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Abstract

Nowadays, product manufacturing can be divided into two groups: rel-
atively simple products produced in a large production chain and complex
(specialized) components produced in reduced batches. Within the second
group, prototyping through incremental sheet forming (ISF) has been sub-
ject of several studies. ISF refers to processes where the plastic deformation
occurs by repeated contact with a relatively small tool. A crucial aspect
in the ISF processes is that the �nal shape is determined only by the tool
movement. The focus of this research is the single point incremental form-
ing (SPIF) process variant, where a clamped sheet metal is deformed by
using a relatively small spherical tool.

SPIF has several advantages over traditional forming, such as the high
formability attainable by the material. Di�erent hypothesis haven been
proposed to explain this behavior, but there is still not a clear and de�nitive
understanding of the relation between the particular stress and strain state
induced in the material during SPIF and the material degradation leading
to localization or fracture.

In this thesis, a fundamental research is proposed using the �nite ele-
ment (FE) code Lagamine, developed within the University of Liège. Nu-
merical implementation and validation of the Gurson-Tvergaard-Needleman
(GTN) damage model into this FE code is performed. An experimental test
campaign is developed to characterize plastic and damage behavior and to
validate the damage model for the DC01 steel grade. Finally, this dam-
age model is applied to simulate the SPIF process in order to verify if it
is capable to predict failure. The thesis discusses the material parameter
identi�cation for classical plasticity models, describing the anisotropy and
hardening behavior of the sheet metal. The derivation of the equations
of the numerical damage model and the e�ciency of the implementation
is presented in great detail. A methodology for the numerical parame-
ter identi�cation of the damage model is proposed, including microscopic
measurements by optical microscopy and strain and displacement �eld mea-
surements by digital image correlation (DIC). The identi�ed Gurson model
is applied to simulate standard SPIF geometries, like the line, cone and
pyramid tests. The simulations are performed using the solid-shell element
formulation and validated in terms of shape and force prediction. Literature
reviews of the Gurson model and the SPIF process are also included.

The experimental results show that the selected material (DC01 steel
sheet) exhibits a slight anisotropic behavior and work-hardening stagnation
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on cyclic tests. The performed microscopic measurements are not represen-
tative of the actual damage, but they give a qualitative estimation of the
physical mechanism of fracture. The initial porosity of the material was
determined using optical microscopy measurements in the base material.

The numerical implementation of the model is developed with all vari-
ables integrated in an implicit way, based on the backward Euler scheme.
Nucleation, coalescence and shear extensions implementations are validated
by results obtained from the literature. The macroscopic campaign allowed
to identify the parameters for nucleation, coalescence and shear. An unique
set of results matching all experiments was not possible to obtain, so dif-
ferent sets of parameters are retrieved following an approach that includes
inverse modeling and sensitivity analysis. A numerical-experimental com-
parison of strain values in the loading direction shows that the model is
able to correctly predict the strain distribution except during localization
of the strain. Globally, the obtained set of material parameters is in good
agreement with the experimental results.

For SPIF FE simulations, the results of the shape prediction are in good
agreement with the experimental results, both for the line and pyramid
test. Nevertheless, the force prediction is too high compared to reference
values. On the other hand, the GTN model is capable to detect failure in a
pyramid and a cone, but the prediction is too premature compared to the
experimental failure angle for the same material and geometry.

An accurate prediction of failure for the SPIF process was not possible
to achieve. The GTN model extended to shear presents inherent �aws that
prevent an accurate prediction of the failure angle for the SPIF process.
Hence, an extensive research on the damage mechanisms leading to fracture
for SPIF cannot rely (only) on the GTN model. The classical coalescence
model of the GTN model is insu�cient to correctly predict failure. Hence,
it is recommended that further analysis concentrates on the description of
this particular stage of damage evolution.

During the development of this thesis, a robust implementation of the
GTN model into the FE code Lagamine was done, including an extensive
experimental database of microscopic and macroscopic measurements for
the DC01 steel sheet. Other phenomena can be explored thanks to this
model.
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Chapter 1

Introduction

1.1 Background and scope

The fabrication of metallic pieces can be achieved through di�erent processes. For
example, gluing two di�erent pieces, cutting from a larger specimen (machining)
or deforming the material plastically. This last process is called metal forming
and has the particularity that the material attains large plastic deformation be-
fore obtaining the desired shape. This is how a metallic piece (usually a ductile
material) is deformed by speci�c tools and transformed into a useful piece.

Nowadays, product manufacturing can be divided into two groups: relatively
simple products produced in a large production chain and complex (specialized)
components produced in reduced batches. Within the second group, prototyping
through incremental sheet forming (ISF) has been subject of several studies. ISF
refers to processes where the plastic deformation occurs by repeated contact with
a relatively small tool. The small formed zone moves during the whole process,
covering all the product and giving the �nal shape. The last decade has shown an
increasing interest on ISF processes. After early developments in Japan during
1990s, the research moved towards Europe coinciding with an intense use of CNC
machines and developments in CAD/CAM software products. A crucial aspect in
the ISF processes is that the �nal shape is determined only by the tool movement.
The focus of this research is the single point incremental forming (SPIF) process
variant, where a clamped sheet metal is deformed by using a relatively small
spherical tool, which follows a complex path in order to get the required shape.
A schematic representation of the process can be seen in Fig. 1.1(a), where the
tool follows a path depicted in Fig. 1.1(b) for a conical shape. One of the most
prominent characteristics of the SPIF process is its �exibility. Since the shape
is only given by the motion of the tool, no die is needed. Fig. 1.2 depicts two
SPIF setups. Moreover, the toolpath can easily be controlled using a CAD/CAM
software where a change of the �nal shape can be quickly and inexpensively done.
This dieless nature makes the SPIF process appropriate for prototyping, highly
personalized pieces and other shell-like structures, having a production cost lower
than typical processes like deep drawing. Depending on the tool path length,
the forming process can reach hours. It is, by consequence, adapted to small
batch production and rapid prototyping. Applications range from large pieces like
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automotive parts or dies, to small parts such as medical implants or prosthesis.
The formability, which is higher than in the case of conventional forming processes
(like stamping), has a high industrial interest but the poor geometrical accuracy
of the �nal shape represents a major disadvantage of the process, preventing a
massive industrial acceptance.

This process can be optimized by a numerical analysis and/or by experimental
trials and errors. In this thesis, the numerical approach is chosen because of the
practical usefulness of a virtual simulation of the forming process over a costly
trial and error one. The numerical analysis needs the development and validation
of the material models to simulate the sheet metal. Moreover, such information is
accurate only if the simulation has been validated through experiments. Experi-
mental validation is the �rst step towards prediction of the material rupture and
numerical study of the process limits.

(a) SPIF setup (Jeswiet et al., 2005). (b) SPIF spiral toolpath
(Filice et al., 2002).

Figure 1.1: Schematic representation of the SPIF process.

(a) Milling ma-
chine (Henrard,
2008)

(b) SPIF setup for DIC measurements (Guzmán et al., 2012b).

Figure 1.2: SPIF hardware setup.
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1.2 Research objectives

Formability within SPIF process has been extensively studied using classical
framework such as the forming limit curves (FLC). However, little has been done
regarding the damage evolution leading to �nal fracture. Research on damage
using a numerical approach requires a deeper knowledge of the material behavior
and more complex material models. These aspects increase the di�culty of the
research but on the contrary, their application range is not limited to a particular
process (like SPIF). Hence, the results arising from this research can be applied
to other investigations involving the same material or the same material model.

In this thesis, a fundamental research is proposed using the Finite Element
(FE) code called Lagamine, developed since 1982 by AM Habraken's team in
ULg. This code has a large library of �nite elements and constitutive laws. The
ULg team has a strong background on experimental material characterization
(Flores, 2005; Gilles, 2015; Tuninetti, 2014), �nite element technology (Ben Bet-
taieb et al., 2015; Duchêne et al., 2007; Li and Cescotto, 1997), damage modeling
(Ben Bettaieb et al., 2011a; Fansi, 2013; Zhu, 1992) and incremental forming
simulations (Henrard, 2008; Sena, 2015).

Collaborations with external teams have been activated within the thesis re-
search, such as:

• The mechanical engineering department of the University of Aveiro, Portu-
gal (within Grid team of Prof. Ricardo Alves de Sousa and Prof. Robertt
Valente). Experience on �nite element simulations applied to forming pro-
cess (solid-shell elements and remeshing).

• The department of mechanical engineering (PMA division, Prof. Joost Du-
�ou) and metallurgy and materials engineering (MTM, Prof. Albert Van
Bael) of KULeuven. Wide knowledge on ISF experimental tests.

• The metallurgy and materials science division of the University of Liège
(Prof. Jacqueline Lecomte-Beckers), dedicated to microscopic measure-
ments of materials.

Finally, the research has the following objectives:

1. Numerical development, implementation and validation of a Gurson type
damage model into the FE code Lagamine.

2. Development of a test campaign to characterize both plastic and damage
behavior in a sheet metal under di�erent types of loading.

3. Numerical validation of the damage model using the experimental results.

4. Application of the validated numerical damage model to SPIF FE simula-
tions. Analysis of the results in terms of shape and force predictions.
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1.3 Thesis outline

The body of this thesis is divided in seven chapters, the �rst one being the current
introduction.

The second chapter deals with the material parameters identi�cation of the
DC01 steel, the chosen material for the research. The focus here is on the plastic
behavior of the sheet. An experimental campaign designed to characterize the
material is described and its results presented. Anisotropy and mixed (isotropic
and kinematic) hardening parameters are identi�ed for classical plasticity models.

The third chapter is a general review of the Gurson model. The Gurson model
is a popular tool to simulate the damage behavior and several extensions have
been proposed to cover di�erent aspects of the phenomenon.

The fourth chapter covers the numerical implementation of the Gurson model
into the FE code Lagamine. An implicit algorithm is described and then applied
to the Gurson extensions that will be used in subsequent developments. A detailed
derivation of the equations is presented and the e�ciency of the implementation
is assessed with results obtained from the literature.

The �fth chapter presents a methodology for the damage characterization of
the DC01 steel sheet. It is important to remark that damage is harder to char-
acterize than plasticity, both from a numerical and experimental point of view.
Therefore, the chapter presents a methodology, which includes an experimental
campaign involving microscopic and macroscopic measurements. A validation of
the numerical model is given using the experimental results.

The sixth chapter is the application of the previous implemented and validated
damage model to the SPIF process. Di�erent SPIF geometries are simulated and
their predictions analyzed to show the capabilities and limitations of the damage
model.

Finally, the thesis ends with general conclusions and perspectives for future
research.

1.4 Original contributions

Within the research, the following contribution were achieved:

• The material parameters for models describing the plasticity and damage
behavior of the DC01 steel sheet were identi�ed.

• Implementation of a Gurson damage model extended to matrix anisotropy,
mixed hardening, void nucleation, void coalescence and shear loads into the
Lagamine FE code.

• Analysis of the damage development undergone by the DC01 steel sheet,
both from microscopic and macroscopic measurements.

• Reliable numerical tool to simulate SPIF. Good shape and strain prediction
in the Numisheet 2013 benchmark.
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• Concise literature review of the damage models applied on SPIF and rupture
mechanisms acting on SPIF.

• An e�cient parallel version of Lagamine code using the Walloon clusters
available through ULg access was developed.





Chapter 2

Plasticity characterization of the

DC01 steel sheet

For damage prediction involving coupled models, identifying the plas-
ticity parameters is of crucial relevance due to the strong dependence of
the damage variable evolution on the yield function and hardening. Based
on methodologies presented in Flores, (2005) thesis and Gilles, (2015) the-
sis, the plastic behavior of the DC01 steel sheet including anisotropy and
hardening, is characterized by using a test campaign involving homogeneous
stress and strain �elds. Since most of the preliminary numerical studies were
carried on using classical plasticity models, the chapter begins by describ-
ing the material and the used mathematical models. This is followed by
a description of the experimental setup and results from a set of di�erent
tests (tensile, shear and plane strain). A discussion of the identi�cation
procedure using optimization algorithms is followed. The obtained parame-
ters are then analyzed with �nite element simulations using the Lagamine
software. The material exhibits large ductility, being able to reach large
displacement before fracture and anisotropic behavior at 45◦ of the RD.
Hardening stagnation in presence of reverse loadings is also observed, in-
creasing the di�culty of modeling kinematic hardening.

2.1 Material presentation

In this section, the selected material for the current research is described qualita-
tively and quantitatively.

2.1.1 Material selection

The material was selected according to the following criteria:

• The existence of su�cient stock or insurance of renewed supply for long
term availability.

• It should be relevant at industrial level.

7
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• The thickness should be su�ciently large to allow the study of bending
moments, but limited to SPIF platforms capacity.

• It should allow a relatively high formability.

In accordance with these criteria, the chosen material was the DC01 ferritic steel
(EN 10330)1 1.0 mm thickness, a cold rolled low carbon steel commercially avail-
able for cold forming. In general, the carbon content for high-formable steels is
very low (less than 0.10% C with a maximum of 0.4% Mn) as shown in Table 2.1,
making them malleable and ductile.

2.1.2 Microstructure of the base material

The chemical composition of the DC01 steel is shown in Table 2.1. Its microstruc-
ture was obtained by Anne Mertens from the MMS team at the ULg and is shown
in Fig. 2.1. It is mostly ferritic with a small amount of cementite, with a body-
centered cubic (BCC) crystal system. Based on its carbon percentage, the DC01

Table 2.1: Chemical composition in percentages by weight (wt%) of the DC01
steel. Taken from Eyckens, (2010).

Mn C Al Ni Cu Cr P
0.21 0.049 0.029 0.024 0.017 0.016 0.008

S N Si Ti B Fe
0.008 0.003 0.002 0.001 2× 10−4 Bal.

has an equivalent grade SAE/AISI 1005. It also has some amount of Al, mean-
ing that this low carbon steel is of the aluminium killed, drawing quality type
(Hosford and Caddell, 2007). The grain size of the base material is estimated

Figure 2.1: Microstructure of the DC01 steel. Two clear phases are visible with
ferrite (α-Fe) being clearly dominant over cementite (Fe3C).

1Within the standard: EN 10130:2006 Cold rolled low carbon steel �at products for cold

forming. Technical delivery conditions.
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using the ASTM norm E112-1998, taking into account the number of grains in a
1.0 in× 1.0 in area of chemically attacked sample (Fig. 2.2). The grain size and
its associated index are shown in Table 2.2. The large grain size index (higher

Table 2.2: Grain characteristics of the DC01 steel.

Grain size index Average grain area Average diameter

µm2
µm

10.5 89.1 9.4

Figure 2.2: Analyzed zone for the estimation of the grain size. The left �gure
(100x) depicts a square, which is zoomed in the right �gure (200x).

than ASTM no7) could imply that an orange peel e�ect is to be expected for deep
drawing operations (Hosford and Caddell, 2007).

The initial texture of the base material was measured by Philip Eyckens from
the MTM team at KULeuven in 1 mm× 1 mm squared samples. The (incomplete)
pole �gures obtained from X-ray di�raction (XRD) measurement can be seen
in Fig. 2.3, where the distribution functions have some preferred orientations
implying some macroscopic anisotropy. The material also shows a strong α-�ber

(a) (1 1 0) (b) (2 0 0) (c) (2 1 1)

Figure 2.3: Incomplete pole �gures of the DC01 steel sheet at di�erent crys-
tal lattice planes. Obtained from XRD measurements in a
1 mm× 1 mm squared area with the normal direction coming out
from the plane.
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and a characteristic γ-�ber, contributing to the in-plane anisotropy of the sheet.
More details on the crystallographic texture analysis of the base material can be
found in the appendix C.

2.2 Constitutive modeling

The choice of the constitutive laws strongly depends on the material being ana-
lyzed and its mechanical behavior. However, irrespective of the constitutive laws
selected three di�erent aspects of the material should be identi�ed: the elastic
behavior, the initial yield surface and the work hardening regime.

2.2.1 Elastic part

The elastic part is described by the isotropic-linear version of the Hooke's law.
The relation between the natural strain tensor ε and the Cauchy stress tensor σ
is given by:

ε =
1

2Gs

σ − ν

E

1

3
tr (σ) I (2.2.1)

where E is the elastic modulus, ν is the Poisson ratio and Gs is the shear modulus.
The elastic material constants are related with each other by the relation:

Gs =
E

2 (1 + ν)
(2.2.2)

2.2.2 Initial yield surface

The yield surface divides the stress space in the elastic and plastic domains i.e.,
the yield surface is the boundary between these two domains. The general form
of a yield function can be described by a surface function in the stress space:

Fp (σ,X, υ) = 0 (2.2.3)

whereX is a kinematic hardening tensor commonly called backstress which de�nes
the position of the center of the yield surface, and υ is an isotropic hardening
parameter governing the size of the yield surface. The stress state σ is elastic if
Fp < 0 and there is plastic deformation if Fp = 0. The surface function comprises
the shape, displacement and size of the yield locus:

Fp (σ,X, υ) = ϑ (σ,X)− k (υ) = 0 (2.2.4)

where ϑ is the yield function shape and k is a function representing the size of
the yield locus.
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2.2.2.1 Isotropic yield surface

For the isotropic description of the yield surface the maximum distorsional energy
criterion (von Mises, 1913)2 is extensively used. It has the following form:

ϑ (σ,X) :=

√
1

2
(σ −X)dev : (σ −X)dev (2.2.5)

or in terms of the stress components without backstress:

2ϑ2 = (σy − σz)2 + (σz − σx)2 + (σx − σy)2 + 6σ2
xy + 6σ2

yz + 6σ2
xz (2.2.6)

where (·)dev denotes the deviatoric part of the tensor.

2.2.2.2 Anisotropic yield surface

Considering the previous research into a similar material (Flores, 2005), the Hill,
(1948) yield criterion is chosen because of its overall simplicity when describing
the anisotropic behavior of a metallic material, over it well known limitations for
BCC materials (viz. Bishop and Hill, 1951). Moreover, this quadratic model has
been found to provide accurate predictions for steel sheets. The shape of this
yield locus is given by the following equation:

ϑ (σ,X) :=

√
1

2
(σ −X) : H : (σ −X) (2.2.7)

where H is a fourth-order tensor containing the anisotropic parameters. For this
yield function the material is assumed to be orthotropic, having three orthogonal
symmetry planes and three principal axes of anisotropy: x, y and z. Within the
anisotropic axis frame and omitting the backstress:

2ϑ2 := F (σy − σz)2 +G(σz − σx)2 +H(σx − σy)2 + . . .

. . .+ 2Lσ2
yz + 2Mσ2

zx + 2Nσ2
xy (2.2.8)

where F , G, H, L, M and N are material parameters. For thin sheet metals,
it is assumed that L = M = N because of experimental restraints. Note that if
F = G = H = 1.0 and L = M = N = 3.0, the Hill, (1948) yield locus recovers
the isotropic von Mises yield locus.

2.2.3 Hardening

Hardening refers to the strengthening of the material due to both the dislocation
movements and nucleation (annealing) of dislocations within the crystal structure.
At the macroscopic level, this phenomenon can be mathematically represented
through changes on the size and/or position of the yield locus using isotropic
and/or kinematic hardening models.

2Including contributions by James Clerck Maxwell, Heinrich Hencky and Maximilian Huber,
this criterion can be de�ned more precisely as Maxwell-Huber-Mises-Hencky criterion. In this
thesis, we will use the name von Mises (VM) criterion in agreement to common engineering
usage. For more historical references, see the book of Jones, (2009).
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2.2.3.1 Isotropic hardening

In general, the isotropic hardening parameter υ has two di�erent measures. One
based on the equivalent plastic strain εP (strain hardening hypothesis):

υ := εP =

∫
dεP (2.2.9)

and the other on the total plastic work W P (work hardening hypothesis):

υ := W P =

∫
σ : dεP (2.2.10)

Hereafter, we use the strain hardening hypothesis because of its simplicity3.
Therefore, the isotropic hardening behavior can be modeled by the Swift, (1952)
law which shows neither saturation nor softening phenomenon:

σY
(
εP
)

= K
(
εP + ε0

)n
(2.2.11)

where σY is the actual yield stress, εP the equivalent plastic strain and ε0, K, n
are material parameters. The Voce, (1948, 1955) law will also be used and it is
expressed by:

σY
(
εP
)

= σY 0 +K(1− exp (−nεP )) (2.2.12)

where σY 0, ε0, K and n are material parameters. It is a phenomenological formula
based on more physical models related to dislocations distributions. It predicts
both hardening and softening e�ects.

2.2.3.2 Kinematic hardening

An evolution law for the backstress tensor was originally proposed by Prager,
(1955) in a linear form:

Ẋ = cε̇P (2.2.13)

where c is a material constant. This was later modi�ed by Armstrong and Fredrick,
(1966) (herein referred to as the A-F model)4, including a non-linear term:

Ẋ = CX
(
Xsatε̇

P −XεP
)

(2.2.14)

where Ẋ is the rate of the backstress, CX (saturation rate) and Xsat (saturation
value of the backstress) are material constants. The in�uence of each parameter
on the stress-strain curve can be checked in Flores, (2005, chapter 5). The A-F
model introduces CXXεP as a recall term, which in�uences plastic �ow di�erently
for tensile or compressive loading depending on the accumulated plastic strain.
In this way the model is able to predict both the Bauschinger, (1886) e�ect and
accumulation of plastic strain (also called ratcheting) under an asymmetrical stress
cycle.

3In Lagamine, the subroutine HILL3D uses the work hardening hypothesis while
HILL3D_KI uses the strain hardening hypothesis.

4First referenced by Chaboche, (1977), the original report by Armstrong and Fredrick, (1966)
was �rst made publicly available in Frederick and Armstrong, (2007).
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2.3 Experimental setup

In this section we describe the experimental devices available to perform tests and
measurements at the Laboratoire de Mécanique des Matériaux et Structures of the
University of Liège.

2.3.1 Mechanical test equipment

Two machines are available to carry on the tests:

• An unixial Zwick machine shown in Fig. 2.4(a), with a load capacity of
±100 kN with an integrated extensometer.

• A biaxial machine designed by Flores, (2003, 2005), shown in Fig. 2.4(b).
It uses horizontal (A) and vertical (C) actuators to enable the displacement
of the grips (B). Each actuator has a capacity of ±100 kN.

(a) Uni-axial Zwick machine
and mounted optical system.

A B

C

(b) Bi-axial testing machine depicting
horizontal (A) and vertical (C) actuators
and the grips (B).

Figure 2.4: Experimental equipment used to perform the tests.

All specimens were cut using wire electrical discharge machining (WEDM).

2.3.2 Optical measurements systems

Image analysis is a type of data extraction procedure which over the last decade,
along with advances in digitalization techniques, has become very popular. The
application range covers areas such as medical scans or video tracking. It basically
consists in extracting meaningful information from images. One particular �eld
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is the image correlation, a type of non-contacting measuring method. Here the
images of an object are digitalized, and after an analysis is performed to extract
full-�eld information such as shape, displacements and strains.

Digital Image Correlation (DIC) has several advantages over traditional mea-
surement systems (like extensometers). Among these we found:

1. It is a contactless method.

2. It is independent on the geometry of the specimen,

3. It has the possibility of a wide range of loading conditions, from (very) small
strains to large plastic deformations.

4. It measures full-�eld displacements and strains with sub-pixel accuracy.

Basically, DIC o�ers a wide range of applications with a limited hardware setup.
The setup, besides the classical experimental devices, includes cameras, supports
and a computer with a correlation software (Fig. 2.5). Hence, it is possible to
couple the DIC measurement device to all laboratory test setups.

Figure 2.5: Mounted DIC hardware showing the cameras, supports, computer
and part of the Zwick machine.

2.3.2.1 Principles

Two key DIC assumptions are generally used to convert images into experimental
measurements of shape, displacements and strains:

• There is a direct correspondence between the image's motion of points of
the image and the motion of points of the object.

• Each subregion has a suitable contrast (variation in light intensity) so that
accurate matching can be performed to de�ne local image motions.

However, situations may occur where these assumptions are broken. For instance,
when correlating across a discontinuity (e.g., crack, hole) or when there is a loss
of contrast during the loading process (separation of the painted speckle form the
surface, change in di�use re�ectivity, etc.).

DIC is basically a pattern tracking method. To explore this concept, lets con-
sider two images from the same surface of a specimen in two di�erent situations
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(Fig. 2.6). One situation will be taken as the reference image (usually the unde-
formed material) and the other after an applied load. To determine the displace-
ment �elds of the considered zone between both steps, the analyzed zone (area-of-
interest, AOI) of the reference image (mxn pixels) is cut in di�erent small zones
(hereafter referred to as subset) (size lxl pixels). The goal of this method is look
for each subset of the reference image and then for his counterpart in the deformed
image. Here the concept of subset is introduced. Since each pixel value cannot

AOI

m

n

subset

l

l

(a) AOI and subsets in the reference
stage.

AOI

ref
step

(b) Deformed image showing the same
subset in a subsequent step.

Figure 2.6: Image correlation AOI and subset in a sample image.

be used as an unique signature within the AOI, the solution relies on the use of
the pixel and its neighborhood (subset). Mathematically, a subset is uniquely
identi�ed as a 2D array of 8bit or 16bit grey intensity values5. In practice, the
uniqueness of the subset is governed by its size and the quality of the applied
speckle pattern, which should be as random as possible. In general, the image
processing of subsets between two di�erent steps has three main components:

• Matching the same pattern between these two images.

• Interpolation of the information between pixels.

• Give a shape function to all subsets.

Each process component is performed by the correlation software.

2.3.2.2 Practical considerations

In DIC analysis, both hardware and software play together to obtain accurate
results. Hence, it is recommended to identify the hardware limitations which
could eventually lead to uncertainties when performing the correlation. Among
them, it is worth to mention:

• Identify the digital camera type (CMOS or CCD), gain, pixel size, aspect
size, �ll factor, blind area, active area, lenslets, etc.

5An histogram is another way to look at the image intensity
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• Evaluate distorsion of lenses.

• Perform a noise evaluation by averaging a set of static images.

The experimental measurement setup for both the Zwick and biaxial machine is
a Dantec Dynamics Q-450 optical acquisition system, which consists of:

• High speed CMOS cameras Vision research phantom V710Fast (max. reso-
lution of 1280× 800).

• Zeiss 50 mm f/2.0 Makro-Planar ZE Macro Lens F-mount.

• Sturdy tripod with mounting head.

• Istra4D v4.3.1 correlation software.

Camera noise is of particular importance because it is inversely proportional
to the displacement accuracy. Moreover, strains (and velocities) are displacement
derivatives, so they are very sensitive to noise. Since DIC is a nonlinear analysis
based on function minimization, a single set of optimal parameters is practically
impossible to obtain. Thus, de�ning a methodology can be helpful in order to �nd
one set of hardware and software parameters that ful�lls the user's requirements.
In the following, we describe displacements and strains separately.

Displacements. A fundamental step to consider when measuring displace-
ments with DIC is the spatial and displacement resolution. Resolution is de�ned
as the smallest distance between independent measurements or the smallest signal
above noise. Spatial resolution refers to how closed lines can be resolved in an
image. In DIC it is de�ned by the subset (not step) size. This implies that a large
subset size will have problems matching the shape. The displacement resolution
on the other hand, is directly proportional to the subset size. Hence, a compro-
mise between both should be considered with the lower limit being determined
by the granularity of the speckle pattern and the upper limit by the desired spa-
tial resolution. It is worth to mention that DIC is useful because of the subpixel
accuracy i.e., the displacement resolution is hundreds times smaller than a pixel.

Strain measurements. Strains are de�ned within DIC software by a relative
displacement over a gauge length:

ε =
∆L

L
(2.3.1)

Thus, it is straightforward to derive some important rules. For instance, in order
to improve the resolution it is necessary to increase the relative displacement ∆L
resolution (displacement resolution) or increase the gauge length L. Again, a
trade-o� between the spatial resolution and the strain resolution is needed. It
is important to note that while displacement resolution scales with setup-related
parameters (such as the �eld-of-view and camera resolution), strain resolution
does not depend exclusively on the DIC software parameters.
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Now we introduce the Virtual Strain Gauge (VSG):

V SG = (Sw − 1)ST + 1 (2.3.2)

where Sw is the strain window size and ST the step size. The spatial (strain)
resolution is de�ned as:

SR = (Sw − 1)ST + SS (2.3.3)

with SS as the subset size. Compared to displacement resolution, larger VSG
improves strain resolution more dramatically. Overall, it is worthwhile to keep
the following rules in mind:

1. Smaller subset capture the gradients better.

2. Smaller VSG have a higher noise.

3. Large subsets will mask strain gradients.

As a general rule, larger subsets and VSG when measuring uniforms strains should
be used. If there are strong gradients, smaller subsets and VSG should be used in
order to capture them. For all cases, in order to get useful strain results smoothing
should be employed.

2.4 Tensile tests

The specimen shape is based on an European norm for tensile tests (ISO 6892-
1:2009, 2009, See Annexe B, éprouvettes pour produits mince, éprouvette type
1 ). Taking the rolling direction (RD) as the reference direction, specimens were
prepared in three orthogonal directions: at 0◦, 45◦ and 90◦ (transverse) from the
RD. Four tests in each direction were performed in the Zwick testing machine.
An axial extensometer was mounted to measure the deformations.

Figure 2.7: Tensile test specimen according to ISO 6892-1.

2.4.1 Mathematical description

In tensorial notation, the stress in a tensile test is given by:

σ = σ11e1 ⊗ e1 (2.4.1)
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or in terms of tensor components:

[σ] =



σ11 0 0
0 0 0
0 0 0


 (2.4.2)

σ11 =
Fvert
Aact

(2.4.3)

where Fvert is the vertical force measured by the load cell while Aact is the actual
area of the section of the specimen. The strain tensor is reduced to:

ε = ε11e1 ⊗ e1 + ε22e2 ⊗ e2 + ε33e3 ⊗ e3 (2.4.4)

or in matrix notation:

[ε] =



ε11 0 0
0 ε22 0
0 0 ε33


 (2.4.5)

Assuming volume conservation:

ε11 + ε22 + ε33 = 0 (2.4.6)

the initial and actual area are related by:

Aact = A0 exp (−ε11) (2.4.7)

Hence, Aact can be found using an extensometer according to the ISO 6892-1
norm. It is also possible to obtain an expression relating the true and engineering
stress in one dimension:

e =
∆l

l0
, P =

F

A0

(2.4.8)

ε = ln (1 + e), σ = P (1 + e) (2.4.9)

where e is the engineering strain, ε is the logarithmic (natural) strain, P is the
engineering stress6 and σ is the true (Cauchy) stress.

2.4.2 Results

The output of the test is the loading versus displacement curve plotted in Fig.
2.8. It is possible to observe in the average curve of Fig. 2.8(a) that there is
an anisotropic behavior, which is clearly noticeable for the test performed at 45◦

from the RD. During the homogeneous deformation, the maximal forces of tests
performed at 45◦ are higher than those at RD and TD and it happens earlier. After
this maximum seen in Fig. 2.8(c), 45◦ samples have a more dispersed behavior
than RD and TD.

Because the tests were performed using an extensometer the stress/strain re-
lations are only valid when the deformation is homogeneous i.e., before localized
necking. The data from Fig. 2.8 were post-processed until the possible onset of
localized necking (associated to the maximal force) was attained. It provides the
true and engineering stress-strain curves, using both Eq. 2.4.8 and Eq. 2.4.9. The
average curves are shown in Fig. 2.9.

6Also known as Piola-Kircho� 1.
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(a) Average values of the analog data.
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(d) Dispersion at the TD.

Figure 2.8: Force vs. displacement tensile test results showing the average val-
ues (Fig. 2.8(a)) and the dispersion in each direction (Fig. 2.8(b),
2.8(c) and 2.8(d)).

2.4.3 Analysis

2.4.3.1 Elasto-plastic transition

The serrated transition from the elastic to the plastic zone observed in Fig. 2.10
is similar to the well known Portevin-Le Chatelier e�ect. This e�ect is associated
to a visco-plastic phenomena when the resistance to deformation increases with
decreasing strain rate. Indeed, these characteristical jerky �ows are usually found
at displacement controlled tests for some materials (François et al., 2012), as for
this case here.

2.4.3.2 Initial yield stress

The initial yield stress is taken from Fig. 2.9(a) using the o�set method at di�erent
strain levels7. The curve at the RD is taken as the reference for the plastic work

7As the values of strain are very small at this point, we can use the true or the engineering
stress indistinctly.
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(a) Engineering stress P11 vs. engineering
strain e11.
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(b) True stress σ11 vs. natural strain ε11.

Figure 2.9: Engineering and natural stress vs. strain curves.

Strain

Stress

Figure 2.10: Zoom in transition between the elastic and plastic zone, showing
the Portevin-Le Chatelier e�ect.

and calculated values are shown in Table 2.3 for di�erent strain o�sets. Regarding
the general force-displacement curves, the 45◦ specimen presents higher scattering
with higher initial yield stress and ultimate tensile strength (Table 2.4). For the
determination of the yield stress for stress states other than tensile, it is useful to
introduce the plastic work:

W P =

∫
σ : dεP (2.4.10)

The use of this equation will be covered in subsequent sections.

2.4.4 Anisotropic coe�cients

The anisotropic coe�cient (also known as Lankford et al., (1950) coe�cient) is a
widely used approach to represent the anisotropy of a material. It is de�ned as



2.4. Tensile tests 21

Table 2.3: Initial yield stress (in MPa) in the di�erent directions based on dif-
ferent strain o�sets. If the RD is taken as the reference, the relative
di�erence with the 45◦ and the TD is 7.6% and 4.12% respectively.
WP is computed in the RD.

εP0 WP
0 RD 45◦ TD

% MPa MPa MPa MPa

0.20 0.422± 0.001 164.75± 0.73 177.14± 1.22 172.52± 0.83
0.50 0.943± 0.002 173.69± 1.43 185.42± 0.66 179.51± 0.47
0.75 1.397± 0.002 181.12± 0.75 192.17± 1.68 185.42± 0.71

Table 2.4: Ultimate tensile strength (in MPa) at di�erent directions.

RD 45◦ TD

MPa MPa MPa

312.26± 1.10 324.18± 1.05 309.95± 0.42

the the ratio between the transversal plastic strain rate and the thickness plastic
strain rate:

r :=
ε̇P22
ε̇P33

(2.4.11)

where εP22 and ε
P
33 are the logarithmic plastic strain in the transversal and thickness

direction respectively. By assuming volume conservation during the plastic defor-
mation, we can express the strain in the thickness direction in terms of transversal
and longitudinal strains:

εP11 + εP22 + εP33 = 0 (2.4.12)

εP33 = −εP11 − εP22 (2.4.13)

It is also possible to de�ne the coe�cient of normal anisotropy (or average Lank-
ford):

r :=
r0 + 2r45 + r90

4
(2.4.14)

and the coe�cient of planar anisotropy :

∆r :=
r0 − 2r45 + r90

4
(2.4.15)

There are di�erent ways to measure the anisotropic coe�cient:

• By measuring the plastic strain rates in the transversal and thickness direc-
tion from the uni-axial tensile test (Fig. 2.11(a)).

• By measuring the slope of the transversal strain versus thickness strain from
the uni-axial tensile test (Fig. 2.11(b)).

• Based on the crystallographic texture of the base material.
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Here the focus is on values obtained from the tensile test, while the texture-
based method is detailed in Appendix C. The plastic strain curves are shown
within the range εP11 =10%-30% in Fig. 2.11, where a linear interpolation can
be readily obtained. Fig. 2.12 shows that the evolution of the ratio εP22/ε

P
33 falls

within an acceptable range, despite not being constant. Values of the anisotropic
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(a) Plastic strain rate measurements.
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(b) Incremental plastic strain measurements.

Figure 2.11: Measured width (transversal) strain εP22 and thickness strain εP33
from one test in RD showing the linear interpolation equation.
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Figure 2.12: Plastic strain ratio εP22/ε
P
33 evolution for one test in each direction.

coe�cients are shown in Table 2.5. Anisotropic coe�cients obtained from texture
measurements are higher than those obtained from deformation measurements.
The tensile test based values will be used hereafter because they are based on
several tensile tests, while the texture based values are only taken at one thickness
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Table 2.5: Anisotropic coe�cients for the DC01 steel taken from the tensile test
and texture measurements from Appendix C.

Direction Tensile test Texture

r =
ε̇P22
ε̇P33

r =
∆εP22
∆εP33

RD 1.513± 0.068 1.508± 0.067 2.237± 0.054
45◦ 1.141± 0.025 1.137± 0.025 1.478± 0.028
TD 1.854± 0.089 1.847± 0.090 2.166± 0.074

r 1.4121 1.4076 1.840
∆r 0.2714 0.2701 0.724

depth. The results show a low dispersion (less than %5), with r =1.4 being a
common value for low carbon steels of the aluminium killed type (Hosford and
Caddell, 2007). As expected, the di�erence between the incremental and rate
values of the Lankford coe�cients is almost negligible because of the low strain
insensitivity of steels (Eyckens, 2010).

2.5 Shear tests

The specimen geometry was selected according to Flores, (2005, annex C) in order
to decrease the sliding in�uence on the results and is depicted in Fig. 2.13. The
measurable zone (in gray) is covered with a special paint (Henkel Teroson mat,
reference 155.64S) to get a stochastic speckle pattern for DIC measurements.

120

30

3

1

2

Figure 2.13: Shear test specimen. The speckle pattern for DIC measurements
is applied on the gray zone.

2.5.1 Mathematical description

To de�ne the shear strain, let us consider an initial square element subjected to
simple shear as shown in Fig. 2.14. In tensorial notation, the stress state in a
shear test is given by:

σ = σ11e1 ⊗ e1 + σ22e2 ⊗ e2 + σ12e1 ⊗ e2 + σ21e2 ⊗ e1 (2.5.1)
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[σ] =



σ11 σ12 0
σ21 σ22 0
0 0 0


 (2.5.2)

with:

σ11 =
Fvert
Aact

, σ12 = σ21 =
Fhor
Aact

(2.5.3)

where Fhor and Fvert are the forces measured using the horizontal and vertical
actuator, respectively. Note that σ22 cannot be measured and that σ12 = σ21 is
assumed because of the symmetry of the Cauchy stress tensor. Aact is computed
from the thickness reduction using a volume assumption. The strain tensor is
given by:

ε = ε11e1 ⊗ e1 + ε22e2 ⊗ e2 + ε33e3 ⊗ e3 + ε12e1 ⊗ e2 + ε21e2 ⊗ e1 (2.5.4)

[ε] =



ε11 ε12 0
ε21 ε22 0
0 0 ε33


 (2.5.5)

The deformation gradient helps to relate the geometry with the strain tensor. It
is given by:

F = I + γe1 ⊗ e2 (2.5.6)

[F ] =




1 γ 0
0 1 0
0 0 1


 (2.5.7)

where γ is shown in Fig. 2.14, given by:

γ = tan θ =
d

a
(2.5.8)

It can be shown using a strain de�nition of the deformation gradient that:

ε12 =
γ

2
(2.5.9)

known as the shear strain. Experimentally, this value is obtained as the aver-
age value of ε12 at the central part of the specimen (thus avoiding edge e�ects),
obtained from DIC measurements.

x

y

a

a

d

θ θ

Figure 2.14: Simple shear acting over an element.
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2.5.2 Monotonic shear test

Three tests were performed in the RD. The force-displacement curve of the hor-
izontal actuator (A in Fig. 2.4(b)) is shown in Fig. 2.15(a). The �gure shows
low dispersion qualitatively. The stress-strain curve is obtained after applying
Eq. 2.4.9 to Fhor, while the strain is obtained from DIC measurements. They are
depicted in Fig. 2.15(b) while DIC software parameters for Istra4D are shown in
Table 2.9. As expected, the rupture strain is larger than in the tensile test results
in Fig. 2.9. A decrease on the force level is not noticed which con�rms the lack of
softening observed in the tensile curves before fracture. The determination of the

0 5

Displacement [mm]

0

8000

Force [N]

(a) Analog data from the horizontal actuator.

0 0.5

Strain [-]

0

300

Stress [MPa]

(b) Shear stress σ12 vs. shear strain ε12.

Figure 2.15: Monotonic shear test results in the RD. Three test are performed.
Note that the �nal strain (obtained from DIC measurements) is
larger than for the tensile test.

yield stress follows the work-equivalence principle, which states that the plastic
work at a given strain o�set W P

0 (Eq. 2.4.10) should be the same as the measured
reference yield stress for the tensile test (Fig. 2.16). The obtained values are
shown in Table 2.6.

Table 2.6: Shear yield stress at di�erent contours of plastic work.

εP0 WP
0 RD

% MPa MPa

0.20 0.422 93.30± 5.04
0.50 0.943 107.48± 2.71
0.75 1.397 112.59± 2.51
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(a) Plastic work in the tensile
test.
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(b) Work equivalence for the
shear and plane strain tests.

Figure 2.16: Determination of the yield stress for di�erent stress states using
the work-equivalence principle.

2.5.3 Bauschinger shear test

The objective of the Bauschinger test is to investigate the reverse loading e�ect
in an easier way than in tension/compression tests. It also helps to identify
material parameters for kinematic hardening models. Three di�erent pre-strained
tests (based on the strain data from the monotonic shear tests) are performed:
approximately 10%, 20% and 30% of natural strain. After one of these values is
reached, the specimen is loaded in the opposite direction until it breaks. These
tests are repeated three times. The force-displacement curves measured from the
horizontal actuator are depicted in Fig. 2.17(a). The results show a qualitatively
low dispersion like the monotonic shear tests. From the stress-strain curve in
Fig. 2.17(b) two phenomena can be noticed. The �rst is the presence of the
Bauschinger e�ect, involving a signi�cant variation of the �ow stress when loading
in the opposite direction. In order to clarify this point, refer to Fig. 2.18 and the
values in Table 2.7, providing early yielding of the Bauschinger e�ect. The second

Table 2.7: Stress at the onset of plasticity, as indicated in Fig. 2.18.

Stress Stress

MPa MPa

A 171.2 A' −128.7
B 207.4 B' −166.9
C 231.5 C' −177.5

phenomenon observed is the work-hardening stagnation8 (Hasegawa et al., 1975),
after loading the specimen in the opposite direction. This phenomenon greatly
complicates the modeling of kinematic hardening, thus needing large-strain cyclic
plasticity models in order to obtain good results. Further discussion on this point
will be given in section 2.7.4.2.

8Reported as a plateau in Bouvier et al., (2006).
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(a) Analog data from the horizontal actuator.
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(b) Shear stress σ12 vs. shear strain ε12.

