Proposition 21. Soit t“(+) = totty--- = +——+—++—-- le mot purement morphique
obtenu en itérant le morphisme t : + + +—, — > —+. Pour tout n >0, on a

ton=1tn tipt1 = —tn.

Par conséquent, pour déterminer t13 =t ¢4+1, il suffit de connaitre tg = t5 3.9
et d’en changer le signe. Pour cela, il faut donc déterminer t3 =t 1,1, t] = t2.0+1
et finalement (. Puisque fy = +, on en tire que t| = —. De 13, t3 = +, puis tg =
+ et enfin, t;3 = —. En y regardant d’un peu plus prés, il suffit d’écrire 13 =
2.(2.(2.(2.0+1)+1)+0)+1enbase 2:1101. En lisant de gauche a droite, la suite



de 0 et 1 obtenue, la proposition précédente stipule qu’a chaque lecture d’un
chiffre 1, le signe change. Puisqu’on a trois 1 dans I’écriture binaire de 13 et que
l'on démarre avec le signe +, le signe de t;3 est négatif.

Exemple 22. Sion écrit 17893617 en base 2, on obtient
1000100010000100011110001

qui contient 9 symboles 1. Puisque ce mot contient un nombre impair de 1, on
conclut de la proposition précédente que 1’élément t17g93¢617 est — On est donc
en mesure de déterminer le signe de Fy, sur n'importe quel sous-intervalle I, ;.
De plus, I’écriture d’un entier j en base 2 nécessite un nombre de chiffres égal
a |log,j]+1 et il suffit ici de compter le nombre de 1 apparaissant dans cette
écriture.

Nos développements nous aménent a présenter la fonction somme des chiffres
(ici, en base 2).

Corollaire. Soit t“(+) = tot1ty--- =+——+—++—--- le mot purement morphique
obtenu en itérant le morphisme t : + = +—, — > —+.0Ona

= (-1)E o

th=
si n se décompose comme Zi.(:o ¢ 2 avec ¢; €{0,1} pour tout 1.

La proposition 21 n’est pas spécifique au morphisme t mais s’étend facilement
a tout morphisme de longueur constante [9].

Lemme 23. Soient k > 2 un entier et f : A* — A" prolongeable sur a et tel que
|f(b)| = k pour tout b € A. Soit x = f¥(a) = xgx1xp---. Pour tout j tel que k" < j <
k™1 si on considére la division euclidienne j = kq+r, k™1 <g<k™et 0<r<k,
alors le symbole x; est le (r + 1)-iéme symbole apparaissant dans f(x).

De la, on comprend que les écritures en base k permettent de déterminer
aisément, i.e., en lisant chaque chiffre de I’écriture une et une seule fois, le j-
ieme élément d’une suite engendrée par un morphisme de longueur constante
k. On pourrait alors introduire la notion de suite k-automatigue [9]. Un automate
fini déterministe (un graphe étiqueté) auquel on fournit I’écriture de j en base
k détermine x; en lisant une et une seule fois chacun des chiffres de I'écriture.
L'ouvrage de référence par excellence sur le sujet est [4] mais nous ne voulons
pas aller plus loin ici.

5 Une application en combinatoire

La combinatoire des mots (classification 68R15 de I’American Mathematical So-
ciety) s’intéresse a la structure et aux arrangements apparaissant au sein de mots
sur un alphabet fini. Pour une approche historique présentant les problemes fon-
dateurs de cette discipline, voir [5].

Elle trouve de nombreuses applications. Citons la théorie des nombres et,
par exemple, un théoréeme de transcendance de certains nombres irrationnels
dt a Adamczewski et Bugeaud [1], l'algebre et, par exemple, un théoréme a la
Skolem-Mahler-Lech en caractéristique p dit a Derken [11], la géométrie dis-
créte (approximation de droites, d’hyperplans, codage de rotations, etc.) et la
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dynamique symbolique [6], la théorie ergodique, les systémes de numération, la
vérification, .... Citons, sans étre exhaustif, les ouvrages [7, 15].

Nous allons ici nous concentrer sur un probléme d’évitement déja étudié par
Thue au début du siecle précédent [19, 20] et en relation directe avec le mot
t“(+). Commencons par un résultat des plus élémentaires.

Proposition 24. Sur un alphabet binaire, tout mot de longueur au moins 4 contient
un carré, i.e., un facteur de la forme uu, u # ¢.

