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Highlights 

 We quantify energy variations for multiple discretizations of the bed slope term. 

 Our analysis covers a wide range of ambient Froude numbers and topographic steps. 

 We propose an optimal discretization minimizing the energy variation. 

 The optimal discretization is shown valid for a wide range of flows and topography. 

 Two numerical tests show results in agreement with our theoretical analysis.  
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Discretization of the divergence formulation of the bed slope term in the 

shallow-water equations and consequences in terms of energy balance 

ABSTRACT 

In this research, the influence on energy balance of the discretization scheme of the divergence 

formulation of the bed slope term in the shallow-water equations is analysed theoretically (for a single 

topographic step) and based on two numerical tests. Different values of the main parameter controlling 

the discretization scheme of the divergence formulation are analysed to identify the formulation which 

minimizes the energy variation resulting from the discretization. For a wide range of ambient Froude 

numbers and relative step heights, the theoretical value of the control parameter minimizing the energy 

variation falls within a very narrow range, which can reasonably be approximated by a single “optimal” 

value. This is a result of high practical relevance for the design of accurate numerical schemes, as 

confirmed by the results of the numerical tests. 

Keywords: bed slope term; divergence formulation; discretization schemes; energy balance; 

flux-vector splitting; shallow-water. 

1 Introduction and background 

The shallow-water equations (SWE) constitute the state-of-the-art for large-scale 

modelling of a wide range of flow in hydraulic engineering and fluvial 

hydraulics [5,7,8,26,27,35], as well as for applications in other fields such as coastal 

engineering [30] or geophysical flow [29]. 

For a prismatic channel with a rectangular cross-section without lateral inflow nor 

outflow, the one dimensional (1D) SWE write: 

 2 2

0

2
i f

h q

t x

q q h
g S S

t x h

 
   


       

    

  (1) 

with g  the gravitational acceleration, h  the water depth, q  the specific discharge, t  the time,

x  the spatial coordinate, iS  the bed slope source term and fS  the friction term. 

In Eq. (1), the advective terms and the pressure gradient are written in divergence 

form, which is perfectly suitable for the application of a conservative numerical 

discretization, such as the finite volume method. In contrast, the bed slope source term iS  

writes in a non-conservative form:  

 /i bS gh z x      (2) 

with 
bz  the bottom elevation. This formulation is referred hereafter as the standard 
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formulation of the bed slope source term (SFB). 

For general hyperbolic conservation laws with source terms, Bermúdez and Vázquez 

[4] introduced the concept of upwind discretization of the source terms. The goal is to make 

the discretization of the source terms consistent with the discretization of the advective and 

pressure terms, so as to obtain a so-called well-balanced scheme. In the discretization of the 

SWE, this approach enables the preservation of an initial solution corresponding to quiescent 

water over an irregular bottom [24]. The results obtained with well-balanced schemes were 

shown to be more accurate than those obtained with a simple pointwise evaluation [14]. This 

method has been extended for unstructured meshes [3], quasi-steady problems [20], flux-

difference splitting schemes [14,17,34] and flux-vector splitting schemes [21,13,31]. A 

comparative analysis of different topography discretization techniques has been performed by 

Kesserwani [18]. 

 From the work of Zhou et al. [36] on the surface gradient method, in which variables 

reconstruction is based on the free surface level instead of the water depth, Valiani and 

Begnudelli [32] introduced a divergence formulation of the bed slope term (DFB). It consists 

in evaluating the bed slope term as the spatial variation of the pressure assuming a uniform 

water level 
0 :  

 

 

0

21

2
iS gh

x 

  
  
  

  (3) 

where   is the free surface level. 
0

f means that f  is evaluated for a stationary water level 

0  .  

This treatment of the bed slope term similarly to a flux term (instead of a source term) 

is particularly useful in domains with a highly discontinuous topography, such as in urban 

areas [19,25,26]. 

While Eq. (1) is close to a conservative formulation, the assumption of a locally 

uniform water level 
0  in each cell induces discontinuities between two adjacent cells if the 

water level   is actually inclined. 

