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Abstract - The modeling of inductors is split into a sequence of 
progressive finite element subproblems. The source fields 
generated by the coil conductors alone, with a wire 
representation, are calculated at first via either the Biot-Savart 
law or finite elements. The associated reaction fields for each 
added or modified region, mainly the magnetic cores, and in 
return for the source conductor regions themselves when 
massive, are then calculated with finite element models. Changes 
of magnetic regions go from perfect magnetic properties up to 
volume linear and nonlinear properties. The resulting 
subproblem method allows efficient solving of parameterized 
analyses thanks to a proper mesh for each subproblem and the 
reuse of previous solutions to be locally corrected. 

I. INTRODUCTION 
Instead of solving a complete inductor problem, including 

coil conductors and magnetic cores, it is here proposed to 
perform successive finite element (FE) calculations via a 
subproblem (SP) method (SPM) [1]-[3], mainly by separating 
the material regions, and giving them models of different 
accuracy levels. The aim is to lighten the computational 
efforts in the preliminary stages of a design, e.g. in 
parameterized analyses, before refining the models. The idea 
of source and reaction fields is considered but, at the 
difference with the common method that adds these fields in 
the whole domain to define the total field, the source fields 
are here to be defined, via projections, only in the FE mesh of 
the added regions as local volume sources (VSs) [1]-[3]. They 
can even be initially reduced to the boundary of the added 
region, as local surface sources (SSs), which is an important 
aspect developed here, in particular for efficient calculations 
with source fields calculated via the Biot-Savart law.  

Progressive SPs can tackle the added magnetic core regions 
at different levels of precision, considering them as perfect 
magnetic regions, with the source fields acting as SSs, up to 
linear and nonlinear volume regions. The accuracy of the coil 
conductor models can increase as well, starting with the wire 
(filament; with negligible section) representation of the 
conductors with Biot-Savart models up to their volume FE 
models, both in magnetostatics and magnetodynamics. 
Sequences of such SP solutions and/or corrections are 
developed for the magnetic vector potential FE 
magnetodynamic formulation in 2-D and 3-D. They will be 
illustrated and validated on application examples. 

II. SEQUENCE OF SUBPROBLEMS 
A canonical magnetodynamic problem p, to be solved at 

step p of the SPM, is defined in a domain Ωp, with boundary 
∂Ωp = Γp = Γh,p ∪ Γb,p. The eddy current conducting part of Ωp 
is denoted Ωc,p and the non-conducting one Ωc,pC, with 
Ωp = Ωc,p ∪ Ωc,pC. Stranded conductors belong to 
Ωs,p ⊂ Ωc,pC. Magnetic field hp and electric current density jp 
are related to magnetic flux density bp and electric field ep, 

respectively, through the material relations  

 hp = µp–1 bp + hs,p ,  jp = σp ep + js,p ,  (1a-b) 

where µp is the magnetic permeability (possibly function of 
bp in a nonlinear material), σp is the electric conductivity, and 
hs,p and js,p are VSs [2], [3]. They can be remnant fields in 
magnets or fixed current densities in conductors. They can 
also be defined by  

 hs,p = (µp–1 – µq–1) bq ,   js,p = (σp – σq) eq , (2a-b) 

for changes from µq and σq for previous SP q to µp and σp for 
SP p in some regions [2], [3]. Also, BCs are defined for SSs, 
possibly expressed from previous solutions, i.e. 

 n × hp|Γh,p
 = jf,p , n ⋅ bp|Γb,p

 = ff,p , n × ep|Γe,p ⊂ Γb,p
 = kf,p ,  (3a-b-c) 

with n the unit normal exterior to Ωp. Some paired portions of 
Γp can define double layers, with the thin region in between 
exterior to Ωp; in particular, these will be associated with the 
boundary of the volume conductors or cores. They are 
denoted γp+ and γp– and are geometrically defined as a single 
surface γp with interface conditions (ICs), fixing the 
discontinuities ([ ⋅ ]γp

 = ⋅ |γp
+ – ⋅ |γp

–) 