Figure 2.17: Results from the Bauschinger tests.
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Figure 2.18: Bauschinger e�ect in the reversed shear test. For the values of
each point, refer to Table 2.7.
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2.5.4 Sliding evaluation

Sliding is an unwanted relative displacement between the specimen and the
clamps. It can be estimated from the pressure of the clamps, the friction coe�-
cient of the specimen's surface or geometry (Flores, 2005, annex C). Theoretically,
the shear's strain value without sliding is given by Eq. 2.5.9. A simple way to
evaluate sliding is to compare the strain based on the assumed clamp displace-
ment and the observed strain on the specimen. The ideal case is when the shear
strain reaches values predicted by Eq. 2.5.9. In practice, there is a displacement
gap at the beginning of the test in which the specimen is not deformed. This gap
is less than 0.20 mm in the present tests. In Fig. 2.19, a comparison between the
mechanically adjusted theoretical and experimental values is presented i.e., the
experimental displacement is shifted 0.20 mm. The di�erence in the slope is due
to sliding which is low in comparison to the results presented in Flores, (2005,
annex C).

0 4

Displacement [mm]

0

0.7

Strain [-]

30%

20%

10%
Monotonic

Theory

Figure 2.19: Sliding during the shear tests.

2.6 Plane strain tests

Simultaneously with the shear tests, plane strain tests were performed using the
same experimental setup. The specimen geometry is depicted in Fig. 2.20 and
selected according to Flores, (2005, annex C) and Gilles, (2015, chapter 4), in
order to obtain an homogeneous distribution of strain in the specimen width. A
speckle pattern is applied in the gray zone of Fig. 2.20 for DIC measurements.

2.6.1 Mathematical description

In tensorial notation, the stress state in the plane strain test is given by:

σ = σ11e1 ⊗ e1 + σ22e2 ⊗ e2 (2.6.1)
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Figure 2.20: Plane strain specimen, showing the measurable zone (in gray).

In terms of tensor components:

[σ] =



σ11 0 0
0 σ22 0
0 0 0


 (2.6.2)

σ11 is calculated in the same fashion as Eq. 2.4.3 in the tensile test:

σ11 =
Fvert
Aact

(2.6.3)

Unfortunately, under the current setup it is not possible to obtain σ22 experimen-
tally. The strain tensor is represented by:

ε = ε11e1 ⊗ e1 + ε33e3 ⊗ e3 (2.6.4)

or in matrix notation:

[ε] =



ε11 0 0
0 0 0
0 0 ε33


 (2.6.5)

ε11 is measured from DIC measurements. It is safe to assume volume conservation
(as numerically shown by Flores, (2005, chapter 4)), obtaining:

ε11 = −ε33 (2.6.6)

The initial area and the actual area are related by:

Aact = A0 exp (−ε11) (2.6.7)

2.6.2 Results

The tests were performed in three orthotropic directions: RD, 45◦ and TD. The
results for the force-displacement curves are shown in Fig. 2.21 while Fig. 2.22
shows the stress/strain curves. It is clearly observed that the homogeneous part
of the plastic deformation is isotropic under plane strain. Nevertheless, after
localization there is a clear anisotropic behavior in the three orthotropic directions.
In particular, it is again observed (as in the tensile tests) that the tests at 45◦

localize �rst, but at the RD and TD strain do not localize in the same way. The
yield stress for the plane strain tests is calculated using the work equivalence
principle at di�erent strain o�sets. The results are shown in Table 2.8 while the
software parameters for Istra4D are shown in Table 2.9.
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(a) Average values of the analog data.
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Figure 2.21: Force vs. displacement average curves for plane strain tests.

Table 2.8: Plane strain yield stress at di�erent contours of plastic work.

εP0 WP
0 RD 45◦ TD

% MPa MPa MPa MPa

0.20 0.422 146.75± 3.36 155.58± 0.73 148.63± 1.56
0.50 0.943 192.28± 2.87 193.15± 0.76 187.07± 8.75
0.75 1.397 213.53± 0.36 210.72± 3.14 210.88± 5.77
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Figure 2.22: Stress σ11 vs. strain ε11 plane strain test results showing the aver-
age values (Fig. 2.21(a)) and the dispersion in each direction (Fig.
2.21(b), 2.21(c) and 2.21(d)).

Table 2.9: Istra4D parameters for image correlation for the di�erent tests.

Parameter Shear Plane strain

Subset size 13 19
Step size 2 2
Outlier tolerance low low
Accuracy (pixel) 0.1 0.1
Residuum (gray values) 20 20
3D Residuum 0.2-0.8 0.4

Contour smoothing - ACSP 07x07
Displacement smoothing - 2.5/−0.5
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2.7 Identi�cation of elastic and plastic material

parameters

The DC01 steel mechanical characterization comprises:

1. Elasticity parameters (section 2.2.1).

2. Plasticity parameters:

• Initial yield surface (section 2.2.2).

• Isotropic hardening (section 2.2.3.1).

• Kinematic hardening (section 2.2.3.2).

The methodology intends to be sequential but the use of an optimization software
requires iterative calculations. The scope here is to identify 4 di�erent set of
parameters:

• Two di�erent sets with the isotropic Von Mises yield locus, with and without
kinematic hardening.

• Two di�erent sets with the orthotropic Hill, (1948) yield locus, with and
without kinematic hardening.

2.7.1 Elastic parameters

2.7.1.1 Stress-strain curve

The apparent elastic modulus is measured at di�erent angles from the RD and is
shown in Table 2.10. The average value of the elastic modulus is computed using
the following relation:

E =
E0 + 2E45 + E90

4
(2.7.1)

The Poisson ratio is assumed equal to 0.3. Assuming an isotropic material, it is
possible to use Eq. 2.2.2 to �nd Gs.

Table 2.10: Elastic modulus at di�erent directions.

RD 45◦ TD E
MPa MPa MPa MPa

128 247.2± 1160.9 143 396± 3258 140 355± 7263 138 848.8

2.7.1.2 Acoustic method

Since the tensile test is performed in a displacement driven fashion it allows little
precision to characterize of the elastic zone. Moreover, the value of the elastic
modulus computed above are very far from the common accepted value for com-
mercial steel (≈210GPa). Based on this, further tests were perfomed using a



2.7. Identification of elastic and plastic material parameters 33

Grindosonic MK-2051 machine with a specimen of dimensions 70 mm× 20 mm.
The results are not satisfactory as the thickness of the sheet is too small to obtain
results without a large scattering. Hence, E =210GPa and ν =0.3 are assumed
for this material.

Table 2.11: Elastic modulus from Grindsonic measurements. High dispersion is
observed due to the small thickness of the sheet.

Specimen Weight Length Thickness Width Frequency E. modulus

g mm mm mm kHz GPa

RD 1 10.8572 70.10 1.0 20.10 1.12 221.22
RD 2 10.8175 70.02 1.0 20.02 1.12 234.31
TD 1 10.8738 70.00 1.0 20.07 1.14 228.91
TD 2 10.7931 70.00 1.0 20.00 1.13 224.02

2.7.2 Optimization methods in plastic material
identi�cation

The plasticity equations of section 2.2 involved di�erent material parameters.
In principle, identifying these parameters can only rely on analytical relations
but this choice is limited to the complexity of the constitutive equations and
the desired accuracy. Using an optimization technique can solve this problem
by comparing the experimental results and model predictions. In this work two
methods are used:

Classical Simulated Annealing (CSA). An iterative global optimization
algorithm based on the works of Metropolis et al., (1953) and Hastings, (1970).
It distinguishes among di�erent local minima/maxima and thus allowing the pa-
rameters space of the objective function to be explored through several possible
solutions without being freezed in a particular local optimum. More details about
this method and its application on yield locus identi�cation can be found in Gilles,
(2015).

Inverse method. This method is a gradient optimization technique which
involves experimental and numerical results. Given a set of experimental tests
(whose results are sensitive to the material parameters) and an initial FE solution
(close enough to the real solution), an iterative procedure is then carried on to
minimize the error norm of an objective function which is composed by two curves,
an experimental one and another obtained from the simulations. The error norm
is given by:

error norm =

√√√√
N∑

i=1

(uFEi − uexpi )
2 (2.7.2)

where uFEi is a point in the FE solution curve, uexpi is a point in the experimental
curve and N is the total number of points to compare. After each iteration
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a new set of material parameters is found. In our case, an optimization code
called Optim (Mathonet, 2003), based on the Levenberg-Marquardt (Levenberg,
1944; Marquardt, 1963) algorithm, is coupled with Lagamine to obtain material
parameters as schematically represented in Fig. 2.23.

Initial
parameters

FEM
simulations

Numerical-experimental
comparison

New set

Acceptable?

Identified
parameters

yes

no

Figure 2.23: Flowchart of the parameter identi�cation using Optim and
Lagamine.

2.7.3 Plastic anisotropic parameters

In this section we discuss the characterization of the anisotropic behavior for the
Hill, (1948) yield locus presented in section 2.2.2.

2.7.3.1 Hill, (1948)

There are two di�erent approaches to obtain the Hill, (1948) parameters:

• By taking the initial yield stresses from several tests in di�erent directions
(stress state �tting, SSF).

• If associated plasticity is assumed (like in this case), the parameters can
be found using the anisotropic coe�cients (strain measurements method,
SMM).

In both approaches the relation between experimental results and material param-
eters involves the theoretical equations de�ned by the Hill, (1948) yield surface.
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For the case of the SSF, the stress in an uniaxial tensile test is given by (Flores,
2005, Eq. 5.40):

σ11 =

√
2

(H +G)cos4α + (H + F )sin4α + 2(N −H)cos2αsin2α
σY,ref (2.7.3)

where α is the angle from the RD and σY,ref is the reference yield stress, commonly
chosen to be at the RD. For the plane strain tests the stress has the following form
(Flores, 2005, Eq. 5.41):

σ11 =

√√√√√√√

2[
(1− kα)

2
H +G+ k2αF

]
cos4α+

[
(1− kα)

2
H + F + k2αG

]
sin4α+ . . .

. . .+
[
N (1− kα)

2
+ kα (G+ F )− (1− kα)

2
H
]

2cos2αcos2α

σY,ref

(2.7.4)

where:

kα =
H + (2N − 4H −G− F ) cos2αsin2α

(H +G) sin4α + (H + F ) cos4α + 2 (N −H) cos2αsin2α
(2.7.5)

For the simple shear test (Flores, 2005, Eq. 5.42), one has:

σ12 =

√
2

(4H +G+ F ) sin22α + 2Ncos22α
σY,ref (2.7.6)

In the case of the SMM, the anisotropic coe�cients are given by (Flores, 2005,
Eq. 5.11):

rα =
H + (2N − F −G− 4H)sin2αcos2α

Gcos2α + F sin2α
(2.7.7)

Hence, for eight experimental points there are eight relations (summarized in Table
2.12). Note that in general, and due to experimental constraints when measuring
thickness reduction in thin metal sheets, L = M = N can be assumed.

In practice, performing 8 di�erent tests is time consuming so most of the
researchers determine the material parameters based on certain assumptions. For
the SSF approach, a necessary and su�cient condition is to perform 4 tests (tensile
tests in the three directions plus a shear test) which is su�cient to obtain the Hill
parameters. From Table 2.12, if σUNY,RD is taken as the reference value σY,ref, the
equations become:

H + F = 2

(
σY,ref
σUNY,TD

)2

(2.7.8)

G+ F + 2N = 8

(
σY,ref
σUNY,45

)2

(2.7.9)

L = M = N =

(
σY,ref
σSHY,RD

)2

(2.7.10)
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Table 2.12: Equations relating the yield stress with the Hill, (1948) material
parameters (adapted from Flores, 2005). σY,ref is the reference yield
stress, chosen to be the yield stress of the tensile test at the RD.

Test SSF

Uni-axial tensile RD σUNY,RD =
√

2
H+GσY,ref

Uni-axial tensile TD σUNY,TD =
√

2
H+F σY,ref

Uni-axial tensile 45◦ σUNY,45 =
√

8
2N+G+F σY,ref

Plane strain RD σPSY,RD =
√

2
H(1−k0)2+k2Y F+G

σY,ref

Plane strain TD σPSY,TD =
√

2
H(1−k90)2+F+k290G

σY,ref

Plane strain 45◦ σPSY,45 =
√

8
2N(1−k45)2+(1+k45)

2(F+G)
σY,ref

Simple shear RD σSHY,RD =
√

1
N σY,ref

Simple shear 45◦ σSHY,45 =
√

2
4H+F+GσY,ref

k0 = H
H+F , k45 = 2N−G−F

2N+G+F , k90 = H
H+G

Table 2.13: Equations relating the anisotropic coe�cients with the Hill, (1948)
material parameters.

Test SMM

Uni-axial tensile RD r0 = H/G
Uni-axial tensile TD r90 = H/F

Uni-axial tensile 45◦ r45 =
2N − F −G

2(F +G)

The same applies for the SMM where the Hill, (1948) parameters are readily
obtain from Table 2.13:

H =
2r0

1 + r0
(2.7.11)

F =
H

r90
(2.7.12)

G =
H

r0
(2.7.13)

L = M = N = (F +G)(r45 + 0.5) (2.7.14)

A third way to obtain the Hill parameters is to perform an optimization between
SSF and SMM by minimizing the following error function (Flores, 2005, chapter
5):

χ =
l∑

i=1

(1− η)

(
σY,theo_i − σY,exp_i

σY,ref

)2

+
m∑

i=1

η

(
rtheo_i − rexp_i

r

)2

(2.7.15)

where l is the number of tests performed to obtain stress points, m is the number
of tests to obtain anisotropic coe�cients, σexp and rexp are experimental values
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of stress and anisotropic coe�cients obtained from section 2.4 to 2.6, σtheo and
rtheo are theoretical values of the stress and anisotropic coe�cients obtained from
Table 2.12 and Table 2.13. η is a weight factor meaning that η =0.0 retrieves the
SSF while η =1.0 retrieves the SMM.

Based on the experimental campaign, Table 2.14 gathers the obtained yield
stress at di�erent strain o�set using the work-equivalence principle. Note that
there is no shear tests performed at 45◦, so σSHY,RD = σSHY,45 is assumed. For each

Table 2.14: Yield stress for di�erent tests performed in the experimental cam-
paign at di�erent strain o�sets.

εP0 WP
0 σUN11 σUN11 σUN11 σPS11 σPS11 σPS11 σSH12

RD 45◦ TD RD 45◦ TD RD
% MPa MPa MPa MPa MPa MPa MPa MPa

0.20 0.422 164.75 177.14 172.52 146.75 155.88 148.63 98.30
0.50 0.943 173.69 185.46 179.51 192.28 193.15 187.07 107.48
0.75 1.397 181.12 192.17 185.42 213.53 210.72 210.88 112.59

strain o�set varying η will lead to di�erent Hill coe�cients. After several op-
timizations, it was found that εP0 =0.50 leads to the most consistent values of
predicted yield stress and anisotropic coe�cients with the lowest value of error χ.
Table 2.15 presents the �nal set of parameters.

Table 2.15: Hill coe�cients obtained by varying the weight of the error function
Eq. 2.7.15, using the yield stress at εP0 =0.50.

SSF SMM

η 0.0 0.25 0.50 0.75 1.00

H 0.7237 1.4225 1.4660 1.4814 1.4529
F 1.2093 0.8230 0.8103 0.8067 0.7853
G 1.2114 1.0030 0.9927 0.9885 0.9622
N 2.4354 2.9009 2.9246 2.9331 2.8659

χ 1.7872 0.3206 0.3086 0.3070 0.3158

2.7.3.2 Stress and strain directionality

The Hill, (1948) criterion is widely used because of its simple formulation, a
relatively easy identi�cation procedure and good predictions for weak anisotropic
sheets, which is the case for some steels. Nevertheless, its e�ciency depends on the
identi�cation procedure leading to di�erent results if choosing the SSF or SMM
approach. In order to evaluate the predictions of both methods, the yield stress
and the anisotropic coe�cients are calculated following the procedure depicted in
Fig. 2.24. The results are shown in Fig. 2.25.

As expected, in Fig. 2.25(b) the r-values are well predicted using SMM but
the SSF fails showing a very weak planar anisotropy. Conversely, in Fig. 2.25(a)
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Figure 2.24: Scheme showing the stress and strain directionality analysis to
obtain the theoretical yield stress and r-values from the Hill, (1948)
parameters.
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(a) Normalized �ow stress σ11/σ0,ref for the ten-
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(b) Anisotropic coe�cients.

Figure 2.25: Prediction of anisotropic coe�cients and �ow stresses by the Hill,
(1948) yield surface identi�ed either by SSF or by SMM. SSF has
a weak planar anisotropy while SMM has a strong stress direction-
ality.

the normalized yield stress is well predicted using the SSF but the SMM shows
a very strong stress directionality. Qualitatively we can observe that the degree
of weak planar anisotropy is much stronger than the stress directionality, which
explains why in Table 2.15 the SMM is dominant over the SFF when optimizing
the Hill coe�cients.

These results expose a very well known limitation of the Hill, (1948) model.
The initial yield surface is thus dependent on the identi�cation method which is
certainly not desired. In order to overcome this issue, several new yield surface
models have been proposed, many of them evidently more complex involving
several material parameters (thus complex experimental campaigns). Moreover,
convexity is not always guaranteed9. It is not the goal of the current research
to make a deep investigation of the anisotropic characteristics of the DC01 steel

9From the numerical standpoint, the yield surface should be convex which implies positive
de�niteness.
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sheet, so these limitations are considered acceptable for sake of simplicity of the
material model.

2.7.4 Work hardening

All the work-hardening parameters are found using the inverse method with Op-
tim. A single reduced integration element called BWD3D is used because the
stress/strain �eld is assumed homogeneous. The element is detailed in section
6.2. The Hill parameters correspond to η =0.5 of Table 2.15.

2.7.4.1 Isotropic hardening

Material parameters for the Swift (Eq. 2.2.11) and Voce (Eq. 2.2.12) law are
�tted using results from the tensile and shear test at the RD. The obtained set of
parameters are shown in Table 2.16 and Table 2.17, for the Swift law and Voce
law, respectively. Fig. 2.26 compares simulations using the optimization with the
experimental tensile test and shear test. In general, the agreement is good with
both hardening laws with the sole exception of the tensile test performed at 45◦ in
which the Hill, (1948) parameters are higher than the experimental results. This
behavior is expected as shown in section 2.7.3.2, where the SMM predicts higher
yield stress at 45◦ than the SSF.

2.7.4.2 Mixed hardening

As shown in Fig. 2.18, there is a clear Bauschinger e�ect so a kinematic hardening
model should be used. Presence of work-hardening stagnation largely complicates
the modeling requiring a large-strain cyclic plasticity model like the ones proposed
by Yoshida and Uemori, (2002) and Teodosiu and Hu, (1995) (cf. Flores et al.,
2007). These models fall out the scope of this thesis where a precise modeling of
kinematic hardening is not needed. The classical A-F model referred in section
2.2.3.2 is used instead.

Obtaining a good set of parameters with this model is not easy as it does
not predict stagnation. The optimization with Optim leads to several possible
solutions, being some of them unrealistic. Hence, the parameters boundaries and
the initial proposed solution should be carefully chosen. The used methodology
was to optimize over tensile (RD), shear and Bauschinger (20%) tests, proving to
be e�ective in terms of convergence and accuracy. The obtained set of parameters
are shown in Table 2.16 and Table 2.17. Here, compared to the previous results
in section 2.7.4.1, the in�uence of the kinematic hardening parameters over the
isotropic hardening parameters (K and n) can be easily observed. The numerical
results are depicted in Fig. 2.27. These show how di�cult it is for the model to
capture work-hardening stagnation. Interesting enough, the results for the tensile
test at 45◦ (Fig. 2.27(b)) using the Hill, (1948) parameters are better predicted
than when only using isotropic hardening (Fig. 2.26(b)).
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(b) True tensile stress σ11 vs. tensile strain
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(c) True shear stress σ12 vs. shear strain in
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Figure 2.26: Numerical optimization and experimental results comparison us-
ing the parameters from Tables 2.16 and 2.17 for pure isotropic
hardening.
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Table 2.16: Swift law model parameter s obtained using Optim in a tensile,
shear and Bauschinger (20%) test. Note how K and n change com-
pared to the pure isotropic hardening parameters.

Swift Swift+A-F

Parameter Von Mises Hill, (1948) Von Mises Hill, (1948)

K [MPa] 605.60 601.88 399.48 542.49
ε0 3.34× 10−3 9.48× 10−6 1.60× 10−2 1.78× 10−2

n 0.2589 0.2127 0.3712 0.4328

CX - - 78.14 113.63
Xsat [MPa] - - 109.26 81.96

error 351.43 417.83 268.91 252.59

Table 2.17: Voce law parameters obtained using Optim in a tensile, shear and
Bauschinger (20%) test.

Voce Voce+A-F

Parameter Von Mises Hill, (1948) Von Mises Hill, (1948)

K [MPa] 259.59 255.03 233.91 264.36
σY 0 180.01 182.84 110.16 87.02
n 9.42 14.28 4.88 5.69

CX - - 68.13 119.04
Xsat [MPa] - - 89.85 92.94

error 370.29 419.58 269.92 253.78
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Figure 2.27: Comparison of numerical optimization and experimental results
comparison using the parameters from Tables 2.16 and 2.17 in-
cluding kinematic hardening. Note that the Voce law leads to
better results for the Bauschinger test at 30% than the Swift law.
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2.8 Conclusions

In this chapter the plastic behavior of a DC01 steel sheet was investigated through
mechanical tests and FE simulations. Plastic models including an isotropic (von
Mises) and anisotropic (Hill, 1948) yield locus plus isotropic (Swift and Voce
law) and kinematic (Armstrong and Fredrick, 1966) hardening were characterized
using tensile, shear and plane strain tests at di�erent directions from the RD. The
material exhibits an anisotropic behavior at 45◦ of the RD during the tensile test,
but it is isotropic during the plane strain tests. Two optimization algorithms,
classical simulated annealing (CSA) and an inverse method, were used to �nd
the Hill, (1948) parameters and strain hardening parameters respectively. The
obtained set of parameters are in good agreement with the experimental results.





Chapter 3

About the Gurson model and its

extensions

Ductile fracture is usually linked to the evolution of micro-cavities within
the material, in the form of nucleation of new voids, growth and eventually
coalescence, leading to �nal failure. In order to understand these physical
phenomena, several theoretical developments have been proposed in last 40
years to describe void evolution and the associated macroscopic softening.
Between them, we found the Gurson model which couples macroscopic yield
criteria with micro-mechanical variables. His e�ciency when dealing with
mechanisms associated with stress triaxiality and equivalent plastic strain
has attracted a great deal of attention. Here we present a concise sum-
mary of the Gurson model, giving an historical background and describing
some important extensions. Among them, we �nd the Gurson-Tvergaard-
Needleman extension, extensions to shear loads and others involving plastic
anisotropy of the matrix and mixed hardening.

3.1 Introduction

The goal of the damage models is the prediction of fracture during forming pro-
cesses or structural loading after a progressive deterioration of material properties.
From all the types of damage (brittle, ductile, creep, fatigue, . . . ), we are par-
ticularly interested in the ductile damage, which is associated with large plastic
deformation. The accurate prediction of the ductile fracture is very important
because it is related with a damage mechanism that progressively modi�es the
material properties, after a certain level of plastic deformation. There are two
common approaches:

1. Uncoupled approach, where the calculation of the rupture follows a criteria
which has no e�ect into the classical constitutive behavior of the material.

2. Coupled approach, where the damage development is incorporated into the
constitute equation to develop a brand new continuum damage theory with
progressive decrease of material properties.

45
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The coupled approach has some advantages over the uncoupled one, such as al-
lowing the prediction of di�erent fracture types and a better characterisation of
the fracture zone. Nevertheless, the integration into a �nite element code is more
di�cult than the uncoupled approach. The Gurson model belongs to the coupled
approach group, and his strong physical roots has allowed a great increase of its
use during the last 30 years.

This chapter is mainly focused in giving a literature review of the Gurson
model used in current research. It begins by giving the roots which led to the
development of the Gurson model in section 3.2. The model and its classical
extensions are detailed in section 3.3. A special type of extensions covering shear
loads with the introduction of the third stress invariant, is discussed in section 3.4.
Section 3.5 presents two types of extensions of particular importance: anisotropy
and mixed hardening in the matrix. Physically based fracture criteria are brie�y
presented in section 3.6. The chapter ends with some conclusions in section 3.7,
regarding the description of each model.

3.2 Historical background

Physical observation regarding ductile fracture phenomena in metals dates back to
the sixties (see early references by Garrison and Moody, (1987), Gurson, (1977a),
and Rice and Tracey, (1969)), when it became more or less clear that the fracture
phenomena in metal involved the generation, growth and coalescence of micro-
scopic voids. Since the early work by Bridgman, (1952), the experimental ev-
idence regarding the e�ect of the stress state on fracture has been studied by
analyzing the e�ect of the external pressure in the development of plasticity and
fracture. One of the main conclusions of this study is that external pressure has
a signi�cant e�ect on damage which leads to failure; eventually, failure can occur
with or without damage development depending on the applied external pressure.

Based on these observations, the �rst micromechanical studies looked for a
relation between the void growth and stress/strain �elds. The pioneer work of
McClintock, (1968) and Rice and Tracey, (1969), both studying the growth of
isolated voids gave the �rst theoretical framework for ductile failure. In this
respect, McClintock proposed a model for an isolated cylindrical cavity, where the
growth rate is an increasing function of the stress triaxiality ratio1. This found
that the void expansion increases exponentially with the transverse stress. This
work was later extended by Rice and Tracey, (1969), who performed a variational
analysis on a single spherical cavity within an in�nite perfectly plastic medium
under J2-plasticity. The following evolution equation for the void radius was
obtained:

Ṙ

R
= 0.283 exp

(
1

2
T

)
ε̇PM (3.2.1)

Later, Huang, (1991) modi�ed Eq. 3.2.1 based on the evidence (Huang et al.,
1991) that the Rice and Tracey, (1969) equation signi�cantly underestimates the

1In fact, triaxiality also a�ects nucleation of new voids (see Benzerga and Leblond, 2010).
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dilatation rate of an isolated void subject to stress �elds with moderate to high
triaxiality. The following correction is proposed:

Ṙ

R
=

{
αH exp (βHT )ε̇PM if T > 1

αHT
1/4 exp (βHT )ε̇PM if T ≤ 1

(3.2.2)

choosing αH = 0.427 and βH = 1.5. For high triaxiality values the solutions
obtained by McClintock, (1968), Rice and Tracey, (1969) and Huang, (1991) are
very similar, mainly because void shape e�ects are negligible at large values of
triaxiality. It is interesting to present these results in their original forms as they
give a simple relation for void growth. Moreover, these models can be used in post-
processing stages of elastic-plastic calculations when using a threshold radius as
a failure criteria.

3.3 General description of the Gurson model

The Gurson model is a mathematical representation of ductile damage based on
the michromechanics of the material, using the continuum mechanics approach.
It comes as a result of applying the homogenization theory in the analysis of
the plastic stress �eld in a microscopic medium composed of a dense matrix and
cavities. The model is expressed as a macroscopic yield criterion, introducing
a micromechnical variable as its damage parameter: the void volume fraction.
Herein, a brief explanation of the model and its parameters is presented. There is
no intend to give a detailed description. For a more complete presentation of the
model, the reader is encouraged to read the review papers of Tvergaard, (1989),
Pardoen and Besson, (2004), Besson, (2009), Benzerga and Leblond, (2010) and
François et al., (2013).

3.3.1 Gurson, (1977a)

The Gurson, (1975, 1977a) model has its root in the experimental evidence re-
garding the in�uence of microvoid growth on plastic deformation and the ductile
fracture. Hence, the key feature of this model is the void volume fraction (poros-
ity), which acts as an imperfection (Li et al., 2011) during the plastic �ow. It is
de�ned by:

f =
VA − VM

VA
(3.3.1)

where VM is the volume of the matrix and VA is the volume of the cavity and the
matrix. One void is surrounded by an isotropic plastic matrix which is incom-
pressible with no hardening (rigid plastic) and no viscosity. The resulting yield
locus is shown in Eq. 3.3.2.

Fp(σ, f, σY ) =
σ2
eq

σ2
Y

− 1 + 2f cosh

(
3

2

σm
σY

)
− f 2

︸ ︷︷ ︸
Damage

= 0 (3.3.2)
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where σeq is the macroscopic e�ective stress (matrix plus voids), σm is the macro-
scopic mean (hydrostatic) stress (matrix plus voids) and σY is the �ow stress of
the dense matrix medium (no voids). It is important to note that when f = 0,
the Gurson yield locus recovers the classical isotropic von Mises yield locus. The
growth of the void is considered by the following equation:

ḟ = ḟg =
VM V̇A
V 2
A

= (1− f) trε̇p (3.3.3)

This equation comes from the apparent volume change, mass conservation and
plastic incompressibility of the matrix, derived from Eq. 3.3.1.

In its original form, the Gurson model does not take into account the plastic
anisotropy, mixed hardening of the dense matrix, appearance of new voids, coa-
lescence leading to the crack and other phenomena involved in ductile fracture.
Moreover, the voids are considered spherical or con�ned into a in�nite cylinder,
which is certainly a strict hypothesis. Even if by de�nition of the yield locus
the macroscopic media is compressible (I1-dependent), the fully dense matrix sur-
rounding the voids is in fact incompressible, being governed by a J2-�ow theory.
For these and other reasons, numerous extensions have been proposed in the lit-
erature.

3.3.2 Gurson-Tvergaard-Needleman extension

Several extensions have been introduced into original Gurson model and among
them, the Gurson-Tvergaard-Needleman (hereafter called GTN model) is one of
the �rst to robustly compile the three stages of damage development: void nu-
cleation, growth and coalescence. In the following section, a brief description2 of
each of these mechanisms and the equations involved are presented.

3.3.2.1 Void nucleation

Within the nucleation of new microscopic voids, two main mechanisms are often
found (Benzerga and Leblond, 2010; Tvergaard, 1989):

• Decohesion (debonding) of matrix-inclusion or matrix-second phase inter-
faces.

• Hard particle fracture.

They can be separately observed or as combination of both, since there are param-
eters favoring one or the other (see Fig. 3.1). A summary of these parameters can
be found in Garrison and Moody, (1987) and Benzerga and Leblond, (2010). As
a general rule, nucleation results from inhomogeneity of the plastic deformation
between the matrix and the inclusions (Pineau, 2004). Sometimes nucleation is
stress controlled and in other cases it is strain controlled. This is because of the
energy condition for the separation of the interfaces can be met both by plastic

2No micromechanical models or cell studies are presented for the sake of simplicity. Refer
to the reviewing papers for a more complete presentation of the topic.
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(a)

(b)

(c)

Figure 3.1: SEM images of di�erent types of nucleation in a high-strength low-
alloy steel. The percentages of displacement at fracture and the
load direction (red arrows) are also depicted (Achouri et al., 2013).

deformation accumulation or stress applied to the interface. Nevertheless, the
formulation of an adequate condition for void nucleation by interface fracture is
di�cult to obtain and usually another approach is used (François et al., 2013).
This continuum approach will be described below.

Assuming that nucleation is a mechanism that is not linked with void growth3,
the total porosity can be decomposed in nucleated and growth parts (Gurson,
1977b):

ḟ = ḟg + ḟn (3.3.4)

where fn is the nucleated void volume fraction and fg was already described in
Eq. 3.3.3. Voids are also assumed to grow as spherical cavities once they nucleate.
It is important to highlight that this assumption is more appropriate for particle
debonding rather than particle fracture (Chu and Needleman, 1980). Nucleation
can be correlated in terms of the equivalent plastic strain in the matrix, the
equivalent stress or both. Needleman and Rice, (1978) proposed the following
form:

ḟn = Aε̇PM︸︷︷︸
Strain

+B (σ̇eq + cσ̇M)︸ ︷︷ ︸
Stress

(3.3.5)

with σ̇eq + cσ̇M > 0, c is a parameter adjusted by cell computations and εPM equiv-
alent (e�ective) plastic strain in the matrix. Later, Chu and Needleman, (1980)
proposed a normal distribution for A to represent the nucleation phenomenon

3An assumption that has a micromechanical root (Benzerga and Leblond, 2010).
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heterogeneity:

A(εPM) =
fN

SN
√

2π
exp

[
−1

2

(
εPM − εN
SN

)2
]

B(σ) = 0 (3.3.6)

where fN is the maximum potential nucleated void volume fraction in relation
with the inclusion volume fraction, εN is the mean e�ective plastic strain of the
matrix at incipient nucleation and SN is the Gaussian standard deviation of the
normal distribution inclusions. To understand the meaning of each variable, refer
to Fig. 3.2. The range over which the voids nucleate is controlled by SN , while

εN − 2SN εN εN + 2SN
Eq. plastic strain

(
εPM

)

0

fN
SN
√
2π

A(εPM)

Figure 3.2: Distribution function for the nucleation law (Chu and Needleman,
1980).

εN determines the strain at which 50% of the inclusions are broken. As for fN ,
the volume fraction which may nucleate is given by:

fN =

∫ ∞

−∞
A
(
εPM
)
dεPM (3.3.7)

which corresponds to the area under the curve in Fig. 3.2.
Many researches are based on nucleation models of the strain-based type as

shown in Eq. 3.3.5 and Eq. 3.3.6 (e.g., Aravas, 1987; Besson, 2009; Dunand and
Mohr, 2011a; Mühlich and Brocks, 2003), which is independent of the �ow stress
(Lievers et al., 2004)4. Stress controlled nucleation models are not often used
because they are harder to implement numerically (François et al., 2013).

3.3.2.2 Void coalescence

In this phenomenon we can distinguish three di�erent behaviors, sorted in chrono-
logical order of observations within the literature (viz., Benzerga and Leblond,
2010; Garrison and Moody, 1987):

4This can be helpful for large deformations laying beyond the tensile test �tting.
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• Internal necking: the growth of the voids is large enough to create a neck in
the space between cavities. Often observed at high stress triaxialities.

• Void sheeting: due to the formation of a secondary population of voids on
small particles, creating shear bands. Dominant at low stress triaxialities.

• Necklace: due to formation of voided columns, prominent in steel containing
elongated MnS inclusions (Benzerga, 2000) and favored at low triaxiality
level.

Internal necking was studied by Thomason, (1968, 1993) based on limit-load anal-
ysis of the ligament between voids. Void sheeting was �rst described by Brown
and Embury, (1973), in where it was observed that a 45◦ band can be formed
when the distance between voids is approximately equal to their height. With the
exception of the third mode, failure by internal necking or void sheeting seems to
be mainly dependent on the stress triaxiality and the microstructure, but also on
the void distribution (Weck and Wilkinson, 2008).

At the macroscopic level, the coalescence can be easily observed in a load-
displacement curve after an abrupt change in the slope at the onset of a (macro-
scopic) crack, then descending as the crack propagates. According to the original
Gurson, (1977a) model, loss of material stress carrying capacity occurs when the
voids have grown so large that the Gurson yield surface becomes a point in the
stress space i.e., fu = 1

q1
. Nevertheless, the experimental evidence shows that the

material failure happens earlier. Indeed, experimental evidence by Brown and
Embury, (1973) and Goods and Brown, (1979) revealed that coalescence between
neighboring voids occurs when their length has grown to the order of magnitude
of their spacing (Tvergaard and Needleman, 1984). The reason for this is that
only an homogeneous deformation mode was considered when deriving the Gurson
model.

Hence, and in order to incorporate coalescence into the Gurson model, Tver-
gaard and Needleman, (1984) proposed to modify the porosity evolution not as
an additive part (like Eq. 3.3.4 or as in Tvergaard, (1982)), but as a speci�c
coalescence function f ∗, which replaces the porosity in the following way:

f ∗ =

{
f if f < fcr
fcr +Kf (f − fcr) if f > fcr

(3.3.8)

Kf =
fu − fcr
fF − fcr

(3.3.9)

where fu is the ultimate value of f ∗ at the occurrence of ductile rupture, fcr is
the critical void volume fraction at the onset of coalescence and fF is the porosity
at �nal failure. The relation between f and f ∗ is schematically shown in Fig.
3.3(a). The aim of f ∗ is to model the complete vanishing of the carrying stress
capacity due to void coalescence. Both q1, q2 (correction factors described in
section 3.3.2.3) and f ∗ allows recovering results from a mesoscopic approach near
rupture. In their original research, Brown and Embury proposed a simple failure
condition based on the distance between voids, obtaining fcr ≈ 0.15.
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(a) GTN model. (b) Xue, (2008).

Figure 3.3: The e�ective porosity as function of the porosity as in Eq. 3.3.8
in both the GTN model and the shear extension by Xue, (2008).
Taken from Xue, (2008).

Coalescence is associated to mechanisms of plastic �ow localization5 within
the matrix, which is certainly harder to capture compared to di�use plastic �ow
during void growth. For a detailed discussion of coalescence models and their
physical roots, see Garrison and Moody, (1987) or Benzerga and Leblond, (2010).

3.3.2.3 Correction factors

Tvergaard, (1981) introduced the factors q1 and q2 (and a third one q3 = q1
2) to

describe more accurately void growth kinematic assessed in unit cell calculations.
A modi�ed version of Eq. 3.3.2 is thus obtained:

Fp(σ, f, σY ) =
σ2
eq

σ2
Y

− 1 + 2q1f cosh

(
−3q2

2

σm
σY

)
− q3f 2 = 0 (3.3.10)

The original Gurson model gives too large localization strains if q1 =1.0. Neverthe-
less, using a value of q1 =1.5 allows the continuum model to be in good agreement
with the localization strain for the cell analysis carried on by Tvergaard, (1981).

Some authors claim, wrongly motivated from these previous results, that q1
and q2 are parameters accounting for the void shape or the interactions between
voids. The evidence, in this regard, is sparse and it is more likely that these
parameters re�ect the inner imperfections of the model (Benzerga and Leblond,
2010). For instance, cell analysis by Koplik and Needleman, (1988) and Gao et
al., (1998) have shown that both parameters vary with the geometry and loading
conditions. Faleskog et al., (1998) showed that these parameters also depend on
the plastic hardening exponent and the ratio of the yield stress over the Young
modulus. Ben Bettaieb et al., (2011b) mathematically demonstrated that �xing
q2 lead to an inconsistency with the volume conservation hypothesis of the dense
matrix material. So, q2 is integrated as a state variable with an evolution equation

5These mechanisms involve, for instance, void growth or void interactions.
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which veri�es this volume conservation. This type of inconsistency would be the
price to pay for a simple model. However one can consider the volume conservation
problem as equivalent as assuming that the void is an empty space where no
inclusion is in the inside.

3.4 Shear extensions

The e�ect of stress invariants on the mechanical behavior of materials dates back
with the �rst J2-plasticity models developed in the early 20th century to describe
yielding of metals. The mean stress was later included to describe porous media
subjected to hydrostatic pressure (Drucker and Prager, 1952). Nevertheless, the
study of the third invariant of the deviatoric stress is quite recent and it was
mainly used in the civil engineering �eld. For instance, Bardet, (1990) studied the
in�uence of the Lode angle over the yield surface of pressure insensitive materials.

The approach for ductile fracture has followed a di�erent way. The e�ect
of the mean stress in damage development and fracture is very well established
and numerous studies exist. Nevertheless, the importance of the third invariant
appeared when studying phenomena involving low triaxiality levels6, such as metal
forming processes. Some researchers have included these invariants into more
general modi�ed plasticity models to predict localization (Brünig et al., 2000)
and fracture (Bai and Wierzbicki, 2008). The inherent complexity of damage
phenomena hinder, even for a simple tensile test, distinguish between the softening
induced by suppression of the dislocation motion and the softening due to porosity
(Bai and Wierzbicki, 2008). In the following section, the e�ect of the Lode angle
on plastic yield is not reviewed, and damage and fracture are considered to be
mainly dependent on the nucleation, growth and coalescence of voids. The Lode
angle and its de�nitions are introduced in annex A.

3.4.1 Developments

Since its formulation, the Gurson, (1977a) model and the GTN extension assumes
that the voids are spherical during the deformation. Also, these models only in-
clude the triaxiality as the parameter describing the stress state. As mentioned
by Pardoen, (2006), this historical view maybe come from the analysis of crack-
tip problems, which are characterized by large stress triaxiality values, in which
shape e�ects are usually not important. Nevertheless, one of the limitations of
using only triaxiality and spherical voids became apparent when Gologanu et al.,
(1996) observed that the void expansion can vary in di�erent directions under the
same triaxiality. Following this point, Zhang et al., (2001) made a 3D numerical
analysis of a spherical void to look for the in�uence of the Lode parameter into
the directional expansion of the void. He considered a cubic cell, where the dis-
placements at the boundaries were calculated from given values of triaxiality and
Lode parameters. It was observed that both the deformation pattern of the void
and the void volume fraction are in�uenced by the Lode parameter (Fig. 3.4).

6Usually, low triaxiality means T < 1/3.
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Another interesting observation is that the in�uence of the Lode parameter seems
to diminish with increasing triaxiality.

Figure 3.4: Equivalent stress-strain curves for di�erent values of the Lode pa-
rameter (Zhang et al., 2001). If the triaxiality is kept constant, the
load carrying capacity is inversely proportional to the Lode param-
eter.

Dealing with low values of triaxiality stress states could be problematic in the
Gurson model. In some cases, like in shear-dominated deformations, triaxiality
is near zero or even negative (Nahshon and Hutchinson, 2008) predicting almost
no increase of damage (in the GTN extension of the Gurson model voids do not
grow under pure shear). Pardoen, (2006) studies the e�ect of the void shape at
low triaxiality, mentioning that the void elongates in the direction of maximum
strain. By using a modi�ed version of the Gurson model, which considers growth,
coalescence of spheroidal7 voids and void's aspect ratio 8, it is con�rmed that
shape e�ects on coalescence are signi�cant, as in Fig. 3.5. Barsoum2007b; Bar-
soum and Faleskog, (2007) analysed the rupture mechanism of a mid and high
strength steel in double notched axisymmetric specimens, subjected to combined
tension and torsion. They found that when triaxiality is high, the specimens
fail by internal necking, while for low triaxiality the crack is due to plastic shear
localization (commonly referred to as shear bands). These two coalescense mech-
anisms were previously described by Pardoen and Brechet, (2004) and Bron and
Besson, (2006) and they are shown in Fig. 3.6. At medium levels of triaxiality,
these mechanisms may cooperate or even compete. Barsoum2007b performed a
micromechanical study for an array of cells to investigate the transition between
these two mechanisms. By using this approach, the array of voids can be seen as
an initial imperfection inducing internal necking, shear localization or both, as in
Fig. 3.7. The strain localization decreases when passing from tension to shear,
and the softening rates decreases when increasing the Lode parameter. Gao et al.,
(2009) performed both experimental tests and micro-mechanics analyses in order
to demonstrate that the Lode angle has an important e�ect on ductile fracture.