Whereas Eq. (3) has been derived independently from any numerical scheme and kind 

of discretization, the discretization of the DFB was shown very convenient when using a 

structured grid with quadrilateral cells [32,33]. Recently, Hou et al. [15,16] extended the 

discretization of the DFB to unstructured grids. 

The well-balanced discretization of the bed slope source term, as introduced by Nujic 

[24] and others, enables water at rest to be properly reproduced; but still numerical errors 

occur in the energy balance. Indeed, although the mathematical expressions of momentum 
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and energy conservation are equivalent for isothermal and incompressible flow, their 

discretized formulations do not lead to the same numerical results. The specific formulation 

used for the discretization of the bed slope term in the momentum equations has a substantial 

influence on the numerical errors induced in the energy balance. In the context of Godunov-

type solvers, Murillo and Garcia Navarro [22] introduced a specific formulation of the bed 

slope source term ensuring energy conservation by using a linear combination of the integral 

and differential formulations of this term. The parameter controlling the linear combination 

depends on the variations of the flow variables and on the flow regime. Under steady 

conditions, the resulting scheme verifies the energy conservation for continuous and 

frictionless flow conditions, and the momentum balance in case of hydraulic jumps. Murillo 

and Garcia Navarro [23] generalized this method for flow in 1D non-prismatic channels of 

arbitrary cross-section. However, the approach developed by Murillo and Garcia Navarro 

[22,23] is not straightforward to extend to the DFB, as the resulting expression for 
0  may 

lead to singularities, as shown in supplementary material. 

So far, in all studies based on the DFB, at the knowledge of the authors, the uniform 

water level 
0  within a cell was evaluated as the average flow depth plus the average bed 

elevation of the cell [32] or as the average of the free surface levels at the edges of this cell 

[15,33]. In contrast, in the present research, we evaluate the uniform water level 
0  as a 

linear combination of the free surface levels at the edges of the cell, taking into account 

specific features of the flux-vector splitting technique considered here. Different values of the 

parameter involved in the linear combination are analysed and benefit is taken from this extra 

degree of freedom to identify the value of this parameter which leads to the minimum error in 

the energy balance. First, a theoretical analysis is performed for a 1D slopeless and 

frictionless channel with a topographic step (similarly to the work of Stelling and Duinmeijer 

[28]). Second, the sensitivity of the numerical results to the value of the control parameter is 

analysed for a 1D steady flow over a bump and for a 1D dam break flow in a channel with a 

bump, with and without friction. A remarkable agreement is obtained between the 

conclusions of the theoretical analysis and the results of the numerical test cases. 

2 Theoretical analysis 

With the DFB, the momentum equation (Eq. 1) for a 1D steady solution without friction 

writes: 

 
0

22 2

2 2

hq g h g

x h x x

  
  

   
  (4) 

and the conservation of mechanical energy gives: 
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2

2

1
.

2

bzq h
g g

x h x x

   
   

   
  (5) 

We propose here a simpler approach in which the constant free surface elevation 0, i  within 

cell i  is computed as a linear combination of the free surface levels 
i  and 

1 i
 with a 

constant parameter  : 

  0, 11i i i         (6) 

The influence of the discretization of the bed slope term on the energy conservation is 

analysed in the case of steady flow in a 1D slopeless and frictionless channel with a 

topographic step (Fig. 1), as considered by Erpicum [10]. The water depths upstream and 

downstream of the bottom step are respectively called Uh  and 
Dh . The topographic variation 

is referred to as bz . On both sides of the topographic step, the specific discharge q  is 

assumed constant and uniform.  

2.1 Methods 

Reference solution 

For a flow without energy dissipation (neither friction nor hydraulic jump), the 

conservation of the mechanical energy (Eq. 5) between the upstream side UE  and the 

downstream side DE  of the topographic step writes [6,13]: 

 
2 2

2 22 2
      U U D b D

U D

q q
E h h z E

gh gh
  (7) 

Using the following non-dimensional parameters:  

 
22 2

2 2

3 3 3
, , ,bD

U U U D

zhq q

gh h h gh


     U

U b D

F
F h Δz F

h
  (8) 

Eq. (7) writes: 

 
2

2 1 0
2 2

 
     

 

2
3 U U

b

F F
h h Δz    (9) 

This third order polynomial in h  has two positive roots and one negative. Because Eq. (9) is 

valid for flows without hydraulic jump, only the root which preserves the same flow regime 

on either sides of the topographic step is considered here. 