 [n × hp]γp
= [jf,p]γp

, [n ⋅ bp]γp
= [ff,p]γp

, [n × ep]γp
= [kf,p]γp

. (4a-b-c) 

With the magnetic vector potential ap and electric scalar 
potential vp defined via bp = curl ap and ep = – ∂t ap – grad vp =  

– ∂t ap – up, and the resulting BC and IC 

 n × ap|Γb,p
 = af,p ,  [n × ap]γp

 = [af,p]γp
,   (5a-b) 

the ap weak formulation of the magnetodynamic problem is 
obtained from the weak form of the Ampère equation, i.e. [2] 

     (µ p
−1curlap ,curla ')Ωp + (hs,p ,curla ')Ωp −( js,p ,a ')Ωp  

     +(σ p ∂t ap ,a ')Ωc,p +(σ p up ,a ')Ωc,p +< n×hp ,a ' >Γh,p \γ p  

     +< [n×hp ]γ p ,a ' >γ p =0 ,∀a '∈ Fp
1(Ωp ),  (6) 

where Fp1(Ωp) is a curl-conform function space defined on 
Ωp, gauged in Ωc,pC, and containing the basis functions for ap 
and for the test function a' (at the discrete level, this space is 
defined by edge FEs; the gauge is based on the tree-co-tree 
technique); ( · , · )Ω and < · , · >Γ denote a volume integral in 
Ω and a surface integral on Γ, respectively, of the product of 
their field arguments. 

With the SPM, a complete problem is split into a series of 
SPs that define a sequence of changes, with the complete 
solution given by the sum of the SP solutions [1]-[3]. Each SP 
is defined in its particular domain and mesh, usually 
overlapping those of the other SPs. At the discrete level, this 
allow distinct meshes with suitable refinements and possible 
domain overlapping between separate SPs. 



 

III. PROGRESSIVE INDUCTOR PROBLEMS 
A. Conductor and core models 

Coil conductor alone (COIL-BS) — A volume conductor, 
possibly stranded, can be first simplified to a wire geometry 
Ωs,p alone, from which the generated field is defined via the 
Biot-Savart formula, being a direct solution (no need of FE 
calculation) of the related SP p ≡ coil-BS, with fixed source 
js,p in Ωs,p. Fields bp and ap, with ep = – ∂t ap, are then defined 
via line integrals along the wire. They are to be calculated 
afterward only in some particular regions, as VSs or SSs 
when adding other regions or for a change to a volume 
conductor. 

Perfect magnetic core (CORE-PMC) — An SP p ≡ core-
pmc is defined in a new domain Ωp by considering some 
added core regions Ωp,i (i is the region index) as being 
perfect, i.e. of infinite µp. The interior of  Ωp,i, with zero total 
h inside, is extracted from the studied domain Ωp and treated 
via BC (3a) to fix a zero trace of total h on their boundaries 
Γp,i = ∂Ωp,i, thus coupling both the unknown field and the 
field from previous SP(s) q, acting as a SS [3], i.e. 

 n × hp|Γp,i
 = – n × hq|Γp,i

 .   (7) 

The solution can serve as a reference solution for any finite 
permeability further considered.  

Volume core (CORE-VOL) — A volume magnetic core 
Ωp,i is considered in an SP p ≡ core-vol. For a newly added 
core, VSs (2a-b) using previous solution(s) q are used. If the 
core has been initially added as a perfect magnetic core, 
considering also a zero solution bq in Ωp,i, the VSs there are 
zero; bq is considered to be carried in the double layer of Γp,i. 
A trace discontinuity of aq (bq) thus occurs, of which the 
opposite value defines an SS for SP p in (5b) ((4b)), strongly 
expressed in function space Fp1(Ω), i.e., also with a zero SS 
in (4a), 

 [n × ap]Γp,i
 = – n × aq|Γp,i

 ,  [n × hp]Γp,i
= 0 . (8a-b) 

Changes to nonlinear magnetic properties can be done with 
VS (2a), with the new µp–1 function of the total field (bq + bp), 
i.e., µp–1 = µp–1(bq + bp). Nonlinear iterations are needed for 
the related SP up to the convergence of ap. Other changes of 
the core model could concern changes to equivalent 
properties of the core laminations in a homogenized model or 
could go up to the fine description of the laminations. 

