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The research is focused on the identification
of time-varying systems
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M (t) ÿ(t) + C(t) ẏ(t) + K(t) y(t) = f (t)

Dynamics of such systems is characterized by :
I Non-stationary time series
I Instantaneous modal properties

I Frequencies : ωr(t)
I Damping ratio’s : ξr(t)
I Modal deformations : qr(t)



Why time-varying behaviour can occur ?
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Several possible origins :
I Structural changes

I Operating conditions

I Damage appearance



Outline of the presentation
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Presentation of the multivariate time-varying
ARMA model

Presentation of the experimental test setup

Linear time invariant and time-varying
identifications of the system

Presentation of the results



Multivariate ARMA model in modal analysis
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The ARMA model in vector form models the
response signals from a structure as

y[t] +
p∑

i=1
Ai y[t − i] = e[t] +

q∑
j=1

Bj e[t − j],

where
y is the measurement vector (d × 1),
Ai and Bj are the AR and MA matrices (d × d),
e[t] is the innovation vector (d × 1), assumed as a
zero-mean white noise process.



Multivariate ARMA model in modal analysis
Introduction of the time variation
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With that kind of model, the modal parameters are
obtained by the eigenvalue decomposition of the
following companion matrix

C =



−A1 I 0 · · · 0
−A2 0 I · · · 0
...

...
... . . . ...

−Ap−1
...

... I
−Ap 0 0 · · · 0


The eigenvalues of that matrix are related to the
poles of the system and the first components of the
eigenvectors to its mode shapes.



Multivariate ARMA model in modal analysis
Introduction of the time variation
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The basis functions approach is used to manage the
time variation of the parameters:

y[t] +
p∑

i=1
Ai [t] y[t − i] = e[t] +

q∑
j=1

Bj [t] e[t − j]

with

Ai [t] =
rA∑

k=1
Ai,k fk [t]

Bj [t] =
rB∑

k=1
Bj,k fk [t]



The dynamic information about the system
is contained in the AR part of the model
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For any time, the companion matrix may be formed
with the time-varying AR coefficients:

C(t) =



−A1[t] I 0 · · · 0
−A2[t] 0 I · · · 0

...
...

... . . . ...
−Ap−1[t]

...
... I

−Ap[t] 0 0 · · · 0


In the same way, its eigenvalue decomposition gives
the poles and mode shapes for the system at time t.



Parameters identification
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The parameters to identify are all the components of
the Ai,k and Bj,k matrices. Let’s Θ gather them :

Θ = [A1,1, A1,2, · · · , A1,rA , A2,1, · · · , Ap,rA ,
B1,1, · · · , Bq,rB ] .

An estimate of the output signal is

ŷ[t,Θ] = −
∑p

i=1
∑rA

k=1 Ai,k fk [t] y[t − i]
−

∑q
j=1

∑rB
k=1 Bj,k (−fk [t] e[t − j])

or, in block matrix form:

ŷ[t,Θ] = −Θ
[
φ[t]
ψ[t]

]



The estimation is performed by
minimizing the prediction error
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The prediction error of the model is given by

ê[t,Θ] = y[t] − ŷ[t,Θ]

= y[t] + Θ
[
φ[t]
ψ[t]

]

The parameters in Θ are obtained by minimizing
the sum of the squared prediction errors:

Θ = arg min
Θ

1
N

N∑
t=1

ê[t,Θ]T ê[t,Θ]︸ ︷︷ ︸
V (Θ)



This nonlinear optimization problem is solved using the
multi-stages least squares approach
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The multi-stages least squares method decomposes
a nonlinear optimization problem into a series of
least squares ones.

The method is initialized using a long AR model to
get a first estimate of ê[t,Θ].

ê[t,Θ] is then updated at each iteration.



The experimental setup
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The experimental setup is an aluminum beam
with a moving mass.

The whole system is supported by springs and
excited by a shaker.

I 2.1 meter long and 8 × 2 cm for the cross
section

I 9 kg for the beam and 3.475 kg for the
moving mass (ratio of 38.6 %)



LTI modal analysis of the beam subsystem
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Identification of this system with the multivariate
time-varying ARMA model
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Identification of this system with the multivariate
time-varying ARMA model
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To perform the identification, one have to fix the
model structure (ARMA orders, size of the
funnction bases, type of function)

For that purpose, one can use information criterion
such as the Akaike Information Criteria

AIC = N log [V (Θ)] + 2 δ,

in which δ is the number of parameters to be
estimated and N the number of time samples.



Identification of this system with the multivariate
time-varying ARMA model
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Because the size of the companion matrix, the
number of spurious modes may rapidly grows! We
need a tool to select physical modes from spurious
ones.

The physical modes are selected using their average
mean phase deviation :
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Results from several models may be selected to build the
final set of identified time-varying modes
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Thanks to the multivariate modeling,
the mode shapes may be obtained too
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To conclude
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The basis functions approach is suitable to manage
the time variation of the dynamic properties

The varying modal parameters are well tracked with
the ARMA model

The multivariate modeling identifies the mode
shapes too

Even if the selection of physical modes with the
MPD criteria gives good results, the rising of the
number of parameters to identify and the number
of identified modes may become problematic.
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Thank you for your
attention
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