Discrete formulation of the DFB term 

Consistently with the upwinding of the pressure terms towards downstream, the 

discretization of the DFB in cell i  writes: 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

   

    

0

2 22

1 , 1 1 ,

.,

1 , , 1 , 1 ,

1 1

2 2

2 1 1 2
.

2

i i b i i i b i

discr i

i i b i b i b i b i

z zhg g

x x

h h z z z z
g

x


     

  

  

  

               
 

   

         
 



  (10) 

This generalized discretization of the DFB contains two important particular cases. 

Let’s look at the following two particular cases, namely 𝛼 = 0 and 𝛼 = 1/2: 

If 𝛼 = 0, Eq. (10) becomes: 

 0

2

, , 1 , 1 ,

.,

2
.

2 2

i b i b i b i b i

discr i

h h z z z zg
g

x x

  
    

  
   

  (11) 

This particular discretization is referred hereafter as the standard discretization of the DFB, as 

used by Valiani and Begnudelli [32] and presented by these authors as very simple and 

requiring low computational effort. In contrast, if 𝛼 = 1/2, Eq. (10) reduces to: 

 0

2

, 1 ,1

.,

.
2 2

b i b ii i

discr i

h z zh hg
g

x x

 
  

  
   

  (12) 

This result is equivalent to the discretization of the SFB by Nujic [24] and Erpicum et al. [12]. 

This discretization is analogous to the ones used by Valiani and Begnudelli [33] and by Hou 

et al. [15]. Hereafter, this discretization is referred to as the standard discretization of the SFB. 

Application to a frictionless channel with a topographic step 

Due to the non-conservative form of the bed slope source term, the equation of 

momentum conservation cannot be solved analytically in the presence of a topographic step. 

For the purpose of the present theoretical analysis, we focus here on the smallest possible 

numerical grid which enables a suitable resolution of the problem accounting properly for the 

typical boundary conditions. Hence, the domain is discretized with two cells on either sides of 

the topographic step, numbered from 1 (upstream) to 4 (downstream) (Fig. 1). 

Substituting Eq. (10) into the discretized formulation of Eq. (4) leads to: 

 
     

2 22

1

1

, 1 , 1 , 1 ,

1 1

2

2 1 1 2 2 2 1
.

2

i i

i i

i b i i b i b i b i

h hq g

x h h x

h z h z z z
g

x

   





  

  
  

  

      
 



   (13) 

Since the location where a boundary condition is prescribed on the water depth depends on 

the flow regime, Eq. (13) is solved differently depending on the flow regime. 

In the case of a subcritical flow, the water depth Dh  is prescribed as a boundary 

condition on the most downstream cell edge. 

Applying Eq. (13) for the four cells described in Fig. 1 leads to: 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 1 2 3   U bh h h h z   (14) 

  2 2 2

4 3

3 2

1 1
0

2

g
q h h

h h

 
    

 
  (15) 

 2 2 2

4

3

1 1
.

2 2
D

D

g g
h h q

h h

 
   

 
  (16) 

Whatever the value of 𝛼, the free surface is found horizontal on either sides of the 

topographic step. 

Grouping the results of Eqs. (14), (15) and (16), the following relationship is obtained 

between Uh  and Dh , independently of the value of  : 

  2 2 2 21 1
.

2 2

U b
D U b

D U

h zg
q h h g z

h h

   
      

 
  (17)  

For a supercritical flow, the water depth Uh  is set as boundary condition at the most upstream 

cell edge. 

Applying Eq. (13) for the four cells described in Fig. 1 leads to: 

  2 2 2

2

1

1 1
0

2

 
    

 
U

U

g
q h h

h h
  (18) 

 2

1

1 1 1 2

2

   
        

  
D b b

D

q g h z z
h h

  (19) 

 
2 3 4 .Dh h h h     (20) 

Grouping the results of Eqs. (18), (19) and (20) leads to: 

  2 2 2 21 1 1 2
.