Volume coil (COIL-VOL) — A wire conductor Ωs,q from a 
previous SP q can be corrected to its actual volume geometry 
Ωs,p (Ωs,q ⊂ Ωs,p) by a new SP p ≡ coil-vol, carrying an 
unchanged total current and defined, with its surrounding, 
with a FE mesh. To overcome the singularity proper to the 
Biot-Savart field along wire Ωs,q, the key is to get rid of the 
singular solution q inside Ωs,p, keeping the solution 
unchanged outside, simultaneously to adding the volume 
conductor Ωs,p. As it will be explained, this is done via ICs 
with SSs through Γs,p = ∂Ωs,p, i.e. 

    [n×hp ]Γs,p = −n×hq |Γs,p , [n⋅bp ]Γs,p = −n⋅bq |Γs,p , (9a-b) 

together with js,p fixed as a VS in Ωs,p (static), or the total 
current fixed in Ωs,p (dynamic). Solution q includes the 
possible added core solution. The Biot-Savart calculation is 
required only on Γs,p to evaluate the SSs. SS (9a) is weakly 
expressed in the weak formulation (6) whereas (9b) strongly 
fixes a discontinuity of n × ap through Γs,p in Fp1(Ωp). 

B. SP Corrections and their sources 
Any SP p is defined as a correction of a previous (or 

several) SP(s) q, without involving the already considered 
sources. It requires VSs and/or SSs in some regions Ωp,i or 
Γp,i evaluated from previous SP(s) q. These sources, coming 
from previous meshes or Biot-Savart evaluations of SPs q, 
have to be properly discretized in the mesh of SP p to assure 
the conformity of the sequenced FE weak formulations. They 
are obtained by means of Galerkin projections of the primary 
field aq between the meshes [3]. For a VS, an alternative to 
the projection on a volume Ωp,i consists in evaluating and 
projecting the source on its surface Γp,i, that then defines the 
BC of a physical local FE problem. A Biot-Savart VS gains at 
being processed in this way. A change with a significant 
effect on the previously solved SPs has to be further 
considered as a source for these, which thus requires iterative 
corrections. Various correction schemes will be studied (e.g., 
Fig. 1, using SSs). 
C. Inductance and resistance calculation 

The self inductance of a wire inductor, and the possible 
mutual inductances with other wire conductors, can be 
calculated via double integral Neumann formulas. The 
resistance can be approximated as well. After a volume 
correction SP p, the corrected inductance can be shown to be 
advantageously obtained with the solution ap only in Ωs,p, i.e. 
via (js,p , ap)Ωs,p

 defining the total magnetic flux, thus as the 
new global value without any reference to the wire inductance 
approximation. An added magnetic core in an SP gives an 
inductance change that can be calculated by a volume integral 
limited to the added region, which is another advantage of the 
SPM. 
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Fig. 1. Field lines in the surrounding of a conductor (portion of a full 
geometry, wire position shown): (a) wire conductor Biot-Savart field (bq), (b-
c) static volume correction (bp,sta) and total field, (d-e) dynamic volume 
correction field (bp,dyn) and total field. The volume correction gives the total 
field in the volume conductor, is discontinuous through the inductor 
boundary and quickly decreases outside. 

IV. CONCLUSION 
The developed FE-SPM allows to split inductor modeling 

into SPs of lower complexity regarding meshing operations 
and computational aspects. Source field FE or Biot-Savart 
calculations are followed by approximate reaction field 
solutions related to approximate BCs, up to their accurate 
volume distributions in both coil conductor and magnetic 
core. Significant corrections are progressively obtained, for 
the nonlinear magnetic properties and the skin and proximity 
effects, and the related inductances and resistances.  
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