7Obtained by rotating an ellipse about one of its principal axes.
8De�ned as the ratio between the diameter in the longitudinal direction and the diameter

in the transverse direction.
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Figure 3.5: In�uence of the initial void aspect ratio (W0) in ductility (strain at
fracture, εef ) vs. initial porosity f0 of an ideal material (Pardoen,
2006). The two limiting cases, W0 → 0 and W0 → ∞ correspond,
when f0 → 0, to the penny-shape crack and the in�nitely thin nee-
dle, respectively, and, when the porosity is kept constant, to a sand-
wich and the in�nitely long hollow cylinder, respectively (Pardoen
and Hutchinson, 2000).

Figure 3.6: Two coalescence mechanisms (Bron and Besson, 2006). The internal
necking of voids is dominant at high values of triaxiality, while the
second characterised as a second population of voids (dispersoids
or secondary dimples) that appeared between the primary voids, is
dominant at low values.
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(a) Internal necking (µσ = −0.85, T = 1.0). (b) Shear localization (µσ = −0.15, T = 0.5).

Figure 3.7: Void coalescence mechanisms under di�erent values of triaxiality
and Lode parameter (Barsoum2007b). Internal necking arises at
high values of triaxiality while shar localization appears at low val-
ues of triaxiality.

Prescribed boundary conditions are imposed to keep both the triaxiality or the
Lode angle constant (similar as in Zhang et al., (2001)). Failure is assumed to
happen when localization of plastic �ow takes place in the inter-void ligament
(uniaxial straining mode) (Koplik and Needleman, 1988). Fig. 3.8(a) shows that
the Lode parameter has an important e�ect on the strain at coalescence and this
e�ect is lower at high triaxiality, coinciding with the previous results from Zhang
et al., (2001). Gao et al., (2009) also studied the e�ect of secondary voids, showing
in Fig. 3.8(b) that the nucleation of secondary voids notables reduce the ductility
of the material, but also reduce the e�ect of the Lode angle at low triaxiality.

(a) Without secondary voids. (b) With secondary voids.

Figure 3.8: Strain at localization (Ec) as a function of the triaxiality (T ) and
the Lode angle (θ) (Gao et al., 2009). Note that the e�ect of the
Lode parameter on ductility is higher at low values of triaxiality,
but this e�ects diminish when considering the e�ect of nucleation
of secondary voids.

Hereafter, a description is presented of the shear extensions implemented in the
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Gurson/GTN model, based on the e�ect of the third invariant. It must be noted
that like the coalescence extension, shear extensions are purely phenomenological
and thus the void porosity loses its original meaning to a more general damage
representation. Note that the Lode angle de�nition varies among authors, which
are de�ned and compared in Annex A.

3.4.2 Xue, (2008)

The �rst shear extension of the Gurson model was developed by Xue, (2008) (cf.
Xue, 2012), based on the void-shearing damage criterion from McClintock et al.,
(1966). In this criterion, void linkage occurs when a critical distance (void spacing
in the shear direction) is reached. As pointed out by Xue, (2008), rotation of voids
does not change the void volume fraction but damage is indeed happening. This
can be seen in Fig. 3.9, where two di�erent coalescence mechanisms are depicted.

(a) Intervoid ligament. (b) Shear band formation.

Figure 3.9: Two di�erent coalescence mechanisms (Weck et al., 2006).

In the Xue, (2008) extension, it is �rst recognized the phenomenological nature
of the GTN model at coalescence, which replaces the void volume fraction by an
e�ective porosity. The shear extension expands this concept by introducing a
damage variable D, incorporating the e�ect of shear. In a broad way, the damage
variable includes the e�ect of the third invariant of the deviatoric stress, thus
considering stress states other than the axisymmetric case. The yield surface
equation is written in terms of the damage variable D:

Fp(σ, σY , D) =
σ2
eq

σ2
Y

− 1 + 2D cosh

(
−3q2

2

σm
σY

)
−D2 = 0 (3.4.1)

with the trivial relation D = q1f
∗. The related evolution equation for D:

Ḋ = Kf

(
q1ḟ + Ḋshear

)
(3.4.2)
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where:
Ḋshear = kgf

1/3gθ(σ)εeq ε̇eq (3.4.3)

is the contribution due to shear. gθ is a scalar stress function de�ned by:

gθ(σ) =
2

π
arccosχ(σ); χ(σ) =

27

2

J3
σ3
eq

; 0 ≤ gθ ≤ 1

Coalescence is introduced through the term Kf :

Kf =

{
1 if D < Dcr
1/q1−fcr
fF−fcr if D > Dcr

(3.4.4)

which is slightly di�erent from Eq. 3.3.8 in the GTN model, as can be seen in
Fig. 3.3(b). In this formulation, kg is material dependent. The nature of kg is not
further explored within Xue, (2008), but it seems to be material dependant.

3.4.3 Nahshon and Hutchinson, (2008)

Almost simultaneously, Nahshon and Hutchinson, (2008) proposed a di�erent
shear extension of the Gurson model. It seems that they were encouraged by
the in�uence of the Lode angle in ductile fracture. The experimental evidence
demonstrates that void distorsion and inter-void interaction give raise to shear
softening and localization, which the GTN model is not able to capture. Under
shearing, the voids increase their e�ective collective cross-sectional area parallel
to the localization band without increasing the porosity. Hence, softening and
then localization is expected solely due to deformation and rotation of voids.

The modi�cation proposed by Nahshon and Hutchinson, (2008) only involves
the void growth relation. Hence, the void evolution (without nucleation) is gov-
erned by the following equation:

ḟ = ḟg + ḟs

where:

ḟs = kωfω(σ)
σ̃dev : ε̇P

q̃
(3.4.5)

kω is a material constant and ω(σ) a stress scalar function de�ned as:

ω(σ) = 1− χ(σ)2 = 1−
(

27

2

J3
σeq

)2

; 0 ≤ ω ≤ 1 (3.4.6)

In Nielsen and Tvergaard, (2009, 2010) it has been noted the strong contribution
of ḟs in plane strain uni-axial tension, even if the triaxiality is high. As mentioned
by the authors, the GTN model by itself is already a solid approach to deal with
void based ductile damaging, so there is no need to add the shear contribution
at this level. Moreover, in Nielsen and Tvergaard, (2010) the original model from
Nahshon and Hutchinson, (2008) it is compared with micro-mechanical cell stud-
ies, leading to an earlier localization prediction. Hence, a triaxiality dependent
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weight function Ω(T ) is proposed. In Eq. 3.4.5, ω(σ) is replaced by ω0 de�ned
as:

ω0 := ω(σ)Ω(T ) (3.4.7)

whre Ω(T ) is a function which linearly decreases depending on the triaxiality:

Ω(T ) =





1 if T < T1
(T − T2)/(T1 − T2) if T1 ≤ T ≤ T2
0 if T > T2

(3.4.8)

3.5 Anisotropic plasticity and mixed hardening

within the Gurson model

The original Gurson model is based in a development where the matrix surround-
ing the void is perfectly plasticity and obeying to von Mises type of yield cri-
terion. This section present two important extensions covering anisotropy and
mixed hardening in the matrix.

3.5.1 Anisotropy

Benzerga and Besson, (2001) incorporated anisotropy into the Gurson, (1977a)
and the GTN model. Based on experimental evidence regarding the e�ect of
matrix �ow on particle debonding (and hence in void evolution), the main moti-
vations behind this extension were:

• The inhomogenity of the matrix a�ecting void evolution and interaction.

• The practical problem observed in metal forming, in particular rolled sheets,
where the strain at fracture can vary in a signi�cant degree.

The approach considered the complete derivation of the (original) Gurson, (1977b)
model for a hollow sphere and a hollow cylinder in the case of an orthotropic
matrix, obeying the Hill, (1948) criteria.

It is shown in Benzerga and Besson, (2001, Eq. 32) that using the �ow rule
and the matrix incompressibility:

ḟ

1− f =

∂Fp
∂σm
∂Fp
∂σeq

ε̇Peq (3.5.1)

In this relation is evident that porosity rate is a�ected by plastic anisotropy, as
plastic anisotropy appears both in ε̇Peq and σeq. Following an homogenization
procedure using the Gurson, (1977a) approach, and later extended in the GTN
model fashion9, the following yield surface is obtained:

Fp(σ, f, σY ) =
σ2
eq

σ2
Y

− 1 + 2q1f cosh

(
−3σm
κσY

)
− q3f 2 = 0 (3.5.2)

9With correction factors, strain hardening, etc.
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which is the same as Eq. 3.3.2 but incorporates the e�ect of the anisotropy through
σeq and κ.

It is remarked by the authors, that a so-called scalar e�ect and a directional
e�ect are observed after the implementation. As for the scalar e�ect, it is clear
from Eq. 3.5.1 that the evolution of damage is dependent on the anisotropy. An
explicit relation is given in terms of the anisotropy factor κ, where κ = 2 stands
for the isotropic Gurson/GTN model. Larger values of κ increase the porosity
rate while lower values of κ decrease it. It is worth mentioning that due to the
hyperbolic cosine in the GTN model, a small change on κ can induce notable
change on the porosity evolution. Moreover, it is shown (Benzerga and Besson,
2001, section 7.1) that the value of κ is mainly determined by the shear Hill,
(1948) coe�cients (L, M and N). Unfortunately, these parameters are hard to
obtain in thin sheets due to practical limitations.

This scalar e�ect (evolution of f) has of course, no relation with the observed
damage anisotropy. In fact, damage induced anisotropy arises from the plastic
anisotropy (directional e�ect), depending on the loading direction (Benzerga and
Besson, 2001, section 6.2). Contrary to the scalar e�ect, in this case the normal
Hill, (1948) coe�cients (F , G and H) have more impact in the directional e�ect
than the shear coe�cients.

3.5.2 Mixed hardening

Originally, the Gurson, (1977a) model considered a perfectly plastic matrix, i.e.
σY = σ0. In order to introduce an isotropic hardening, it is widely accepted that
an evolution law like Swift or Voce can be used for the matrix and also within the
cosine term of the Gurson, (1977a) yield function. For instance, taking the Swift
law:

σY = K
(
ε0 + εPM

)n
(3.5.3)

where εPM is the equivalent plastic strain in the matrix. Nevertheless, Leblond
et al., (1995) showed that incompatibilities can arise between model predictions
and the analytical development by Gurson in the hollow sphere, when using this
function in both the matrix and the yield surface. It is then proposed to replace σY
in the yield surface (Eq. 3.3.10) by two functions Σ1 = Σ1(ε

P
eq) and Σ2 = Σ2(ε

P
eq):

Fp(σ, f, σY ) =
σ2
eq

Σ2
1

− 1 + 2q1f cosh

(
−3q2

2

σm
Σ2

)
− q3f 2 = 0 (3.5.4)

which are nonetheless dependent only on the macroscopic plastic strain εPeq and
not in the equivalent plastic strain in the matrix εPM , like Eq. 3.5.3. It is found
that this new relation allows a better representation of the macroscopic hydrostatic
stress-strain curve, which is however less signi�cant when comparing the von Mises
equivalent stress-strain curve. The expressions for functions Σ1 and Σ2 are more
complex than Eq. 3.5.3 but, in terms of the integration of these equations into a
FE code, using εPeq instead of εPM can reduce the number of equations to integrate.

In the other side, a kinematic hardening extension to the Gurson model is
not commonly found in the literature, despite the clear e�ects of kinematic hard-
ening on localization (see Tvergaard, 1989, section VII). This is probably due
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to cumbersome derivatives arising when including the backstress term into the
equations involving the stress. Anyway, there is no special development problems
regarding kinematic hardening and classical evolution equations like Armstrong
and Fredrick, (1966) have been used within the Gurson model family (Arndt et
al., 1997; Ben Bettaieb et al., 2011c; Mühlich and Brocks, 2003).

3.6 Physically based extensions

The so-called physical models represent the evolution of voids based on physi-
cal (or direct) observation of voids within a material. Once they are integrated
into the Gurson model, the nucleation and growth mechanisms are governed by
equations �tted by experiments. Without the need to rely on the matrix plastic
incompressibility to model the growth stage (Fansi et al., 2013), as is the case of
the original void growth relation (Eq. 3.3.3).

3.6.1 Ben Bettaieb et al., (2011b)

From 3D X-ray tomography, two evolution laws for nucleation and growth of dual-
phase (DP) steel were developed. Both evolution rules depend on the equivalent
plastic strain and the triaxiality factor. These parameters were chosen because
they can be measured from an experimental campaign. The nucleation criterion
was initially proposed by Helbert et al., (1998) for biphasic titanium and later
adapted to DP steels by Bouaziz et al., (2008) and Maire et al., (2008):

N = AB

(
εPeq
εN

)
exp

(
εPeq
εN

)
(3.6.1)

where N is the void density nucleated per mm3, εN is the critical value of the
strain for which nucleation starts and AB a material constant. The void growth
kinetic is based on Rice and Tracey, (1969) and modi�ed to incorporate the e�ect
of the reduction of average radius R of cavities due to nucleation (Bouaziz et al.,
2008; Maire et al., 2008), standing as follows:

dR

dεPeq
= 0.283 exp

(
3

2
T

)
R− 1

N

dN

dεPeq

(
R−R0(ε

P
eq)
)

(3.6.2)

where:
R0

(
εPeq
)

= Ri
0 exp

(
−aBεPeq

)
(3.6.3)

is the mean radius of cavities after nucleation and before beginning of the growth
phase, Ri

0 and aB are material constants. Note that Eq. 3.6.2 reduces to the
Rice and Tracey, (1969) model (Eq. 3.2.1) when there is no nucleation (dN = 0).
Ben Bettaieb et al., (2011b) proposed two di�erent approaches to integrate these
evolution equations into the Gurson model:

• Replacement of the real population of voids by one single equivalent void.
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• The classical approach by the additive decomposition of the porosity evolu-
tion (Eq. 3.3.4).

The �rst approach considers an homogenization of the population of nucleated
void as a single void, characterized by the equivalent single void radius:

Req =
3
√
NR (3.6.4)

where N and R are de�ned by Eq. 3.6.1 and Eq. 3.6.2 respectively. Hence, the
total void volume fraction evolution is given by:

f =
(4/3)πR3

eq

Vm + (4/3)πR3
eq

(3.6.5)

with the following evolution law:

dReq

Req

=




3q22σY sinh
(

3q2σ̃m
κσY

)

2κσ̃eq


 dεPeq (3.6.6)

As the dependencies between variables are complex, q2 is added as a new state
variable and evaluated at each load increment while verifying Eq. 3.6.6. It is
claimed that this approach allows to accurately reproduce experimental results.

The second approach considers an evolution equation for the nucleation:

dfn
dN

=
4

3
πR3

0 (3.6.7)

where R0 is de�ned by Eq. 3.6.3. The growth part evolution is given by:

dR

R
=



q1q2σY sinh

(
3q2σ̃m
κσY

)

κσ̃eq


 dεPeq (3.6.8)

Again, q2 is added as an state variable verifying 3.6.8 at each load increment.

3.6.2 Fansi et al., (2013)

The work of Fansi et al., (2013) is based on experimental observations by Landron
et al., (2010). It provides a new nucleation function introducing the triaxiality
and kinematic hardening in�uence. Thus, the evolution of the nucleated void is
now given by:

dN

dεPeq
=

BB

N0σc
(σeq + θσm) (N0 +N) (3.6.9)

where σc is the critical shear stress value that the martensite/ferrite interface can
withstand without breaking, BB is a material constant, while θB is given by:

θB :=
‖σ‖H

‖σ −X‖H
(3.6.10)
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where ‖·‖H is the energy norm of the (shifted) stress tensor. The void growth
kinetics is the same as in Ben Bettaieb et al., (2011b), with the notable exception
of introducing Huang, (1991) correction (Eq. 3.2.2) into the Rice and Tracey,
(1969) term of Eq. 3.6.2. Another interesting result is the physical estimation of
fF , i.e. the porosity at �nal failure as described in section 3.3.2.2. Hence, for DP
steels we have:

fF =
4π

3

(
R

λf + 2R

)3

(3.6.11)

where λf is the average inter-cavities distance before the material fails.

3.7 Conclusions

Here a literature review is presented on the Gurson model and its extensions. It
begins with early developments regarding cell studies and microscopic observa-
tions. Then, an explanation of the initial Gurson model and the GTN extension
which covers nucleation, growth and coalescence of voids are given. The GTN
model is widely used and is commonly found in FE software due to its robustness
when describing the three stages of void evolution. Despite this fact, the model
has been extended covering matrix anisotropy, mixed hardening and shear type
of loads. The shear extension has attracted a great deal of attention over the
last years because it covers a particular case where the initial GTN model did
not predict stress softening. Extension based on microscopic observations are also
brie�y presented, directed towards speci�c materials.





Chapter 4

Numerical implementation of the

Gurson model

Damage and fracture modeling deals with material softening and strain
localization. These, usually lead to unwanted numerical features such as loss
of the ellipticity of equilibrium equations, bifurcation into a shear band, etc.
The �rst step before dealing with these issues is for the damage model to
already have a stable, accurate integration scheme. In this chapter, the nu-
merical integration of an extended version of the Gurson model (incorporat-
ing plastic anisotropy and mixed isotropic-kinematic hardening) proposed
by Ben Bettaieb et al., (2011c), is revised and further extended to include
nucleation, coalescence and shear. The main feature of this scheme is that
all the variables are integrated in an implicit way based on the projection
algorithm, while the consistent tangent matrix is analytically obtained. A
detailed derivation of the equations used to extend the model is presented
and a link with the developed subroutine is made. The e�ciency of the
implementation is assessed by comparing the numerical results of homo-
geneous cases with those obtained from the literature. Both results are
in good agreement implying that the model can be used in more complex
simulations which include heterogeneous strain paths.

4.1 Tensor and matrix-vector notation

The vectors and second order tensors are denoted by boldface letters, while the
scalars are plain letters and C is a fourth order tensor. The capitals letters rep-
resent the material coordinates whilst the minuscules the spacial coordinates.
Hence, X is a tensor in the material (lagrangian) coordinates while x represents
a tensor in the spacial (eulerian) coordinates. The second and fourth order unity
tensors are denoted by I and I respectively. The double contraction is represented
by A : B =

[
ATB

]
, while the tensorial product with the symbol ⊗.

The programmed equations are slightly di�erent from the ones presented here
since they had to be adapted for the programming language1 and to decrease

1The Lagamine code is programmed using Fortran.

65
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the computational e�ort, and at the same time using the advantages of the sym-
metry properties of some tensors. The tensor storage schemes are not as trivial
as they could appear, since a vector can have a non-unique representation and
a matrix representation of the tensor components can not recover the full in-
tegrity of the former tensor. Moreover, little information is found in the literature
regarding this point. In order to use a consistent and unequivocal notation, a
distinction between covariant and contravariant tensors representations in the R6

vector space is brie�y presented following the analysis by Helnwein, (2001). The
particular choice of an ortho-normal basis in R3 makes the covariant and con-
travariant representation equal, which is often the case. Nevertheless, generally
the matrix representation in R6 associated with this space is usually related to
non normalized vector space, making the distinction necessary. To simplify the
discussion, no rigorous distinction in terms of superscript and underscripts will
be made between the covariants and contravariant's tensor and only the covariant
representation (underscript) will be used throughout the text.

To clarify this point, let's consider the symmetry of the Cauchy stress tensor
σ, arising from the angular momentum conservation principle:

σij = σji (4.1.1)

Hence, the initial 9 components of the tensor in the R3×R3 space can be reduced
to 6 di�erent components in form of a vector in the R6 space. Therefore, we can
express the stress tensor σ as:

{σ} = {σ11 σ22 σ33 σ12 σ13 σ23}T (4.1.2)

which is the contravariant representation of the Cauchy stress tensor according to
Helnwein, (2001). This representation is often used in the literature and referred
to as the Voigt notation (Wikipedia, 2014). However, we can also express the
stress tensor as:

{σ} =
{
σ11 σ22 σ33

√
2σ12

√
2σ13

√
2σ23

}T
(4.1.3)

which is a normalized representation, also called the Mandel notation. This rep-
resentation is based on an ortho-normal basis, so no distinction between covariant
and contravariant is needed.

For the strain tensor representation, it is often found that the strain tensor
can be written in two di�erent ways:

{ε} = {ε11 ε22 ε33 2ε12 2ε13 2ε23}T (4.1.4)

{ε} = {ε11 ε22 ε33 γ12 γ13 γ23}T (4.1.5)

where γij = 2εij. Eq. 4.1.4 is the covariant representation of the strain ten-
sor while Eq. 4.1.5 corresponds to the contravariant representation of the strain
tensor. These distinctions can be regarded as highly academic, but are of practi-
cal importance as exempli�ed in Helnwein, (2001). This distinction also applies
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to other tensors i.e. fourth order tensors are mapped onto a 6x6 matrix. The
elasticity tensor2 C has the following symmetry:

Cijkl = Cjikl = Cklij = Cijlk (4.1.6)

Thus, we express the linear isotropic elasticity tensor C as:

[C] =




λ+ 2G λ λ 0 0 0
λ+ 2G λ 0 0 0

λ+ 2G 0 0 0
2G 0 0

2G 0
2G




(4.1.7)

which corresponds to the normalized description of C.
In the implemented equations and in the following text, the contravariant

representations of Eq. 4.1.2 and 4.1.5 are used. The fourth order tensors is
represented in the ortho-normal basis, so the elasticity matrix can be used with
both covariant and contravariant representations.

In terms of the operations between tensors, contraction between second order
tensors are replaced by a dot product, and the fourth order tensors are replaced
by a matrix transformation:

σ : εe = σijε
e
ij ⇐⇒ {σ} · {εe} = {σ}T {εe}

σ = C : εe ⇐⇒ {σ} = [C] {εe} (4.1.8)

(4.1.9)

Careful attention must be given when expressing the double contraction between
a fourth and a second order tensor expressed in vector components. For example:

[H]−1 · {σ} =





ε̇11
ε̇22
ε̇33
γ̇12
γ̇13
γ̇23





=





ε̇11
ε̇22
ε̇33
2ε̇12
2ε̇13
2ε̇23





(4.1.10)

Hence, the shear terms must be divided by 2 to be in agreement with the tensor
contraction. Inside the implemented subroutine, this is done by modifying the [H]
matrix shear terms through the variable HMAT2.

4.2 Previous versions available in Lagamine

In its current state, Lagamine has di�erent versions of the Gurson model, sum-
marized in Table 4.1. We look at them in chronological order.

2The Hill anisotropic tensor H has the same symmetric properties.
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Table 4.1: Implemented versions of the GTN model and their characteristics.

GUR3D GUR3Dclas GUR3Dani GUR3Dext

GTN model Gurson model Physically based GTN plus shear

Anisotropy
√ √ √

Isotropic
√ √ √ √

Kinematic
√ √ √ √

Nucleation
√ √ √

Coalescence
√ √

Shear
√

4.2.1 GUR3D

This implementation is due to Wang, (1993, chapter 3)3. It corresponds to the
classical GTN model, thus it includes nucleation, growth and coalescence of voids.
The yield surface is given by:

Fp(σ,X, f, σY ) =
σ̃2
eq

σ2
Y

− 1 + 2q1f
∗ cosh

(
q2σ̃m
2σY

)
− q3f ∗2 = 0 (4.2.1)

which incorporates the e�ect of the kinematic hardening through the shifted stress:

σ̃ := σ −X (4.2.2)

σ̃eq is the (macroscopic) e�ective stress tensor de�ned by:

σ̃eq :=

√
3

2
σ̃dev : σ̃dev (4.2.3)

It must be noted that there is no relation between this de�nition regarding the
kinematic hardening and the e�ective stress concept in the Lemaitre and Chaboche
type of damage models.

Equivalence between the rates of tensorial macroscopic plastic work and phys-
ical plastic work within the matrix (computed on the entire matrix volume) is
assumed:

σ̃ : ε̇P = (1− f)σY ε̇
P
M (4.2.4)

where εPM is the equivalent plastic strain in the matrix. σY is the �ow stress in
the matrix, given by:

σY = (1− β)σ0 + βσM (4.2.5)

where σM is the von Mises equivalent stress in the matrix, σ0 is a material pa-
rameters representing the initial yield stress and β is the hardening coe�cient
representing the percentage of isotropic hardening i.e. β =1.0 is pure isotropic
hardening and β =0.0 is pure kinematic hardening (Mear and Hutchinson, 1985).

3Further detailed in Wang, (1989).



4.2. Previous versions available in Lagamine 69

4.2.2 GUR3Dclas

This version was introduced by Ben Bettaieb et al., (2011c). The essential di�er-
ence from the GUR3D version is the introduction of the dense matrix's anisotropy,
thus requiring a new integration scheme. In terms of the material law, it corre-
sponds to the classic Gurson, (1977a) model modi�ed by plastic anisotropy and
using mixed isotropic (Swift) and kinematic (Armstrong and Fredrick, (1966))
hardening laws. The growth of cavities is classical and it is implicitly integrated.
Void shape e�ects are not considered and the initial spherical shape is kept con-
stant. Nucleation and coalescence are also neglected.

The anisotropy is incorporated into the Gurson/GTN model with the Benzerga
and Besson, (2001) approach. The yield surface is then given by:

Fp(σ,X, f, σY ) =
σ̃2
eq

σ2
Y

− 1 + 2q1f cosh

(
3q2σ̃m
κσY

)
− q3f 2 = 0 (4.2.6)

where κ is a coe�cient re�ecting the plastic anisotropy e�ect. The Hill equivalent
(e�ective) stress is de�ned by:

σ̃eq =

√
1

2
σ̃ : H : σ̃ (4.2.7)

where H is the fourth order Hill tensor containing the anisotropic coe�cients of
the Hill, (1948) yield criterion, which components are:

[H] =




G+H −H −G 0 0 0
−H H + F −F 0 0 0
−G −F F +G 0 0 0
0 0 0 2N 0 0
0 0 0 0 2L 0
0 0 0 0 0 2M




(4.2.8)

The damage anisotropic parameter κ is a function of the Hill/Lankford coe�cients:

κ =

√
8

5

(
d1 + d2 + d3

d1d2 + d2d3 + d3d1

)
+

4

5

(
1

d4
+

1

d5
+

1

d6

)
(4.2.9)

where:

d1 = −2

3

r0r90 − 2r0 − 2

r0 + 1

d2 = d1

[
1− 3 (r0r90 − 1)

r0r90 − 2r0 − 2

]

d3 = d1

[
1− 3r0 (r90 − 1)

r0r90 − 2r0 − 2

]

d4 = d1

[
−1

2

3 (r0 + 1)

r0r90 − 2r0 − 2

]

d5 = d1

[
−1

2

3r0 (r90 + 1)

r0r90 − 2r0 − 2

]

d6 = d1

[
−1

2

(2r45 + 1) (r0r90 + 1)

r0r90 − 2r0 − 2

]
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It is important to highlight that these equations (which are those implemented in
Lagamine code) are slightly di�erent from those of original article by Benzerga
and Besson, (2001). In the aforementioned article, the analysis is more general
involving thick plates where deformations can be measured through the thickness.
In this work however, case the main applications are thin plates where the thick-
ness gradients are hard to capture and it is usually assumed that the shear Hill
coe�cients (L, M and N) are equal.

4.2.3 GUR3Dani

It is a model speci�cally developed for Dual-Phase (DP) steels by Ben Bettaieb
et al., (2012). It can be decomposed in two mains parts:

• The modeling of the matrix, using mixed hardening as in the GUR3DCLAS

implementation.

• The evolution of the porosity, neglecting the morphological distribution and
shape evolution of the voids (which are assumed spherical).

The algorithm is explicit in regards to porosity and implicit regarding other vari-
ables (equivalent plastic strain in the matrix). In practical terms, it means that
the jacobian matrix of GUR3DCLAS is calculated for all unknowns except for the
porosity, which is calculated at the end of the step. See Ben Bettaieb et al.,
(2011b) for further details.

4.3 Integration algorithm description

In this thesis, the GTN model presented in chapter 3 is integrated into the FE
code Lagamine. The previous integration scheme developed by Ben Bettaieb
et al., (2011c) was found to be inadequate, leading to bad results and convergence
issues compared to the literature. Globally, the new integration scheme is largely
based on the one of Ben Bettaieb et al., (2011c) but signi�cant changes have been
introduced such as:

• New derivatives to improve convergence and accuracy.

• Improved integration of the kinematic hardening.

• The programmed subroutine underwent a complete makeover, in terms of
the Fortran intrinsic functions and syntax, greatly simplifying their under-
standing.

Herein, we detail the integration scheme keeping Ben Bettaieb et al., (2011c)
notation for sake of simplicity.

Integration of the rate constitutive equations into the �nite element method
requires obtaining the non-linear response of the material (in terms of the stress
state) over a discrete sequence of time steps. This implies linearization of the non-
linear discretized problem, thus treating it as an equivalent elastic problem. For
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the case of rate-independent plasticity, the classical return mapping by Wilkins,
(1964) is widely used because of its e�ectiveness and robustness. It was originally
designed to satisfy the yield function at the end of the current step, and such
introducing a constraint (consistency condition) into the discretized equations.
The original version of the return mapping algorithm is applied to the isotropic
Von Mises yield criterion, which can be represented as an hypersphere in the de-
viatoric stress space. Thus, the return to the yield surface is performed in a radial
direction, hence the name of the method being the radial return (Fig. 4.1(a)). In
general, the return mapping method may also be viewed as a two-step algorithm,
involving:

1. Predictor step, used to compute the trial stress state.

2. Yield function evaluation:

• If Fp < 0, set the current stress state equal to trial stress value.

• If Fp > 0, apply a plastic corrector iteratively until Fp = 0.

As mentioned, the plastic corrector should be iteratively applied therefore a New-
ton's method is implemented at the element integration point level. Including an
extra loop at this point could notoriously increase the calculation time so attention
should be given to the number of unknowns.

A particular case of the return mapping algorithm arises when using an implicit
scheme. In this case, and for perfectly plastic materials, the return mapping can
be regarded as the closest point projection of the trial stress onto the set de�ned
by the plastically admissible stresses (Simo and Hughes, 1998; de Souza Neto et
al., 2008). This can be seen in Fig. 4.1(b).

(a) Radial return for a mixed (isotropic and
kinematic) hardening material, in the devi-
atoric stress space.

(b) Closest point projection
representation for a non-
linear hardening material.

Figure 4.1: Geometrical representation of the return mapping algorithms. The
closest point projection arises when applying an implicit scheme to
the return mapping. Adapted from Simo and Hughes, (1998).
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More references on the return mapping algorithms applied to plasticity can
be found in the classical books by Cris�eld, (1991, chapter 6) and Zienkiewicz
and Taylor, (2006, chapter 4). For a deeper and more general presentation of the
integration algorithms for di�erent constitutive models, the books of Simo and
Hughes, (1998) and de Souza Neto et al., (2008) are recommended.

4.3.1 Elastoplastic constitutive equations

For the following equations, we consider the decomposition of a tensor into an
hydrostatic and a deviatoric part:

σ = σhyd + σdev, X = Xhyd +Xdev (4.3.1)

where:

σhyd =
1

3
tr (σ)I, Xhyd =

1

3
tr (X)I (4.3.2)

σdev = P : σ, Xdev = P : X (4.3.3)

P is the deviatoric (projection) tensor de�ned as:

P := I− 1

3
I ⊗ I (4.3.4)

Note that P : σhyd = 0. Neglecting kinematic hardening (cf. Eq. 4.2.7), Aravas,
(1987) also introduced the following variables:

p := −1

3
tr (σ) (4.3.5)

q := ‖σ‖H =

√
1

2
σ : H : σ = σeq (4.3.6)

where ‖·‖H is the energy norm induced by H. Therefore, the Cauchy stress tensor
can be expressed in the following way:

σ = −pI + 2q
(
H−1 : n

)
(4.3.7)

while the plastic strain rate can be written as:

ε̇P =
1

3
ε̇pI + ε̇qn (4.3.8)

where n denotes the unit normal to the yield surface. The yield function with
straightforward extension to kinematic hardening (q̃, p̃) is therefore given by:

Fp
(
p, q,X, εPM , f

)
=

q̃2

σ2
Y

− 1 + 2q1f cosh

(
−3

q2p̃

κσY

)
− q3f 2 (4.3.9)

which is equivalent to Eq. 4.2.6.
The set of governing equations of the material behavior are described here-

after. As in the classical theory of plasticity additive decomposition of the (total)
in�nitesimal strain tensor is assumed:

ε̇ = ε̇e + ε̇p (4.3.10)
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It is very well known that this assumption is valid for the in�nitesimal strain
only. For �nite elasto-plastic deformations, a coupling exists between the elastic
and plastic part and the additive decomposition is no longer valid. Nevertheless,
it can be shown that for cases where the elastic strain is negligible compared to
plastic strain (like metal forming operations), this assumption is acceptable (see
Khan and Huang, 1995, chapter 7). This approach has successfully been used
in Lagamine by Li, (1995) and Hoferlin, (2001). Therefore, in this section no
discussion will be given on objectivity rates, keeping the classical in�nitesimal
theory notation. The in�nitesimal strain �eld ε can be de�ned in terms of the
displacement �eld u as:

ε :=
1

2

(
∇u+ (∇u)T

)
(4.3.11)

where ∇(•) is the (material) gradient operator. This expression is useful in FE
implementations as it will be seen later.

The de�nition of a constitutive equation for both ε̇e and ε̇p is required in this
case. For the elastic part, the constitutive equation is given by an hyperelastic law
for linear, elastic, homogeneous (in time) and isotropic materials:

σ̇ = C : (ε̇− ε̇p) (4.3.12)

also known as Hooke's law, where C is the fourth-order (constant) elasticity tensor
which can also be written as:

C = KbI ⊗ I + 2GsP (4.3.13)

where Kb and Gs are the bulk and shear modulus respectively. The constitutive
relation for ε̇p in the original Gurson, (1977a) is given by the associated �ow
rule. The normality of the plastic �ow rule for the matrix implies macroscopic
normality (Bishop and Hill, 1951):

ε̇p = λ̇
∂Fp
∂σ

(4.3.14)

Here λ represents the plastic multiplier. To �nd ε̇P , it is necessary to develop Eq.
4.3.14:

∂Fp
∂σ

=
H : σ̃

σ2
Y

+ 2
q1q2
κσY

f sinh

(
−3

q2p̃

κσY

)
I (4.3.15)

The identi�cation of the hydrostatic and deviatoric parts gives:

ε̇phyd = λ̇
1

3
tr

(
∂Fp
∂σ

)
I = 2λ̇

q1q2
κσY

f sinh

(
−3

q2p̃

κσY

)
I (4.3.16)

ε̇pdev = λ̇P :
∂Fp
∂σ

= λ̇
H : σ̃dev

σ2
Y

(4.3.17)

In terms of Aravas, (1987) notation (Eq. 4.3.5 and 4.3.6) we can write:

ε̇p = −λ̇
(
∂Fp
∂p̃

)
and ε̇q = λ̇

(
∂Fp
∂q̃

)
(4.3.18)
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Eliminating λ we obtain:

ε̇p

(
∂Fp
∂q̃

)
+ ε̇q

(
∂Fp
∂p̃

)
= 0 (4.3.19)

This equation can be regarded as equivalent to the consistency condition. We can
calculate the plastic multiplicator λ using the de�nition of the equivalent plastic
strain associated with H:

ε̇q = ‖ε̇‖H−1 =
√

2ε̇ : H−1 : ε̇ (4.3.20)

Replacing Eq. 4.3.17 or 4.3.18 in Eq. 4.3.20, we obtain the plastic multiplier:

λ̇ =
ε̇qσ

2
Y

2q̃
(4.3.21)

By de�nition (Eq. 4.3.8), ε̇pdev := ε̇qn. Hence, replacing 4.3.21 in 4.3.17 we �nally
obtain:

n =
H : σ̃dev

2q̃
(4.3.22)

which ful�lls the following property:

‖n‖H−1 =
√

2 (n : H−1 : n) = 1 (4.3.23)

The components of n can be expressed in following way (Ben Bettaieb et al.,
2011c):

[n] =



n1 n3 n4

n3 n2 n5

n4 n5 −n1 − n2


 (4.3.24)

The hardening relations for the dense matrix are given by an isotropic and
kinematic relation. For the isotropic hardening, an evolution equation in terms of
the equivalent plastic strain of the matrix is used:

σY = σY
(
εPM
)

(4.3.25)

For the case of the kinematic hardening, the evolution of the backstress X is
determined by:

X = X
(
ε̇P , f

)
(4.3.26)

X = (1− q1f)X∗
(
ε̇P
)

(4.3.27)

where X∗ is a function that evolves with the macroscopic plastic strain rate. In
this case, we use the A-F model (Eq. 2.2.14):

X∗ = CX
(
Xsatε̇

P −XεP
)

(4.3.28)

Finally, the set of internal variables representing the isotropic hardening and the
porosity are de�ned as:

H1 := εPM H2 := f (4.3.29)

With the related incremental equation de�ned as:

h1 := ε̇pM =
−p̃ε̇p + q̃ε̇q
(1− f)σY

(4.3.30)

h2 := ḟ = (1− f)ε̇p (4.3.31)

All the model equations are summarized in box 4.3.1.
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Box 4.3.1: Equations involved in the implemented GTN model.

1. Elastoplastic split of the strain tensor

ε̇ = ε̇e + ε̇p

2. Elastic law (uncoupled from damage)

σ = C : εe

3. GTN yield function
Fp (p, q,X,H) = 0

where σY = σY
(
εpM
)
and X = X

(
ε̇P , f

)

4. Flow rule

ε̇p

(
∂Fp
∂q̃

)
+ ε̇q

(
∂Fp
∂p̃

)
= 0

5. Normal to the yield surface

n =
H : σ̃dev

2q̃

6. State variables

h1 := ε̇pM =
−p̃ε̇p + q̃ε̇q
(1− f)σY

h2 := ḟ = (1− f)ε̇p

4.3.2 Aravas, (1987) approach

The extension of the return mapping algorithms to elastoplastic pressure-
dependent (I1-dependent) constitutive relations was �rst proposed by Aravas,
(1987). The main feature added in this approach is the introduction of the hy-
drostatic part of the strain, meaning that ε̇phyd (Eq. 4.3.16) is no longer zero, as
in the J2-plasticity models. Subsequently, Ben Bettaieb et al., (2011c) extended
this approach to consider the plastic anisotropy and kinematic hardening. In this
section, both the approaches of Aravas, (1987) and Ben Bettaieb et al., (2011c)
are revised, based on the equations detailed in the previous section 4.3.1.

The backward Euler implicit scheme is chosen based on the work of Ortiz and
Popov, (1985). They showed that for a J2-plasticity model this algorithm gives
better accuracy for strain increments several times bigger that the yield strain.
Moreover, it is unconditionally stable independently of the smoothness of the
yield criterion. Within an incremental problem for a step de�ned as [tn, tn+1], the
(current) strain can be globally represented in an implicit scheme as:

εn+1 = εn + ∆tε̇n+1, ∆t = tn+1 − tn (4.3.32)
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or equivalently:
εn+1 = εn + ∆ε, ∆ε = ∆tε̇n+1 (4.3.33)

where ∆t represents the time increment, n denotes the time at the beginning
of the step and n + 1 the time at the end of the step. Since viscosity e�ects
are neglected, the rate and incremental form of the constitutive equations are
equivalent and therefore we can safely replace ε̇ by ∆ε. In the context of the FE
simulation, the incremental strain �eld ∆ε is assumed to be given at the beginning
of the time step in terms of the displacements �eld u. Hence, the in�nitesimal
strain increment can be de�ned from Eq. 4.3.11 as:

∆ε :=
∆t

2

(
∇u̇n+1 + (∇u̇n+1)

T
)

(4.3.34)

Then we can de�ne the elastic predictor by assuming a freezed plastic �ow (εPn+1 =
εPn ):

σtrial
n+1 := C :

(
εn+1 − εPn

)
= σn + C : ∆ε (4.3.35)

Using Aravas, (1987) notation:

ptrialn+1 :=
1

3
tr
(
σtrial
n+1

)
and qtrialn+1 := ‖σtrial

n+1‖H (4.3.36)

The main di�erence between the algorithm proposed by Aravas, (1987) and Ben
Bettaieb et al., (2011c) is the introduction of the anisotropy tensor H, implying
that qtrialn+1 is no longer coaxial with qn+1 and, as a consequence, the normal tensor
n cannot be explicitly determined from the trial state and must be considered as
an unknown. The elastic trial state is evaluated using the yield function:

Fp
(
ptrialn+1, q

trial
n+1,Xn,Hn

)
= 0 (4.3.37)

If the yield condition is not ful�lled, the plastic corrector is applied to the trial
state:

σ̃n+1 = σtrial
n+1 −Kb∆εpnI − 2Gs∆εqnnn −Xn (4.3.38)

Analogously, using Eq. 4.3.13, Eq. 4.3.35 and 4.3.36:

pn+1 = ptrialn+1 +Kb∆εpn (4.3.39)

qn+1 = qtrialn+1 − 2Gs∆εqn (4.3.40)

Hence, the plastic corrector is fully determined knowing ∆εp, ∆εq and n. Adding
the state variables, the problem involves �nding the following set of unknowns:

{Y } =
{

∆εp,∆εq, n1, n2, n3, n4, n5,∆ε
P
M , f

}T
(4.3.41)

Having 9 unknowns, 9 equations should be available through the residual vector
(tensor) Γ. As presented hereafter, these 9 relations are indeed possible to �nd
from Box 4.3.1. Starting with the yield surface:

Γ1 =Fp (p̃, q̃, Hα) =
q̃2

σ2
Y

− 1 + 2q1f cosh

(
−3

q2p̃

κσY

)
− q3f 2 (4.3.42)
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The �ow rule:

Γ2 =∆εp

(
∂Fp
∂q̃

)
+ ∆εq

(
∂Fp
∂p̃

)
(4.3.43)

The normal to the yield surface:

Γ3,...,7 =

{
n− H : σ̃dev

2q̃

}

i

, i = 1, 2, 4, 5, 6 (4.3.44)

where the subscript i denotes the vector (tensor) component of the contravariant
representation of tensor n (cf. Eq. 4.3.24). The equations involving the state
variables ∆εPM and f are de�ned as:

Γ8 =(1− f)∆εPMσY − q̃∆εq + p̃∆εp (4.3.45)

Γ9 =f − f t + ∆εp
1 + ∆εp

(4.3.46)

where f t is the porosity from the last (converged) step. The jacobian matrix is
calculated within the function JACMOD and the detailed implemented derivatives
are listed in Appendix B. The programmed integration scheme is summarized
in the (pseudo) algorithm 1 while the Newton scheme to solve the problem is
shown in the (pseudo) algorithm 2. NTRIAL is an integer parameter that limits
the number of loop iterations. NTRIAL=40 is found to give good results in terms
of convergence.