2 2
D U D b b

D U

g
q h h gh z g z

h h

  
        

 
  (21) 

The second term of the bed slope term of Eq. (21) vanishes in the standard discretization of 

the SFB (𝛼 = 1/2). 

Non-dimensional forms 

To enable systematic numerical evaluations of the energy variations obtained for different 

Froude numbers and different heights of the topographic step, Eqs. (17) and (21) are rewritten 

using the non-dimensional parameters defined in Eq. (8): 

 
   

   

3 2 2

3 2 2 2

1 2 2 2 0 1

2 1 2 1 2 2 0 1.

      

       

U b b U U

2

b U b U U

h F h Δz Δz h F F

h Δz h F h Δz h F F
  (22) 

Energy variation 

Similarly, the non-dimensional energy variation between upstream and downstream 
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writes as: 

 

2 2

2

1
2 2 2

.
2

U D

U

E E

E

   


 


U U b2

U

F F h Δz
hΔE

F
  (23) 

For a given value of 𝛼 and a given upstream Froude number UF , the energy variation 

resulting from the resolution of the discretized momentum equation may be quantified using 

the following indicators, namely the bias and the root-mean-square (RMS): 

  bias , Δ UF E   (24) 

   2RMS , Δ . UF E   (25) 

Where the operator ...  refers to an average over all non-dimensional step heights 
bΔz  

between 1 bΔz  and 1bΔz . The discretization step for 
bΔz  was selected small enough 

so that the values of bias and RMS are independent of this discretization. 

The bias represents the arithmetic mean of the numerical energy variation among all 

the considered topographic steps. A positive value reflects dominant energy dissipation while 

a negative value represents dominant energy creation. The RMS represents the energy 

variation in absolute term for a given value of 𝛼 and a given Froude number. 

2.2 Results and discussion 

Comparison between the exact solutions of the equation of conservation of mechanical 

energy and the solutions of the discrete equation of momentum conservation 

The solutions of the non-dimensional Eq. (22) are shown in Fig. 2 for the standard 

discretization of the SFB (𝛼 = 1/2 in dashed lines) and for the standard discretization of the 

DFB (𝛼 = 0 in dotted lines). The discrete solutions of the equation of momentum conservation 

are compared to the exact solution of the equation of energy conservation (plain lines). For 

negative (respectively positive) topographic steps, the zones representing subcritical or 

supercritical flows are, respectively, labelled zones 1 and 2 (respectively zones 4 and 3). 

For negative topographic steps  0bΔz  in Fig. 2a, the two curves in black 

represent the limits corresponding to an upstream Froude number tending towards unity, 

either from subcritical (upper curve) or from supercritical (lower curve) flow regimes. These 

limits cannot be reached for positive topographic steps (Fig. 2b) since critical flow 

corresponds to the minimum energy for a given discharge and, therefore, an approaching 

critical flow could not adapt to a positive topographic step. 
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For positive topographic steps  0bΔz  in Fig. 2b, the limits for a downstream 

Froude tending towards unity from subcritical (lower curve) and supercritical (upper curve) 

flows are the curves in grey. 

The discontinuous black line in Fig. 2 represents the hypothetical limit of an infinite 

Froude number, in which case the water depth remains unaffected by the topographic step due 

to the high kinetic energy. 

Figure 2 presents in dashed line the solutions of the discrete form of the momentum 

conservation equation with the standard discretization of the SFB (or the discretization of the 

DFB with the particular value of 𝛼 = 1/2). Although these results are similar to those of the 

analytical energy conservation, they are not exactly the same. The main differences appear for 

a positive topographic step in supercritical flow (e.g., 2UF  in zone 3), for which two 

different flow conditions may be obtained for the same value of 
bΔz  and without change of 

the flow regime. 