Démonstration. Supposons que l’alphabet est {a,b} et que le mot débute par a.
Essayons de construire un mot sans carré. Ainsi, a doit étre suivi par un b. Le
mot abb contient un carré. Il faut donc considérer le mot aba. Il n’est pas possible
de compléter ce dernier. En effet, abaa contient le carré aa et abab est le carré de
ab. |

Cette propriété triviale montre donc que I'apparition d’un carré est inévitable
sur un alphabet de deux lettres. Qu’en est-il si I’alphabet est de taille 3 ? Sur deux
lettres, peut-on éviter 'apparition de cubes ?

Définition 25. Un mot fini de la forme auaua ou u € A* et a € A est un chevau-
chement (en anglais, overlap).

RS
auaua
~_

On remarque que tout chevauchement contient un carré. De méme, un cube (i.e.,
mot de la forme uuu) est un chevauchement particulier.

Nous avons vu que sur un alphabet binaire, tout mot de longueur > 4 contient
un carré. Le fait de contenir un chevauchement est une propriété plus forte.
Cette propriété est-elle évitable sur deux lettres ? Nous substituerons ici 1’alpha-
bet {+, -} utilisé jusqu’ici a I’alphabet {g, b}.

Proposition 26. Le mot de Thue—Morse, défini comme t = f“(a)oui f : a+> ab,b—
ba, est un mot infini sans chevauchement.

t = abbabaabbaababbabaababbaabbabaab---

La preuve de ce résultat est calquée sur celle présentée dans [16]. Pour des
applications (en analyse, en arithmétique et le probleme de Prouhet, pour le jeu
d’échecs, ...) du mot de Thue-Morse, on lira [3, 17]. Tout comme A* désigne I’en-
semble des mots finis sur I'aphabet A, si X est un ensemble de mots, X* désigne
I’ensemble des mots obtenus en concaténant un nombre fini de mots de X (les
répétitions sont autorisées).

Lemme 27. Soit X ={ab,ba}. Si x appartient a X*, alors axa et bxb n’appartiennent
pasa X*.

Démonstration. On procéde par récurrence sur |x|. Si x = ¢, il est clair que aa, bb ¢
X*. Supposons le résultat vérifié pour les mots de longueur < n. Soit x € X¥,
un mot de longueur n. Procédons par l'absurde et supposons que u = axa € X*
(on procede de maniére semblable avec bxb). Dans ce cas, u = abyba avec |y| =
|x| - 2. Puisque v € X*, on en conclut, par hypothéese de récurrence, que byb = x
n'appartient pas a X*. Ceci est une contradiction.
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En fait, le morphisme de Thue—Morse préserve la propriété d’intérét.

Lemme 28. Soient w € {a, b} et f :av+> ab,b > ba le morphisme de Thue—Morse. Si
w est sans chevauchement, alors f(w) aussi.

Démonstration. Montrons que si f(w) posséde un chevauchement, alors w aussi.
Supposons que f(w) se factorise en

fw)=xcvcvcy, celab), x,v,v€{a, b}
Puisque f est 2-uniforme (i.e., [f(a)| = |f(b)| = 2), |f(w)| est pair. On remarque

que [cvcve| = 3+ 2|v| est impair. Par conséquent, |xy| est impair.
Montrons a présent que [v| est impair.

— Si |x] est pair, alors x, cvcv et cy appartiennent a {ab, ba}*.
Dés lors, si |v| était pair, alors cvc et v appartiendraient a {ab, ba}*. Ceci est
en contradiction avec le lemme précédent.

— Si|x| est impair, alors xc, vcve et y appartiennent a {ab, ba}*. Si [v| était pair,
on aboutirait a la méme contradiction.

Nous pouvons a présent conclure, en discutant une fois encore sur la parité
x|.

de

— Si |x| est pair, alors, puisque |v| est impair, on a

impair
—
fwy= x ¢ v cv cyelabba)
_—

pair  pair  pair

et x,cv,cy appartiennent a {ab, ba}*. Il existe 1,5, t tels que f(r) = x, f(s) = cv,
f(t)=cyet

w = rsst.

Or, f(s) et f(t) débutent par la méme lettre, donc s et t aussi (vu la défini-
tion de f). Par conséquent, sst débute par un chevauchement.
— Si |x| est impair, alors, puisque |v| est impair, on a
impair
— *
flw)= xc v ¢ vc ye{abba)
_
pair  pair  pair

et il existe r,s,t tels que f(r) = xc, f(s) = ve, f(t) = v. La conclusion est
identique.

|
Nous pouvons a présent démontrer la proposition 26.

Démonstration. Supposons que t possede un chevauchement. En particulier, ce

chevauchement apparait dans le préfixe f¥(a) pour un certain k. Or, a étant sans
chevauchement, le lemme précédent stipule que f(a) est sans chevauchement et

dong, en itérant, f¥(a) ne peut posséder de chevauchement. O
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La proposition 26 va nous permettre de construire un mot infini sur trois
lettres évitant les carrés.