An important characteristic of the Newton-Rhapson scheme is the choice of
the initial solution4. The following solution is proposed:

Y
(0)
1 =∆ε(0)p = tr (∆ε) (4.3.47)

Y
(0)
2 =∆ε(0)q =

√
2 (∆ε : H−1 : ∆ε) (4.3.48)

Y
(0)
3,...,7 =n

(0)
i =

{
H : σ̃dev

2qtrial

}

i

; i = 1, 2, 4, 5, 6 (4.3.49)

Y
(0)
8 =∆εPM

(0)
=
q̃Y

(0)
2 − p̃Y (0)

1

(1− f t)σY
(4.3.50)

Y
(0)
9 =f (0) = (1− f t)Y (0)

1 (4.3.51)

This proposed initial solution is similar to the one proposed by Ben Bettaieb et
al., (2011c) but without the need to introduce damping parameter β for ∆εp and
∆εq. Numerical tests performed in Lagamine using a single element showed that
the in�uence of this parameter is small.

In summary, the described approach is similar to that of Ben Bettaieb et al.,
(2011c) in terms of formulation but with important changes in the implementa-
tion. An important (and useful) characteristic of this algorithm is the generality,
including the e�ect of anisotropy and kinematic hardening which are not often

4Convergence is not guaranteed at least if provided an initial solution close enough to the
real solution.
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seen. In terms of CPU time it was shown by Ben Bettaieb et al., (2011c) that the
described algorithm shows a better performance compared to the Aravas, (1987)
and Kojic et al., (2002) approaches. This characteristic comes from the fact that
all the variables within Ben Bettaieb et al., (2011c) are implicitly integrated and
calculated in a single loop while in Aravas, (1987) and Kojic et al., (2002) an
additional loop is added to calculate the state variables. Adding a loop has a
signi�cant impact on the CPU time but reduces the complexity of the algorithm.

4.3.3 Integration using sub-intervals

The above described algorithm was developed for plasticity models in order to
use large time steps. For the damage model this scheme is also useful but using
large time steps in the localization regime does not guarantee good convergence.
To simulate damage, small time steps are needed which implies high simulations
times. A simple and convenient way to improve accuracy without a signi�cant
loss of CPU performance is using sub-intervals. This consists in dividing every
time step with a given fraction:

δt =
∆t

Nintv

(4.3.52)

where δt is the time step of the sub-interval and Nintv is a variable de�ned within
the simulations �les which is kept constant during the simulation. In Lagamine,
this method was initially implemented by Charlier, (1987, section 5.2.2.4) for each
material subroutine, thus circumventing the need of small time steps at the FE
loop level.

As it was explained, sub-intervals are useful in particular cases but using a �xed
value of Nintv all along the simulations will not result in an improved accuracy in
most situations. Thus, Charlier, (1987) proposed to use an automatically adjusted
Nintv. Wang, (1993, section 3.2.5.3) used a criterion based on the deformation
level, where the number of sub-intervals is proportional to the equivalent strain.
In the current implementation of the GTN model the following criterion is used:

Nintv = max {Nintv, Nε∆ε} (4.3.53)

where Nε is weight of the strain increment ∆ε. The relation between ∆t (or
δt) and ∆ε is given in Eq. 4.3.34. Wang, (1993) showed that the use of Nintv

allowed to improve the results when the strain increments ∆ε are high without
an important CPU cost.
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Algorithm 1 Return-mapping algorithm applied to the GTN model. Y (k)
n and k

are the solution vector and iteration index respectively, from the Newton method
described in algorithm 2.

procedure JACext
Initial data: u̇n+1,σn,Xn,Y

(k)
n ,k

Compute the in�nitesimal strain

∆ε :=
∆t

2

(
∇u̇n+1 + (∇u̇n+1)

T
)

Compute elastic trial stress

σtrial
n+1 := σn + C : ∆ε

ptrialn+1 =
1

3
tr
(
σtrial
n+1

)
; qtrialn+1 = ‖σtrial

n+1‖H
Compute isotropic hardening: σY = σY (H1n) from Eq. 2.2.11 or Eq. 2.2.12
Test for plastic loading:
if Fp

(
ptrialn+1, q

trial
n+1,Xn,Hn

)
≤ 0 then

Elastic step: (•)n+1 = (•)trialn+1

exit.
else

if k = 0 then
Calculate {Y }(0) from Eq. 4.3.47-4.3.51

end if
Update variables ∆εpn,∆εqn,nn,Hn from Y (k)

Update plastic strain, stress and backstress

∆εPn+1 =
1

3
∆εpnI + ∆εqnnn

σ̃n+1 = σtrial
n+1 −Kb∆εpnI − 2Gs∆εqnnn −Xn

p̃n+1 =
1

3
tr (σ̃n+1); q̃n+1 = ‖σ̃n+1‖H

Xn+1 = (1− q1H2n)

(
Xn + CXXsat∆ε

P
n+1

1 + CX∆εqn

)

Compute residual Γn+1 from Eq. 4.3.42-4.3.46
Compute jacobian matrix J in subroutine JACmod (Appendix B)
Compute consistent tangent matrix D in subroutine TANmod

end if
end procedure
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Algorithm 2 Newton scheme used to solve the return-mapping algorithm 1.
TOL is a tolerance value for convergence and NTRIAL is the maximum number
of iterations.

Given {Y }(0) ∈ R9,
for k = 0, 1, . . . ,NTRIAL do

JACext({Y }(k),{Γ}(k),[J](k))
if
∥∥Γ(k)

∥∥
∞ < TOL then

exit.
else

Solve [J](k){∆Y }(k) = −{Γ}(k),
{Y }(k+1) := {Y }(k) + {∆Y }(k).

end if
end for

4.4 Consistent tangent matrix calculation

In the context of the FE framework, it is often necessary to �nd a relation of the
following type:

σ = σ (ε) (4.4.1)

Despite particular cases (such as linear isotropic elasticity), this expression is usu-
ally given by a non-linear constitutive equation. Linearization5 of this expression
leads to:

dσ =
∂σ (ε)

∂ε
: dε or dσ = D : dε (4.4.2)

where dσ and dε are the total derivatives of the Cauchy stress tensor and natural
strain tensor respectively. Here, we de�ne D as the tangent modulus. In an
implicit time integration scheme the sti�ness matrix should be calculated at the
end of the present step. It is clear that in order to �nd D it is necessary to �nd
expressions including both total derivatives. To do so two common approaches
are usually used:

• Continuum approach, through di�erentiation of the continuum equations of
Box 4.3.1.

• Algorithm approach, through di�erentiation of the return-mapping equations
of algorithm 1.

The continuum approach was �rstly used because it arises naturally by enforcing
the consistency condition from the set of governing equations (Box 4.3.1). This
method however, is not ideal since the asymptotic quadratic convergence of the
Newton method (at element level) is lost when the time step is not in�nitesimally
small, thus requiring small time steps elsewhere in the simulation. This observa-
tion was �rst noted by Nagtegaal, (1982). Based on this observation, Simo and

5Linearization is the approximation of a given (non-linear) function at a given point using
a linear function. In this case, the tensor function σ is approximated at ε using a Taylor's
expansion. Higher order terms are omitted.
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Taylor, (1985) proved that a consistent tangent matrix derived by linearizing the
set of incrementally formulated equations keeps the quadratic convergence rate.
This crucial di�erence allows to use bigger time steps. Note that when the con-
tinuum approach is used with in�nitesimal time steps it should converge to the
algorithm approach. In practical terms, this is not feasible and both approaches
di�er if large time steps are used as depicted in Fig. 4.2.

εn εn+1

σn

σn+1

Dalgo

Dcont

Figure 4.2: Comparison between the continuum approach and the algorithm ap-

proach to calculate the tangent modulus. In the algorithm approach

the consistency condition is enforced at n+ 1.

For cases without kinematic hardening, the classical algorithm approach to
obtain the consistent tangent modulus involves linearization of Eq. 4.3.38:

dσ = C :

(
d∆ε− d∆εpI − d∆εqn− d∆εq

∂n

∂σ
: dσ

)
(4.4.3)

Subsequently, a system is solved to �nd d∆εp and d∆εq by enforcing the consis-
tency condition. Note that formulating the plastic corrector in terms of ∆εp and
∆εq avoids calculating dλ as in the original continuum or algorithmic approach by
Simo and Taylor, (1985). Kim and Gao, (2005) highlighted that dλ can be hard
to evaluate when the constitutive equations are complex. Hence, they proposed a
new way to obtain the tangent modulus based on the linearization procedure of
Aravas, (1987) but using d∆εP instead of d∆εp and d∆εq as primary unknowns.
This choice has the following implications:

• A more generalized procedure for models which are not developed in terms
of p and q (or ∆εp and ∆εq). For instance, Kim and Gao, (2005) took the
Gologanu-Leblond-Devaux model (Gologanu et al., 1993) as an application
of this approach.

• Less analytical derivatives evaluations (∂(•)
∂σ

instead of ∂(•)
∂p

and ∂(•)
∂q

).

• Instead of the two scalar unknowns (d∆εp and d∆εq), now there are 9 un-
knowns corresponding to the components of d∆εp (reduced to 6 unknowns
if the Cauchy stress tensor is used).

Below we describe a generalization of the Kim and Gao, (2005) approach proposed
by Ben Bettaieb et al., (2011c) which extended the above approach to kinematic
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hardening. Hence, the yield function is also dependent on the backstress, which
itself depends on the plastic strain.

4.4.1 Kim and Gao, (2005) approach

The procedure starts with the elastic relation which in terms of the increments is
expressed as:

σn+1 = C :
(
εn+1 − εPn+1

)
= C :

(
εn+1 − εPn −∆εPn+1

)
(4.4.4)

Note that here the plastic �ow is not freezed as for the trial elastic state in Eq.
4.3.35. Linearizing this equation leads to:

dσ = C : dε− C : d∆εP (4.4.5)

As all variables are referred to step n+ 1 the subscript is removed for the sake of
simplicity. It is easy to observe that �nding a relation between d∆εP and dε will
de�ne the tangent modulus. In order to achieve this some previous mathematical
manipulations are needed. It will be shown throughout this section that d∆εP

can be conveniently related to dσ with:

K : d∆εP = L : dσ (4.4.6)

where K and L are coe�cient tensors. Substituting dσ of Eq. 4.4.5 in Eq. 4.4.6,
we obtain:

d∆εP = (K + LC)−1 : (LC : dε) (4.4.7)

Replacing Eq. 4.4.7 in Eq. 4.4.5, the tangent modulus can be expressed as:

D = C− C(K + LC)−1LC (4.4.8)

Thus, the determination of the tangent modulus D is reduced to �nd the coe�cient
tensors K and L. Given the symmetry of the Cauchy stress tensor, six equations
are needed to express the tensor coe�cients from the total derivatives of the yield
surface and the �ow rule:

Fp
(
σ, εP , Hα

)
= 0 (4.4.9)

∆εP = ∆λ
∂Fp
∂σ

(4.4.10)

The �rst equation for [K] and [L] is given by the total derivative of the yield
condition dFp:

dFp =
∂Fp
∂σ

: dσ +
∂Fp
∂∆εP

: d∆εP +
∂Fp
∂Hα

: dHα = 0 (4.4.11)

where:

dHα = Cαβ

(
∂hβ
∂σ

: dσ +
∂hβ
∂∆εP

: d∆εP
)

(4.4.12)
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and:

Cαβ =

(
δαβ −

∂hα
∂Hβ

)−1
; α, β = 1, 2 (4.4.13)

as there are two state variables. δ is the Kronecker delta. Factorization in terms
of the total derivatives leads to:

(
∂Fp
∂∆εP

+
∂Fp
∂Hα

Cαβ
∂hβ
∂∆εP

)
: d∆εP +

(
∂Fp
∂σ

+
∂Fp
∂Hα

Cαβ
∂hβ
∂σ

)
: dσ = 0 (4.4.14)

Hence, the �rst line of the coe�cient tensor is given by:

[K]1j =
∂Fp
∂∆εP

+
∂Fp
∂Hα

Cαβ
∂hβ
∂∆εP

; α, β = 1, 2 (4.4.15)

[L]1j =
∂Fp
∂σ

+
∂Fp
∂Hα

Cαβ
∂hβ
∂σ

; α, β = 1, 2 (4.4.16)

The remaining equations are derived from the �ow rule. However, the form of Eq.
4.4.10 is not useful as the plastic multiplicator is included. Rearranging the �ow
rule in terms of the components and removing ∆λ:

∆εP11(
∂Fp
∂σ11

) =
∆εP22(
∂Fp
∂σ22

) =
∆εP33(
∂Fp
∂σ33

) =
∆εP12(
∂Fp
∂σ12

) =
∆εP13(
∂Fp
∂σ13

) =
∆εP23(
∂Fp
∂σ23

) = ∆λ

(4.4.17)
Five linearly independent equations are obtained:

Υ1 = ∆εP11

(
∂Fp
∂σ22

)
−∆εP22

(
∂Fp
∂σ11

)
= 0

Υ2 = ∆εP11

(
∂Fp
∂σ33

)
−∆εP33

(
∂Fp
∂σ11

)
= 0

Υ3 = ∆εP11

(
∂Fp
∂σ12

)
−∆εP12

(
∂Fp
∂σ11

)
= 0

Υ4 = ∆εP11

(
∂Fp
∂σ13

)
−∆εP13

(
∂Fp
∂σ11

)
= 0

Υ5 = ∆εP11

(
∂Fp
∂σ23

)
−∆εP23

(
∂Fp
∂σ11

)
= 0 (4.4.18)

The total derivative of, for instance Υ1 leads to:

dΥ1 = ∆εP11∂

(
∂Fp
∂σ22

)
+

(
∂Fp
∂σ22

)
∂
(
∆εP11

)
−∆εP22∂

(
∂Fp
∂σ11

)
−
(
∂Fp
∂σ11

)
∂
(
∆εP22

)
= 0

(4.4.19)
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which applies to Υ2, Υ3, Υ4 and Υ5 too. After some mathematical manipulations
we have the rest of the equations completing the system in the form:

[K]ij =− ∂2Fp
∂σi∂∆εP

∆εP11 +
∂2Fp

∂σ11∂∆εP
∆εPi + . . .

(
− ∂2Fp
∂σi∂Hβ

∆εP11 +
∂2Fp

∂σ11∂Hβ
∆εPi

)
Cαβ

∂hα
∂∆εP

+ . . .

∂Fp
∂σ11

∆εPi −
∂Fp
∂σi

∆εP11; i = 2, . . . , 6, α, β = 1, 2 (4.4.20)

[L]ij =
∂2Fp
∂σi∂σ

∆εPi −
∂2Fp
∂σ11∂σ

∆εP11 + . . .

(
∂2Fp

∂σi∂Hβ
∆εP11 −

∂2Fp
∂σ11∂Hβ

∆εPi

)
Cαβ

∂hα
∂σ

; i = 2, . . . , 6, α, β = 1, 2

(4.4.21)

In order to avoid the abuse of notation σi = {σ}i in the contravariant rep-
resentation. The full set of derivatives can be found in appendix B.3. In the
implemented subroutine the consistent tangent matrix is calculated within the
function TANMOD.

4.5 New extensions

In the previous sections, the equations and algorithms of the implemented Gur-
son model in Lagamine were presented. This review was largely based on the
works of Aravas, (1987), Kim and Gao, (2005) and Ben Bettaieb et al., (2011c).
None of them, however, include the nucleation and coalescence as in the GTN
model. Taking the already presented basis and notations, a new subroutine called
GUR3Dext is developed combining the classical GTN model (i.e., nucleation and
coalescence) with shear extensions. A comparison of the implemented subrou-
tines6 with the new subroutine is shown in Table 4.1. Herein, the (incrementally
formulated) equations involved in the extensions are detailed. The step subscript
n is dropped from the subsequent developments. For further details about the
GTN extensions, see section 3.3.2.

4.5.1 GTN extension

As in Chu and Needleman, (1980), nucleation is added to void growth:

∆f = ∆fg + ∆fn (4.5.1)

If strain-driven nucleation is assumed, we have:

∆fn = A∆εPM (4.5.2)

6It is worth to note that despite being similar to the previous versions the new subroutine
GUR3Dext was entirely reprogrammed.
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and:

A
(
εPM
)

=
fN

SN
√

2π
exp

[
−1

2

(
εPM − εN
SN

)2
]

Hence, Eq. 4.3.46 and Eq: 4.3.31 are modi�ed within GURD3EXT:

Γ9 = f − f t + ∆εp +A∆εPM
1 + ∆εp

(4.5.3)

h2 := (1− f)∆εp +A∆εPM (4.5.4)

The coalescence follows the yield condition modi�cation proposed by Tver-
gaard and Needleman, (1984):

Fp
(
p, q,X, εPM , f

)
= 0 → Fp

(
p, q,X, εPM , f

∗) = 0 (4.5.5)

where f ∗ is the so-called e�ective porosity which changes during the onset of
coalescence:

f ∗ =

{
f if f < fcr
fcr +Kf (f − fcr) if f > fcr

(4.5.6)

Thus, new derivatives involving Fp should be obtained. This extension only mod-
i�es the yield condition, so the state variable equations (Eq. 4.3.30 and Eq.
4.3.31) with porosity f as a variable, remain unchanged. Box 4.5.1 summarizes
the equations needed for this extension.

4.5.2 Extension by Xue, (2008)

This shear extension expands the concept of void volume fraction by introducing a
damage variable D, which replaces the e�ective porosity acting in the coalescence
phase (see section 3.4.2). Xue, (2008) expresses the yield surface equation in terms
of the damage variable D in the following way:

Fp =
q̃2

σY 2
− 1 + 2D cosh

(
−3q2p̃

κσY

)
−D2 = 0 (4.5.7)

where D = q1f
∗. Hence, a new internal variable is introduced into the integration

scheme:
H3 := D (4.5.8)

with the related evolution equations:

h3 :=∆D = KD (q1∆f + ∆Dshear) (4.5.9)

where ∆Dshear is the contribution due to shear:

∆Dshear = kgf
q4gθ(σ)εq∆εq (4.5.10)

kg is a material parameter and q4 = 1/3 for 3D problems. gθ(σ) is a function
dependent on the third deviatoric stress invariant:

gθ(σ) =
2

π
arccos

(
27

2

J3
q3

)
(4.5.11)
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Box 4.5.1: New equations for the GTN extension indicating the modi�ed sub-
routine.

• Initial guess (JACext)

Y
(0)
9 = f (0) = (1− f t)Y (0)

1 +AY (0)
8

• Extension of Jacobian derivatives (JACmod)

Nucleation:

∂Γ9

∂∆εp
=
−1 + f t +A∆εPM

(1 + ∆εp)2

∂Γ9

∂∆εq
=
∂Γ9

∂∆ni
= 0; i = 1, . . . , 5

∂Γ9

∂∆εPM
=− A

1 + ∆εp

∂Γ9

∂f
=1

Coalescence:

α1 =− 3
q2p̃

κσY
∂Γ1

∆f
=2q1Kf cosh (α1)− 2q3f

∗Kf

∂Γ2

∆f
=∆εq

(
−6Kfq1q2 sinh (α1)

κσY

)

• Extension of tangent matrix derivatives (TANmod)

Nucleation:

∂h2
∂∆εP

=(1− f)I

∂h2
∂σ

=A ∆εP

(1− f)σY
∂h2
∂f

=−∆εp

∂h2
∂σY

=−A σ̃ : ∆εP

(1− f)σ2Y

Coalescence:

∂Fp
∂f

=−
σ̃ : H :

∂X

∂f

σ2Y
+ 2q1Kf cosh (α1) + 2q1f

∗∂α1

∂f
− 2q3f

∗Kf

∂2Fp
∂σ∂f

=−
H :

∂X

∂f

σ2Y
+ 2q1Kf

∂α1

∂σ
sinh (α1) + 2q1f

∗∂α1

∂σ

∂α1

∂f
coshα1
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Coalescence is introduced through the term KD, de�ned as in the GTN model:

KD =

{
1 if D < Dcr
1/q1−fc
fF−fc if D > Dcr

(4.5.12)

To implement this proposal in the existent integration scheme, the unknown
vector is now de�ned by:

Yi = {∆εp,∆εq, n1, n2, n3, n4, n5, Hα} (4.5.13)

H1 = ∆εPM , H2 = f, H3 = D (4.5.14)

With this newly de�ned set of equations the modi�cations of the previous set of
equations are:

Γ1 =Fp =
q̃2

σY 2
− 1 + 2q1f cosh

(
−3q2p̃

κσY

)
− q3f 2 = 0 (4.5.15)

Γ9 =f − f t + ∆εp
1 + ∆εp

= 0 (4.5.16)

Γ10 =D −Dt −KD (q1∆f + ∆Dshear) = 0 (4.5.17)

Box 4.5.2 summarizes the equations needed for this extension.

4.5.3 Extension by Nahshon and Hutchinson, (2008)

In the extension from Nahshon and Hutchinson, (2008) the only modi�cation in
the original Gurson model comes from the void evolution relation. Thus, the void
function is governed by the following equation:

∆f = ∆fn + ∆fg + ∆fs (4.5.18)

where:

∆fs = kωfω(σ)
σ̃dev : ∆εP

q̃
(4.5.19)

kω is a material constant and ω(σ) a stress measure de�ned as:

ω(σ) = 1− χ(σ)2 = 1−
(

27

2

J3
q

)2

; 0 ≤ ω ≤ 1 (4.5.20)

Box 4.5.3 resumes the equations needed for this extension.
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Box 4.5.2: New equations for the Xue, (2008) shear extension indicating the
modi�ed subroutine.

• Initial guess (JACext)

Y
(0)
9 =f (0) = (1− f t)Y (0)

1 +AY (0)
8

∆D
(0)
shear =kg

(
Y

(0)
9

)q4
gθ(σ)εqY

(0)
2

Y
(0)
10 =D(0) = KD

[
q1

(
Y

(0)
9 − f t

)
+ ∆D

(0)
shear

]

• Extension of Jacobian derivatives (JACmod)

∂Γ1

∂D
= 2 cosh

(
−3

q2p̃

κσY

)
− 2D

∂Γ2

∂D
= −6

q2
κσY

sinh

(
−3

q2p̃

κσY

)
∆εq

∂Γj
∂D

= 0, j = 3, . . . , 9

∂Γ10

∂∆εp
= −KDq1(1− f)

∂Γ10

∂∆εq
= −KDkgf

q4gθ(σ)εq

∂Γ10

∂ni
= −KDkgf

q4εq∆εq
∂gθ(σ)

∂ni
; i = 1, . . . , 5

∂Γ10

∂∆εPM
= −KDq1A

∂Γ10

∂f
= KDq1∆εp −KDkgq4f

q4−1gθ(σ)εq∆εq

∂Γ10

∂D
= 1

∂gθ
∂ni

=
27

kgπ
√

1− χ2

(
∂J3
∂ni
− 3

J3
q

∂q

∂ni

)
; i = 1, . . . , 5

where:

χ =
27

2

J3
q3
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• Extension of tangent matrix derivatives (TANmod)

∂h1
∂H3

=
∂h2
∂H3

=
∂h3
∂H3

= 0

∂h3
∂H1

=KDq1
∂∆f

∂f
+KDkgq4f

q4−1gθ(σ)εq∆εq

∂h3
∂H2

=−KDq2
σ̃ : ∆εP

(1− f)σ2Y
∂h3
∂σ

=KDkgf
q4εq∆εq

∂gθ(σ)

∂σ
∂h3
∂∆εP

=KDq1(1− f)
∂∆εp
∂∆εP

+KDkgq4f
q4−1gθ(σ)εq

∂∆εq
∂∆εP

∂gθ
∂σ

=
27

kgπ
√

1− χ2

(
∂J3
∂σ
− 3

J3
q

∂q

∂σ

)
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Box 4.5.3: New equations for the Nahshon and Hutchinson, (2008) shear exten-
sion indicating the modi�ed subroutine.

• Initial guess (JACext)

Y
(0)
9 = f (0) = AY (0)

8 + (1− f t)Y (0)
1 + kωf

tω(σtrial)
σ̃trialdev : ∆εP

q̃trial

• Extension of Jacobian derivatives (JACmod)

Γ9 = f − f t + ∆εp +A∆εPM
∆εsmod

= 0

where:
∆εsmod = 1 + ∆εp −∆εω

∆εω =
kωω(σ)σ̃dev

q̃

(
1

3
∆εpI + ∆εqn

)

∂Γ9

∂∆εp
= − 1

∆εsmod
− f t + ∆εp +A∆εPM

∆ε2smod

(
1− ∂∆εω

∂∆εp

)

∂Γ9

∂∆εq
= −f

t + ∆εp +A∆εPM
∆ε2smod

∂∆εω
∂∆εq

∂Γ9

∂ni
= −f

t + ∆εp +A∆εPM
∆ε2smod

∂∆εω
∂ni

; i = 1, . . . , 5

∂Γ9

∂∆εPM
= − A

∆εsmod

∂Γ9

∂f
= 1− f t + ∆εp +A∆εPM

∆ε2smod

∂∆εω
∂f

where:

∂∆εω
∂∆εp

=
kωω(σ̃)

q̃

(
σ̃dev

∂∆εP

∂∆εp
+
∂σ̃dev
∂∆εp

∆εP +
σ̃dev∆εP

q̃

∂q̃

∂∆εp

)

∂∆εω
∂∆εq

=
kωω(σ̃)

q̃

(
σ̃dev

∂∆εP

∂∆εq
+
∂σ̃dev
∂∆εq

∆εP +
σ̃dev∆εP

q̃

∂q̃

∂∆εq

)

∂∆εω
∂ni

=
kω
q̃

(
σ̃dev∆εP

∂ω(σ)

∂ni
+ ω(σ)∆εP

∂σ̃dev
∂ni

+ . . .

· · ·+ ω(σ)σ̃dev
∂∆εP

∂ni
− ω(σ)σ̃dev∆εP

q̃

∂q̃

∂ni

)
; i = 1, . . . , 5

∂∆εω
∂f

=
kωω(σ)

q̃

(
∂σ̃dev
∂f

∆εP − σ̃dev∆εP

q̃

∂q̃

∂f

)

and:

∂ω(σ)

∂ni
=

27
√

1− ω(σ)

q

(
1

q2
∂J3
∂σ

∂σ

∂ni
− 2

√
1− ω(σ)

9

∂q

∂ni

)
; i = 1, ..., 5
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• Extension of tangent matrix derivatives (TANmod)

∂h2
∆εP

,
∂h2
σ
,
∂h2
∂Hβ
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4.6 Numerical validation

The implementation of the extended Gurson model is tested with di�erent results
obtained from the literature, while the plasticity part of the model is compared
with results obtained using the Lagamine subroutine HILL3D_KI. An 8-node
3D brick element, called BWD3D (Duchêne et al., 2007), with a mixed formula-
tion adapted to large strains and large displacements is selected. It involves a
reduced integration scheme (with only one integration point) and an hourglass
control technique. Two versions of the Gurson subroutine are included within
the results: one using the perturbation method implemented inside the material
subroutine and an analytically calculated consistent tangent matrix (section 4.4).
Nonetheless, for the sake of simplicity, only one curve is shown because there is
no noticeable di�erence between both.

4.6.1 Aravas, (1987)

The original implementation from Aravas, (1987) is tested using an hydrostatic
test and a tensile test, in an isotropic material with only isotropic hardening and
considering nucleation and growth of cavities (no coalescence neither shear). The
material parameters are shown in Table 4.2. The results for the hydrostatic test
and tensile test in Fig. 4.3 and Fig. 4.4 are very close to the analytical ones from
Aravas, (1987).

Table 4.2: Material parameters from Aravas, (1987).

Elasto-plastic parameters GTN parameters

E 210 GPa K 1200 MPa q1 1.5 fN 0.04 fc -
ν 0.3 ε0 3.17× 10−3 q2 1.0 εN 0.30 fF -

n 0.1 q3 2.25 SN 0.10

4.6.2 Xue, (2008)

Xue, (2008) tested the implementation of the shear extension using a tensile and
a shear test7 in an isotropic material without kinematic hardening. The material
parameters are shown in Table 4.3. Fig. 4.5 only shows the results from the
shear test, however good results are also obtained for the case of the tensile test.
One additional curve is included (kg = 0.25) to show the strong in�uence of the
parameter kg in shear dominated situations.

It must be highlighted that the shear test performed for this extension and the
following from Nahshon and Xue, (2009), a sub-interval integration of the stress
at each FE step was needed to obtain good results (with the parameter NINTV,
see section 4.3.3). In this way, a su�ciently small time step can be passed to the
law loop without passing through the element loop.

7The author used 3 �nite elements for the tensile test but only one for the shear test.
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(a) Porosity evolution f vs. εp.
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Figure 4.3: Comparison of the predictions of the extended Gurson model for
the hydrostatic test with the ones published in Aravas, (1987) with
f0 =0.04.
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Figure 4.4: Comparison of the predictions of the extended Gurson model for the
tensile test with the ones published in Aravas, (1987) with f0 =0.0.

Table 4.3: Material parameters from Xue, (2008).

Elasto-plastic parameters GTN parameters

E 70 GPa K 409.04 MPa q1 1.5 fN 0.04 f0 0.00
ν 0.3 ε0 3.3× 10−3 q2 1.0 εN 0.20 fc 0.05

n 0.1 q3 2.25 SN 0.10 fF 0.25



94 Chapter 4. Numerical implementation of the Gurson model

0 4.0

Matrix plastic strain [−]

0

500

Equivalent
stress [MPa]

kg = 0

kg = 0.25

kg = 3
GUR3Dext
Xue2008

(a) Eq. stress q vs. volumetric strain εPM .
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Figure 4.5: Comparison of the predictions of the extended Gurson model for
the shear test with the ones published in Xue, (2008). Note that a
small change in kg can induce earlier localization.

4.6.3 Nahshon and Xue, (2009)

Nahshon and Xue, (2009) tested the implementation of the shear extension pro-
posed by Nahshon and Hutchinson, (2008) with an hydrostatic test and a shear
test, using an isotropic material without kinematic hardening. The material pa-
rameters are shown in Table 4.4. In the hydrostatic test a classical GTN model
(without shear or kω = 0) was considered. For the shear test three di�erent values
of kω (see Eq. 3.4.5 for kω impact) are depicted. In Fig. 4.6 and in Fig. 4.7 it can
be seen that the results for both tests are in agreement with those found in the
literature.
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Table 4.4: Material parameters from Nahshon and Xue, (2009).

Elasto-plastic parameters GTN parameters

E 200 GPa K 399.05 MPa q1 1.0 fN 0.04 f0 0.005
ν 0.3 ε0 1.0× 10−3 q2 1.0 εN 0.30 fc 0.15

n 0.1 q3 1.0 SN 0.10 fF 0.25
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(a) Porosity evolution f vs. εp.
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(b) Stress ratio p/σY vs. volumetric strain
εp.

Figure 4.6: Comparison of the predictions of the extended Gurson model for the
hydrostatic test with those published in Nahshon and Xue, (2009).
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(b) Stress ratio q/σY vs. eq. strain εq.

Figure 4.7: Comparison of the predictions of the extended Gurson model for
the shear test with those published in Nahshon and Xue, (2009).
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4.6.4 Anisotropy

In the article by Benzerga and Besson, (2001), the authors identi�ed two di�er-
ent e�ects: the scalar e�ect by means of parameter κ and the directional e�ect
expressed in the damage anisotropy. Since the numerical validation used in this
article is not straightforward, only the e�ect of the Hill/Lankford coe�cients on
damage evolution is analyzed. The simulations were performed using a simple
tensile test in one single FE element using the material parameters from Ben Bet-
taieb et al., (2011c). Three di�erent set of anisotropic coe�cients were selected
and shown in Table 4.5: set 1 has a strong anisotropy (κ =1.69) while set 2 is
slightly anisotropic (κ =2.07). In Fig. 4.8 it is clear that for anisotropic κ (set
1), the directionality e�ect in Fig. 4.8(a) is more important. In the stress strain
curve Fig. 4.8(b) the anisotropy e�ect is harder to observe since in all the three
directions the results are almost the same. However, even if κ for the isotropic
material and set 2 are similar the porosity evolution is clearly di�erent.

Table 4.5: Lankford coe�cients used for the anisotropic simulations.

Isotropic Set 1 Set 2

H 1.0 1.13 0.925
F 1.0 0.69 1.051
G 1.0 0.87 1.076
L = M = N 3.0 3.26 3.182

r0 1.0 1.98 0.86
r45 1.0 2.56 0.99
r90 1.0 1.67 0.88

κ 2.00 1.69 2.07

4.6.5 Strain hardening

The original model from Ben Bettaieb et al., (2011c) includes material anisotropy
(expressed in the material parameter κ) and mixed isotropic-kinematic hardening
(Swift Eq. 2.2.11 and Armstrong and Fredrick, (1966) Eq. 2.2.14). The previ-
ous tests are highly academic cases and represent idealized material properties.
In this section the plastic anisotropy and kinematic hardening implementation is
validated using material parameters extracted from Flores, (2005) for DC06 steel.
Cases with yield anisotropy, isotropic (Swift) and kinematic hardening (Armstrong
and Fredrick) but without damage (Table 4.6) are provided. The element tangent
matrix is calculated using the perturbation method implemented inside the sub-
routine HILL3D_KI. The implementation proves to be good for both anisotropy
and hardening. As seen in Fig. 4.9 no important di�erences are observed.
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Figure 4.8: In�uence of the anisotropic coe�cients of Table 4.5 in the porosity
evolution and in the stress-strain curve of tensile test performed
using a single FE.

Table 4.6: Material parameters from the hardening tests.

Elasto-plastic parameters Anisotropy

E 183.083 GPa K 499.9 MPa F 0.69 L 3.26
ν 0.35 ε0 6.3× 10−3 G 0.87 M 3.26

n 0.25 H 1.13 N 3.26
CX 12.70 r0 1.298
Xsat 16.75 r45 1.589

r90 1.637
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Figure 4.9: Plasticity test performed using the new implementation.
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4.7 Conclusions

In this chapter, a detailed implementation of the GTN model plus shear exten-
sions into the FE framework has been presented. The algorithm developed by Ben
Bettaieb et al., (2011c) for the integration scheme of this model with anisotropic
behavior and kinematic hardening is described and further developed to include
new internal variables. The original feature of this scheme is that all variables are
integrated in an implicit way based on the projection algorithm, while the consis-
tent tangent matrix is obtained analytically. The e�ciency of the implementation
is assessed by comparing the numerical results of homogeneous cases found in
the literature. Nucleation, coalescence and shear extensions are exactly validated,
while anisotropy and kinematic hardening were analyzed. As a general conclusion,
the current model (including all the mentioned extensions) can be used in more
complex simulations involving heterogeneous strain paths. Because models involv-
ing the GTN extensions (shear, anisotropy and mixed hardening) are not widely
available, further work could be focused on more academic oriented research such
as iso-error maps, localization analysis, etc. on simple loading schemes. How-
ever this line was not followed in order to devote more time to identify material
parameters and incremental forming applications.





Chapter 5

Material parameter characterization

of the GTN model

The Gurson model (and its extensions) includes several parameters of
di�erent nature. Some of them have micromechanical roots while others are
strictly phenomenological. Since the coupling and relation among the pa-
rameters is highly non-linear, it is hard to determine a priori the in�uence
of each on the �nal result with a sensitivity analysis. Hence, a methodol-
ogy should be developed in order to obtain a robust set of parameters with
both numerical and physical meaning. In this chapter, an identi�cation
methodology for damage parameters is proposed and brie�y detailed, based
on results found in the literature and an experimental-numerical approach.
This hybrid approach requires microscopic measurements to estimate the
void volume fraction near the crack, a test campaign with selected specimen
shape and loading, and numerical simulations. The method is applied on a
DC01 ferritic steel sheet. An extended version of the Gurson model, incor-
porating plastic anisotropy, kinematic hardening, void nucleation, growth,
coalescence and shear is used. Overall, the described identi�cation method-
ology leads to satisfactory results when compared to other techniques.

5.1 Introduction

The original version of the Gurson, (1977a) model has only one material parameter
outside the elasto-plastic set: the initial void volume fraction of the sound mate-
rial. The subsequent extensions of the model add speci�c parameters regarding
nucleation, growth, coalescence, void shape, distribution, etc. In the most com-
monly used extension of the Gurson model, the Gurson-Tvergaard-Needleman
(GTN) extension, up to 8 parameters are identi�ed:

• f0, the initial volume fraction of the Gurson, (1977a) model;

• correction factors q1 and q2 (and eventually q3);

• εn, Sn and fn, for the strain based nucleation model;

101



102 Chapter 5. Material parameter characterization of the GTN model

• fcr and fF , coalescence parameters.

• kω and kg, material parameters of the shear extension by Xue, (2008) and
Nahshon and Hutchinson, (2008) respectively.

Determining these parameters is far for being trivial. Indeed, the actual nature
of the damage leading to fracture presents challenges for both the numerical sim-
ulation and the experimental characterization. Unlike plasticity, which is usually
characterized using homogeneous strain �elds at macroscopic scale, damage and
fracture frequently present strong localization associated with microscopic voids
which eventually coalesce to form a crack.

In the following chapter, a review of experimental and numerical procedures
commonly used to identify the material parameters within the literature, are pre-
sented and discussed. The GTN model parameters are taken as a reference but
the discussion is not only limited to this model. The �nal goal is to identify the
proper methodology for the characterization of the DC01 ferritic steel sheet, the
main material used in the current research.

5.2 Identi�cation methodologies

One of the main characteristics of the ductile fracture is the localization phe-
nomenon associated with large plastic strain gradients in zones with crystal defects
(like inclusions). For these ductile materials, if the deformation is not large enough
to soften the material, the in�uence of these crystal defects on the macroscopic be-
havior can safely be neglected. For instance, in a tensile test, it is possible to rely
on the beginning of the stress-strain curve for experimental-numerical validation
of plasticity models. After a certain level of plastic deformation, the macroscopic
response of the specimen is notoriously modi�ed due to microscopic defects. The
random distribution of these defects induces an heterogeneous stress-strain �eld,
increasing its gradient and localizing the deformation.

Because the material model has to capture the localization phenomenon, the
force vs. displacement curve is commonly used instead of the stress vs. strain
curve. When measuring forces (using force cells) and displacements (through
axial extensometers or DIC), localization is already included within the observable
(macroscopic) behavior of the material. Nevertheless, the measured force is also a
function of the specimen geometry. Thus the results lack the generality required
to identify a constitutive law, which is expressed in terms of stress and strain. As
we will see, most of researchers employ a combination of both force-displacement
and stress-strain curves using di�erent approaches.

According to Ben Bettaieb, (2008), there are three possible identi�cation
methodologies, irrespective of equipment, time and money availability:

1. Based on microstructure characterization, in order to obtain parameters
such as the initial void volume fraction f0, initial void shape factor, initial
void spacing between close cavities, etc. In theory, damage can be entirely
characterized using microscopic measurements so this type of identi�cation
is highly recommended.
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2. Based on mechanical tests, to identify macroscopic measurands like the dis-
placement at the onset of rupture, the force-displacement curve under di�er-
ent values of triaxiality, the evolution of the Lankford coe�cient, etc. The
use of techniques like DIC allows to obtain the strain �eld from a particular
zone of the specimen.

3. Calibration by numerical simulations, to compare the results obtained using
FE simulations and experimental tests. With an optimization algorithm,
it is possible to �t the parameters for a particular �nite element model.
Theoretically, all the parameters can be found using this approach, however
the strong non-linearity of the equations and the coupling among parameter
relations induce several local minima increasing the risk to identify a non-
unique set of parameters.

The experimental characterization of damage usually involves specially de-
signed specimens, di�erent from those used for plasticity characterization. Such a
development is based on the experimental evidence that strain at fracture expo-
nentially decreases as triaxiality increases (Hancock and Brown, 1983) (see Fig.
5.1) and that the fracture locus is strongly path dependent. In order to vali-
date numerical models, it is necessary to cover a wide range of stress states each
of them de�ned by a single value of triaxiality1. This approach is achieved by
tensile specimens with varying notch radii, which arti�cially create a neck, avoid
instabilities and generate three dimensional stress states. However, the character-
ization can also be performed using compression bars (at low stress triaxiality),
cracked specimens, Charpy specimens, etc. An important drawback of these tests
is that necked regions contain large stress and strain gradients through the cross
section, thus making the identi�cation of the stress state extremely di�cult. As
the damage mechanisms within the nucleation, growth and coalescence of cavities
are strongly dependent on the stress state, it is hard to distinguish which one(s)
of these damage phases is (are) actually happening. In this respect, it is also im-

Figure 5.1: The fracture strain exponentially decreases with the triaxiality (de-
creasing the notch radius of the specimen implies a higher triaxial-
ity), from Pineau and Pardoen, (2007).

portant to understand the role of each parameter in the model and the sensitivity

1and eventually a Lode parameter value.
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of the results to them. For example, Picart et al., (1997) showed that an accu-
rate characterization of f0 is not needed for small values of the initial porosity in
the base material. In the following section, some identi�cation methodologies are
chronologically presented and discussed with a special focus on articles dealing
with thin metal sheets.

Besson, (2004) proposed some guidelines to identify material parameters. It
is important to mention that whenever it is possible, damage should be measured
before and after the tests. In between, di�erent load levels could be applied to
determine the damage kinetics. Regarding microscopic image processing and anal-
ysis, 3D information can be retrieved from 2D images using stereology relations
(like void or inclusion volume fraction, damaged speci�c surface, integral of the
average curvature, number of objects, etc.). Some special algorithms exist in or-
der to enhance the details of raw images of interest, they facilitate the subsequent
measurements of observed particles and defects. After processing the images (and
as a general rule) the following questions should be asked:

• Is the nucleation of new voids observed?

• Is there any in�uence of the loading type or of the microstructure on the
development of voids?

• Do we observe damage initiation by particle cracking, interface decohesion,
matrix cracking around inclusions, etc.?

It is often assumed that during the early stages of damage the shape of the voids
most of the time is spherical. Nevertheless, the interdistance and morphology of
the voids can have an enormous importance on how the coalescence will occur.