Figure 2 presents in dotted line the solution of the discrete form of the momentum 

conservation equation with the standard discretization of the DFB (𝛼 = 0). For subcritical 

flow, the solutions of the discrete momentum conservation equations with the standard 

discretization of the SFB and with the standard discretization of the DFB are identical, 

consistently with the independency of the corresponding part of Eq. (22) with respect to 𝛼. In 

contrast, for supercritical flows, the solutions are similar but not equal. The difference 

between the solution obtained with the energy conservation and the solution obtained with the 

momentum conservation with the standard discretization of the DFB tends to increase with 

the absolute value of the topographic step. While the momentum conservation with the 

standard discretization of the SFB only gives overestimations of the parameter h  in 

supercritical flows, the momentum conservation with the standard discretization of the DFB 

overestimates or underestimates the values of h  depending on the value of 
bΔz . 

Energy variation of the discrete resolution of the momentum conservation equations 

As shown in plain lines in Fig. 3, only positive energy losses are observed with the 

standard discretization of the SFB, indicating that the discretization of the momentum 

conservation induces only numerical dissipation of energy. This dissipation tends to increase 

with the absolute height of the topographic. The range of variation of energy losses for 

subcritical and supercritical flows are represented in light grey with respectively circular 

markers and arrows at the tips. Moreover, for a given height of the topographic step, the 

dissipation is maximum for Froude numbers close to unity. For positive topographic steps 

(Fig. 3a), the dissipation obtained in supercritical flow conditions generally exceeds the 

dissipation for subcritical flow. 
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The energy variation resulting from the discrete resolution of the momentum 

conservation equation with the standard discretization of the DFB is represented in dotted 

lines in Fig. 3. Negative energy losses are obtained for supercritical flows with a negative 

topographic step (Fig. 3a) and for some supercritical flows with a positive topographic step 

(Fig. 3b). For negative topographic steps, the magnitude of the numerical energy variation 

increases when the Froude number becomes closer to unity, while it is not necessary the case 

for positive topographic steps (e.g., 2.0UF ). 

Energy variations for subcritical flows are identical for both formulations of the bed 

slope term. Concerning supercritical flows with the standard discretization of the DFB 

(𝛼 = 0), numerical energy is created for negative topographic steps with absolute values 

greater than the dissipation of energy with the standard discretization of the SFB. 

Optimal values of 𝛼 to minimize the numerical energy variation 

As shown in Fig. 4a, for supercritical flows, the bias of energy is negative (i.e. 

dominating energy creation) for lowest values of 𝛼 and positive (i.e. dominating energy 

dissipation) for highest ones. Whatever the value of 𝛼, the RMS tends towards zero for high 

upstream Froude numbers and is the highest for upstream Froude numbers close to one (Fig. 

4b). 

 Figure 5 shows the optimal values of 𝛼, i.e. those values which minimize the energy 

variation resulting from the numerical discretization. The values minimizing the bias are 

found slightly lower than those minimizing the RMS for upstream Froude numbers up to 

slightly more than 2. For higher upstream Froude numbers, the values of 𝛼 minimizing the 

bias are very close to those which minimize the RMS. In any case, the variation of the optimal 

value of 𝛼 with the upstream Froude number is found particularly low. In practice, this 

suggests the use of a single value of 𝛼 (𝛼 = 0.4) whatever the upstream Froude number. This 

rule of thumb guarantees that the numerical energy variation remains always very close to its 

minimum. This optimal value of 𝛼 is based on the minimization of the error on the energy 

whatever the remaining error should be a reduction or an augmentation of mechanical energy. 

When searching for a minimization of the numerical energy without any creation of energy, 

the optimal value of 𝛼 is close to 0.5 which leads however to an increase of the RMS 

compared to a value of 𝛼 = 0.4. 

3 Numerical analysis 

The sensitivity of the numerical variation of mechanical energy to the discretization 

of the DFB is numerically analyzed for a 1D steady flow over a slopeless and frictionless 
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channel with a bump [2] and for a 1D dam break flow over a channel with a bump, with and 

without friction. The first test case is a standard test case, often used to evaluate the accuracy 

of the treatment of the bed slope term by numerical models, as well as their efficiency to 

converge towards a steady solution [15,16,32]. The second test case is consider to assess the 

validity of our conclusions in cases with unsteadiness and friction. 