Remarque 29. Soit r un mot infini sur {a, b} sans chevauchement et commencant
par a. Alors, r se factorise de maniére unique sous la forme > r =y v, --- ol pour
tout i > 1, v; € {a,ab,abb}. En effet, r ne contenant aucun cube, il ne peut contenir
le facteur aaa ou bbb.

Soit le morphisme g :{a,b,c}* — {a,b}* défini par

a abb
g:{ brab

cCH—Ha

Sir un mot infini sur {a,b} sans chevauchement et débutant par g, alors il existe
un unique mot infini s sur {a,b, ¢} tel que g(s) =r.

Proposition 30. Soit t un mot infini sur {a,b} sans chevauchement et débutant par
a (comme le mot de Thue-Morse). Soit s 'unique mot infini {a,b,c} tel que g(s) = t.
Alors, s est un mot infini sur trois lettres sans carré.

Démonstration. Supposons que s contienne un carré : s = Xy 40y avec ¥ non
vide, o une lettre et ¥ un mot infini. Alors, g(s) contient le facteur g(u)g(u)g(o)
qui débute par un chevauchement car g(u) et g(o) débutent par la méme lettre.

O

Voici la factorisation fournie par le résultat précédent :
t = abblablalabblalablabblabla|ablabblalabblablala - - -

s = abcacbabcbacabe---

Remarque 31. On peut montrer que le mot s donné ci-dessus est purement mor-
phique; il s’obtient comme s = % (a) ou ¢(a) = abc, p(b) = ac et ¢(c) = b, est sans
carré. Ce morphisme ¢ est parfois appelé morphisme de Hall.

6 Répétitions abéliennes

Pour terminer cette note, mentionnons une généralisation possible des résultats
d’évitement de la section précédente.

Définition 32. Un carré abélien est un mot uv ou v est un anagramme de u, i.e., v
est obtenu en permutant les lettres de u. Par exemple, abcbca est un carré abélien.

De fagon analogue a la proposition 24, on peut montrer (exercice de program-
mation) que sur un alphabet de trois lettres, tout mot suffisamment long contient
un carré abélien. Ainsi, les mots les plus longs sans carré abélien sont 0102010
et 0102101.

Dans une liste de 28 problémes posés par Erdds [12], le dernier d’entre eux
est celui-ci : “Let N(k) be the least number N with the property that each sequence

{sn}*;]:1 of numbers taken from the set {1,...,k} contains two adjacent blocks such that

5. On remarquera que Y = {a,ab,abb} est un code, i.e., tout mot de Y possede une unique factorisa-
tion comme concaténation d’éléments de Y.
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each is a rearrangement of the other. My earliest conjecture, that N(k) = 2K =1, has
been disproved by Bruijn and myself. It is not even known whether N(4) < c0.”

Ce probleme est resté ouvert pendant plus de trente ans. Kerdnen lui a ap-
porté une réponse positive a I’aide d’'un mot purement morphique [14].

Théoreme 33. Le mot infini k% (a) obtenu en itérant le morphisme prolongeable dé-
fini par
a+> abcacdcbedcadcdbdabacabadbabcbdbebacbedcacbabd
abacadcbcedcacdbcbacbedcacdcbdcdadbdcbea;

b bedbdadcdadbadacabebdbebacbedcacdcbdedadbdcbea
bebdbadcdadbdacdcbdcdadbdadcadabacadcdb;

¢+ cdacabadabacbabdbcedcacdcbdcdadbdadcadabacadcdb
cdcacbadabacabdadcadabacabadbabcbdbadac;

d +— dabdbcbabcbdcbecacdadbdadcadabacabadbabcbdbadac
dadbdcbabcbdbcabadbabcbdbebacbedcacbabd;

ne contient aucun carré abélien.

Dans la méme veine, nous terminerons en citant le résultat suivant [8]. Un
cube additif est un mot sur un alphabet d’entiers naturels de la forme uvw tel que
[u] = |v] = |w| et les sommes respectives des symboles constituant u, v et w sont
identiques. Par exemple, 041322 est un cube additif, 0+4=1+3=2+2.

Théoreme 34. Soit le morphisme ¢ : 0+ 03, 1+ 43, 3+ 1, 4+ 01. Le mot infini
(pw(()) =031430110343430310110110314303434303434---

ne contient aucun cube additif.

Ces deux théorémes montrent, une fois encore, que des mots purement mor-
phiques permettent de répondre a des questions combinatoires difficiles.
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