Lievers et al., (2004), instead of relying on tests with heterogeneous defor-
mation used a forming process with a high formability (SPIF) to identify the
nucleation parameters of the GTN model. The basic hypothesis adopted in the
article is that, since characterization in homogeneous zones is limited by an insta-
bility (such as local necking or shear bands), it is thus more e�cient to enlarge this
homogeneous step phase by delaying localization. In this case, it is claimed that a
forming process such as SPIF can suppress necking. The limit of its formability is
controlled by the evolution of voids and shear bands. The analyzed materials by
Lievers et al., (2004) are three di�erent aluminum alloys: AA5182, AA5754 and
AA6111. Several SPIF quadrangular pyramid frustums of 1.0 mm thickness were
created with di�erent forming angles thus allowing di�erent strain levels. Cir-
cular sections of the frustum were cut and then density measurements based on
Archimedes' principle, were taken in the deformed and undeformed material. Us-
ing a single �nite element simulation, the nucleation parameters were �tted until
the porosity evolution versus the major true strain was close enough to the exper-
iments. The authors also claim that a minimum level of void damage is needed
to use this technique. More details on the SPIF application of this procedure and
the experimental results can be seen in sections 5.4.3 and 6.1.2.

Lassance et al., (2007) introduced an extended version of the Gurson model
applied to the extrusion process on AlMgSi alloys. It found that ductility is
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a�ected by several factors such as stress triaxiality, chemical composition, casting
homogenization (all related with the microstructure of the billet), strength, strain-
hardening and strain rate sensitivity of the matrix around voids. The methodology
comprised:

• Characterization by X-ray and electron microscopy (SEM) of the alloys after
their homogenization .

• Ductility measurements with uniaxial test on smooth and notched cylindri-
cal rods.

• Characterization of damage using tensile tests and fractographic analysis.

The methodology is shown in Fig. 5.2.

(a) Smooth and notched
round bars.

(b) SEM micrographs show-
ing void growth and coales-
cence.

(c) Micromechanical
modeling of fracture
through micro- and macro-
mechanical tests.

Figure 5.2: General methodology used by Lassance et al., (2007).

Xue et al., (2010) discussed the calibration procedure for a Gurson, (1977a)
model extended to coalescence (Tvergaard and Needleman, 1984) and shear
(Nahshon and Hutchinson, 2008) without nucleation. Only two damage-related
parameters were identi�ed: f0 and kω. Additionally to these parameters, the typ-
ical size of the �nite elements within the mesh was calibrated. The experimental
setup consisted of three di�erent tests:

1. A round bar under tension, to infer the stress-strain behavior of the undam-
aged material (plasticity).

2. A mode I compact tension specimen, to calibrate the initial void volume
fraction f0 and the element size D.

3. A mode 2 shear o� specimen, to determine the shear damage coe�cient kω.

They are shown in Fig. 5.3. The test 1 (Fig. 5.3(a)) was used to study the
post-necking behavior. One important feature of this procedure is the study of
the in�uence of the parameters with each other. The author mentioned that f0
and kω should not a�ect the identi�cation of the true stress-strain curve. Strain
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(a) Mode I compact tension specimen. (b) Ten-
sile round
bar.

(c) Shear o� test.

Figure 5.3: Specimens used by Xue et al., (2010).

localization should be accurately captured using a small element size. It was found
that the �nite element size must be of the order of the spacing between voids.

Dunand and Mohr, (2011a) proposed a methodology to calibrate a shear mod-
i�ed Gurson model for a TRIP steel sheet. Based on an experimental campaign
using notched specimens (Dunand and Mohr, 2010) plus a newly developed but-
ter�y specimen (Dunand and Mohr, 2011b). It is highlighted that the tests have
loading conditions ranging from pure shear to equibiaxial tension thus covering
an important range of triaxiality and Lode parameter values. The approach uses
DIC measurements to detect the instant (not the location) of the onset of fracture
(considered as the �rst discontinuity in the measured displacement �eld). Then,
FE simulations were performed in order to detect the FE with the highest value
of equivalent strain in order to trace the triaxiality and Lode parameter histories
for this element. The shear modi�ed Gurson model is calibrated performing a
sensitivity analysis within four di�erent tests:

• Uniaxial tension to determine the matrix hardening parameters.

• Biaxial punch test to �t the correction parameters q1 and q2, plus the coa-
lescence parameters.

• Notched test R =20 mm, to identify the nucleation parameters.

• Shear dominated test with the butter�y specimen, to �t the Gurson shear
extension parameter kω.

They are shown in Fig. 5.4. The model is then validated comparing prediction
and experimental curves of force vs. displacement (from the machine).

From the above review, it is clear that the characterization using microscopic
measurements is highly desirable. Nevertheless, even if the setup is not available,
it is still possible to calibrate the model relying solely on macroscopic tests. In the
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(a) Notched specimens and specimen with a central hole.

(b) Punch test. (c) Butter�y specimen.

Figure 5.4: Tests campaign performed by Dunand and Mohr, (2011a).

following sections, a microscopic and macroscopic characterization of the DC01
steel sheet is performed.



108 Chapter 5. Material parameter characterization of the GTN model

5.3 Macroscopic characterization

The fracture specimens should be de�ned in such way to allow the study of dam-
age and fracture for di�erent loading types in the studied ductile material as to
identify and check the reliability of the numerical model. From an experimental
standpoint, plasticity can be studied using specially designed tests (e.g., uniaxial
tensile test, monotonic and Bauschinger shear tests, orthogonal test, etc.) based
on the hypothesis of homogeneous distribution of stress and strain. In general,
plasticity models behave well when they rely on these standard test campaigns. A
correct description of the yield locus and the hardening law can be obtained when
deformations remain under the localization limit i.e., before the appearance of dif-
fuse necking in a tensile test specimen. This classical and well known framework
can be naturally extended to model the post-necking behavior. However, dam-
age (and eventually fracture) is a more complex phenomenon involving properties
outside the mere description of the yield limit and the hardening law. Therefore,
it requires a more rigorous analysis. Damage, localization and fracture depend
on the stress state (represented by the stress triaxiality and the Lode angle), in-
ternal imperfections (such as the void volume fraction), hardening law, sample
geometry, etc. Moreover, the post-necking zone has such a degree of heteroge-
neous stress and strain �elds that an hybrid experimental-numerical approach is
often required in order to obtain the histories of the local stresses and the strains
leading to fracture.

Considering the above, the specimen selection plays an important role when
characterizing the material damage and fracture. In general, the specimen geom-
etry should allow a clear analysis of the three following points:

• Plastic strain level in the specimen as an indicator of the crack appearance;

• Triaxiality near the crack due to its in�uence in damage development;

• Non-homogeneous localization of plastic deformation in a particular zone.

Based on these points, 4 di�erent specimens are selected:

• Two specimens with di�erent notches of radius R =5 mm and R =10 mm,
respectively. The notch acts as a stress concentrator which arti�cially in-
creases the triaxiality at the center of the specimen. The triaxiality level
within the specimen is inversely proportional to the notch radius.

• A specimen with a central hole of diameter φ =15 mm. Following the anal-
ysis of Dunand and Mohr, (2010), this type of specimen induces a stress
concentrator without necking development with a more stable value of the
triaxiality throughout the deformation.

• A special shear specimen designed by Peirs et al., (2011). A particularity
of this specimen is that failure occurs at very low values of triaxiality thus
being hard for the classic Gurson model to capture damage leading to frac-
ture. Hence, this geometry is appropriate to evaluate the reliability of shear
extensions of the Gurson model.
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These specimens are cut using WEDM and are depicted in Fig. 5.5. The tests are

(a) R =5 mm. (b) R =10 mm. (c) Central
hole.

(d) Shear.

Figure 5.5: Selected specimens for the macroscopic characterization.

performed using a Zwick machine with a load capacity of ±100 kN and the same
DIC hardware setup detailed in section 2.3.2, with Istra4D as the correlation
software. It is important to highlight that the displacements are taken from a
(virtual) displacement gauge draw with the DIC software and not directly from
the analog data from the machine. This decision is based on two observations:

• Sliding could be observed between the clamps and the specimen.

• Rigid body motion of the specimen with respect to the machine. Hence, the
displacement is overestimated when directly measured by the machine.

The displacement gauges used in the DIC measurements are depicted in 5.6.
Strains are measured in the axial (loading) direction and taken from a point
located at half-length of the gauge. Another important remark is that the DIC

(a) Notch R =5 mm. (b) Notch R =10 mm. (c) Central hole. (d)
Shear.

Figure 5.6: Displacement gauges used to obtain the displacement of the speci-
men relative to the reference position. Strain is taken at half-length
of the gauge.
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software parameters are slightly di�erent from those used for plasticity charac-
terization in chapter 2. As discussed in section 2.3.2, the subset size should be
lower than those used for plasticity characterization in order to capture heteroge-
neous deformation gradients. The experimental results are gathered in Fig. 5.7.
Note that both specimens with notch reached almost the same force level but
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(a) Force vs. displacement.
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(b) Axial Strain vs. displacement.

Figure 5.7: Experimental results of the fracture tests performed in di�erent di-
rections. Error bars are omitted for the sake of simplicity.

for di�erent displacement at fracture. For the specimen with central hole, the
displacement to fracture is among those identi�ed for the specimens with notch.
The shear test has a very low value of force compared to the machine capacity, so
it was di�cult to remove noise from data. Nevertheless, acceptable results were
retrieved from the load cell.

Another important aspect to consider is the fracture strain. Because of the
large deformation undergone by the speckle pattern on the specimen surface, ex-
perimental data is lost in zones with large plastic deformation (the speckle pattern
is destroyed). Some authors (Dunand and Mohr, 2010) used an hybrid numerical-
experimental approach to obtain this value, relying on both FE simulations and
DIC measurements. In this research, it was observed that the fracture strain
is highly dependent on the material model so no reliable value of strain could
be identi�ed a priori (i.e., before a proper material identi�cation). Dunand and
Mohr, (2010) extrapolated the strain-hardening curve of a notched specimen to
capture softening behavior but still only relying on a (non damage) plasticity
model. In the current work a di�erent approach is followed: interpolation of the
strain-displacement experimental curve using di�erent polynomial degrees. It is
then possible to extrapolate the fracture strain until the observed displacement at
fracture of the virtual gauge, as this value (and not its derivative) is less sensitive
to the speckle pattern. This approach is shown in Fig. 5.8 and the obtained
results are depicted in Table 5.1. Variation between di�erent tests of the fracture
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displacements df is less than 3.0% for the specimens with notch and hole and
around 10.0% for the shear specimens.
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Strain [−]
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Experimental

Interpolation

Figure 5.8: Strain-to-fracture extrapolation based on the experimental strain-
displacement curve interpolated using a 4th degree polynomial.

Table 5.1: Experimental fracture strain for the fracture specimens.

Specimen Direction df [mm] εf

Notch R =5.0 mm
RD 3.377± 0.098 0.667± 0.113
45 3.193± 0.042 0.594± 0.038

Notch R =10.0 mm
RD 5.168± 0.032 0.819± 0.017
45 4.498± 0.010 0.592± 0.057

Central hole
RD 4.068± 0.085 0.880± 0.076
TD 4.192± 0.042 0.826± 0.014

Shear
RD 2.039± 0.148 0.246± 0.058
45 2.754± 0.346 0.304± 0.032

5.4 Microscopic characterization

The macroscopic mechanical test campaign proposed in section 5.3 is supported
by microscopic measurements. The main purpose is to give a physical frame of
the observed (macroscopic) behavior. The methodology comprises the following
points:

1. Early estimation of damage based on empirical equations related to the
amount of damage and the chemical composition of the material.

2. Fractography analysis of the broken specimens.
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3. Optical microscopy image analysis of selected samples to characterize the
damage evolution.

5.4.1 Previous estimations

Void nucleation is frequently found in the presence of inclusions, acting as inho-
mogeneities (stress concentrators) within the material matrix. It is possible to
approximate the initial void volume fraction for steels using a semi-empirical for-
mula proposed by Franklin, (1969), relating the volume of non-metallic inclusions
with the chemical composition of the material. In this way, f0 can be estimated
from the amount of chemical composition of sulphide (S), manganese (Mn) and
oxygen (O) in the material:

f0 = finc

√
dxdy

dz
(5.4.1)

where dx, dy and dz are the average dimensions of the inclusions within three
orthogonal directions x, y and z. finc is the void volume fraction of inclusions and
is given by:

finc ≈ 0.054

(
S(%)− 0.001

Mn(%)

)
+ 0.005O(%) (5.4.2)

where S(%), Mn(%) and O(%) are the weight percentages of sulphide, manganese
and oxygen present in the matrix. If a spherical shape is assumed for inclusions,
then Eq. 5.4.2 is simpli�ed to f0 = finc. This approach has been suggested
by Bauvineau et al., (1996), Maire, (2004), and Yang et al., (2012). Benzerga
et al., (2004) used this formula to estimate the amount of MnS inclusions in
a low/medium carbon alloy steel. Soyarslan et al., (2012) did not applied the
formula in a ferritic-martensitic DP1000 steel, arguing that a modi�cation should
be introduced in order to consider the combined e�ect of inclusions and secondary
phases. In the case of the DC01 steel sheet, the initial porosity can be estimated
as f0 ≈1.75× 10−4 using the chemical composition presented in Table 2.1.

Parameters of the GTN model, like the initial porosity f0 and the nucleation
parameters fn and εn, can robustly be estimated from microscopic measurements.
The classical coalescence criterion of Tvergaard and Needleman, (1984) is, how-
ever, strictly phenomenological and an estimation of the parameters fcr and fF has
to be empirically identi�ed using load-displacement curves and an inverse model-
ing approach. Koplik and Needleman, (1988) showed using unit cell calculations
that fcr depends more on the initial porosity f0 than on the triaxiality. Based on
these results, Benseddiq and Imad, (2008) and Yang et al., (2012) proposed the
following relation for an axisymmetric specimen of a NiCr steel:

fcr = 0.0186 ln f0 + 0.1508 (5.4.3)

Note that if f0 is negligible, then fcr =0.1508, which is near the value of fcr =0.15
originally proposed by Tvergaard and Needleman, (1984). Zhang et al., (2000)
investigated the e�ect of fF on the global numerical response using plane strain
cell models. The following empirical equation was obtained:

fF = 0.15 + 2f0 (5.4.4)
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Thus fF can be �xed to fF =0.15 for low initial porosities. The estimations for
the DC01 steel sheet are summarized in Table 5.2. Note that f0 ≈1.75× 10−4

estimated using Eq. 5.4.2 leads to negative values of fcr and fF . Hence the value
f0 ≈8.0× 10−4 (obtained in section 5.4.4) is used to estimate fcr and fF . It
is important to remark that all these empirical coalescence formulas are derived
from the observed behavior of asymmetrical specimens or unit cells. In the present
research, we use thin metal sheets in which the underlying mechanisms of damage
and fracture can be di�erent.

Table 5.2: DC01 steel material parameters estimations based on empirical for-
mulas.

Parameter Estimation Reference

f0 1.75× 10−4 Franklin, (1969)
fcr 0.0181 Yang et al., (2012)
fF 0.1516 Zhang et al., (2000)

5.4.2 Fracture surfaces

Fractographies of the broken tensile specimens (section 2.4) were taken by Anne
Mertens of the A&M department (MMS division) using a �eld-emission envi-
ronmental scanning electron microscope (SEM) Philips XL30 at the Center for
Applied Technology of Microscopy of the ULg. Di�erent images from specimens
at di�erent directions from the RD were analyzed with no observable di�erence.
Fig. 5.9 shows a common trend in all taken SEM microphotographs, in which (for
tensile tests) the inner region of the sample has a typical equiaxed dimples (indi-
cating ductile fracture) while the zones near the surface have parabolic dimples
(from shear loads). This observation con�rms that in a tensile test the material
failure is due to the growth and coalescence of voids. Hence, we can conclude that
the GTN model approach is appropriate for this type of material.

5.4.3 Measurements based on the Archimedes' principle

Most of the metallic materials deform at constant volume in the absence of dam-
age. When damage occurs the volume of the material increases (Maire, 2004).
Hence, it is possible to relate the amount of the void volume fraction with the
density of the material through the equation:

∆f

1− f = −∆ρ

ρ
(5.4.5)

Mertens et al., (2012) assessed the feasibility of using density measurements to
characterize damage based on the Archimedes' principle. Using a methodology
developed by Lievers et al., (2004) applied to a SPIF formed sample, this method
is supposed to lead to quicker results compared to other methods, such as image
analysis by optical microscopy, which is quite tedious and time-consuming.
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Equiaxed dimples.

Transition zone.Parabolic dimples.

Figure 5.9: SEM microphotographs showing a ductile behavior in the inner re-
gion (equiaxed dimples) of the sheet and shear zones near the surface
(parabolic dimples). There is sharp transition between the core and
the surface.

The analyzed sample is a 1.0 mm thick pyramid frustum with a 70◦ wall an-
gle (just above the maximum drawing angle) to induce failure of the material.
Samples of ≈1.0 cm× 1.0 cm were cut on both sides of the crack as shown in Fig.
5.10(a). Segment A is right above the crack, segment B is in the pyramid wall,
segment D in the curved region of the part and segment E in the undeformed zone
that was �xed by the clamping rig. The densities of the samples were measured
following a procedure based on the Archimedes' principle (Ratcli�e, 1965). The
samples were �rstly weighed in air (mass A) and secondly in a liquid (mass B)
of known density ρl (deionised water). The specimen density ρ0 is then obtained
through:

ρ0 =
A

A−B
ρl (5.4.6)

The results are shown in Fig. 5.11(a). It can be observed that segment E, which
does not undergo any important deformation, has a density similar to the base
material (BM). As expected, density is lower in deformed samples, particularly in
segment B which is next to the crack. In order to assess this method, densities
are converted to void volume fraction through Eq. 5.4.5 and Eq. 5.4.6 and
then compared with results from microscopic image analysis (approach detailed in
section 5.4.4), as shown in Fig. 5.11(b). There is a big discrepancy between these
two methods with a di�erence of two orders of magnitude. Another di�erence is
that density measurements are not sensitive to local variations of the void volume
fraction within the 1.0 cm× 1.0 cm, hence giving an average value of porosity.
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(b) Image analysis results.

Figure 5.10: Porosity distribution over a SPIF pyramid frustum. The image
analysis results were obtained following the procedure detailed in
section 5.4.4.
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(a) Density measurements.
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Figure 5.11: Density measurements and equivalent void volume fraction of the
SPIF samples and the base material.
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This is clearly seen for segment D in Fig. 5.11, which is overestimated when
compared to the image analysis result of Fig. 5.10(b). A normal trend would
show a lower porosity in segment D than B, since it is farther from the crack.
Mertens et al., (2012) argues that this could be ascribed to di�erent factors, such
as the contribution of open porosities on the average volume fraction of voids.
These open porosities can be linked to the surface roughness, which is a common
feature on sheet forming (e.g. the orange peel e�ect) and expected on this DC01
steel sheet (see section 2.1.2 for the relation between the surface roughness and
the grain size). This view is also supported by the fact that segment B, which is
part of the wall and the last segment to make contact with the tool, exhibits a
great surface roughness as a result of the contouring toolpath and also the greatest
dispersion in the density values. It is conclude that density measurements are not
appropriate for damage characterization of this DC01 steel sheet.

5.4.4 Microscopic image analysis

An image analysis of broken samples of the mechanical tests (section 5.3) was
performed by Hakan Paydas from the A&M department (MMS division) of the
ULg. The preparation of the specimen for image analysis involves a special pro-
cedure where each specimen is cut using WEDM near the crack zone, coated with
a phenolic resin and polished until having a mirror �nish near the surface. The
sample preparation is shown in Fig. 5.12 and allows to have a clearer view of
the porosity. After the preparation, di�erent images were taken for each speci-

(a) Plane strain specimen. (b) Specimen with notch.

(c) Specimen with a central hole. (d) Shear specimen.

Figure 5.12: Samples preparations of di�erent specimens to measure porosity.
Three images are taken (with the same magni�cation) in the zone
indicated with squares.
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men (including the base material) using an Olympus BX 60 M optical microscope
equipped with a Olympus UC30 digital camera. The fracture surfaces are shown
in Fig. 5.13. The fracture surface of the specimens have the typical bathtub-like

(a) Notch R =5 mm.

(b) Notch R =10 mm.

(c) Central hole, left side. (d) Central hole, left side.

(e) Shear specimen.

Figure 5.13: Image compositions of the fracture zone of fracture specimens pre-
pared for image analysis.

pattern of the �at-type of fracture mode, common in thin metal sheets (Benzerga
and Leblond, 2010). Some notched specimens also presented a �at mode in the
center and slightly slanted near the edges, as shown in Fig. 5.14. The observed
fracture modes are summarized in Table 5.3.

The numerical processing of the images was performed using ImageJ (Abrà-
mo� et al., 2004; Schneider et al., 2012) to quantify the porosity and to measure
di�erent granulometric parameters describing the morphology and size of each
identi�ed particle. The numerical treatment of the images involves the following
steps:
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(a) Notch R =5 mm, �at. (b) Notch R =10 mm,
slanted.

(c) Tensile, slanted. (d) Central hole, �at.

(e) Shear.

Figure 5.14: Fracture modes observed for di�erent specimens.

Table 5.3: Fracture modes observed in the specimens.

Sample Fracture mode

tensile slanted
Notch R =5 mm mostly �at
Notch R =10 mm slanted
Central hole �at
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1. Convert the image from color to greyscale (16-bit).

2. Contrast increment.

3. Automatic thresholding of the image with the six di�erent algorithms im-
plemented in ImageJ .

4. From the binary image with the applied algorithm, measure porosity and
other parameters like the void shape.

(a) Specimen preparation. (b) Binary image with Yen's thresh-
olding algorithm.

Figure 5.15: Image preparation and numerical processing of image analysis.
Note that the black dots represent the inclusions within the ma-
trix.

In this work, the Yen's thresholding algorithm (Sezgin and Sankur, 2004; Yen et
al., 1995) led to the best results in terms of the number and shape of the detected
particles within the processed image. Assuming that each particle corresponds
to a void, three morphological patterns were obtained using this algorithm: the
aspect ratio, circularity and orientation of the detected voids. The aspect ratio is
de�ned as:

AR :=
major axis
minor axis

(5.4.7)

and is obtained after �tting an ellipse on the detected void. The orientation θ
of the void is given by this ellipse, being the angle between the primary (major)
axis of the ellipse and a line parallel to the X-axis of the image. The circularity
is de�ned as:

CR := 4π
Area

perimeter
(5.4.8)

where a value of CR =1.0 means a perfect circle. Since the value approaches to
CR =0.0, it indicates an increasingly elongated shape.

The �rst analysis was carried on using the base material i.e., without any
type of deformation. Preliminary results on broken tensile specimens showed
that some voids can be very small (∼1 µm), so a high magni�cation had to be
used. In the following results, 2.5x corresponds to a scale of 1.361µm/pixel while
10x to 0.342µm/pixel. Six di�erent images of the base material were taken and
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Table 5.4: Image analysis data obtained from the base material using ImageJ
(Average values from six samples).

Initial porosity (%) Circularity Aspect ratio Orientation (o)
f0 CR AR θ

0.0779± 0.0290 0.9067± 0.0149 1.5667± 0.0735 67.8095± 8.4907

the results are shown in Table 5.4. Porosity is found to have a high dispersion
depending on the image. Since the value identi�ed f0 =8.0× 10−4 is relatively
small, the presence of large inclusions has an important in�uence in analyzed data.
Voids tends to be elongated even if circularity is close to 1.0.

The next step is to analyze the fracture specimens following the procedure
described above. Images were taken near the crack as in Fig. 5.13. A Matlab

script was developed to obtain the porosity distribution near the crack and the re-
sults are shown in Fig. 5.16. The porosity is found to be very low (�1.0× 10−3)
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(a) Notch R =5 mm.
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0
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Porosity [%]

(b) Notch R =10 mm.

Figure 5.16: Porosity distribution in the notched samples (in percentages).

in all analyzed samples. Moreover, they do not follow any particular trend as
an exponential distribution (due to nucleation, growth and coalescence of voids)
near the crack as expected. Identical observation is found for other morphological
patterns. A possible explanation for these results is that the polishing step was
performed too close to the specimen surface and did not reach the core. Near the
surface, as analyzed in section 5.4.2, dimples are parabolic with hardly observable
voids. So this microscopic section did not provide interesting results for the Gur-
son model identi�cation, except for f0 value which will be set to 8.0× 10−4 from
Table 5.4. A more adapted technique could have been tomography as used, for
instance, by Maire and coworkers (c.f. Bouaziz et al., 2008; Bouchard et al., 2008;
Fansi et al., 2013; Landron et al., 2011; Maire, 2004; Weck et al., 2006).
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5.5 Numerical identi�cation

The previous section focused on the experimental characterization of damage
based on both microscopic and macroscopic measurements. This current sec-
tion uses these experimental results to calibrate the Gurson model parameters of
nucleation, coalescence and shear. As previously stated, the strong non-linearity
of the implemented equations greatly complicates the task. Hence, the following
methodology is proposed:

1. Evaluation of the plasticity model through an experimental-numerical com-
parison of the force-displacement and strain-displacement curve. The goal
here is to choose one hardening law for subsequent developments. This �rst
step also evaluates the e�ect of both mesh and boundary conditions, before
their use within the damage model identi�cation.

2. Characterization of the nucleation law, coalescence model and shear exten-
sions using inverse analysis with Optim (described in section 2.7.2).

3. Analysis of the evolution of triaxiality, Lode angle, etc.

All the simulations were performed using the BWD3D �nite element (see section 6.2
for further details), which only has one integration point. The meshes were gener-
ated using Gmsh (Geuzaine and Remacle, 2009) and then exported to Lagamine
using a Matlab script. They are shown in Fig. 5.17. A sensitivity was carried
to out to determine the in�uence of the mesh on the results. Three FE meshes
were analyzed, two with 3 element layers in the thickness direction and di�erent
mesh re�nement and one with 10 element layers, as seen in Fig. 5.18. The results
of this mesh sensitivity analysis are shown in Fig. 5.20(a). There is no appre-
ciable in�uence of the mesh on the results, so mesh1 will be used for subsequent
simulations.

5.5.1 Plasticity simulations

The plasticity material set of parameters obtained in chapter 2 are applied to
simulate the fracture specimens. Here, no damage is simulated since the goal is to
check the plastic model predictions. The simulations are stopped at the fracture
displacement but no crack prediction is available. Therefore, and depending on
the hardening law, four set of parameters are available: pure isotropic hardening
using the Swift or Voce law or Mixed hardening using the Swift or Voce law plus
Armstrong and Fredrick, (1966) kinematic hardening. Moreover, four sets of pa-
rameters are added depending on if they were identi�ed using an isotropic (Von
Mises) or anisotropic (Hill, 1948) yield locus. Table 5.5 summarizes all the sets.
The displacement is calculated from the nodes matching the DIC virtual gauge
shown in Fig. 5.6, while the strain in the loading direction is obtained from an el-
ement depicted in Fig. 5.19. A comparison between the yield locus is given in Fig.
5.20(b), using set 3 and set 7. The sets using the VM yield locus are slightly
better than the sets using Hill, (1948), but they are not able to correctly predict
the force at 45◦ from the RD, as shown in section 2.7.3.2 (Fig. 2.25). Hence,



122 Chapter 5. Material parameter characterization of the GTN model

(a) Tensile mesh.

(b) R =5 mm
mesh.

(c) R =10 mm
mesh.

(d) Central hole
mesh.

(e) Shear
mesh.

Figure 5.17: Meshes used for the identi�cation methodology. For the tensile
specimen, specimens with notch and central hole, symmetry con-
ditions are applied so only one quarter of the specimen is simulated.

(a) mesh1: 1708 ele-
ments, 3 layers.

(b) mesh2: 3864 ele-
ments, 3 layers.

(c) mesh3: 10 626 ele-
ments, 10 layers.

Figure 5.18: Meshes used for the sensitivity analysis.

Table 5.5: Set of plastic parameters tested.

Von Mises Hill, (1948) Swift law Voce law A-F model

set 1
√ √

set 2
√ √

set 3
√ √ √

set 4
√ √ √

set 5
√ √

set 6
√ √

set 7
√ √ √

set 8
√ √ √
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(a) Notch R =5 mm. (b) Notch R =10 mm.

(c) Center hole. (d) Shear.

Figure 5.19: Elements in the FE mesh where the strains (and other state vari-
ables) are extracted.

0 1.75 3.5

Displacement [mm]

0

4000

8000

Force [N]

mesh1
mesh2
mesh3

(a) Mesh in�uence.
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(b) Von Mises versus Hill, (1948) yield locus.

Figure 5.20: Preliminary results regarding the mesh and yield locus in�uence
on the force vs. displacement curve, in the specimen with a notch
R =5 mm.
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the results for the Hill, (1948) yield locus (set 5 to set 8) are analyzed, in Fig.
5.21 for the force-displacement curve and in Fig. 5.22 for the strain-displacement
curve. In general, the force prediction in Fig. 5.21 tends to overestimate the
experimental measurements while fracture displacement and strain predictions in
Fig. 5.22 and Fig. 5.23 reasonably match with DIC measurements with no clear
trends of under or overestimation. This is a consequence of the plastic identi-
�cation procedure of chapter 2. As shown in Table 2.15, the optimized set of
Hill, (1948) parameters (section 2.7.4.2) are closer to the SMM approach than the
SSF approach. Thus, a better prediction of deformation than forces is expected.
As damage development is associated with material softening, from a pragmatic
point of view a slight overestimation of force is desirable when simulating without
damage as subsequent damage development will soften the material.

From the numerical results, it is observed that the pure isotropic Voce hard-
ening law tends to localize the plastic �ow before the end of the test. Localization
refers to the phenomenon involving the development of strong strain gradients
near a particular zone. This strain localization is in the form of a neck developed
in the notch test, as observed in Fig. 5.24. This phenomenon starts when the
increase on the load bearing capacity (hardening) is not longer balanced with the
reduction of the cross section area, as predicted by the Considère, (1885) criterion.
Hachez, (2008) observed the same early localization for Al6082 sheets of di�erent
thickness. In order to circumvent this localization, Hachez, (2008) proposed to
use di�erent linear extrapolations of the Swift law in order to allow the material
to harden more than the limit given by the real hardening law. This approach,
despite being useful in cases explored by Hachez, (2008), is not needed to be im-
plemented in this work as it was clear from Fig. 5.21 that using a mixed-type
of hardening stabilizes the deformation for the pure Voce law thus avoiding lo-
calization. The observed localization of the pure Voce law seems to be due to
both a geometric factor (thin sheet metal) and the constitutive modeling (lack of
hardening at the end of the stress-strain curve). To conclude, it is observed that
the set of parameters with the mixed Swift-Armstrong and Fredrick, (1966) and
Hill, (1948) yield locus is the only that overestimates the force level for the spec-
imen with central hole. This set of parameters will be used hereafter for damage
characterization.

5.5.2 Damage characterization

f0 is �xed to 8.0× 10−4 based on the results obtained using image analysis from
section 5.4.4. This is a very low value and in some cases could be neglected,
but preliminary numerical tests showed that f0 can have an important impact
on nucleation and coalescence parameters. Hence, f0 =8.0× 10−4 will be used
hereafter. As previously stated, nucleation and coalescence parameters of the
Gurson model can be identi�ed through an inverse analysis using Optim. Several
issues prevent the use of this approach entirely:

• Each simulation can take a considerable amount of CPU time (more than
one hour for simulations using the meshes depicted in Fig. 5.17). Single-
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Figure 5.21: Force vs. displacement using the load cell for experiments and
simulations using plasticity parameters (without damage). Using
sets with the Hill, (1948) yield locus of Table 5.5.
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Figure 5.22: Strain vs. displacement using DIC for experiments and simulations
using plasticity parameters (without damage). Using sets with the
Hill, (1948) yield locus of Table 5.5. Legend in Fig. 5.21(e).
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Figure 5.23: Strain vs. displacement for the shear tests, using DIC for experi-
ments and simulations using plasticity parameters (without dam-
age). Using sets with the Hill, (1948) yield locus of Table 5.5.
Legend in Fig. 5.21(e).

(a) Notch R =5 mm. (b) Notch R =10 mm.

Figure 5.24: Equivalent plastic strain distribution at the end of the simulation
using the (pure isotropic) Voce law.
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element simulations, used for plasticity characterization as in chapter 2, can
not be used due to the heterogeneous nature of damage simulations and
strain distribution.

• Optim could require several simulations to be performed in each optimiza-
tion loop, depending on the selected number of tests to optimize.

• Nucleation parameters are very sensitive to the initial proposed solution.
This is a characteristic of the optimization function which has several local
minima.

• Nucleation and coalescence are not relevant at the beginning of the simu-
lation, so weights should be introduced into Eq. 2.7.2 in order to optimize
particular zones of the force-displacement curve.

• In its current state, Optim does not have a parallel version and can not
be coupled with the existing parallel version of Lagamine. Therefore, per-
forming an optimization can take (several) days without any guarantee that
the obtained solution will fall within a desired range.

Hence, a di�erent approach is used here. Because each simulation takes a consid-
erable amount of CPU time and performing an optimization requires even more
time, Lagamine will be used until a certain displacement d1. This displacement
is determined based on the comparison between the results using a set with only
initial porosity (f0 =8.0× 10−4, without nucleation neither coalescence) and the
experimental curve. The point where both curves separate is de�ned to be d1.
At this point, the set of results is saved by Lagamine. Since nucleation pa-
rameters are very sensitive to the initial solution, several preliminary simulations
were performed in order to �nd parameter ranges that will allow a good force
prediction. Then, the set of results saved is retrieved by Optim to perform an
optimization over the nucleation parameters. Indeed, Optim is used to validate
a set of preliminary nucleation parameters by identifying another set which does
not signi�cantly di�ers from the preliminary set. Nucleation parameters are found
using this approach applied to the notched specimens. Fig. 5.25 schematize the
described approach. This approach has some limitations that are worth mention-
ing. When the initial damage f0 is considerable or when nucleation is important,
it is sometimes di�cult to separate the e�ect of plasticity and damage. Hence,
starting with the saved set of results from Lagamine at d1, the identi�ed set
of nucleation parameters do not consider the coupling between damage and plas-
ticity in the beginning of the simulation (d < d1). The numerical tests con�rm
that for the case of the DC01 steel, the coupling between plasticity and damage
at the beginning of the curve is negligible and hence d1 can be considered as an
acceptable start for damage development.

Coalescence parameters were not possible to identify using this methodology,
as they are strongly sensitive not only to the initial proposed solution but also
to the convergence parameters of the simulation (maximum time step, value of
norms telling that convergence is reached, maximum number of iterations, . . . ).
Function weights seem to be necessary to perform an inverse analysis within this
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d1 d2
Displacement

Force Plasticity Nucleation Coalescence

Lagamine Optim

Figure 5.25: Damage parameters identi�cation methodology. Lagamine is
used until a displacement d1. Then, Optim is used to verify the
proposed parameters performing an optimization from d1 until d2.

zone of the force vs. displacement curve. For this reason, a sensitivity analy-
sis was used with the physically based values obtained in section 5.4.1. Several
simulations were performed using the notched specimens in order to �x the most
representative parameters. It must be remarked that for coalescence identi�ca-
tion, the calibration of material parameters is highly dependent on the previous
set of nucleation parameters. Hence, each calibration step (i.e., nucleation and
then coalescence) are iteratively repeated until satisfactory results are obtained.

After obtaining nucleation and coalescence parameters, the shear parameters
are obtained relying on the shear tests. Indeed, these parameters are arguably in-
dependent of the calibration step performed in the notched specimens because the
GTN shear extensions are relevant only when triaxiality is low. However, Nielsen
and Tvergaard, (2010) showed that the extension by Nahshon and Hutchinson,
(2008) predicts void growth due to shear even for large triaxialities, thus they
introduced some corrections factors (detailed in section 3.4.3). Therefore, the
calibration of these correction factors should be done in the notched tests.

Another issue involves the integration scheme of the GTN implementation, as
the damage material parameters were found to be sensitive to the (user de�ned)
parameter Nintv:

δt =
∆t

Nintv

(5.5.1)

which is the subinterval integration parameter of the subroutine GUR3Dext, de-
tailed in section 4.3.3. It was observed that this value plays an important role in
the results, both in terms of accuracy and convergence. For instance, it is noted
that:

• For a damaging model (f0 6=0.0), the force and the strain are a�ected by
Nintv but not some state variables such as the porosity, the triaxiality or the
Lode parameter.

• Convergence is harder to achieve using coalescence parameters than only
using nucleation parameters. Higher values of Nintv are thus required to
simulate coalescence.
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• Nintv does not have an in�uence on the global results (in terms of force,
displacement, strain, etc.) for a plasticity model without damage (f0 =0.0).
It only a�ects the convergence of the simulation at the constitutive law level.

The explanation behind these observations is the calculation of the sti�ness matrix
at the element level (subroutine ELEMB in Lagamine). When the tangent matrix
is analytically calculated, there is a contribution from both element derivatives
(large deformations) and the material subroutine. Changing Nintv will a�ect the
material contribution and thus the calculation of force and displacement at the
element level. In order to overcome this unwanted characteristic of the model,
another methodology is proposed:

1. Find preliminary values of Nintv that will allow convergence, using a prelim-
inary set of nucleation and coalescence parameters.

2. With these values it is possible to �nd a ∆εmax that will allow convergence
of the simulation. It is also possible to estimate the required time interval
that will simulate coalescence without convergence issues. To do this, it is
necessary to observe the evolution of ∆εq in a simulation 2.

3. With the value of ∆εmax, de�ne Nintv (and Nε eventually) for the next sim-
ulations.

4. Rede�ne or validate the nucleation parameters.

5. Find coalescence and shear parameters.

It is found that a strain increment of ∆εq <0.004 allows to simulate coalescence
without convergence issues, needing Nintv ≈10 and Nε ≈3000.

Following the above procedure, the obtained parameters are shown in Table
5.6. No important in�uence of the mesh re�nement was observed for the tests
simulations neither in terms of accuracy of the results nor convergence character-
istics. The meshes of Fig. 5.17 were used. The Xue, (2008) shear extension did

Table 5.6: Set of parameters obtained for the GTN model extended to shear.

Nucleation Coalescence Shear

Set name f0 fN SN εN fc fF kω

coa1 0.0008 0.0025 0.175 0.42 0.0055 0.135 -
coa2 0.0008 0.0025 0.175 0.42 0.0045 0.145 -
coa3 0.0008 0.0025 0.175 0.42 0.0025 0.170 -
shear1 0.0008 0.0025 0.175 0.42 0.0055 0.135 0.25
shear2 0.0008 0.0025 0.175 0.42 0.0045 0.145 0.25
shear3 0.0008 0.0025 0.175 0.42 0.0025 0.170 0.075

not converge for most of the tests simulations and was discarded from the analysis.

2∆εq can be considered as an estimation of the deformation tensor ∆ε. Refer to section 4.3
for the precise de�nition of ∆εq.
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Di�erent set of parameters were obtained since it was not possible to retrieve one
single set matching all the tests. Comparing the set of coalescence parameters
with the physically-based estimation of Table 5.2, fF has a good agreement but
fcr is one order of magnitude lower than the estimation. This con�rms the fact
that fF is easier to estimate in ductile metallic materials than fcr, which depends
not only on f0 but on other factors such as the triaxiality.

The results using the parameters from Table 5.6 are shown in Fig. 5.26 for
the force vs. displacement curve, in Fig. 5.28 and Fig. 5.29 for the axial and
shear strain respectively. Note that in Fig. 5.29 the shear strain is also included,
because its magnitude is higher than the axial strain on this test. First, the
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Legend.

Figure 5.26: Force vs. displacement using the load cell for experiments and FE
simulations predictions using the GTN model extended to shear.
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Figure 5.27: Force vs. displacement using the load cell for shear specimen ex-
periments and FE simulations predictions using the GTN model
extended to shear. A zoom is added to have a clearer view of the
near the fracture displacement.

identi�cation was done for the nucleation and coalescence parameters without the
shear extension. coa1 set is optimal for the R =5 mm notch specimen, the shear
specimen and specimen with central hole. coa2 set is optimal for the specimen
with central hole and coa3 set is adapted to the specimen with R =10 mm notch.
In general, it was observed that the sets coa1 and coa2 match very well the �at
type of fracture, depicted in Fig. 5.14. The specimen with R =10 mm notch (and
the tensile test) presents a slanted type of fracture which is not captured by the sets
coa1 and coa2. Based on these coalescence parameters, three di�erent sets using
the shear extension proposed by Nahshon and Hutchinson, (2008) were obtained:
shear1, shear2 and shear3. In addition, correction parameters proposed by
Nielsen and Tvergaard, (2010) (see Eq. 3.4.8) were identi�ed in order to reduce
the in�uence of the Lode parameter at high triaxialities ie., for the specimens with
notch and central hole. It was found that the proposed correction parameters,
T1 =0.35 and T2 =0.70, leads to good results. The e�ect of the correction is
shown in Fig. 5.30. Independent of the shear set of parameters used, the force in
the shear tests is over predicted in less than 8% (see Fig. 5.27). This can be due
to the role of the shear anisotropy coe�cients L, M and N , which are assumed
to be equal for thin sheets.

In general, the model is able to correctly capture the coalescence features of the
material. Table 5.7 presents a qualitative summary of the comparison between
experimental and numerical results. In theory, an unique set of parameters of
GTN parameters should be able to predict coalescence for all analyzed tests.
Nevertheless, in this work it was not possible to obtain except if lack of accuracy
is agreed on the notch R =10 mm; in this case, the set shear1 is acceptable. Some
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Figure 5.28: Strain vs. displacement using DIC for experiments and FE simu-
lations predictions using the GTN model extended to shear.
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Figure 5.29: Strain vs. displacement using DIC for the shear test and FE sim-
ulations predictions using the GTN model extended to shear.
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Figure 5.30: Force vs. displacement results on the R =5 mm notch specimen
showing the in�uence of the Nielsen and Tvergaard, (2010) cor-
rection. It can be seen that the correction improves the shear
extension prediction at high triaxiality.
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possible explanations are:

• The GTN yield locus parameters q1 and q2 were not calibrated. They can
play a role similar to nucleation parameters, as shown by Dunand and Mohr,
(2011a).

• It is shown in section 5.5.1 that kinematic hardening can stabilize the de-
formation. Nevertheless, in chapter 2, it is clearly observed that the A-F
model is not adequate for this material because it does not predict hardening
stagnation.

• Yield locus anisotropy can play an important role on damage development,
here only the Hill, (1948) is taken into account.

• The numerical integration scheme using sub-intervals requires further anal-
ysis due to the role that parameter Nintv and Nε play in the predictions and
convergence of the simulations.

• A di�erent test campaign could lead to di�erent results.