Four discretizations of the DFB are tested: 𝛼 = 0.0 which is equivalent to the standard 

discretization of the DFB, 𝛼 = 0.4 hereabove presented as an optimal discretization, 𝛼 = 0.5 

referred to as the standard SFB discretization and 𝛼 = 1.0. 

3.1 1D steady flow over a slopeless and frictionless channel 

Methods 

The bottom level is given by Eq. (26)  10 10 :m x m    

 

2

0.8 1 2 2
( ) .4

0 elsewhere

x
m x m

z x

  
     

   



  (26) 

Two different sets of boundary conditions are analyzed (Table 1). The first one leads to a 

subcritical flow while the second one corresponds to a supercritical flow. There is no 

hydraulic jump and, in the exact solution, the energy is therefore constant over the entire 

domain (assuming no friction within the fluid). For each test case, range of Froude number 

and energy value are given in Table 1. 

The two tests are simulated with the hydraulic model Wolf2D, in which the DFB has 

been implemented. The model solves the fully dynamic shallow-water equations using a  

conservative finite volume scheme based on a flux vector splitting technique [9,11]. The 

computational domain is discretized with a 0.1 m grid spacing. 

The mechanical energy at a border is evaluated by Eq. (27), consistently with the 

flux-vector splitting technique: 

 

2

,

1/2 1 2

,

1
.

2

x i

i i

x i

q
E

g h
     (27) 

The differences between the analytical solution and the numerical ones are quantified with the 

1L  error defined by Eq. (28): 

 
, ,

1

1 ,

1
( )

N
i num i ref

i i ref

y y
L y

N y


    (28) 

where N  is the number of computational cells, ,i numy  is a numerical solution and 
,i refy  is the 

analytical solution. 
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Results and discussion 

The water depths are more sensitive to the discretization of the bed slope term for 

supercritical flows than for subcritical ones (Fig. 6 and Table 2). For a supercritical flow, the 

order of magnitude of the differences between the water depths resulting  from different 

discretizations of the bed slope term highlights the necessity of an accurate discretization of 

the bed slope term. 

As shown in Fig. 7, the numerical variations of energy are produced at the bump and 

propagate towards upstream for a subcritical flow (Fig. 7a) and towards downstream for a 

supercritical flow (Fig. 7b). In the first test, the errors on the energy increase when the value 

of 𝛼 decreases, while, for the second test case, the errors increase when the value of 𝛼 moves 

away from the value of 𝛼 = 0.4. Concerning the second test case with a supercritical flow, 

dissipation of energy occurs for values of 𝛼 equal to 0.5 and 1.0 while creation of energy 

occurs for 𝛼 = 0.0, consistently with the results presented in Fig. 4. 

As shown in Table 2, the error on energy may change by two orders of magnitude 

depending on the discretization of the DFB for supercritical flows while they show a lower 

sensitivity to the value of 𝛼 for subcritical flows. Moreover, the order of magnitude of the 

lowest energy error for the second test is the same as the one obtained for the first test case, 

whatever the value of 𝛼. These results are consistent with the selection of an optimal value of 

𝛼=0.4 for the discretization of the DFB, as concluded from the theoretical analysis in 

section 2. 

3.2 1D dam break flow over a channel with a bump 

Methods 

This test case is based on an experimental setup [1] realized at the Laboratory of 

Hydraulic Research of Chatelet (Belgium). It consists in a dam break flow over a rectangular 

channel with a bump (Fig. 8). Both the upstream (A) and downstream (B) ends are 

impervious plates. The channel is 38 m long (LR) and a 15.5 m long and 0.75 m deep (h0) 

water volume is initially retained at the upstream end by a sluice gate. The top of a 

symmetrical 6 m long and 0.4 m high bump is located 13 m downstream of the gate. The 

simulations were performed for (i) a frictionless channel and (ii) a channel with a uniform 

Manning coefficient n = 0.0125 s/m
1/3

. 

Since the flow is unsteady, the inertia effects must be taken into account to assess the 

energy conservation in the computed results. To do this, we consider hereafter the sum of (i) 

the energy head integrated over the whole flow area and (ii) the corresponding inertia term. 
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The energy head E  at any position (x,z) of the flow is the sum of the potential energy z, 

the pressure energy 𝜂-z and the kinetic energy 2 / 2u g  at that point. Since the pressure is 

hydrostatic and the velocity uniform, the energy head is constant over the depth: 

     
 

2
,

, , .
2

u x t
E x t x t

g
    (29) 

The unsteady Bernouilli equation between two points xi and xj writes: 

    
1

, ,

j

i

x

i j

x

u
E x t E x t dx

g t


 

   (30) 

where the second term of the right hand side represents the inertia contribution (
IE ). 

At a time t, the total mechanical energy   is defined as the sum of the integration over the 

whole flow area of the energy head E  and of the inertia contribution 
IE : 

      
 2 ',( , ) 1

( ) , , , ' ,
2

B x

A A

u x tu x t
t h x t x t h x t dx dx

g g t


  
     

  
    (31) 

where A and B are the abscissa of the channel upstream and downstream boundaries. 

For an unsteady inviscid flow over a frictionless channel,   is constant over time and 

remains equal to its initial value 2

0RL h  (= 8.7187 m
3
) provided that the flow does not reach the 

boundaries of the domain. 

Results and discussion 

For gauges G4 and G13 (Fig. 8), the time evolutions of the water depth are 

represented in Fig. 9 for different values of 𝛼 and for a channel with or without friction. At 

both gauges, the maximum water depth of the dam break wave depends significantly on the 

value of 𝛼, particularly at G4 with a frictionless channel where the maximum water depth 

reached by the wave for 𝛼 = 0.0 is 8 cm above the value obtained for 𝛼 = 0.5. The highest 

differences between the water depths obtained with a value of 𝛼 = 0.4 and with the other 

values of 𝛼 are of the order of 10
-1

 m at G4 and of 10
-2

 m at G13. Time logs are also observed 

between the time evolutions of computed water depths from different values of 𝛼, particularly 

at gauge G4. This suggests that the discretization of the bed slope term may have a significant 

impact on the results of a simulation of a dam break flow, both in terms of computed water 

depths and propagation times. 

In Fig. 10, the time evolutions of   for different values of 𝛼 are compared to those 

obtained for the reference value 𝛼 = 0.4, for a channel with (b) or without (a) friction. The 

time period represented in Fig. 10 is such that the boundaries of the domain are not reached. 

The deviations of   as a function of 𝛼 remain relatively small compared to the initial value of 
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2

0RL h   (with a maximum relative difference of the order of 0.1%); but they increase very 

fast with time. The results are consistent with those obtained from the theoretical analysis and 

from the 1D steady flow with the bump (Fig. 7b); i.e. an increase (resp. decrease) of the 

numerical variation of energy when the value of 𝛼 is reduced (resp. increased) for a 

supercritical flow. The results obtained for a channel with friction are similar to the case of 

the frictionless channel, with mainly a time shift due to a reduction of the front velocity in the 

presence of friction. 

4 Conclusions 

Solving the discrete equation of momentum conservation induces numerical 

variations of energy, even in the case of a flow in a frictionless channel without physical 

energy dissipation. 

 In this paper, we compare the resolution of the discrete equation of momentum 

conservation for two formulations of the bed slope term. The standard formulation of the bed 

slope term (SFB) involves the product of the water depth by the spatial derivative of the 

topographic level. The divergence formulation of the bed slope term (DFB) consists in 

evaluating the bed slope term as the spatial variation of the pressure assuming a constant free 

surface elevation.  

 A major difference in the results obtained with the two formulations of the bed slope 

term is that the discretization of the SFB induces only positive energy losses (i.e. dissipation 

of energy) while positive and negative energy losses are obtained with the discretization of 

the DFB. 