Table 5.7: Qualitative comparison between the FE predictions using the GTN
model and experimental results.

Set R =5 mm R =10 mm Central hole Shear

Force level shear1
√ √ √

over
shear2

√ √ √
over

shear3
√ √ √

over

Force decrease shear1
√ − − √

shear2 − − √ √

shear3 − √ − √

Strain shear1 too low too low too low
√

shear2 too low too low too high
√

shear3 too low better
√ √

In terms of the strain prediction, almost no in�uence of the set of parameters
on the strain level is observed. For the specimens with notch (Fig. 5.28(a) and
Fig. 5.28(b)), the FE simulation was not able to predict the sudden increase of
strain measured by DIC (localized strain band). As a consequence, the strain at
fracture predicted by the Gurson model is severely underestimated on the notched
specimens. This increase on the strain was also (experimentally) observed by
Dunand and Mohr, (2010, 2011b), due to the development of di�use and localized
necking at the center of the specimen. On the contrary, DIC measurements over
the specimen with central hole did not present this behavior. The explanation is
the severe distortion of the speckle pattern applied on the surface, which disallowed
the observation of the strain evolution near fracture. For this specimen, Table 5.1
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predicts a strain at fracture of εf ≈0.88 which is far from the last measured point
(≈0.53 in Fig. 5.28(c)). Forthcoming experiments using this specimen should
consider a reduced hole diameter in order to have less distortion at the width.
Shear tests in Fig. 5.29 also did not present strain localization as present in the
notched specimens. This is highly desirable as this test is designed to identify
shear parameters prone to failure of the shear type.

To further explore the reasons behind the fact that a localized strain band
observed in notched specimens (see Fig. 5.28(a) and Fig. 5.28(b)) is not predicted,
it is necessary to look at the iso-values maps of the strain. Fig. 5.31 to Fig. 5.34
show a comparison between the axial strain measured in the loading direction
using DIC and FE predictions for the (shear) set of parameters of Table 5.6 for
the four specimens geometries. Fig. 5.35 provides the shear strain within the
shear sample.
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Note that the same scale is used in DIC measurements and FE predictions to
facilitate the analysis. Qualitatively, it is observed that the strain distribution is
satisfactorily predicted by the FE simulations. The quantitative di�erences be-
tween both can be caused by di�erent factors, such as DIC software parameters
(displacement/strain smoothing, subset size, etc.) or the FE simulation charac-
teristics (material mode, FE size, etc.).

An hypothesis of the inability of the Gurson model to capture the strain lo-
calization on notched specimens is given hereafter. As discussed in section 5.5.1,
localization can be triggered due to an insu�cient increase in hardening. However
within the FE results, the Gurson model predicts that the material loses all his
load carrying capacity due to void growth and coalescence before strain localizes.

On the other hand, the non-damage model used by Dunand and Mohr, (2010)
is able to correctly predict this strain localization (cf. Dunand and Mohr, 2011b).
These results were obtained using a modi�ed isotropic hardening, which extrapo-
lates the hardening behavior after localization without the need of a any damage
model3 to induce softening, as shown in Fig. 5.36.

Figure 5.36: Strain hardening extrapolation used by (Dunand and Mohr, 2010)
and its in�uence on the force displacement curve.

In this PhD, the Gurson model is used with a classic isotropic hardening
law (Swift), without any type of extrapolation. Therefore, localization is trig-
gered solely by relying on the void evolution. As experimentally demonstrated
by Pardoen and Delannay, (1998), damage evolution in metallic materials largely
depends on the hardening exponent n. Faleskog et al., (1998) and Kim et al.,
(2004) con�rmed this using unit cell calculations. Hence, there must be a balance
between damage increase (expressed by the fast decrease of the force) and lim-
ited hardening (expressed by fast increase of the strain) in the simulations of the
notched specimens.

3Unfortunately, in other publication by the same authors (cf. Dunand and Mohr, 2011a),
they use a shear modi�ed Gurson model but no comparison with the strain predictions is given.
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Another evidence regarding the importance of hardening is given by Mansouri,
(2014), who evaluated the ability of the GTNmodel to predict localized necking. A
sensitivity analysis was carried out in order to evaluate the in�uence of damage (f0,
fN , etc.) and hardening (K, n and ε0) parameters on the prediction of localized
necking. Mansouri, (2014) found that the damage parameters have a considerable
in�uence on the deformation levels at the onset of localized necking, whereas
hardening parameters have only a minor in�uence on the localization predictions.
The reason behind this numerical observation is that the Gurson model does not
take into account the coupling between the evolution of the damage variable and
the matrix hardening. As already mentioned, damage is the only mechanism
triggering loss of ellipticity and material localization. This decoupling between
the damage variable and hardening is due to the way that hardening is introduced
into the Gurson model, as noted by Leblond et al., (1995) and Leblond and Perrin,
(1996). As shown in section 3.5.2, the strain hardening behavior of the matrix is
introduced heuristically into the Gurson model.

Recently, Tekoglu et al., (2015) discussed the mechanisms (failure scenarios)
leading ductile fracture. In particular, (macroscopic) localization and void coales-
cence, which are not easily distinguished under certain values of triaxiality. This
article concludes that at high triaxialities both mechanisms are clearly separated,
while at low stress triaxialities they occur simultaneously. This could explain why
the FE predictions using the Gurson model are better for the shear test. Never-
theless, the competition between these two modes of localization is still a subject
of research (viz. Tekoglu et al., 2015).

5.5.3 State variables analysis

Fig. 5.37 shows the evolution of the triaxiality and the Lode parameter (used in
the Nahshon and Hutchinson, (2008) shear extension, refer to Appendix A.1.2)
versus the equivalent (macroscopic) plastic strain. The state variables are obtained
for the elements depicted in Fig. 5.19. They help identifying the stress state acting
on each test. The results are obtained using the set shear1 of Table 5.5. It is
observed that triaxiality is high (over 1

3
) in the specimens with notch and hole,

and low for the shear tests. As expected, the Lode parameter evolution for the
shear test is almost constant during the test, while for the notched tests it remains
under 0.5.

Fig. 5.38 to Fig. 5.41 shows iso-values maps of triaxiality and the Lode
parameter at di�erent displacements. The results are depicted without a smooth
transition between elements, in order to highlight the strong gradients near the
fracture zone. The same trends described in Fig. 5.37 are here observed globally.
In particular, the zones where the onset of fracture is experimentally observed
present high values of triaxiality for notched specimens and the specimen with
a central hole. The shear test present a low value of triaxiality (near zero) and
a Lode parameter close to 1.0 at the fracture zone. Fig. 5.42 and Fig. 5.43
present the results for the porosity distribution. It is important to note that due
to the shear extensions by Nahshon and Hutchinson, (2008), the porosity variable
f should be regarded as a damage parameter more than the (strictly) physical
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Figure 5.37: State variables evolution for di�erent fracture tests.

sense of the void volume fraction of voids. The iso-values scale is modi�ed in order
to have fcr =0.0055 as the highest value. Because porosity rapidly increases after
fcr due to the coalescence model, using a higher value within the scale will hide
the gradients. Porosity rapidly increases in the zone near the edges in the notches
specimens, while for the specimen with hole it develops from the inside (hole) to
the outside (edge). For the shear tests, it is also observed that porosity quickly
develops at the edges.
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5.6 Conclusions

In this chapter, the methodology behind the material parameters identi�cation
of the GTN model for the DC01 steel sheet is presented. The chapter starts by
reviewing some identi�cation methodologies found in the literature for sheet met-
als, re�ecting the need of both a microscopic and macroscopic analysis. Then,
a microscopic characterization based on fractography and optical microscopy im-
age analysis is detailed. Measurements based on Archimedes' principle are also
presented despite not being useful for the current research. An experimental cam-
paign, comprising notched specimens, a specimen with a central hole and a shear
specimen, is carried out. The specimens were selected based on the well-known
e�ect of triaxiality and the Lode parameter on damage development and fracture.
The results show that the performed microscopic measurements are not represen-
tative of the actual damage, but they give a qualitative estimation of the physical
mechanism of fracture. For instance, the material exhibits a clear ductile behavior
that can be modeled using the GTN model. The initial porosity of the material
was determined using optical microscopy measurements on the base material.
The macroscopic campaign allowed to identify the rest of the parameters for nu-
cleation, coalescence and shear. An unique set of results matching all experiments
was not possible to obtain, so di�erent sets of parameters are retrieved following
an approach that included inverse and sensitivity analysis. The set shear1 will
be used hereafter giving overall good results obtained in the majority of tests. A
numerical-experimental comparison of strain in the loading direction shows that
the model is able to correctly predict the strain distribution except at the end of
the test. The model does not to predict strain localization because of the decou-
pling between the damage variable and hardening. This is an inherent limitation
of the GTN model, due to the heuristic approach followed to introduce the strain
hardening behavior in the matrix. Globally, the set of parameters are able to
capture coalescence in all tests, including the shear test. Further work can be
focused to analyze the e�ect of the kinematic hardening or yield locus anisotropy
on damage development. The competition between void coalescence versus strain
localization should be considered in future research involving the GTN model.





Chapter 6

Damage modeling in SPIF

Single Point Incremental Forming has several advantages over tradi-
tional forming, such as the high formability attainable by the material.
Di�erent hypothesis have been proposed to explain this behavior, but there
is still not a clear understanding of the relation between the particular stress
and strain state induced in the material during forming and the material
degradation leading to localization or fracture. In this chapter, the scope
is to validate the GTN damage model extended to shear for SPIF FE sim-
ulations. A complete state of the art about SPIF, covering geometrical ac-
curacy, deformation mechanism, formability and damage is also presented.
Three types of SPIF test, namely the line test, cone test and the pyramid
test, are simulated using the Lagamine FE code. The line test is used
to validate the simulations by comparing force and shape prediction with
experimental results. Then, a two-slope pyramid is simulated to evaluate
the performance of the solid-shell formulation. In general, the results of the
shape prediction are in good agreement with the experimental results, both
for the line and pyramid test. The force FE predictions are higher than
the experimental values, probably because of the boundary conditions. For
the pyramid test, the GTN model predicts a premature onset of material
failure compared with the experimental failure angle for the same material
and geometry. To further analyze the failure prediction, several simulations
of SPIF cones at di�erent wall angles are performed. It is concluded that
the GTN model underestimates the failure angle on SPIF. This is due to a
bad coalescence modeling and inherent limitations of the GTN model.

6.1 State of the art

This SPIF state of the art considers four topics:

• SPIF FE simulations, in section 6.1.1.

• Deformation mechanisms of the sheet during the forming process, in section
6.1.2.

• Deviations of the intended geometry, in section 6.1.3.

153
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• Material formability, in section 6.1.4.

• Damage and fracture, in section 6.1.5.

These topics were chosen based on the thesis scope (damage prediction can be
readily linked to the formability and the deformation mechanisms) but also on
the wide experimental evidence regarding shape inaccuracies, which present an
interesting challenge for numerical simulations.

SPIF and his variants has been covered by several authors. One of the �rst
review articles of the process was due to Jeswiet et al., (2005), a classical work
covering almost every aspect of the SPIF process, from the experimental setup to
FE analysis. Despite the date of publication, it is interesting to �nd that many
questions and issues remain unsolved. Emmens and van den Boogaard, (2010)
performed a review of technical developments on incremental forming through
the years, digging into patents (from USA and Europe, but also from Japan)
mainly issued from the automotive industry. It is important to note that the
review from Emmens and van den Boogaard, (2010) is more focused on ISF than
SPIF. Recently, Reddy et al., (2015) reviewed SPIF concentrating their e�orts in
the shape inaccuracy and formability.

6.1.1 SPIF FE simulations

FE simulations of SPIF have been a subject of extensive research in the last years.
In the beginning, it became clear that simulating SPIF was challenging for the
following reasons:

• The small contact zone implies small time steps in order to guarantee con-
vergence. Moreover, an accurate constitutive modeling of the contact phe-
nomenon is needed.

• The incremental nature of the process requires huge number of stages (time
steps) to model the entire process, implying large simulation times.

• High levels of deformation are usually attained, so FE can be severely dis-
torted being prone to locking or hourglass modes.

• Several mechanical phenomena, like springback and bending, act during the
process thus requiring adequate constitutive models and FE formulations.

Several approaches have been proposed to meet these drawbacks looking for an
acceptable compromise between CPU time and accuracy. They will be described
hereafter, together with a compilation of works involving SPIF FE simulations in
the Lagamine FE code.

6.1.1.1 SPIF FE simulations in Lagamine

Henrard thesis (Henrard, 2008) is a comprehensive work on SPIF FE simulations,
gathering information about di�erent meshes, element types and other related
publications (e.g. Bou�oux et al., 2007; Eyckens et al., 2010; Henrard et al.,
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2005a,b, 2010). An explicit scheme was also implemented in Lagamine (cf. Hen-
rard et al., 2007). In general, the Lagamine shell element COQJ4 (Henrard, 2008;
Jetteur and Frey, 1986; Li, 1995) was found to have the best compromise between
accuracy and CPU time, even in the case of a two-slope pyramid (Guzmán et al.,
2012b). However, the element was not able to simulate a 90◦ angle cone failing
to predict the shape correctly (Henrard, 2008, chapter 8). Bou�oux et al. (Bouf-
�oux et al., 2007, 2008a,b, 2010, 2011; Henrard et al., 2010) addressed the force
prediction on SPIF, demonstrating the importance of the identi�cation method of
the material model on the predicted forces and the limitations of the COQJ4 shell
element to represent the through-thickness gradients. Lequesne et al., (2008) later
implemented an adaptive remeshing method for the COQJ4 element, based on the
tool movement and deformation level of the elements (cf. Bou�oux et al., 2011).
The above mentioned limitations of the shell elements motivated the use of solid
elements; in particular, the solid-shell element formulation. The SSH3D solid-shell
element (Ben Bettaieb et al., 2011a; Duchêne et al., 2011) was used to simulate
the line test (Guzmán et al., 2012a), the two-slope pyramid (Duchêne et al., 2013)
and a 70◦ angle SPIF cone (Guzmán, 2013; Guzmán and Habraken, 2013). Later,
the solid shell element RESS (Alves de Sousa et al., 2007) was used as well as
an extension of the adaptive remeshing of Lequesne et al., (2008) to solid-shell
elements by Sena et al., (2013, 2015). These FE elements will be later described
in section 6.2.

6.1.1.2 Explicit vs. implicit

There exists two possible schemes for both the formulation and the numerical so-
lution of the (discretized) equilibrium equations: explicit and implicit. In implicit
schemes, the equilibrium equation is satis�ed at each time step so iterations are
needed for every step. If there are convergence problems, the time step can be
automatically reduced until a convergence criterion is attained. This method is
unconditionally stable, meaning that the stability of the error propagation does
not depend on the time step and the �nite element size. To avoid convergence
problems related with implicit schemes, explicit schemes compute the equilibrium
at the beginning of the time step but it is never fully satis�ed. Calculation of
the tangent matrix at the end of the time step is not required. Nevertheless, the
time step must ful�ll some requirements in order to guarantee stability, which de-
pends on the mesh size, material model, mass and time (Henrard, 2008, chapter
7). Usually more time steps are needed for an explicit approach but each one is
considerable faster than in an implicit scheme.

When applied to the SPIF process, implicit schemes can mean large simula-
tions times (Bambach et al., 2005; Henrard, 2008; Jeswiet et al., 2005). Never-
theless, they usually provide a better geometrical accuracy than explicit schemes,
but with higher simulation times. Bambach, (2004) performed a benchmark us-
ing both explicit and implicit schemes, using Abaqus Standard and Abaqus

Explicit with 2304 shell elements. Fig. 6.1 shows that the implicit scheme gives
good predictions compared to experimental results, but the simulation time is
14 times higher than using the explicit scheme. In general, the CPU time for
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Figure 6.1: Transveral cut comparison between the experimental results and nu-
merical simulations using explicit and implicit schemes (Bambach,
2004).

explicit schemes can be reduced using numerical techniques such as mass scaling
or time scaling. Nevertheless, adjusting a critical time step to avoid numerical
instabilities and �nding the right compromise between speed and accuracy is far
for being trivial, as demonstrated by Henrard et al., (2007) and Henrard, (2008,
chapter 7). Table 6.1 lists some representative publications since 2006 where no
particular trend is observed in terms of which scheme is preferred. The time re-

Table 6.1: Authors using either explicit or implicit scheme for SPIF FE simu-
lations.

Explicit Implicit

Azaouzi and Lebaal, (2012),
Bambach, (2014), Cerro et al.,
(2006), Dejardin et al., (2010),
Kurra and Regalla, (2014),
Malhotra et al., (2012),

Mohammadi et al., (2014),
Ndip-Agbor et al., (2015),
Robert et al., (2012),

Shanmuganatan and Senthil
Kumar, (2012), and Yamashita

et al., (2008)

Aerens et al., (2009), Arfa
et al., (2013), Essa and Hartley,
(2010), Flores et al., (2007),
Guzmán et al., (2012b),

Hadoush and
van den Boogaard, (2009,
2011), Li et al., (2012), and

Sena et al., (2015)

duction related to either the explicit or the implicit scheme seems to be greatly
related with the FE code used. Indeed, Henrard et al., (2007) concludes that
the Lagamine FE code is not adapted for explicit simulations, observing higher
CPU times for an explicit simulation than an implicit simulation. Similarly, in
the Numisheet SPIF benchmark (Elford et al., 2013) the team from ESI group,
using Pam-Stamp 2G, presented larger simulations times with an explicit scheme
than an implicit scheme.
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6.1.1.3 FE element type

The choice of the FE is an important decision when simulating SPIF. Bambach
and Hirt, (2005) assessed di�erent elements formulation from the Abaqus library,
concluding that the element formulation plays a signi�cant role on the shape
prediction. For instance, the best performance (both in terms of CPU time and
accuracy) was achieved using plane-stress shell elements because solid elements
(with two element layers through the thickness) were prone to locking. As shown
in Table 6.2, many researches involving FE simulations have been carried on using
shell elements due to the good compromise between accuracy and CPU time.

It has been proved that the stress/strain gradients can play an important
role both in the deformation mechanism (Jackson and Allwood, 2009) and in
the formability (Eyckens et al., 2009). Due to the Kirchho�-Love or Mindlin-
Reissner hypothesis, shell elements do not allow computing full 3D stress and
strain �elds. An exhaustive study of SPIF requires the use of 3D solid elements
but the simulation time can be too high (several days or weeks) even for simple
geometries (Eyckens et al., 2010; Henrard, 2008). Nevertheless, the results from
Kim and Yang, (2000) and Bambach et al., (2003) show that 3D elements are
necessary when the local stresses under the tool are important. However, in
order to simulate bending several elements layers in the thickness direction are
needed. Henrard et al., (2010) obtained acceptable results in Lagamine in terms
of accuracy, using a reduced integration BWD3D element (Duchêne et al., 2007) but
3 layers of elements were needed increasing the computation time considerably
(Henrard, 2008).

New FE technology has allowed a new family of elements to model sheet metal
forming processes. This family falls between the classical shell and brick formula-
tion and it will be referred to as solid-shell elements (also known as thick-shell).
Solid-shells allow to model very thin sheets using only one element layer without
locking issues. An improvement can be achieved in terms of accuracy prediction
when comparing the results generated by the solid-shell or the shell element. For
instance, the results from Duchêne et al., (2013) compared to Guzmán et al.,
(2012b) for a two-slope SPIF pyramid. The COQJ4 shell element from Guzmán
et al., (2012b) is based on the shallow shell theory (Carnoy, 1981; Debongnie,
1979; Marguerre, 1938), which assumes that the mid-plane coincides with the
neutral plane. In Duchêne et al., (2013), a 3D solid shell-formulation allows con-
sidering through thickness shear, normal stresses and membrane stresses. New
publications about SPIF FE simulations using solid-shell elements (Sena et al.,
2015; Seong et al., 2014) have shown promising results. It is thus probable that
in a near future, classical shells and bricks will be replaced by solid-shells as the
standard FE for SPIF simulations.

6.1.1.4 Towards quicker SPIF FE simulation

Globally, improving FE simulations in terms of CPU time involves two di�erent
approaches. One approach is to simulate a simpli�ed representation of a physical
phenomenon happening in the SPIF process and another approach is the use of
numerical techniques.
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Table 6.2: Authors using either shell or solid type of FE for SPIF simulations.

Shell Solid Solid-Shell

Arfa et al., (2013), Azaouzi and
Lebaal, (2012), Bambach,

(2014), Bou�oux et al., (2011),
Cerro et al., (2006), Cui et al.,
(2013), Dejardin et al., (2010),
Eyckens et al., (2010), Guzmán
et al., (2012b), Hadoush and
van den Boogaard, (2009,

2011), Henrard et al., (2010),
Kurra and Regalla, (2014), Li
et al., (2012), Robert et al.,
(2012), Shanmuganatan and
Senthil Kumar, (2012), and
Yamashita et al., (2008)

Aerens et al.,
(2009), Du�ou

et al., (2010), Essa
and Hartley,

(2010), Eyckens
et al., (2010), Flores

et al., (2007),
Henrard et al.,
(2010), Malhotra
et al., (2012),

Mohammadi et al.,
(2014), and

Ndip-Agbor et al.,
(2015)

Meier et al., (2013),
Sena et al., (2015),
and Seong et al.,

(2014)

Within the �rst approach, Kim and Yang, (2000) simpli�ed the deformation
mechanism by assuming that SPIF is dominated by pure shear. Lievers et al.,
(2004) performed a single-element single-step simulation using the same hypothe-
sis as Kim and Yang, (2000) (These results are further discussed in section 6.1.5).
The contact modeling between the tool and the sheet has also been object of
simpli�cations, because of the limitations of the classical penalty approach for
simulating contact1. Hence, Henrard, (2005) and Henrard et al., (2007) proposed
a modi�ed contact approach in a dynamic explicit scheme, which it was not suc-
cessful on reducing the CPU time. Better results were obtained by Delamézière
et al., (2011) and Robert et al., (2010) and later improved by Ben Ayed et al.,
(2014), based on the imposition of the displacement on the nodes in contact with
the tool. Robert et al., (2012) proposed a new algorithm based on the Hencky
incremental plastic deformation theory instead of the classical �ow rules, but the
time saving is negligible in the SPIF case.

Numerical techniques on the other hand, are more general since they were
formulated for processes other than SPIF. Among them we can mention:

• Sub-modeling technique implemented in Abaqus, which allow using a very
�ne (sub-millimitre) mesh in a small part of the original mesh (Aerens et al.,
2009; Eyckens et al., 2008, 2010; Henrard et al., 2010).

• Domain decomposition methods, in which the �nite element mesh is split
in a �rst zone concentrating strong non-linearities (as under the tool) and
in a second zone which observes almost elastic behavior (Brunssen and
Wohlmuth, 2009; Hadoush and van den Boogaard, 2009, 2011; Sebastiani
et al., 2007).

1In particular, the penalty coe�cient should be adjusted as a result of a compromise between
accuracy and convergence.
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• Subcycling in which coarse elements are integrated with larger time steps
than �ne elements near the deformation zone (Bambach, 2014; Hadoush and
van den Boogaard, 2011).

• Remeshing methods (Dejardin et al., 2010; Hadoush and van den Boogaard,
2011; Lequesne et al., 2008). Given the localized plastic deformation in
SPIF, there is a strong non linearity around the tool contact zone (neigh-
borhood) while the rest of the mesh keeps a slight geometrical non linearity.

6.1.1.5 Constitutive laws

The choice of material model for materials not sensitive to strain rates should
be regarded in terms of two components: the shape of the yield surface (yield
criterion) and its evolution with respect to the deformation (hardening). In gen-
eral, simple criteria such as von Mises and Hill, (1948) have been extensively used
because of their simplicity, the overall good results obtained and the fact that
both the CPU time and the material parameter identi�cation complexity is low
compared to more advanced models. Considering the choice of the von Mises and
the Hill, (1948) yield criterion, the in�uence on the results is small when predict-
ing shape (Bambach and Hirt, 2005; Flores et al., 2007; He et al., 2005a), strains
(Eyckens et al., 2010) and forces (Flores et al., 2007; Henrard et al., 2010). Ac-
cording to Eyckens et al., (2010), this can be explained because ISF simulations
are displacement controlled and that strains are independent of the yield surface.
In the Numisheet benchmark (Elford et al., 2013), the available material data
allowed the di�erent participant teams to use more speci�c models for aluminum.
Yield criteria such as the one proposed by Barlat and Lian, (1989) and Barlat
et al., (1991, 2003), Vegter et al., (2009) and Banabic et al., (2005) were possible
to use. Nonetheless, the di�erence among these models and the von Mises or the
Hill, (1948) yield criteria in term of shape and strain predictions is small.

Nevertheless, the hardening law can greatly a�ect the force prediction, as
shown by Bou�oux et al., (2011) for an AlMgSc alloy, and Henrard et al., (2010)
for an aluminum alloy. In both articles, the predicted vertical forces were higher
than the experimental measurements. Overestimation of the force prediction
seems to be a common issue in SPIF FE simulations, as it has been widely observed
in the literature (e.g., the results from the Numisheet benchmark in Elford et
al., (2013)). In these articles, it was hypothesized that the over prediction of the
force was due to the inability of the shell elements to capture through-thickness
gradients. An identi�cation method was proposed which, instead of relying solely
in the classical in-plane tests (tensile test, plane strain test, simple shear test,
etc.), uses an indent step of incremental forming to �t new material parameters.
Using a mixed isotropic-kinematic hardening with the new identi�cation method
leads to good force predictions.

The importance of the isotropic hardening parameters was also discussed by
Jeswiet et al., (2002), which performed tensile tests on aluminum specimens taken
from SPIF pyramids of di�erent wall angles. It is observed that the strain harden-
ing parameter of the Swift law is inversely proportional to the wall angle, meaning
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that the use of a hardening extrapolation (as it is the case in SPIF FE simula-
tions, where large strains are reached) could lead to wrong predictions. The same
procedure was used by Eyckens et al., (2011b) to investigate the e�ect of the tool
directionality and sheet anisotropy on an aluminum alloy and a low carbon steel.
It is observed that the Swift law overestimates the strength of the aluminum spec-
imens. It is also mentioned that this behavior is not observed for the low carbon
steel, contrary to Emmens and van den Boogaard, (2009b) which observed the
same trend for another low carbon steel, suggesting that the forming operation
softens the material. The Voce law, which saturates after certain deformation
level, can improve the force prediction as showed by Henrard et al., (2010) and
Bou�oux et al., (2011). Belchior et al., (2013) analyzed the in�uence of the
through thickness shear (TTS), isotropic hardening law and clamping system on
the predicted FE forces. The best results are obtained using a brick element,
Voce isotropic hardening law and a model incorporating the clamping pressure.
However, more details are not given. The Voce law was also used by Lievers et al.,
(2004) and Seong et al., (2014).

6.1.2 Deformation mechanisms

Research during the last decade has focused on the development of new applica-
tions and a better characterization of the forming limits in SPIF. Even so, a wide
consensus has not yet been reached about the deformation mechanism because
the inherent SPIF complexity (localized contact stresses, incremental deforma-
tion, etc.) and limitations of the available numerical tools. However, measuring
and predicting the deformations is a key point to go towards greater accuracy
(Henrard, 2008). Likewise, Jackson and Allwood, (2009) con�rms that the knowl-
edge of the deformation mechanism is important not only for the development
of more accurate numerical models, but also for the design and control of the
toolpath and the study of the forming limits.

Previous investigations have contemplated three di�erent perspectives:

• Experimental measurements of displacements and deformations: circular or
rectangular grids can be glued to the sheet surface (Du�ou et al., 2010;
Emmens and van den Boogaard, 2007; Filice et al., 2002; Jackson et al.,
2008; Ji and Park, 2008; Kim and Park, 2002; Martins et al., 2009), elec-
trochemically etched circle grids (Silva et al., 2011), through the thickness
measurements (Eyckens, 2010; Jackson and Allwood, 2009) or DIC (Du�ou
et al., 2010; Eyckens et al., 2010; Vasilakos et al., 2011).

• Theoretical models, like the sine law (explained below) or membrane assumed
deformation (Silva et al., 2008).

• FE simulations (Du�ou et al., 2008b, 2010; Eyckens, 2010; Eyckens et al.,
2010; Guzmán et al., 2012b; He et al., 2005b; Henrard, 2008; Ji and Park,
2008; Sena et al., 2015; Vasilakos et al., 2011).

SPIF is characterized by a sheet thickness reduction when forming the sheet. In
this regard, there exists a simple analytical tool to estimate the thickness at the
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end of the process, given the wall angle and the initial sheet thickness. This rule
is called the sine law and assumes that the deformation is solely based on shear
mechanisms (Fig 6.3(a)), allowing to estimate the �nal thickness. The sine law is
given by:

tf = ti sinα (6.1.1)

where ti is the initial thickness, tf is the �nal thickness and α is the angle shown in
Fig. 6.2. Nevertheless, the simplicity of this relation does not allows the prediction

Figure 6.2: Sine law for shear forming (Jeswiet et al., 2005; Kobayashi et al.,
1961).

of the observed e�ects of stretching or bending. Bambach, (2010) points out three
cases where the sine law is not valid:

1. In the transition zone between the deformed and undeformed parts (bending
zone).

2. Under overspinning, leading to overprediction of the �nal thickness (cf. Li
et al., 2012).

3. In large wall angles where a thinning band appears (necking zone).

In addition, Du�ou et al., (2008b) compared the multi-step forming and thickness
distribution achieved in a conical shape, testing the sine rule and showing that the
law is no longer valid after the �rst stage, when tangential deformations become
more important. Hence, Bambach, (2010) proposed an improvement of the sine
law by considering curved trajectories. Likewise, di�erent analytical methods had
been proposed to predict thickness (Cao et al., 2014; Mirnia et al., 2013), covering
more general types of deformations.

In the beginning of the SPIF research, researchers believed that incremental
forming was mainly governed by shear instead of stretching (Fig. 6.3). This as-
sumption was mostly motivated by the SPIF origins and the relatively good results
obtained using the sine law (Emmens and van den Boogaard, 2007). With the
intention to improve formability, Kim and Yang, (2000) proposed a double pass
forming technique2 assuming pure shear. Nevertheless, this argument is not robust
as the sine law can also be applied to alternative mechanisms like pure bending or

2Initially proposed to remedy thinning, it means forming �rst a pre-form before the �nal
shape.
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stretching in the plane of the sheet, which have only minor relative displacement
between the upper and lower surfaces (Emmens and van den Boogaard, 2007).
More recent analysis have found that the mechanism seems to be pure shear in

(a) Shear. (b) Stretching.

Figure 6.3: Schematic representation of sheet metal forming by shear and
stretching (Emmens and van den Boogaard, 2007).

the thickness with plane deformation in the direction parallel to the initial unde-
formed sheet. Measurements and numerical simulations on SPIF and two point
incremental forming (TPIF) have shown that for a spiral trajectory, in straight or
slightly curved faces, the material does not move signi�catively in the plane of the
initial undeformed sheet. In this manner, the deformations on the sheet surface
are nearly zero, negligible in direction parallel to the tool direction and positive
in the perpendicular direction to the tool direction. Kim and Park, (2002) ana-
lyzed the deformation pattern and the formability claiming that the formability
is higher when the deformation is stretching under plane deformation. To demon-
strate this, they used the so-called straight groove test3 recommended by Kim and
Park, (2002) to assess formability. Lievers et al., (2004) experimentally veri�ed
in a quadrangular SPIF pyramid that the average major true strain, measured
using DIC, correspond to pure shear mechanism as suggested by Kim and Yang,
(2000). Higher deformation is achieved in the surface perpendicular to the tool
direction and in larger wall angles, as represented by the sine law. Emmens and
van den Boogaard, (2007) indicates that if the deformation is shear dominated,
the principal deformations cannot be measured using glued meshes patterns on
the surface because the surface strains are not the principal ones. In addition,
assuming a shear dominated deformation means that the principal deformations
are higher that those assumed by pure stretching. This a�rmation is easier to
understand using the Mohr's circle (Fig. 6.5). Martins et al., (2008) derived the
state of deformation starting from a membrane analysis concluding that there are
plane deformations in both smooth and curved surfaces and equibiaxial stretch-
ing states in the corners, without considering any e�ect of shear due to the tool
contact. Jackson and Allwood, (2009) performed a wide study of the deformation
mechanism using copper sheets. The sheets were thicker than usual (3.1 mm) in
order to measure the TTS. An interesting state-of-art review is included, which
can be resumed in the following quote:

3Similar to the line test, later described in section 6.3.
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(a) Straight groove test toolpath, where tool al-
ternates between a stroke, back and forth twice
along an straight line (Durante et al., 2009).

(b) Coordinate system and deformed
grids from the straight groove test (Kim
and Park, 2002).

Figure 6.4: Straight groove test.
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Figure 6.5: Mohr's circles for a (general) three-dimensional state of stress. σn
and τn give the normal and shear stress acting on a particular cut
plane with a �xed normal direction. Each circle, C1, C2 and C3,
represent the state of stress in the plane normal to direction 1, 2
and 3 respectively.
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[. . . ] for a conventional spiral tool path along straight or gently curved sides,
material does not move signi�cantly in the original plane of the undeformed
sheet, but moves mainly normal to this plane. Hence, strains on the surface
of the sheet are zero or negligible parallel to the tool direction and positive
perpendicular to the tool direction, and these directions correspond to the
minor and major directions of surface strain, respectively.

6.1.3 Geometrical accuracy

One of the most important disadvantages of the SPIF process is its poor geomet-
rical accuracy (Ambrogio et al., 2010; Micari et al., 2007) preventing a massive
industrial acceptance (Allwood et al., 2005), where accuracies around ±0.5 mm
(Jeswiet et al., 2005) or even ±0.2 mm (Allwood et al., 2010) are needed.

6.1.3.1 Classi�cation

Geometrical errors arise from several sources and likewise can be classi�ed in
di�erent ways. For instance, Essa and Hartley, (2010) identi�ed some geometrical
e�ects leading to inaccuracies. Among them, it is mentioned the sheet bending
in the initial contact zone, the pillow e�ect on the base (Ambrogio et al., 2007),
springback, etc. as shown in Fig. 6.6(a). Other inaccuracy categorization can be
seen in Fig. 6.6(b). The source and severity of these deviations depend on both
the process parameters and the material behavior. For instance, it is known that
steel exhibits larger geometrical deviation compared to aluminum because of its
larger elastic modulus. The tool trajectory strategy also plays an important role,
like in the tent e�ect identi�ed by Behera et al., (2013b) as a typical example of
feature interaction and analyzed by Guzmán et al., (2012b) using FE simulations
(Fig. 6.7). The achievable accuracy is also dependent on the machine sti�ness
(Meier et al., 2013), with milling machines being sti�er than industrial robots and
hence obtaining higher accuracy (Behera, 2013; Verbert, 2010).

6.1.3.2 Optimization techniques for accuracy improvement

Several techniques have been proposed to determine which is the best way to
employ SPIF in order to obtain a certain shape. According to Ambrogio et al.,
(2007) and Micari et al., (2007), the best way to reduce the inaccuracies is using
a toolpath di�erent from the target CAD geometry. When the tool is removed,
the elastic deformations in the sheet will give the desired shape. For example,
as some shape inaccuracies are caused by the absence of a die (Ambrogio et al.,
2004), adding a backing plate can help to reduce sheet bending while using an-
other tool (TSPIF) can reduce springback (Essa and Hartley, 2010). Neverthe-
less, some solutions can severely alter SPIF main advantages and neither they
can achieve accuracies at industrial levels. Following this point, several accuracy
enhancements have been proposed keeping SPIF most important features. They
can be classi�ed in two groups: those requiring toolpath modi�cations and those
involving new hardware. Within the �rst group it is identi�ed:
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(a) Deformation e�ects on geometrical innacuracy ob-
served in a SPIF cone (Essa and Hartley, 2010).

(b) Terminology used to describe the di�erent types of geometrical
innacuracies on ISF (Behera, 2013; Behera et al., 2011). This partic-
ular example shows the intended and obtained geometry when using
horizontal planar features.

Figure 6.6: Schematic �gures representing observed shape inaccuracies in SPIF
process.
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Figure 6.7: The tent e�ect re�ecting an undesired movement of the wall when
forming a second wall angle (Guzmán et al., 2012b).

• Real time toolpath optimization, where process data is evaluated by CNC
controllers and a new toolpath is generated (Meier et al., 2009; Rauch et al.,
2009).

• Iterative toolpath correction (Fu et al., 2013; Hirt et al., 2004; Ndip-Agbor
et al., 2015).

• Automatic toolpath generation methods, which can be based on the behavior
of individual features (known as feature assisted SPIF, FSPIF) (Verbert,
2010) and their interactions (Behera et al., 2013a).

Within the second group:

• Compensation strategy, considering the robot kinematics and sti�ness (Bel-
chior et al., 2013; Verbert et al., 2009).

• Shape modi�cations after forming by reprocessing the workpiece (Allwood
et al., 2010; Du�ou et al., 2005; Verbert et al., 2007).

• Stress-relief annealing after forming (Bambach et al., 2009) or local heat-
ing through laser beam during forming, also known as laser assisted SPIF
(LASPIF) (Du�ou et al., 2007, 2008a; Mohammadi et al., 2014).

It is worth to mention that toolpath plays a signi�cant role not only in the accu-
racy, but also in the thickness distribution and forming limits. Some tool strate-
gies, like spiral (Filice et al., 2002) and conical (Bambach et al., 2005) toolpaths,
have positive impacts on formability and thinning. Kopa£ and Kampus, (2005)
showed that a toolpath starting in the center of the sheet and moving to the ex-
terior has better formability. Nevertheless, accuracy improvement techniques do
not necessarily imply higher formability, as shown by Azaouzi and Lebaal, (2012)
using an optimized spiral toolpath. Eyckens et al., (2011b) also found that using
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a bidirectional toolpath (Jeswiet et al., 2005) has higher forming limit than a
unidirectional toolpath.

6.1.4 Formability

Formability can be understood as the ability of a material to undergo a certain
plastic deformation without damage and/or fracture. SPIF can reach very large
levels of deformation before fracture, even larger than conventional process like
the hemispherical dome (punch) test (Filice et al., 2002) or deep drawing (Jeswiet
et al., 2005). These observations have prompted the characterization and study
of the SPIF forming limits for di�erent materials and geometries. In general, the
approach towards the understanding of the increased formability has followed two
main perspectives:

• Based on the observed deformations mechanisms acting on SPIF, the ap-
plication of formability characterization methodologies used in other sheet
metal forming operations, like forming limit diagrams (FLD).

• Study of particular SPIF process parameters on the material formability,
expressed on the maximum wall angle achievable without fracture.

Within the literature, sometimes it is not easy to distinguish between both ap-
proaches but, for sake of understanding, an e�ort will be undertaken on describing
each one separately.

6.1.4.1 General formability analysis

Most of the formability studies about sheet metal are rigorously embodied using
a FLD, which are based on detecting a (di�use or localized) necking condition fol-
lowed by a rupture phase. FLDs were initially introduced by Keeler and Backofen,
(1963) and given an analytical basis by Marciniak and Kuczynski, (1967) (herein
referred indistinctly as MK approach/analysis), mainly for deep drawing. This
commonly used framework has been widely adopted in literature but su�ers from
important drawbacks when applied to SPIF (Emmens and van den Boogaard,
2009a). For instance, the presence of TTS implies that the principal axes are not
in the sheet plane, so FLDs based on surface strains can lead to wrong conclu-
sions (Allwood et al., 2007; Emmens and van den Boogaard, 2007). Hence, FLDs
should be regarded only as an useful tool that provides important insights on the
material formability but not as the de�nitive tool to characterize it.

One of the �rst studies applying FLDs to SPIF was due to Filice et al., (2002).
The methodology considered the determination of critical strains at fracture for
di�erent straining conditions, using circular grids on the sheet surface. Di�erent
types of strains, ranging from pure uni-axial stretching to bi-axial stretching, can
be achieved changing the tool trajectory:

1. Pure uni-axial stretching occurs along straight edges.
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2. Bi-axial stretching in the center of a cross consisting of two perpendicular
straight lines.

3. Strains between pure uni-axial and bi-axial when changing the corner radius
in a spiral toolpath. The ratio between the major and minor strain is directly
proportional to the spiral loop diameter.

Another interesting observation is that the ratio between the punch depth (verti-
cal step) and the horizontal displacement is directly proportional to the measured
strains. One of the main conclusions driven from Filice's article is that the form-

(a) Experimental FLC of AA1050 (Filice et
al., 2002).

(b) FLC of SPIF and other forming
processes (Reddy et al., 2015).

Figure 6.8: FLC of SPIF is higher than conventional forming.

ing limit curve (FLC) has a negative slope equal to −1.0 (Fig. 6.8(a)), somewhat
con�rming the results obtained previously by Iseki et al., (1993), who identi�ed
a slope of −0.7 for an aluminum alloy. Later, the use of circular grids was ques-
tioned by Emmens and van den Boogaard, (2007). Basically, the shear mechanism
acting in SPIF prevents considering the surface strains as the principal strains.
Hence it is not correct to say that the mechanism is pure uniaxial stretch neither
biaxial stretch. Nevertheless, the observed high formability of SPIF was later con-
�rmed using di�erent methodologies. A short review of the mechanisms claimed
to enhance formability are listed by Emmens and van den Boogaard, (2009a)
and further detailed in Emmens, (2011a). An overview of some of them is given
hereafter:

Through Thickness Shear (TTS). In theory, under simple shear necking
is not developed because there is no thinning. But in stretch forming, shear
brings a stabilization e�ect by reducing the yield stress in tension4, as shown
by Emmens and van den Boogaard, (2009a). This stabilization e�ect is clearer
in Fig. 6.9(a), where the introduction of shear loads delay the neck formation.
Shear can also increase the formability, as shown analytically by Allwood et al.,
(2007) and Eyckens et al., (2009). For instance, Allwood et al., (2007) used a

4Also experimentally observed in a combined test by Flores, (2005, chapter 4).
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modi�ed MK approach assuming that all six components of the strain tensor are
linearly proportional, to integrate TTS into the MK analysis. It is concluded that
TTS signi�cantly changes the perceived forming limit measured by surface strains.
The approach used by Allwood et al., (2007) was quite unusual, because instead
of simulating SPIF, a process called paddle forming (Allwood and Shouler, 2007)
was analyzed because of numerical di�culties observed in SPIF FE simulations.
Eyckens et al., (2009) generalized the MK approach to incorporate TTS. Then, it
was applied to isotropic materials subjected to monotonic loads. It is found that
formability is increased by the presence of shear for all in-plane strain modes,
except equibiaxial stretching, however each one in a di�erent degree. The highest
increase in formability is found when TTS acts on the plane perpendicular to
the major in-plane strain direction, as shown in Fig. 6.9(b). The authors also

(a) Necking can be delayed by ap-
plying some shear loading (Emmens,
2011b; Emmens and van den Boogaard,
2009a). σy is the yield stress in tension,
σf is the initial yield stress, εz,neck is the
axial strain in the necking zone and n
the strain hardening coe�cient.

(b) E�ect of the shear strain mode ρ23, act-
ing on the plane perpendicular to the major
in-plane direction, in the FLC (Eyckens et
al., 2009). The thicker line represents the
traditional MK model without TTS.

Figure 6.9: E�ect of shear on the forming limits.

concluded that a correct representation of the yield locus is crucial. Hence, in
Eyckens et al., (2011a) the generalized approach of Eyckens et al., (2009) was
extended to anisotropic yield locus. Other extended versions of the MK approach
integrating TTS have shown that formability is directly proportional to TTS
(Allwood and Shouler, 2009; Eyckens et al., 2011a).

Bending-Under-Tension (BUT). Also referred to as stretch bending, BUT
is another mechanism claimed to improve formability (Emmens and van den
Boogaard, 2008) since the combined e�ects of stretching and bending are known
to improve formability. For instance, according to Ghosh and Hecker, (1974)
the presence of strain gradients across the thickness (due to the sheet curvature)
modi�es the instability condition retarding the formation of a local neck. Then,
Charpentier, (1975) investigated the e�ect of the punch radius and thickness on
the forming limits of a stretch bend test (cf. Banabic et al., 2000, chapter 5).
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It is concluded that the limit strain (the maximum measured strain before lo-
calized necking) increases with the punch curvature at constant thickness i.e.,
increasing the punch curvature leads to an increase of the strain gradients (Fig.
6.10). Kitting et al., (2011) con�rms that ductility is inversely proportional to
the tool radius. Moreover, the e�ect on formability is more pronounced under
plane strain than in uniaxial or biaxial stretch bending. In any case, there is a
considerable increase on formability compared to cases without bending. An inter-
esting observation is that due to the stabilizing e�ect of bending, the conventional
FLC may underestimate the forming potential. One way to overcome this draw-
back is to formulate the FLC in the principal stress space, instead of using (the
traditional) strain-based FLC. Stoughton and Yoon, (2011) used a stress-based
approach di�erentiating between necking and fracture limit. This di�erence can
vary in di�erent degrees dependent on the material, with some material exhibiting
a substantial post-necking behavior (e.g. AA2024-T 351). It is found that due
to the variation of stress through-thickness, a material with a large gap between
necking and fracture will be easier to bend due to suppression of necking by the
stress gradients.

BUT was �rst related to ISF by Sawada et al., (2001) and later considered as
a stabilization mechanism by Emmens and van den Boogaard, (2008, 2009a,c).
Emmens and van den Boogaard, (2008) analyzed tensile tests with simultaneous
bending, con�rming that the maximum attainable level of uniform strain is di-
rectly proportional to the bending angle. Emmens and van den Boogaard, (2009a)
emphasized on the localized nature5 of BUT which acts only when sheet is being
bent. More relevant is that BUT creates a small regime of stable deformation at
every pass of the tool. When relating the ISF process parameters and the conclu-
sions obtained previously, it is safe to assume that BUT is directly proportional
to sheet thickness and inversely proportional to the tool radius (Fig. 6.10).

Figure 6.10: E�ect of curvature and thickness on the stretching limits (Charp-
entier, 1975).

5Cf. Malhotra et al., (2012) on the e�ect of the localized deformation.
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Cyclic e�ects. It must be noted that during SPIF the strain history is not
proportional because of bending and unbending around the tool. Cyclic loading,
generated in serrated strain paths, has been widely observed in FE simulations
within the ISF literature (Emmens and van den Boogaard, 2011; Eyckens et al.,
2007; Flores et al., 2007; Henrard, 2008; Seong et al., 2014) but also experimen-
tally through DIC measurements (Eyckens et al., 2010), as depicted in Fig. 6.11.
Conventional FLCs can be modi�ed to incorporate non-linear strain paths, as

(a) (b)

(c)

Figure 6.11: Di�erent serrated strain paths observed in a SPIF FE simulation
(Eyckens et al., 2007).

proved by Yao and Cao, (2002). The evolution of the yield surface can be ex-
pressed in terms of changes of its center (backstress) and curvature. This cyclic
e�ect can have a great in�uence on formability, as demonstrated by Eyckens et
al., (2007). Using a modi�ed version of the MK approach adapted to strain path
changes, di�erent types of serrated strain paths (Fig. 6.11) at plane strain loading
were analyzed and later compared to a monotonic FLD (van Bael et al., 2007a).
The forming limits values can change drastically depending on the strain path, as
shown in Table 6.3. It is mentioned by Emmens and van den Boogaard, (2009a)
that BUT can be confused with cyclic e�ects, because it involves repetitive bend-
ing but not necessarily cyclic (with an inhomogeneous stress distribution over the
thickness), while the cyclic loading involves cyclic straining but not necessarily
bending (and maybe with homogeneous stress distribution over the thickness).
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Table 6.3: Strain values under plane strain loading. The serrated strain path
value is obtained from a MK analysis on the strain paths shown in
Fig. 6.11. The monotonic forming limit strain is obtained from van
Bael et al., (2007a).

Strain path Strain (%)

Monotonic 19.3
Serrated (I) 17.4
Serrated (M) 26.6
Serrated (O) 40.0

van Bael et al., (2007b) used a modi�ed MK approach to investigate at which
extent the non-monotonic strain path may be responsible of the high formability.
The predicted forming limits are considerably higher than those predicted using
monotonic loadings, but still lower than those observed experimentally.

Normal-compressive-stress. The localized normal stresses induced by the
tool contact has also been argued as a mechanism to improve formability. Gotoh
et al., (1995) presented three di�erent ways to evaluate the e�ect of the normal
compressive forces over formability, using sheets subjected to in-plane stress plus
out-of-plane compressive forces. The �rst one was using the theoretical framework
of the Swift, (1952) and Hill, (1952) criterion for plastic instability condition (both
for localized and di�use necking). The second approach considered an extension of
the criterion proposed by Stören and Rice, (1975) (Bifurcation approach), includ-
ing a positive ratio between the minor and major strain (cf. Filice et al., 2002).
The �rst two criteria were purely analytical, i.e. no numerical calculations nor MK
analysis involved. The last approach was using a FE simulations with a modi�ed
version of J2-plasticity model. It is found that the localization of strain is delayed
because of the normal stress (Fig. 6.12(b)) and that in the tensile test both the
force level and the peak force are a�ected by the compressive force (Fig. 6.12(c)).
These three di�erent approaches yield the same conclusion: out-of-plane stress
may notably raise the forming limit diagram, as can be seen when comparing Fig.
6.12(a) and Fig. 6.12(b).

6.1.4.2 SPIF process parameters linked to formability

In a SPIF hardware setup, several parameters can be changed in order to obtain
the desired shape and surface �nish. These parameters can be linked to:

• The sheet metal geometry, such as the thickness or the desired wall angle.

• The hardware setup, like the tool size, spindle angular speed or lubrication.

From all listed parameters, the wall angle and sheet thickness seem to be the most
relevant in terms of formability. The tool diameter and step-down play a minor
role on the forming angle (Ham and Jeswiet, 2007). As mentioned by Behera,
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(a) No external pressure. (b) With normal forces.

(c) Tensile test.

Figure 6.12: In�uence of an external compressive load (p) in the ductile rupture
of thin sheets (Gotoh et al., 1995).

(2013), incremental forming is characterized by well de�ned forming limits for a
speci�c material thickness and process parameters. Hence, the maximum draw
angle can be used as a formability indicator. It is useful to note that failure does
not take place immediately in a part with a wall angle above the failure limit; it
takes place at a certain depth. For example, Table 6.4 lists critical wall angles
for some materials and thickness. This methodology can be linked to the sine

Table 6.4: Experimental critical wall angles for some materials and thickness.
Taken from Behera, (2013) and Verbert, (2010). Also referred in
Reddy et al., (2015).

Material Thickness [mm] Max. achievable wall angle

65Cr2 0.5 57◦

DC01 1.0 67◦

DC04 1.0 64◦

law, where it is possible to establish a limit for thinning based on the wall angle
and the initial thickness. Thus, it is straightforward to hypothesize that in order
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to increase the maximum wall angle one could also increase the initial thickness.
However, this strategy has its practical limitations like the maximum machine
load and thickness speci�cations of the material batch.

Obtaining the formability limits in terms of the wall angle, as depicted in
Table 6.4, requires a large amount of experimental trial and errors. Therefore,
Hussain and Gao, (2007) proposed to use a curved-line-generatrix to generate
a revolved surface whose wall angle varies. The formed axisymmetrical conical
surface has a varying wall angle which is capable to determine the formability at
low cost and reduced processing time. Later, Hussain et al., (2007) tested this
varying angle geometry with three di�erent shapes derived from three analytical
generatrix: elliptical, exponential and parabolic. The authors proposed a new
methodology, where the limiting fracture is determined in a iterative way: taking
the varying angle specimen as the �rst value and then performing the test in
a cone in a classical way, by decreasing the wall angle until it does not break.
Tisza, (2012) con�rmed the suitability of this method in aluminum AA1050A for
di�erent thickness, using the geometry generated through a circular generatrix
(instead of elliptical, exponential or parabolic). Small di�erences arose between
the constant slope approach and varying wall angle approach allowing to skip the
two step approach by Hussain et al., (2007).

(a) CAD geometry. (b) Formed SPIF geometry.

Figure 6.13: Varying wall angle cone formed (Hussain et al., 2007).

6.1.5 Damage and fracture in the SPIF process

In the previous sections, some concepts relating formability, fracture and the
mechanisms of incremental forming were revised. Formability analysis has been
for long time the traditional way to optimize the sheet metal forming operation.
However, here the damage model focuses on a di�erent aspect: the mechanisms of
degradation/softening leading to �nal fracture6. Within this section, the scope is
the understanding of the phenomena that lead to crack formation and not the way
to avoid fracture or instability. Of course, formability and damage prediction can
easily be linked, but they are essentially di�erent. Formability can be regarded as

6Also known as local approach to fracture (Berdin et al., 2004)
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a more practical (engineering) concept, involving material and process parameters
analyzed through FLDs. While the material damage, on the other hand, results
from a particular stress or strain �eld acting in a material continuum. Thus,
damage concerns continuum mechanical models where a speci�c damage variable
evolves until a limit is reached at the onset of crack formation. Another fundamen-
tal di�erence between these approaches is that during damage development, the
microscopic scale is not negligible, so the analysis should permanently be regarded
as material dependent and needs a modeling of the microstructure evolution. The
literature review shows a relatively scarce amount of SPIF researches related to
damage. One possible explanation is that damage analysis does not often provides
simpli�ed solutions in terms of the forming process parameters. Moreover, com-
plex damage models also require complex characterization methodologies, which
are not always feasible.

Porosity within SPIF process has been studied, for instance, by Lievers et al.,
(2004) and Hirt et al., (2004). Lievers et al., (2004) presented a novel method to
�t void nucleation parameters using SPIF. This approach is sustained under the
hypothesis that in some forming processes, like stretching and stretch �anging and
SPIF, necking is suppressed7 and formability is controlled by void damage and
shear band instability. Quadrangular SPIF pyramids for di�erent aluminum alloys
and wall angles were formed by Lievers et al., (2004). Density measurements were
taken following the procedure described in section 5.4.3. Some interesting results
are shown in Fig. 6.14(a) for di�erent deformation levels and wall angles. Planar
isotropy is observed thus density is similar between RD and TD.

Hirt et al., (2004) performed a simulation of a truncated pyramid formed
using multi-stage forming, using a partial die. To study the stress state, the GTN
model was used together with shell elements. Despite the limitations of the shell
elements (already mentioned in section 6.1.1), the predictions shows a clear trend
that higher forming limits can be achieved with smaller forming heads and larger
values for the vertical pitch, as shown in Fig. 6.14(b).

Silva et al., (2008) proposed a theoretical model for a rotational symmetric
SPIF shape, based on a membrane analysis. Sheet stretching is considered but
bending and shear are neglected. It is observed that the opening mode of cracks
in symmetric SPIF is similar to that in conventional stamping (mode I in fracture
mechanics) and the cracks open through a meridional tensile stress as shown in
Fig. 6.15(a). The analysis is done in the transition zone between the inclined wall
angle and the corner of a (rotational symmetric) conical shape, because the onset
of cracking was observed in that area. The characterization of the stress state
within the cone shape is given assuming plane strain condition (Filice et al., 2002;
Jeswiet and Young, 2005; Jeswiet et al., 2005). In terms of damage evolution,
the decrease of the sheet thickness (or increase of the tool radius) will shift the
Mohr circle (Fig. 6.5) to the tensile region, thus increasing the hydrostatic stress
and the accumulated damage. This results is consistent with the �ndings of Hirt
et al., (2004). The higher formability of SPIF process, compared to conventional

7Necking generally involves large stress/strain gradients concentrated in a small region, being
di�cult to characterize.
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(a) Porosity evolution in di�erent ma-
terials within SPIF pyramids. Adapted
from Lievers et al., (2004).

(b) Simulation of the SPIF pyramids
(Hirt et al., 2004), where DT is the tool
diameter, dz is the vertical pitch and fc
is the critical void volume fraction.

Figure 6.14: Evolution of the porosity.

(a) Zigzag crack on a conventional deep
drawing steel due to the meridional
stress σφ.

(b) Straight crack on a deep drawing
stainless steel.

Figure 6.15: Di�erent types of crack propagation observed in a SPIF axisym-
metrical cone for di�erent materials (Silva et al., 2008).

stamping, is then explained in terms of the meriodional stress. In stamping, the
level of hydrostatic stress in biaxial stretching is higher than in plane strain (and
in the SPIF process), so damage grows faster.

Silva et al., (2011) groups the literature review in two families:

• Necking view, where formability is limited by necking and the raise of forma-
bility is due to stabilization mechanisms. This view was examined in section
6.1.4.

• Fracture view, where formability is limited by fracture. High levels of forma-
bility come as a results of suppression of necking or low damage growth.
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Each view has its advantages and disadvantages. Against the necking view, it is
known that forming limits in SPIF are well above conventional FLC and closer to
the fracture forming limits (FFL). In the other hand, a puristic view of the fracture
requires that all possible strains located on a speci�c line to be dependent on the
material properties. Nevertheless, it is shown that the FFL can be sensible to
the tool size. Moreover, crack appearances seems to be dependent on the formed
shape. Within the article from Silva et al., (2011), the e�ect of the tool radius
on the maximum draw angle was analyzed in two SPIF geometries: a truncated
conical shape and a truncated pyramid both with varying wall angle (as in Hussain
et al., (2007) and Malhotra et al., (2012)). The results are depicted in Fig. 6.16(a)
where three di�erent zones are clear: zone A shows an e�ect of the tool radius
but not from the shape, zone B shows an e�ect of the shape but not from force
and in zone C neither parameter a�ects the maximum draw angle. Thinning is

(a) Maximum drawing angle and triaxiality ratio
as a function of the tool radius for the truncated
cone and pyramid.

(b) Thickness distribution for the truncated
pyramid for di�erent tool radius.

Figure 6.16: E�ect of the tool radius on formability and thinning (Silva et al.,
2011).

more evenly distributed for small tools compared to larger tools, where thinning is
localized. Results for larger radius are consistent with those observed by stamping
(fracture with necking). The authors proposed a threshold where, depending on
the tool radius, there is a transition between SPIF and stamping. This is proposed
in terms of necking/suppression of necking. It will be seen afterwards that this
view is not clear because localization can be a characteristic of SPIF.

Malhotra et al., (2012) used the Xue, (2007) damage model to predict the me-
chanics of fracture on SPIF through FE simulations. The model was validated in
terms of thickness, forming forces and fracture depth using a 70◦ cone and vary-
ing angle cone (cf. Hussain et al., 2007) (refer to as a funnel). The Xue, (2007)
model is a coupled damage model (see section 3.1) which combines plastic strain,
hydrostatic pressure and shear on fracture. One of the main features of this model
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is that not only damage8 accumulation and fracture can be predicted, but also
the occurrence of di�used and localized necking (Xue and Belytschko, 2010). The
simulations involved the explicit LS-Dyna code with a deletion element technique
and 8 layers of solid 3D elements. The crack occurs at a location where all ele-
ments through the thickness are removed. The authors presented several results
concerning the evolution of damage variable, (equivalent) plastic strain, hydro-
static pressure, TTS and reference fracture strain9. Between the observations, we
can point out:

• The outer side of the sheet exhibits higher damage accumulation than the
inner side.

• In the funnel, the initial damage is low due to the low initial angle, it
increases dramatically until reaching a higher angle than 70◦.

• The shear strain is higher in the element from the inner side of the sheet,
delaying damage accumulation.

• Shear along the toolpath is greater than the shear perpendicular to the
toolpath.

• Local bending implies higher damage in the outside part because of the
higher equivalent plastic strain.

These results con�rm �ndings by previous SPIF researches, like the e�ect of the
localized deformation of BUT. Nevertheless, the most important observation is
that shear solely cannot explain the higher formability. Even if it is shown that
shear can delay damage accumulation, when comparing SPIF to punch forming
(which does not have shear and the deformation mechanism is predominantly by
stretching), damage accumulation is faster in SPIF. Damage triggers localization
and the simulation results depicted in Table 6.5 clearly show that the SPIF local-
ized at a lower depth that punch forming, but failure is greatly delayed. In order

Table 6.5: Predicted localizations and fracture depth using the Xue, (2007)
model (Malhotra et al., 2012). Note that SPIF localized before punch
forming, but fracture is greatly delayed.

Type of localization Punch forming [mm] SPIF [mm]

Di�use 8.0 5.4
Localized 11.0 8.4
Fracture 12.8 14.8

to explain this, the noodle theory is proposed (Fig. 6.17). Conventional forming

8In the Xue, (2007) model, damage is a phenomenological variable with no relation with the
void volume fraction of the GTN model.

9A variable from the Xue, (2007) model which is inversely proportional to damage accumu-
lation.
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can be represented as pulling the free end of the string (Fig. 6.17(a)) until local-
ization of deformation (Fig. 6.17(c)) and fracture (Fig. 6.17(e)), similarly as in
a tensile test. For SPIF, the noodle theory can be represented as locally pulling
near the clamped end (Fig. 6.17(b)), which imposes a stretch which localizes a
deformation su�ciently small to not break the string. Then the pulling forces
moves to another extension and pulls the string in subsequent section (BB', CC'
and DD, as in Fig. 6.17(d)), thus the string can be stretched longer than con-
ventional forming. Two observations can be regarded at this point. One is that
from the observed thinning, plastic deformation is evenly distributed so the �rst
localization (section AA') has to still undergone neck growth when the pulling
force is far (section DD'). This is explained in noodle theory as the ability of the
shear band to share some subsequent deformation. The second observation is that
if section AA' is still undergoing deformation after localization, it should break in
this point instead of the contact zone (as is experimentally observed). It is pro-
posed that since the distance from the neck to the load application increases, the
ability of this neck (section AA') to share deformation decreases (Fig. 6.17(f)).

Here, the localized e�ect of SPIF implies that the plastic strain is distributed
more evenly than stamping. The already formed zone is still undergoing plastic
deformation. This can explain that the inability of conventional FLC to pre-
dict failure in SPIF, comes from the observed slow transition between material
localization and actual fracture.

(a) (b)

(c) (d)

(e) (f)

Figure 6.17: Noodle theory (Malhotra et al., 2012).

Summarizing, the classical way to analyze the high formability on FLC can
help to understand the e�ect of the process parameters. However, the complex-
ity of process seems to goes beyond the scope of this approach. For instance, the
results obtained using FLCs suggest that TTS is an important stabilization mech-
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anism. Malhotra et al., (2012) showed that TSS by itself cannot explain the high
formability. Comparing with the formability review of section 6.1.4, the localized
e�ect of BUT seems to be more important than TTS. Moreover, Silva et al., (2011)
shows that the geometry and the tool can have a coupled e�ect on formability.
The e�ect of the thickness distribution prior to necking or failure without necking
are also hard to capture by a classical formability analysis. Damage models, on
the other hand, can allow a more comprehensive understanding of the material
behavior leading to fracture. It is not hard to observe that both approaches can
be complemented. Experimental results from the FLC can be used to validate
damage models.

6.2 Finite element type

The �nite element type, as mentioned in section 6.1.1.3, plays an important role
in SPIF FE simulations. The Lagamine FE code element library allows using
several di�erent FE types, ranging from a 4-node shell element to a 8-node solid
elements. Due to the important stress and strain gradients found in the sheet
during SPIF and the use of a 3D material model (GUR3Dext from section 4.5),
the focus will be on three di�erent 8-node mechanical solid elements available in
Lagamine: BWD3D, SSH3D and RESS. The COQJ4 shell element, despite being used
for SPIF FE simulations in previous publications by the author (viz., Guzmán et
al., 2012b), is not described here because it is out of the scope of the thesis. For
this element and other type of shell elements used for SPIF FE simulation, refer to
Henrard, (2008) thesis. The BWD3D element is a classic 8-node solid element while
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(b) RESS.
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(c) BWD3D.

Figure 6.18: Finite elements used in Lagamine for SPIF FE simulations.

SSH3D and RESS are based on the solid shell element concept, which is basically a
mix between a 4-node shell element and a 8-node solid element. These elements
are depicted in Fig. 6.18 and will be described in the following paragraphs.

BWD3D. It is a 8-node 3D brick element with a mixed formulation adapted
to large strains and large displacements. It can be considered as an updated
version of the BLZ3D element (Zhu, 1992; Zhu and Cescotto, 1994) but with
a di�erent type of locking treatment based on a corotational reference system.
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This element is based on the non-linear three-�eld (stress, strain and displace-
ment) Fraeijs de Veubeke-Hu-Washizu (FHW) variational principle10 (Fraeijs de
Veubeke, 1951; Hu, 1955; Washizu, 1955) with the assumed strain method (Be-
lytschko and Bindeman, 1991; Simo and Hughes, 1986). It is formulated using
an hourglass control technique and reduced integration with only one integration
point through the thickness. The shear locking treatment is based on the Wang
and Wagoner, (2004) method, which identi�es the hourglass modes responsible for
the shear locking and removes them. This feature is a key improvement over the
BLZ3D element which uses the Zhu and Cescotto, (1994) shear locking treatment.
The volumetric locking treatment is also based on the elimination of inconvenient
hourglass modes. As shown by Duchêne et al., (2007), the BWD3D element gives
better results than the BLZ3D element in deep drawing simulations proving that
shear locking treatment plays an important rule on the accuracy (see also Alves de
Sousa et al., 2007). For more information about the BWD3D element see Duchêne
et al., (2007) and Henrard, (2008).

SSH3D. This element is based on the Enhanced Assumed Strain (EAS) tech-
nique and the Assumed Natural Strain (ANS) technique. These techniques avoid
locking problems even in very bad conditions (nearly incompressible materials,
very thin elements conducting to large aspect ratios, distorted element geometry,
etc.).

The EAS technique arti�cially introduces additional degrees of freedom
(DOFs) to the element. Contrarily to the nodal displacements, these additional
DOFs are not linked between adjacent elements so they can be eliminated at
the element level during the computation of the solution, before the assembling
procedure. Hence, the calculation of element strain at the IP level is given by:

ε = εcom + εEAS (6.2.1)

where εcom is the strain contribution at the integration point calculated from the
nodal displacements and εEAS is the additional strain calculated based on the
introduced EAS modes. This technique increases the �exibility of the element
and is very e�cient to solve several locking issues. In the current con�guration of
the SSH3D element, up to 30 independent DOFs can be added to the 24 classical
displacement DOFs (corresponding to the 3 displacements of the 8 element nodes).

On the other hand, the ANS technique modi�es the interpolation scheme for
particular strain components. Again, the strain can be calculated from the nodal
displacement and evaluated at the integration points using the transformation ma-
trixB. For some particular cases, this approach yields inadequate strain values for
some components depending on the IP location. Originally proposed by Dvorkin
and Bathe, (1984) for shell elements, the ANS technique proposes to compute the
problematic strain components in two steps. First, these strain components are
evaluated by the classical interpolation method at the so-called sampling points

10Commonly referred to as the Hu-Washizu variational principle, this name neglects early
contributions by Prof. Fraeijs de Veubeke (see for instance Fraeijs de Veubeke, 1965) from ULg
as later revealed by Felippa, (2000).
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(SP), where the erroneous values are not likely to be encountered. In a second
step, these strain components are interpolated linearly from the sampling points
to the integration points (or any location in the element) using a BANS transfor-
mation matrix, as represented in Fig. 6.19. The sampling points vary according to

u εcomIP
B

(a) Classical one step interpolation.

u εcomSP

εANS
IP

B

BANS

(b) ANS two step interpolation.

Figure 6.19: Strain interpolations, where u is the nodal stretch tensor.

di�erent authors. Fig. 6.20 shows a couple of sampling points used in two versions
of the ANS scheme implemented in the SSH3D element. This technique is useful
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Figure 6.20: Sampling points in di�erent ANS versions.

when shear and curvature locking problems are encountered. It allows eliminating
the transverse shear locking from the element in bending dominated situations.
In the current con�guration of the SSH3D element, four di�erent versions of the
ANS technique are implemented.

Besides these techniques, the number and the location of the Gauss points
inside the element can have a signi�cant in�uence on its mechanical behavior.
For instance, the reduced integration or the selective reduced integration schemes
are often used to avoid volumetric locking issues for hexahedral elements with an
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isochoric or nearly isochoric material behavior. In the development of a solid-
shell element dedicated to the modeling of thin-walled structures, an integration
scheme with a large number of integration points along the thickness direction is
considered. It is indeed expected that a high gradient of stress and strain along
the thickness direction is present during the deformation of thin materials (e.g.
within a bending deformation mode). The classical full integration of a 8-node
brick element (with two integration points along each direction) is not able to
accurately capture such large gradients. In this respect, in the SSH3D element
the stress is computed along a user-de�ned number (ranging from 2 to 10) of
integration points along the thickness direction. For more information about the
SSH3D element, see Ben Bettaieb et al., (2011a, 2015) and Duchêne et al., (2011).

RESS. The Reduced Enhanced Solid Shell (RESS) element is a 8-node element
developed by prof. R. de Souza (Alves de Sousa, 2006; Alves de Sousa et al.,
2007) and his team (Sena, 2015). It uses only one EAS mode and a reduced
integration scheme in the plane. The element allows an arbitrary number of
integration points in the thickness direction. To eliminate the hourglass e�ect
due the reduced integration in plane, the stabilization technique proposed by Li
and Cescotto, (1997) is used at the element center. To eliminate the volumetric
locking, the B-bar method is applied (Alves de Sousa et al., 2005). In this case,
only the deviatoric hourglass strain-displacement matrices are used in the �nite
element stabilization part.

The BWD3D element has only one integration point in the thickness direction,
so it is the fastest solid element of those presented here. However, it has a limited
aspect ratio (the ratio between the width and the thickness of the FE) leading to
unwanted locking when simulating sheet metal bending, so usually three or more
layers of elements are needed. On the contrary, the SSH3D and RESS elements can
be safely used with only one FE layer. Moreover, the number of integration point
through the thickness can be selected by the user while the BWD3D is limited to
only one IP. According to these features, each element is applied to di�erent cases:

• The BWD3D element is used for material parameter identi�cation (both for
plasticity and fracture), like in chapters 2 and 5. Through-thickness gra-
dients are not important in these simulated tests. Standalone, BWD3D is
faster than the SSH3D and the RESS element, but it needs several FE lay-
ers through-thickness when simulating bending in sheet metal forming pro-
cesses. A very re�ned mesh is also needed, reducing its performance (cf.
Guzmán et al., 2012a).

• The SSH3D element is useful for academic purposes, to test the in�uence of
the EAS modes and the ANS version in particular applications (eg. Guzmán
et al., 2012a). Having a more complete formulation has also its drawbacks,
as it the slowest of all the three elements presented.

• The RESS element is used for practical sheet metal applications, because its
good compromise between accuracy and CPU time. It does not need several
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layers of elements (as the BWD3D element) or selecting the EAS modes (as
the SSH3D element).

In all the Lagamine simulations presented hereafter, the contact element
used is the CFI3D element based on a penalty approach and Coulomb's friction
law (Cescotto and Charlier, 1993; Habraken and Cescotto, 1998). This approach
is the same as the one used previously for the shell element COQJ4 (e.g. Guzmán
et al., 2012b; Henrard, 2008).

6.3 Line test

The line test is the simplest form of SPIF and the large size of the step-down even
induces larger stress gradients than in classical SPIF problems. It allows verifying
the accuracy of the identi�ed material parameters and to study SPIF deformation
mechanisms. The stress and strain histories during the test are similar to the ones
found in SPIF test of a simple geometry. In this research, the target material is a
DC01 squared sheet of 182 mm× 182 mm and 1.0 mm thickness, clamped along its
edges as shown in Fig. 6.21(a). A non-rotating spindle tool of diameter 10 mm,
feedrate of 300 mm/min and with lubrication (Nuto 46 at constant stream), is
used. The toolpath consists of �ve di�erent stages: at the test beginning, the
tool is located above the sheet at X =−50 mm. Then, the tool moves down until
touching the sheet followed by a vertical indent step of Z =3 mm (step 1). A linear
horizontal displacement is applied along the X axis until X =50 mm (step 2) and
then a second indent of Z =3 mm depth (step 3). Keeping the same depth, the
tool returns to X =−50 mm (step 4) and �nally it is lifted (step 5). The toolpath
is schematically represented in Fig. 6.22. The test was experimentally performed

(a) Top view of the squared
sheet showing the clamped
edges.

(b) Perspective view of the line test FE mesh.

Figure 6.21: Geometry and mesh of the line test.

by Hans Vanhove from KULeuven. In order to ensure the reproducibility of the
results, the whole line test was performed three times and the bolts of the frame
were tightened using the same torque.
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(a) Toolpath perspective. (b) Steps scheme.

Figure 6.22: Line test toolpath.

6.3.1 FE simulation

The FE mesh is depicted in Fig. 6.21(b). It consists of 806 RESS solid shell
elements with 3 IP through the thickness11 and 806 CFI3D elements with 4 IP.
Symmetry boundary conditions are used along the X axis (Y =0) so only half
of sheet is simulated. Numerical tests performed by Henrard, (2008, chapter 7),
shows that a penalty coe�cient ofKp =1000 N mm−3 leads to the best compromise
between accuracy and convergence. The tool force is computed by a static implicit
strategy. No friction is applied between the tool and the sheet. The mesh is
adjusted to limit the number of elements while keeping accuracy.

Following the procedure described in section 5.5, di�erent material parameters
have been evaluated. The plasticity set of parameters (f0 =0) obtained in chapter
2 are used to validate the plastic model predictions. Another set of parameters
with damage is also analyzed to check the in�uence of di�erent damage phases
(nucleation, coalescence and shear) on the results. The validation is carried out
comparing experimental measurements of shape and force.

The set of plastic parameters is reminded in Table 6.6. Taken the Swift+AF set
as the reference plastic parameters, Table 6.7 presents the GTN model parameters
identi�ed in chapter 5.

Table 6.6: Plasticity parameters using the Hill, (1948) yield locus for the line
test simulation. See Table 2.16.

Isotropic Kinematic (AF)
Set name K ε0/ σ0 n CX Xsat

Swift 601.88 9.48× 10−6 0.2127 - -
Swift+AF 542.49 1.78× 10−2 0.4328 113.63 81.96
Voce 255.03 182.84 14.28 - -
Voce+AF 264.36 87.02 5.69 119.04 92.94

11Convergence issues were observed using more IPs.
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Table 6.7: GTN model parameters used in the line test simulations. See Table
5.6.

Nucleation Coalescence Shear
Set name f0 fN εN SN fc fF kω

nuc 0.0008 0.0025 0.175 0.42 - - -
coa 0.0008 0.0025 0.175 0.42 0.0055 0.135 -
shear 0.0008 0.0025 0.175 0.42 0.0055 0.135 0.25

6.3.2 Shape prediction

An experimental-numerical comparison for di�erent material parameters is given
in Fig. 6.23. The scale of the Z axis is not equal to the X axis in order to get a
better view of the cut. In both cases, the curves are de�ned by the nodal position
of the nodes located in the top and bottom layer of the RESS element. The ex-
perimental results of the shape are obtained through a laser line scanner mounted
on the machine. Fig. 6.23(a) shows the results for the set of parameters without
damage and Fig. 6.23(b) the comparison using sets considering damage. Globally,
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Figure 6.23: Shape prediction for the line test.

the predicted shapes are in good agreement with the experimental results. The
predictions using the GTN model are better than those using only plastic param-
eters. Nevertheless, the di�erences between the predicted shape by Hill, (1948) or
by the GTN model and the experimental measurements are less than 0.3 mm near
X =0 mm, which is small compared to the shape depth. The di�erence between
sets considering damage or not is due to the softening e�ect induced by damage,
allowing the material to deform more than using the set without damage. In the
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simulations using the GTN model, no noticeable di�erence is observed between
nuc, coa and shear.

6.3.3 Force prediction

Fig. 6.24 shows the tool reaction in the Z (axial) direction during the process. The
experimental force is measured using a load cell mounted on the machine. As no
time-dependent law is considered, each step of the line test has a simulation time
that is not proportional to the experimental time. Hence, the experimental time
is modi�ed in order to match the simulation (reference) time. From Fig. 6.24(a),
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(a) Axial force comparison between simulations
using plasticity (Hill, (1948) yield locus) param-
eters (without damage) and load cell measure-
ments.
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Figure 6.24: Axial force predictions and measurements for the line test.

it can be observed that a mixed isotropic-kinematic hardening law leads to better
predictions than using a pure isotropic hardening model. The predictions based
on the set of parameters of the damage model are slightly lower (less than 10%)
than the ones associated with the plastic model using mixed hardening. Again,
there is no important di�erence among the force predictions of damage activating
nucleation and coalescence steps or taking into account a shear extension.

6.3.4 Analysis of state variables

The material state variables are analyzed from the simulations using the most
complete GTN model (shear set). The variables are retrieved from three di�er-
ent solid-shell elements: 118, 404 and 690, shown in Fig. 6.25. Elements 118
and 690 are located under the tool at the �rst (step 1) and second indent (step
3), respectively. Element 404 is located between these two elements. The �rst
integration point (closer to the outer surface, not making contact with the tool) is
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Figure 6.25: Line test FE mesh showing elements 118, 404 and 690 selected to
display state variables evolution.

found to give the highest equivalent plastic strain of the three integration points.
This is expected, as the local stretching and bending of the sheet around the tool
causes the zone in the outer side of the sheet to stretch more than zones in the
inner side. Therefore, the state variables are analyzed at this integration point.
From Fig. 6.26(a) showing the porosity evolution, it is clear that the indent steps
play a major role in the porosity history for the elements under the tool indenta-
tion (118 and 690). Element 404 is not a�ected by the tool indentation as it is
too far. Nevertheless, there is a porosity increment due to the tool contact. It is
also clear that the major contribution to porosity comes from the growth phase
(Fig. 6.26(b)). Nucleation (Fig. 6.26(c)) only plays a minor role while the shear
contribution (Fig. 6.26(d)) can be neglected. These features are linked with the
fact that εPM (and εq) is low and nucleation is function of this value. The same
happens with the shear contribution, indirectly related to the Lode angle which is
low except for some peaks. However, it can be hypothesized that triaxiality (and
the hydrostatic stress) will play an important role on damage evolution, which
is studied in Fig. 6.27. The porosity increment after each indent can be related
with a triaxiality peak (marked with an arrow in Fig. 6.27(a) when the tool ap-
proaches to the element. It can be observed that triaxiality increases when the
tool approaches to the element, and decreases when the tool moves away from
the (plastically deformed) element. It must be noted that even if the triaxiality
is high for element 404 and 690 during the �rst indent, there is no increment of
the porosity as these elements do not deform plastically (see Fig. 6.27(c)) at this
moment.

Triaxiality explains why there is a porosity increment, but does not explain
why element 690 reaches a higher porosity than element 118, as both present
the same level of deformation (Fig. 6.27(c)). The reason of this higher value is
based on the mean (volumetric) plastic strain evolution shown in Fig. 6.27(d). It
can be easily linked with the porosity evolution in Fig. 6.26(a). Therefore, the
porosity mechanism during the line test is mainly governed by the triaxiality and
the volumetric parts of the plastic strain. As expected, the simulation does not
predict material failure as no crack appeared within the experiment. Note that
the coalescence stage is not activated within this line test, as the porosity is still
far from the critical value fcr =0.055.



6.3. Line test 189

0 0.2 0.8 1.0 1.8

Ref. Time [s]

0

f0

0.002

0.004

Porosity [−]

elem=118

elem=404

elem=690

indent 1

indent 2

(a) E�ective porosity.

0 0.2 0.8 1.0 1.8

Ref. Time [s]

0

0.002

0.004

Porosity [−]

(b) Growth contribution.

0 0.2 0.8 1.0 1.8

Ref. Time [s]

0

9 · 10−5

1.8 · 10−4

Porosity [−]

elem=118

elem=404

elem=690

(c) Nucleation contribution.

0 0.2 0.8 1.0 1.8

Ref. Time [s]

0

6 · 10−6

1.2 · 10−5

Porosity [−]

elem=118

elem=404

elem=690

(d) Shear contribution.

Figure 6.26: E�ective porosity evolution and the contribution from the di�erent
phases (nucleation, growth and shear) for elements 118, 404 and
690
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Figure 6.27: State variables evolution in th line test for elements 118, 404 and
690. The arrows mark triaxiality peaks.
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6.4 Pyramid test

In this section, FE simulations are carried out to model the forming of a two
truncated two-slope pyramid, studied previously as a solar cooker application by
Du�ou et al., (2005). This geometry su�ers from large geometric deviations when
comparing the intended and �nal shapes, so it is ideal to tests the accuracy of
the FE type. The blank used in the SPIF process is a DC01 steel sheet with in
plane initial dimensions 225 mm× 225 mm and 1.0 mm thickness. It is clamped
on its four edges with a 182 mm× 182 mm backing plate in such a way that only
the material located inside the ori�ce of the backing plate could be deformed by
the tool. The nominal geometry is depicted in Fig. 6.28. A three-axis MAHO
CNC milling machine was used as the platform for the SPIF process. The forming
tool was a cylindrical stylus with a 10 mm diameter spherical head mounted on
the horizontal axis of the machine, so that the blank was perpendicular to the
stylus (Henrard et al., 2010). After traveling an entire path of one contour, the
tool moves deeper with a 1 mm step-down to perform the next contour until the
desired depth is reached. The number of contours for the �rst slope of the pyramid
is 60 and it is 30 for the second slope. The shape of the pyramid is measured using
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(b) Side view.

Figure 6.28: Target geometry.

DIC. The tool travels with a feed rate of 500 mm/min, which is slower than usual
in order to allow the DIC cameras to capture more images. More details about
the DIC technique applied to the SPIF process can be found in Vasilakos et al.,
(2009) and Eyckens et al., (2010).

6.4.1 FE simulations

The initial undeformed FE mesh for this pyramid simulation is shown in Fig.
6.29. 1058 RESS elements are used to model the blank. Due to the symmetry of
the shape, only half of the sheet is meshed. Rotational boundary conditions (Fig.
6.30(b)) are imposed12. Hence, any node O or P identi�ed in Fig. 6.30(a) follows

12In Lagamine this is done using the BINDS elements.
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Figure 6.29: FE mesh considered for the simulation of the pyramid test.

Eq. 6.4.1 for its displacements.

A,B
•

CD

E
•
F
•

GH

I x

y

z
•

(a) Toolpath scheme. The letters are
referenced in Table 6.8.
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Figure 6.30: Scheme of the toolpath for two contours and the rotational bound-
ary conditions for the pyramid simulation. The �rst contour is
de�ned by: A,B indent, then B-C, C-D and D-E (edges of the
pyramid). The second contour: F indent, then F -G, G-H and
H-I (edges).

The de�nition of the toolpath for the simulation should be as close as possible
to the experiments, but some simpli�cations are introduced. For instance, the
forming tool is modeled as a rigid sphere and no friction is applied between the
tool and the sheet. Like for the line test, no time-dependent law is considered
so the simulation time can be di�erent compared to the real process to decrease
the CPU time. Fig. 6.30(a) depicts the toolpath seen from the top, with each
tool position de�ned in Table 6.8. The tool center at the beginning of the �rst
contours are speci�ed in Table 6.9. This is avoided by de�ning a non linear path.
In the pyramids, the change of angle from 60◦ to 30◦ occurs after contour 60 (at
600 s, because every contour lasts 10 s). The simulation is completed after the
tool removal (unloading step) at 901 s.

As the experimental pyramid is clamped, the nodes along the outer part of the
mesh are completely �xed (in all three translations). Along the symmetry axis
a link between the displacements is imposed, also known as rotational boundary
conditions (Bou�oux et al., 2010; Guzmán et al., 2012b; Henrard et al., 2010).
Hence, the displacements of the nodes O and P of Fig. 6.37(b) are related through



6.4. Pyramid test 193

Table 6.8: Tool position during the simulation of the pyramid. The depth de-
pends on the step-down being di�erent for pyramid A and B. The
coordinates are de�ned in Table 6.9.

Time (s) Position Depth X [mm] Y [mm]
C
o
n
t
o
u
r
1

0 A 0 X1 0
1 B ∆z X1 0
3.25 C ∆z X1 X1
7.75 D ∆z -X1 X1
10 E ∆z -X1 0
10.01 B ∆z-1 X1 0
10.02 B ∆z X1 0

C
o
n
t
o
u
r
2

11 F 2*∆z X2 0
13.25 G 2*∆z X2 X2
17.75 H 2*∆z -X2 X2
20 I 2*∆z -X2 0
20.01 F 2*∆z-2 X2 0
20.02 F 2*∆z X2 0
...

...
...

...
900 . . . 90*∆z -X90 0
901 . . . 90*∆z-90 -X90 0

Table 6.9: X coordinate of the tool center during the simulation of the SPIF
pyramid.

Coordinate [mm]

X1 84.5
X2 83.5
X3 82.881
X4 82.304
X5 81.727
...

...
X59 49.972
X60 49.395
X61 48.426
X62 46.998
X63 45.570
...

...
X90 8.449
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the following equations:

(ux)O = − (ux)P
(uy)O = − (uy)P
(uz)O = (uz)P (6.4.1)

where u is the vector of nodal displacements.