 An optimal discretization of the DFB, i.e. a scheme minimizing the numerical 

variation of energy, is proposed based on the theoretical analysis of the numerical variation of 

energy for a 1D continuous, slopeless and frictionless flow with a topographic step. Finally, 

two numerical test cases show results in good agreement with the findings of the theoretical 

analysis and highlight the practical relevance to minimize the energy variation due to the 

discretization of the bed slope term. 
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Notation 

A = the abscissa of the channel upstream boundary (m) 

B = the abscissa of the channel downstream boundary (m) 

E  = energy head (m) 

IE = inertial contribution to the unsteady mechanical energy (m) 

F  = Froude number (-) 

h  = water depth (m) 

h  = non-dimensional water depth (-) 

g  = gravity acceleration (ms
-
²) 

q  = unit discharge (m
2
s

-1
) 

x  = spatial coordinate (m) 

t  = time (s) 

bz  = bottom elevation (m) 

  = parameter controlling the discretization of the divergence formulation of the bed slope 

term (-) 

ΔE  = non-dimensional energy variation (-) 

bΔz  = non-dimensional topographic step (-) 

  = free surface level (m) 

  = total mechanical energy (m
3
) 
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Table 1: Boundary conditions, analytical Froude range and analytical energy for a 1-D steady 

flow over a bump. 

Test 

ID 

Upstream boundary 

condition 

Downstream 

boundary condition 

Analytical F

range 

Analytical 

energy 

1 21 /q m s  1.7Dh m   0.14 - 0.41 1.718exactE m  

2 21.5 / ; 0.25 Uq m s h m  Transmissive 2.31 - 3.83 2.085exactE m  

 

Table 2: Errors on the water depths, unit discharges and mechanical energy for four 

discretizations of the DFB. 

Test ID   
1( )L h   1( )L E  

1 

0.0 3.2 x10
-3 

2.8 x10
-3

 

0.4 2.5 x10
-3

 2.1 x10
-3

 

0.5 2.4 x10
-3

 1.9 x10
-3

 

1.0 1.5 x10
-3

 1.1 x10
-3

 

2 

0.0 5.9 x10
-3 

66.3 x10
-3

 

0.4 1.2 x10
-3

 1.6 x10
-3

 

0.5 2.2 x10
-3

 18.3 x10
-3

 

1.0 10.1 x10
-3

 100.7 x10
-3
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Figure 1: 1D channel with a topographic step. 

 

Figure 2: Hydrodynamic characteristics  , bh Δz  for a flow in a slopeless and frictionless 1D 

channel with a (a) negative or (b) positive topographic step – Comparison between the exact 

resolution of energy conservation (plain lines), the momentum conservation discretized with 

the standard discretization of the SFB (dashed lines) and the momentum conservation 

discretized with the standard discretization of the DFB (dotted lines). For negative 

(respectively positive) topographic steps, the zones representing subcritical or supercritical 

flows are respectively labelled zones 1 and 2 (respectively zones 4 and 3). 
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Figure 3: Energy loss accross a topographic step in a slopeless and frictionless 1D channel - 

Comparison between the momentum conservation with the standard discretization of the SFB 

(plain lines) and the momentum conservation with the standard discretization of the DFB 

(𝛼 = 0) (dotted lines). 

 

 

Figure 4: Bias and RMS of the numerical variation of energy as a function of the upstream 

Froude number for different values of 𝛼 in the discrete momentum conservation equation with 

the DFB. 
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Figure 5: Value of 𝛼 minimizing the bias or the RMS of the numerical variation of energy for 

different upstream Froude numbers. 

 

 

Figure 6: Water depths (a, b) and energy variation (c, d) for a 1D steady flow over a bump 

and different values of 𝛼. 

 

Figure 7: Comparison of the mechanical energy between the analytical solution (black line) 

and the computed results for a 1D steady flow over a bump and different values of 𝛼. 
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Figure 8: Schematization of the test case of a 1D dam break flow over a channel with a bump. 

Figure 9: Time evolution of the water depth at gauges G4 (a, b) and G20 (c, d) for different 

discretizations of the bed slope term and for a channel with (b, d) or without (a, c) friction. 
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Figure 10: Comparison of the time evolution of the total energy   for 𝛼 = 0.4 to other 

discretizations of the bed slope term for a channel with (a) or without (b) friction. 

 