6.4.2 Shape and force predictions

Material points in a cut of the sheet in the X-Z plane in the undeformed sheet (see
Fig. 6.28(b)), starting from X =10 mm and ending in X =80 mm, are selected
and their Z positions measured. They are extracted at the end of three di�erent
contours, just before the tool is lifted to move to another contour (point E and
I in Fig. 6.30(a)). The experimental and numerical comparison is depicted in
Fig. 6.31(a). It should be noted that the numerical and experimental curves
are intentionally shifted to coincide at X ≈80 mm and Z ≈−10 mm. The reason
is that near the backing plate it is very di�cult to extract data, and there is
no accurate information about the shape between X ≈80 mm and Y ≈90 mm.
This transition zone between the clamped part and the pyramid wall has been
previously considered by Eyckens et al., 2010. The DIC also cannot retrieve
information about the point near X ≈0 mm at the end of the process.

The predictions up to the 60th contours are in very good agreement with
the experimental results. The deviation between the deformed sheet and the
nominal shape is correctly reproduced by the model, showing that the deformation
mechanisms (springback, through thickness shear,. . . ) are adequately captured
during the simulations.

From the 60th to the 90th contours, i.e. corresponding to the second slope
of the pyramid, a very small discrepancy from the experimental results can be
noticed on the upper part of the deformed pyramid. Overall, the prediction of
the FEM is quite satisfactory. It appears that, due to the change in the slope of
the tool path, the deviation from the nominal shape is larger after the sixtieth
contour because of two e�ects: a usual springback (sheet displacement after tool
removal) as well as a tent e�ect due to the force applied on the already formed
shape of the �rst angle pyramid, during the forming process of the second angle
pyramid. The tent e�ect can imply only elastic or both elastic and plastic strains.
In the present case, plastic strain is involved. The interested reader is referred to
Behera et al., (2011), Guzmán et al., (2012b), and Sena et al., (2015) for more
information about this geometry inaccuracy. These phenomena are well captured
by the model.

Force prediction is shown in Fig. 6.31(b) for four di�erent material models.
To simplify the visualization of the results, an average value of the numerical force
evolution is considered in each contour (Bou�oux et al., 2010), calculated between
points C and D in Fig. 6.30(a) for the �rst contour, points G and H for the second
contour, etc.. The results are presented in Fig. 6.31(b), showing a clear di�erence
between the forces when forming the 60◦ pyramid and the 30◦ pyramid. Guzmán
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et al., (2012b) showed that the Aerens et al., (2009) formula (initially proposed for
cones) works also for pyramids. Aerens et al., (2009) formula is further discussed in
section 6.5.2. This formula predicts a (steady) force of Fz_s =1158.01 N for this
DC01 steel for the 60◦ pyramid, which is clearly below the forces obtained from
the FE simulation. This is a well known limitation of the current FE simulations,
as documented in section 6.1.1.5.
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Figure 6.31: FE predictions for the shape and force.

The most interesting observation of these simulation from the damage point
of view is that the set of parameters using coalescence (coa and shear) stopped
before the implicit simulations were completed. The reason is that porosity in
one IP reaches f = fu, in a small zone in the corners, as shown in Fig. 6.34(a).
The material sti�ness then abruptly decreases leading to the �nal failure. Fig.
6.32(a) to Fig. 6.33(a) shows the porosity distribution at di�erent coalescence
stages. fcr is reached in a early stage of the simulation (t =33 s). Then, Fig.
6.33(a) con�rms that porosity localizes near the corners which is expected due
to the high degree of deformation. Fig. 6.34(a), retrieved at the last stages of
coalescence, shows an abrupt increase of the porosity in one particular element
in the right corner. It is interesting to compare this porosity distribution with
the equivalent (macroscopic) plastic strain εq distribution, shown in Fig. 6.32(b)
to Fig. 6.34(b). εq is more evenly distributed, with higher deformation in the
corners but without strong gradients as it is the case for the porosity. In overall,
the FE model wrongly predicts material failure for this material and geometry.
The reasons will be further explored in the next section for di�erent cone angles.
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(a) Porosity. (b) Equivalent plastic strain.

Figure 6.32: Porosity and equivalent (macroscopic) plastic strain distribution
at t =33 s, when one IP reaches fmax = fcr =0.0055.

(a) Porosity. (b) Equivalent plastic strain.

Figure 6.33: Porosity and equivalent (macroscopic) plastic strain distribution
at t =83 s, when one IP reaches fmax = fF =0.135.

(a) Porosity. (b) Equivalent plastic strain.

Figure 6.34: Porosity and equivalent (macroscopic) plastic strain distribution
at t =103 s, when one IP reaches fmax = fu =0.6.
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6.5 Cone test

Fig. 6.35 shows a schematic view of a cone of wall angle α and 30 mm depth.
As mentioned in the literature review, the wall angle is used as a measurement
of the formability limits of SPIF for a determined material. For the DC01 steel
of 1.0 mm thickness, 67◦ is the (experimental) maximum achievable wall angle
without failure. It was identi�ed by the KULeuven team (Behera, 2013; Verbert,
2010) by forming successive cones to accurately identify this angle, after a �rst
set of experiments where α is systematically increased. In this section, SPIF
cones with di�erent wall angles are simulated and the porosity �eld is analyzed.
The experimental measurements (forces and shapes) are not available for these
cones, but here the goal is to study the in�uence of the wall angle on the damage
development.
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Figure 6.35: Target cone geometry.

6.5.1 FE simulation

Due to the complexity of the material model and the SPIF FE simulation itself,
di�erent FE meshes were analyzed in order to reduce CPU time while keeping
accuracy. Fig. 6.36 shows a 90◦ angle pie with 1492 RESS elements which lead to
the best results. The 45◦ angle pie presented border e�ects while the simulation
time for 180◦ angle pie was too large (several days).

Figure 6.36: FE mesh considered for the simulation of the cone test.
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The toolpath is composed of 60 contours with a step down of 0.5 mm between
two successive contours. Fig. 6.37(a) depicts the toolpath seen from the top
for two contours. Each tool position is de�ned in Table 6.10. The tool center
positions at the beginning of the �rst contours are speci�ed in Table 6.11.
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(a) Toolpath scheme. The letters are
references in table 6.10.
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(b) Rotational boundary conditions.

Figure 6.37: Scheme of the toolpath and the rotational boundary conditions for
the cone simulation.

Table 6.10: Tool position during the simulation of the cone. The X coordinate
is de�ned in Table 6.11 for a 67◦ cone.

Time [s] Position Depth X [mm] Y [mm]

C
o
n
t
.
1 0 A 0 X1 0

1 B ∆z X1 0
10 C ∆z 0 X1
10.001 B ∆z X1 0

C
o
n
t
.
2 11 D 2*∆z X2 0

20 E 2*∆z 0 X2
20.001 D 2*∆z X2 0

C
o
n
t
.
3 21 F 3*∆z X3 0

30 G 3*∆z 0 X3
30.001 F 3*∆z X3 0
...

...
...

...
...

600 . . . 60*∆z 0 X60
601 . . . 60*∆z-10 0 X60

As the experimental cone is clamped, the nodes along the outer circumferen-
tial part of the 90◦ pie mesh are completely �xed (in the three translations). In
the other edges, rotational boundary conditions are imposed. Hence, the displace-
ments of the nodes O and P in Fig. 6.37(b) are related following Eq. 6.4.1.
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Table 6.11: X coordinate of the tool center during the SPIF 67◦ cone simulation.

Coordinate [mm]

X1 85.642
X2 84
X3 82.786
X4 82.3197
X5 81.8535
X6 81.3872
...

...
X60 56.2093

6.5.2 Force prediction

As experimental measurements are not available for this geometry, the predicted
force is assessed using Aerens et al., (2009) formula. The axial steady13 force in
the axis of the tool in a general material is calculated using the following equation:

Fz_s = 0.0716Rmt
1.57dt

0.41∆h0.09(α− dα) cos (α− dα) (6.5.1)

whereRm is the tensile strength, t is the sheet thickness, dt is the tool diameter and
α is the wall angle in degrees. This is a corrected version of the original formula
proposed by Aerens et al., (2009), using an empirical correction of dα =2.86
introduced later by the article's author 14. ∆h is the scallop height, related to the
depth increment ∆z through the following equation:

∆h =
1

dt

(
∆z

2 sinα

)2

(6.5.2)

For the particular case of the DC01 steel, Aerens et al., (2009) proposed the
following equation relation for the peak force:

Fz_p = 40.7t1.42d0.48t ∆h0.12(α− dα)0.73 (6.5.3)

and for the steady force:

Fz_s = 16.26t1.35d0.48t ∆h0.12(α− dα)1.11 cos (α− dα) (6.5.4)

Eq. 6.5.3 and Eq. 6.5.4 assumes that for the DC01 steel the (reference) tensile
strength is equal to Rm =357 MPa. In the batch analyzed in this thesis, the
measured tensile strength is Rm =312.26 MPa as shown in chapter 2. The results
obtained for di�erent wall angles are shown in Table 6.12, considering both tensile
strengths. The di�erence between the �rst and third row of Table 6.12 (or between
Eq. 6.5.1 and Eq. 6.5.4) is around 15%, which is close to the same di�erence

13Aerens et al., (2009) observed that the force evolution during the cone test has a peak

during the �rst contours and then decrease to a steady level until the end.
14Email from Aerens, Friday 19 October 2012.
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Table 6.12: Steady and peak force for the DC01 steel cone predicted using the
Aerens et al., (2009) formula at di�erent wall angles.

Equation Rm α =30◦ α =47◦ α =48◦ α =60◦ α =67◦

[MPa] [N] [N] [N] [N] [N]

Fz_s (Eq. 6.5.1) 312.26 995.85 1219.70 1222.49 1158.01 1033.53
Fz_p (Eq. 6.5.3) 357 - - - 1326.35 1422.13
Fz_s (Eq. 6.5.4) 357 1095.26 1383.27 1388.52 1337.49 1204.57

between the reference tensile strength Aerens et al., (2009) and the one measured
in this work. This proves that the general Eq. 6.5.1 is adequate for the DC01
steel batch used in the current thesis.

In order to explain the premature prediction of material failure found for
simulation of the pyramid test, several FE simulations were carried out on SPIF
cones with di�erent wall angles. The FE predictions of the force are shown in Fig.
6.38 for four selected angles, two of them predicting material failure. The GTN
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Figure 6.38: Axial force predictions for the cone test for di�erent wall angles.
The cross denotes the moment where f = fu in one FE.

model predicts a failure for a 48◦ cone. The model underestimates the failure
angle, since for this material and thickness the (experimental) critical wall angle
is 67◦. This issue will be analyzed in the next section. Compared to the results
of Table 6.12, the simulations results of Fig. 6.38 overpredict the force in more
than 100%.

The issue of the force prediction overestimation was already discussed in sec-
tion 6.1.1.5. In the previous section, only the force of the line test (section 6.3.3)
was well predicted compared to experimental results. Both the pyramid and the
cone FE prediction overestimate the reference force predicted by the Aerens et al.,
(2009) formula. The only di�erence in terms of the FE simulation among these
geometries is the mesh con�guration, with the cone and the pyramid using rota-
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tional boundary conditions. Nevertheless, the force evolution in both the pyramid
and the cone have di�erent characteristics than those from the line test because
of the toolpath. The �nite element formulation can also play a role on the force
prediction. Guzmán et al., (2012a) showed using the SSH3D solid-shell element
for a line test simulation, that the element �exibility modi�ed with EAS modes
can severely decrease the force level. This was later con�rmed for a pyramid test
simulation by Duchêne et al., (2013). Sena et al., (2013) and Sena, (2015, chapter
5) showed using the RESS �nite element that the hardening law has an impor-
tant e�ect on the force level. The results using the Voce law are better the Swift
law, overpredicting the force in only 30% for an AA7075-O aluminum alloy. In
this case, the FE force prediction for aluminum alloys is better compared to the
prediction for the steel using the RESS FE.

6.5.3 Analysis of fracture prediction

It is clear in Fig. 6.38 that the GTN model predicts fracture on a early stage.
This wrong prediction of fracture could be due to di�erent factors:

1. The attained force level (100% higher than the Aerens et al., (2009)).

2. Bad modeling of the deformation mechanisms. Localization and thinning
play an important role.

3. Limitations of the GTN model.

In this section, each point will be analyzed separately.

1. Regarding the force, a bad force prediction does not necessarily mean a bad
damage prediction. Indeed, the predicted force is much higher than the
experimental force predicted by the Aerens et al., (2009) formula. If the
reaction force predicted by the FE simulations was the reason why damage
increases too quickly, then the 47◦ cone should have failed too. Therefore,
the bad force prediction of the FE is not the reason of the premature failure.

2. Localization and thinning are a crucial aspect of material formability (see
section 6.1.4). The shape (and thickness) distribution is correctly predicted
by the solid shell, as shown in Fig. 6.23(b). This fact is also supported by
previous simulations using the solid-shell element formulation eg. Duchêne
et al., 2013; Sena et al., 2013. Localization is nonetheless a di�erent as-
pect of the deformation. The limitations for strain localization and fracture
strain prediction using the GTN model were discussed in section 5.5.2. De-
spite these limitations, it is not straightforward to say that a good prediction
of the strain evolution will allow a good prediction of the onset of failure.
Malcher et al., (2012) showed that (in general) the GTN model do not pre-
dicts the fracture strain accurately, but it behaves relatively well under high
and low triaxialities for the prediction of the force level and the displacement
at fracture. Fig. 6.39 presents the equivalent plastic strain distribution for
the 47◦ and 48◦ angle cones. The 47◦ is the limit case predicted by the
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model that does not fail. In the �gure it is clear that strain does not localize
and the plastic strain is evenly distributed, while for the 48◦ cone the strain
localization is clear before failure. The maximum value of plastic strain in
Fig. 6.39(b) is around 0.8, which is below the usual values found on SPIF
which are easily over 1.0. It is possible to observe a similar trend in the
porosity distribution shown in Fig. 6.40. For the 48◦ cone, failure is precede
by localization of the equivalent plastic strain and porosity. The 47◦ cone
does not fail because f < fF =0.135, so strain localization is triggered by
the coalescence criterion of the GTN model.

(a) 47◦ cone at the end of the simulation. (b) 48◦ cone at fracture.

Figure 6.39: Equivalent plastic strain distribution for the cone test simulation.

(a) 47◦ cone at the end of the simulation. (b) 48◦ cone at fracture.

Figure 6.40: E�ective porosity distribution for the cone test simulation.

3. To further analyze the fracture prediction of the GTN model, a comparison
will be given with the article by Malhotra et al., (2012) which predicts frac-
ture for a SPIF cone and funnel quite well. Malhotra et al., (2012) used a
fracture model developed by Xue, (2007). This model leads to good results
when predicting the force and the depth at which fracture happens. As
shown in the previous section, the GTN model extended to shear fails to
predict the force level and the onset of fracture. Despite both models have
two similar internal variables (the equivalent plastic strain and the damage
parameter), in the Xue, (2007) model the damage evolution is function of
the ratio of plastic strain and the fracture strain (the self-similarity hypoth-
esis). This represents a strong coupling between damage and the plastic
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strain. As discussed in section 5.5.2, in the GTN model localization is only
triggered by the damage variable and there is no coupling with material
hardening. Another di�erence is that both models were developed with dif-
ferent purposes. For instance, the Gurson, (1977a) model was originally
developed to represent the deterioration of a porous material (see chapter
3), based on unit-cells calculations. On the contrary, the Xue, (2007) model
is based on a theory where the plastic damage incorporates all the three
stress invariants. Here the scope is not only the material deterioration but
also the determination of the fracture envelope.

Summarizing, the most probable reason of the premature prediction of material
failure by the GTN model is an inadequate coalescence criterion. Indeed, it has
often been discussed that fcr is not a su�cient criterion to describe the initiation
of fracture (eg. Malcher et al., 2014). Triggering failure based only in the damage
parameter (e�ective porosity) could be risky considering the complexity of the
stress and strain path found on SPIF. The inherent limitations of the GTN model
to represent strain hardening can also play a role.

6.6 Conclusions

In this chapter, an evaluation of the GTN model extended to shear is performed.
A review of the state-of-the-art about SPIF, covering geometrical accuracy, de-
formation mechanism, formability and damage is also presented. The line test is
used to validate the simulations by comparing force and shape prediction with
experimental results. Then, a two-slope pyramid is simulated to evaluate the
performance of the solid-shell formulation. In general, the results of the shape
prediction are in good agreement with the experimental results, both for the line
and pyramid test. The good results obtained for the line tests are, unfortunately,
not replied on more complex shapes like the cone and the pyramid. For exam-
ple, the force prediction is too high compared to experimental values, probably
because of the boundary conditions. This is an issue that requires more research,
as the deformation mechanism is highly dependent on the process parameters so
conclusions derived from some geometries are not necessarily repeatable in other
shapes. On the other hand, the GTN model is capable to detect failure in a
pyramid and cone, but the prediction is too premature compared to the experi-
mental failure angle for the same material and geometry. After performing several
SPIF cones FE simulations at di�erent wall angles, it is concluded that the GTN
model underestimates the reference failure angle. The most probable reason for
bad failure modeling is the coalescence model, which depends only on the damage
parameter (porosity). Moreover, the GTN model uncouples this damage param-
eter with hardening. Other models like the one proposed by Xue, (2007), which
predicts failure in the SPIF process quite well, couples the damage evolution and
failure with the plastic strain. This research indicates that the current failure
mode happening cannot be predicted by the classical assumptions of the GTN
model. Even if the damage model is capable to predict the loss of the loading
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capacity for notched specimens, the stress and strain path found on SPIF are
di�erent and certainly more complex.



Chapter 7

Conclusions and perspectives

7.1 General conclusions

In this thesis, a damage model has been developed and implemented in the FE
code Lagamine. It was experimentally characterized and then applied to predict
failure in the SPIF process. Formability of SPIF has been extensively studied
before but little has been done regarding the damage evolution leading to �nal
fracture. This dissertation reports the developments and results in detail through
a series of chapters, each one covering di�erent contributions to the �elds of dam-
age modeling and sheet metal forming analysis.

Chapter 2 describes the selection of the material and the characterization of the
plastic behavior through mechanical tests and FE simulations. Since the elasto-
plastic behavior precedes the damage behavior, a correct identi�cation of plasticity
is important for the modeling of damage. The criterion of the material selection is
primarily based on the ISF application. The chosen material, a DC01 ferritic steel
sheet, was characterized using di�erent mechanical tests. Material parameters for
plastic model considering the anisotropic behavior and hardening were identi�ed
using optimization algorithms. The results show that the material exhibits an
anisotropic behavior at 45◦ of the RD during the tensile test, but it is mainly
isotropic during the plane strain tests. The Hill, (1948) yield locus is able to
capture this anisotropic behavior quite well despite its limitations. Moreover, the
simplicity of this model is desirable considering further theoretical developments
(viz. extensions of the GTN model) and CPU time (viz. sheet metal forming
simulations). The Swift, (1952) law satisfactorily describes the isotropic hardening
behavior. The kinematic hardening presents a clear work-hardening stagnation,
which is a phenomenon that cannot be represented using the classical Armstrong
and Fredrick, (1966) model. Nonetheless, for sake of simplicity the A-F model will
be chosen because describing the stagnation would required a more complex model
not compatible with implicit simulations of SPIF. In general, the methodology
used in this chapter can be considered as an application of the one developed by
Flores, (2005) and Gilles, (2015) for plastic characterization. Hence, based on the
presented results, the methodology can be considered acceptable for the DC01
steel sheet characterization.

205
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Chapter 3 explores the historial developments and physical roots of the Gur-
son model. The importance of this chapter is that contextualizes extensions of
the Gurson model that will be used throughout the thesis. Among them, the
Gurson-Tvergaard-Needleman (GTN) which includes the three stages of damage
evolution leading to fracture: void nucleation, growth and coalescence. Another
review is presented regarding the limitations of the GTN model to simulate shear
dominated cases i.e., in low stress triaxialities. Improvements of the GTN model
to incorporate shear-type softening are thus presented. Extension based on micro-
scopic observations are also brie�y presented, directed towards speci�c materials.
As described in chapter 2, an important part of the plastic behavior description
goes into the anisotropic and hardening modeling. In the case of the GTN model,
extensions including matrix anisotropy and mixed hardening are also considered.
Despite the numerous extensions proposed previously, models considering all the
mentioned extensions are not widely available throughout the literature. Hence,
the next challenge is to implement this advanced model within a FE code.

Chapter 4 details the implementation of the extensions of the Gurson model
presented in chapter 3. It covers in great detail the required mathematical devel-
opments (also covered in Appendix B) and the general framework of the imple-
mentation algorithms. The classical return-mapping and the implicit backward
Euler algorithms, which are the adopted scheme, are described. The original fea-
ture of this scheme is that all the variables are integrated in an implicit way based
on the projection algorithm, while the consistent tangent matrix is calculated an-
alytically. The implementation is validated by numerical results of homogeneous
cases found in the literature. Nucleation, coalescence and shear extensions are
accurately validated, as well as plastic anisotropy and kinematic hardening. The
good results of the validation allow concluding that the model can be used in
more complex simulations. Moreover, due to the range of extensions several phe-
nomena can be explored and their results brings other point of view than unit-cell
calculations, the Lemaitre, (1985) damage model, fracture criteria, etc.

Chapter 5 proposes a methodology for damage characterization of the DC01
steel sheet. This methodology includes microscopic and macroscopic measure-
ments, based on a test campaign with specially designed specimens e.g., notched
specimens, a specimen with a central hole and special shear specimen designed
by Peirs et al., (2011). The experimental microscopic measurements show results
that are not representative of the actual damage, but they give a qualitative esti-
mation of the physical mechanism of fracture. The studies conducted in previous
chapters allow performing the required simulations for the identi�cation of the
material parameters of the GTN model extended to shear. The results of the
experimental mechanical tests are used to �nd the material parameters for nucle-
ation, coalescence and shear. Because of the strong nonlinearity of the equations
plus the inherent experimental errors, a single set of results able to match all the
performed tests was not possible to obtain. The limitations linked to the model
formulation are discussed. In particular, it is found that the GTN model is not
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able to predict the strain localization (measured by DIC) due to the heuristic
way used to introduce hardening into the matrix behavior. Even with these lim-
itations, the GTN model captures coalescence and failure within an acceptable
range. Indeed, the material also relatively works well for materials like a bulk
Ti-6AL-4V alloy, as presented in the Appendix D.

Chapter 6 presents the �nal evaluation of the GTN model. Using the material
parameters identi�ed in chapter 5, several SPIF FE simulations are performed and
their results discussed. Here the scope is to evaluate if the GTN model extended
to shear is able to predict failure. A review of the state-of-the-art about SPIF,
covering geometrical accuracy, deformation mechanism, formability and damage
is also presented. The �rst simulation is the SPIF line test. The numerical sim-
ulation is validated thanks to experimental results provided by the KULeuven
team. A deep analysis of the state variables show that each vertical indent step
increases the strain and triaxiality in a way that the major contribution to damage
development comes from the void growth. The next validation is performed using
a two-slope pyramid test, where the shape is not easily captured by FEs in the
zone near the angle transition. If coalescence is not considered in the simulations,
the shape is well predicted but the force is overestimated compared to the force
calculated using the Aerens et al., (2009) formula. This discrepancy is explained
due the (rotational) boundary conditions of the mesh or the (solid-shell) FE for-
mulation. The simulations using the GTN model plus coalescence predict failure
for this pyramid, which is not experimentally observed. To further analyze this
anomaly, SPIF cone FE simulations are performed at di�erent wall angles. The
GTN model predicts failure at 48◦, which underestimates the failure angle for this
geometry and thickness, which is experimentally measured as 68◦. It is concluded
that the GTN model fails to predict failure on SPIF due to limitations of the
GTN model. Notably, in the coalescence model the porosity is the only param-
eter triggering the onset of localization. Other publications (cf. Malhotra et al.,
2012) have shown the importance of strain localization and thinning. Moreover, as
shown in chapter 5, the GTN model does not correctly predict strain localization.

Summarizing, the �nal goal of predicting failure for the SPIF process was not
possible to achieve. The GTN model extended to shear presents inherent �aws
that prevent an accurate prediction of the failure angle for a SPIF cone. Hence, an
extensive research on the damage mechanisms leading to fracture for SPIF cannot
rely (only) on the GTN model. Nevertheless, during the development of this
thesis a robust implementation of the GTN model into the FE code Lagamine
was done. The parallelization of the Lagamine code was successfully updated
for new Walloon clusters (covered in Appendix E). An extensive experimental
database of microscopic and macroscopic measurements for the DC01 steel sheet
is also available for further research. At last but not least, the solid-shell elements
are consolidated as an useful tool to simulate the SPIF process (viz. Sena, 2015).
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7.2 Perspectives for future work

The main challenge is to predict failure in the SPIF process using simulations
relying on the GTN model. Despite other limitations of the GTN model, coales-
cence is the hardest stage to be captured by the model. The classical coalescence
model of Tvergaard and Needleman, (1984) is insu�cient to correctly predict ma-
terial failure, probably because it lacks a coupling between damage (porosity) and
hardening. Instead, coalescence in the GTN model is triggered based solely on the
porosity evolution. Hence, it is recommended that further analysis concentrates
on the description of this particular stage of damage evolution (see for instance,
Benzerga and Leblond, 2010). Another damage model (viz., Xue, 2007) can also
help to predict failure better in the SPIF process.

SPIF FE simulations can also be improved. Recently, the remeshing method
implemented in the Lagamine code was successfully validated for solid-shell ele-
ments and plasticity models in Sena, (2015) PhD thesis. The damage model im-
plemented in Lagamine has di�erent state variables than the plasticity models,
hence the data transfer method between old and new elements must be carefully
studied. Speci�cally, the coalescence stage is sensitive to the mesh size presenting
a strong challenge to remeshing techniques. Other SPIF optimization techniques,
such as the sub-domain decomposition and subcycling, are interesting to study
in the context of damage modeling. Both techniques di�erentiate between the
non-linearities in the tool neighborhood and the rest of the mesh. In particu-
lar, sub-cycling use larger times steps in coarse elements. In this thesis, it is
demonstrated through the parameter NINTV that the time step can have impor-
tant consequences on the results.

The solid-shell element formulation can also be improved for SPIF FE simula-
tions. The e�ect of the EAS modes on the force evolution is known and a similar
analysis can be done for damage modeling using the SSH3D FE. In this thesis,
SPIF simulations were performed using the RESS. The study of the e�ect of the
FE formulation (EAS modes and number of integration points through-thickness)
on damage evolution during the SPIF process seems attractive. Recently, Ben
Bettaieb et al., (2015) compared both elements concluding that SSH3D is more
versatile in terms of the EAS modes choice and integration scheme. On the con-
trary, RESS is more e�cient than SSH3D is terms of CPU time.

In the �eld of material modeling, there is still relevant work to be done. An
accurate simulation of work-hardening stagnation, observed in cyclic tests of the
DC01 steel was not achieved because it requires a more complex model than the
classical from Armstrong and Fredrick, (1966). The e�ect of this phenomenon on
the plastic behavior was analyzed by Flores et al., (2007) for a similar material
(DC06 steel). However, the e�ect of stagnation on damage evolution is unknown.
Using DIC measurements, strain localization is observed at the center of the
notched specimens. This behavior is not well captured by the GTN model. It
is hypothesized that this limitation is due to the heuristic way that hardening is
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introduced into the matrix behavior. Further extensions of the GTN model can
cover this topic and use the identi�ed material parameters for validation.

In terms of the algorithm used to integrate the GTN model into the Lagamine
FE code, further work can be focused on more academic oriented research. For
instance, study the e�ect of the sub-intervals on the accuracy of the algorithm
using iso-error maps or performance assessment in terms of the CPU time (see Ben
Bettaieb et al., 2011c). Since models incorporating all the presented extensions
(shear, anisotropy and mixed hardening) are not widely available, a sensitivity
analysis can help to check the ability of the model to predict localization under
di�erent loading cases. Then, the results can be compared to unit-cell calculations
found in the literature (viz., Tvergaard and Nielsen, 2010).





Appendix A

Stress measures and invariants

A.1 Stress measures

For an isotropic material, plastic yielding is dependent on the principal stresses
and not on their magnitudes. In addition, the representation theorem (Salençon,
2005) establishes:

Every (isotropic) function F of a symmetric tensor is expressed as a
function of the tensor's invariant of the principal stresses.

In other words, the stress state of an isotropic material can be expressed in terms
of the principal components of the stress tensor or the invariants.

F (I1, I2, I3) = 0⇒ F (σ1, σ2, σ3) = 0 (A.1.1)

Note the direction of the implication, given the lack of generality in the opposite
direction. Using the stress invariants instead of the stress tensor components is
useful in the study of yielding or fracture. They are dimensionless scalar values
which can have di�erent physical interpretations. For example, the �rst stress
invariant I1 de�nes the hydrostatic (spherical) stress while the second invariant
of the deviatoric stress J2 represents the distortional energy de�ning yielding in
isotropic materials (von Mises criterion). Other scalar metrics can also be related
to invariants, such as the triaxiality and the Lode, (1926) parameter. In this
section, we de�ne the triaxiality and the Lode angle both in the stress invariants
sense and as a vector in the stress space.

A.1.1 Triaxiality

Triaxiality has traditionally been used as a metric to characterize the stress state.
It can be de�ned as the ratio between the hydrostatic (�rst stress invariant) and
deviatoric (second deviatoric stress invariant) part on the stress state. If the
second deviatoric stress invariant is de�ned as:

J2 :=
1

3
σ2
eq (A.1.2)
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then triaxiality can be expressed as:

T (I1, J2) =
σm
σeq

=
1

3

σii
σeq

(A.1.3)

A.1.2 Stress tensor in the stress space and Lode angle

A stress tensor can be graphically represented in the principal stress space1 as
a position vector

−→
OP , as depicted in Fig. A.1. A stress state can be split in a
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Figure A.1: Stress state represented in the Haigh-Westergaard space.

deviatioric and hydrostatic part:

−→
OP =

−−→
ON︸︷︷︸

Hydrostatic

+
−−→
NP︸︷︷︸

Deviatoric

(A.1.4)

where
−−→
ON ⊥ −−→NP and

−−→
NP lies on the deviatoric plane, de�ned as:

σ1 + σ1 + σ1 =
√

3C (A.1.5)

where C is a constant, with C =0 representing the so-called π-plane.
−−→
ON lies on

the hydrostatic axis, whose normal is given by the following basis:

n =

(
1√
3
,

1√
3
,

1√
3

)
(A.1.6)

Hence, |−−→ON | = −→OP · n is the projection of
−→
OP in the hydrostatic axis .

1Also known as the Haigh-Westergaard space, as proposed simultaneously by Haigh,
(1920a,b) and Westergaard, (1920).
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Experimental evidence shows that plastic yielding is independent of the hy-
drostatic stress (Bridgman, 1952), thus a yield criterion for metals can be conve-
niently represented in terms of the magnitude and the orientation of

−−→
NP . It can

be shown that the magnitude of
−−→
NP is

√
2J2 and the orientation with respect to

the deviatoric plane is called Lode angle, ξL:

‖−−→NP‖2 = ‖σdev‖2 =
√
σdev : σdev =

√
2J2 (A.1.7)

As the Lode angle is de�ned between one axis and the
−−→
NP vector, it can be

necessary to get its projection on a determined axis of the principal stresses. For
convenience, the following de�nition is taken about this projection on the �rst
principal stress (with σ1 > σ2 > σ3). This leads to (Khan and Huang, 1995;
Voyiadjis et al., 2012):

cos 3ξL =
3
√

3

2

J3

J
3
2
2

0◦ ≤ ξL ≤ 60◦ (A.1.8)

where ξL is the Lode angle in degrees. So, any stress state could be represented
for the next equation (Khan and Huang, 1995):




σ1
σ2
σ3


 =

I1
3




1
1
1


+

2√
3

√
J2




cos ξL
cos (120− ξL)
cos (120 + ξL)


 (A.1.9)

Eq. A.1.9 can also be written in terms of the equivalent von Mises stress and the
triaxiality (Danas and Ponte Castañeda, 2012)2:

3

2σeq




σ1
σ2
σ3


 =

3

2
T




1
1
1


+

2√
3

√
J2



− cos (ξL + 60)
− cos (ξL − 60)

cos ξL


 (A.1.10)

The stress components of the left side of the equation are called normalized prin-
cipal stress components.

A.1.3 Other de�nitions of the Lode angle

In terms of the principal stresses space, the Lode's parameter is de�ned as:

µσ(σ) =
2σ2 − σ1 − σ3

σ1 − σ3
− 1 ≤ µσ ≤ 1 (A.1.11)

with σ1 > σ2 > σ3. This was the original proposal by Lode, (1926) and is usually
used by Civil engineers (Zhang et al., 2001). The relation between the Lode
parameter and the Lode angle of Eq. A.1.8 is given by:

µσ(σ) = −
√

3 tan ξL (A.1.12)
2Note the slightly di�erence due to the choice principal directions, using σ3 > σ1 > σ2

instead.
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Other authors (Coppola et al., 2009; Danas and Ponte Castañeda, 2012; Gao et
al., 2009; Wierzbicki et al., 2005) prefer to use the parameter:

ξ = cos 3ξL = ±27

2

J3
σ3
eq

− 1 ≤ ξ ≤ 1 (A.1.13)

which is the same as Eq. A.1.8 using Eq. A.1.2. The± sign depends on the author.
Dunand and Mohr, (2011a) introduced the parameter ξ as the normalized third
invariant. Danas and Ponte Castañeda, (2012) also used Eq. A.1.13 but multiplies
it by −1. Li et al., (2011) in Eq. 4 wrongly de�nes ξ using σh instead of σeq.
Another modi�cation was introduced by Bai and Wierzbicki, (2008) and later
used by Bai and Wierzbicki, (2009), Beese and Mohr, (2012), Dunand and Mohr,
(2011a), and Malcher et al., (2012):

θ = 1− 6ξL
π

= 1− 2

π
arccos ξ − 1 ≤ θ ≤ 1 (A.1.14)

This parameter is called normalized Lode angle. Nahshon and Hutchinson, (2008)
slightly modi�ed Eq. A.1.13 to be in the positive range, in order to incorporate
it into their shear modi�ed version of the GTN model:

ω = 1− ξ2 = 1−
(

27

2

J3
σeq

)2

0 ≤ ω ≤ 1 (A.1.15)

with ω = 0 for all axisymmetric stress states and ω = 1 for pure shear plus a
hydrostatic contribution. Voyiadjis et al., (2012) proposed:

θV = sin 3ξL =

√
1− 27

4

J2
3

J3
2

0 ≤ θV ≤ 1 (A.1.16)

which is obtained by applying a Pythagorean identity to Eq. A.1.8.
Table A.1 shows the di�erent de�nitions presented here and their references.
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Table A.1: Table summarizing the Lode angle de�nitions that can be found in
the current literature.

De�nition Range Reference Name

µσ =
2σ2 − σ1 − σ3

σ1 − σ3
−1 ≤ µσ ≤ 1 Lode, (1926) Lode parameter

cos 3ξL =
3
√

3

2

J3

J
3
2
2

0◦ ≤ ξ ≤ 60◦ Lode angle

ξ =
27

2

J3
σ3
eq

−1 ≤ ξ ≤ 1 Wierzbicki et al.,
2005

Normalized third
invariant

θ = 1− 2

π
arccos ξ −1 ≤ θ ≤ 1 Bai and

Wierzbicki, (2008)
Normalized Lode
angle

ω = 1− ξ2 0 ≤ ω ≤ 1 Nahshon and
Hutchinson, (2008)

θV =

√
1− 27

4

J2
3

J3
2

0 ≤ θV ≤ 1 Voyiadjis et al.,
(2012)

A.2 Scalar tensor functions and their derivatives

A.2.1 Invariants

Given the characteristic polynomial of σij:

λ1,2,3
3 − I1λ1,2,32 + I2λ1,2,3 − I3 = 0 (A.2.1)

Where λ1,2,3 is a Lagrange multiplier (principal stresses) and I1,2,3 are the invari-
ants of the stress tensor, de�ned as:

I1(σ) = tr (σij) = σxx + σyy + σzz (A.2.2)

I2(σ) =
1

2
σijσij = σxxσyy + σxxσzz + σyyσzz − σxy2 − σxz2 − σyz2 (A.2.3)

I3(σ) = det (σij) (A.2.4)

In terms of the principal stresses:

I1(σ) = σ1 + σ2 + σ3 (A.2.5)

I2(σ) = σ1σ2 + σ2σ3 + σ1σ3 (A.2.6)

I3(σ) = σ1σ2σ3 (A.2.7)

The deviatoric stress invariants are:

J1(σ) = 0 (A.2.8)

J2(σ) =
1

3

(
I21 − 3I2

)
(A.2.9)

J3(σ) =
1

27

(
2I31 − 9I1I2 + 27I3

)
(A.2.10)
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With the derivatives:

∂I1
∂σ

=I

∂I2
∂σ

=I1I − σT

∂I3
∂σ

= detσσ−T

∂J2
∂σ

=
2

3
I1
∂I1
∂σ
− 3

∂I2
∂σ

∂J3
∂σ

=
2

9
I21
∂I1
∂σ
− 9I2

∂I1
∂σ
− 9I1

∂I2
∂σ

+ 27
∂I3
∂σ

A.2.2 Lode angle de�nitions

Several de�nitions of the Lode angle can be found in the literature. Here we only
present two, which were used in the shear extensions.

ω(σ) = 1− χ2, gθ(σ) = 1− 2

π
arccosχ(σ)

Where:

χ(σ) =
27

2

J3
q3

With the derivatives:

∂χ(σ)

∂σ
=

27

2q3

(
∂J3
∂σ
− 3J3

q

∂q

σ

)

∂ω(σ)

∂σ
= 1− 2χ(σ)

∂χ(σ)

∂σ
∂gθ(σ)

∂σ
= 1 +

2

π
√

1− χ2

∂χ(σ)

∂σ
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GUR3Dext derivatives

Within the subroutine GUR3DEXT, the following nomenclature is used:

α1 = −3
q2p̃

κσY
α2 =

2q̃

σY 2

α3 = 6
q1q2
κσY

f ∗ sinhα1 α5 =
H : σ̃dev

2q̃

σm is used instead of p, so attention should be given to the minus signs in some
equations. The jacobian matrix derivatives are complex to evaluate so an external
software capable of symbolic derivation was needed. But before, the dependencies
of the variables must be identi�ed.

σ̃ = σ̃(q, p,n,X), ∆εP = ∆εP (∆εp,∆εq,n)

p̃ = p̃(p,X), q̃ = q̃(q,X)

σY = σY (εPM)

X = X(∆εP , f)

B.1 Basic derivatives

∂X

∂∆εp
=

1− q1f
3

CXXsat

1 + Cx∆εq
I

∂X

∂∆εq
= −(1− q1f)

3CXX
t + CX

2Xsat∆εpI − 3CXXsatn

3 (1 + CX∆εq)
2

∂X

∂ni
= (1− q1f)

CXXsat∆εq
1 + CX∆εq

∂n

∂ni
; i = 1, . . . , 5

∂X

∂∆εPM
= 0

∂X

∂f
= −q1

Xt + CXXsat (1/3∆εpI + ∆εqn)

1 + Cx∆εq
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∂p̃

∂∆εp
=

∂p

∂∆εp
− ∂Xm

∂∆εp
= K − ∂Xm

∂∆εp

∂p̃

∂∆εq
=

∂p

∂∆εq
− ∂Xm

∂∆εq
= − ∂Xm

∂∆εq

∂p̃

∂ni
=
∂p

∂ni
− ∂Xm

∂ni
= −∂Xm

∂ni
; i = 1, . . . , 5

∂p̃

∂∆εPM
=0

∂p̃

∂f
=
∂p

∂f
− ∂Xm

∂f
= −∂Xm

∂f

∂q̃

∂∆εp
=

1

4q̃

(
2
∂β

∂∆εp
: H : β

)
=

1

2q̃

(
− ∂X

∂∆εp
: H : β

)

∂q̃

∂∆εq
=

1

4q̃

(
2
∂β

∂∆εq
: H : β

)
=

1

2q̃

[(
−2Gn− ∂X

∂∆εp

)
: H : β

]

∂q̃

∂ni
=

1

4q̃

(
2
∂β

∂ni
: H : β

)
=

1

2q̃

[(
−2G∆εq

∂n

∂ni
− ∂X

∂ni

)
: H : β

]
; i = 1, ..., 5

∂q̃

∂∆εPM
=0

∂q̃

∂f
=

1

4q̃

(
2
∂β

∂f
: H : β

)
=

1

2q̃

(
−∂X
∂f

: H : β

)

∂α1

∂∆εp
=

3q2
κσY

∂p̃

∂∆εp

∂α1

∂∆εq
=

3q2
κσY

∂p̃

∂∆εq

∂α1

∂ni
=

3q2
κσY

∂p̃

∂ni
; i = 1, . . . , 5

∂α1

∂∆εPM
=

3q2p̃

κσ2
Y

∂σY
∂∆εPM

∂α1

∂f
=

3q2
κσY

∂p̃

∂f

∂α2

∂∆εp
=

2

σ2
Y

∂q̃

∂∆εp

∂α2

∂∆εq
=

2

σ2
Y

∂q̃

∂∆εq

∂α2

∂ni
=

2

σ2
Y

∂q̃

∂ni
; i = 1, . . . , 5

∂α2

∂∆εPM
=

4q̃

σ3
Y

∂σY
∆εPM

∂α2

∂f
=

2

σ2
Y

∂q̃

∂f
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∂α3

∂∆εp
=6

q1q2
κσY

f∗ cosh (α1)
∂α1

∂∆εp
∂α3

∂∆εq
=6

q1q2
κσY

f∗ cosh (α1)
∂α1

∂∆εq
∂α3

∂ni
=6

q1q2
κσY

f∗ cosh (α1)
∂α1

∂ni
; i = 1, . . . , 5

∂α3

∂∆εPM
=6

q1q2
κσ2

Y

f∗
[
σY cosh (α1)

∂α1

∂∆εPM
+ sinh (α1)

∂σY
∂εPM

]

∂α3

∂f
=6

q1q2
κσY

[
f∗ cosh (α1)

∂α1

∂f
+Kf sinh (α1)

]

B.2 Jacobian matrix derivatives

fjac(1,1):
∂Γ1

∂∆εp
=

2q̃

σ2
Y

∂q̃

∂∆εp
+ 2q1f

∗ ∂α1

∂∆εp
sinhα1

fjac(1,2):
∂Γ1

∂∆εq
=

2q̃

σ2
Y

∂q̃

∂∆εq
+ 2q1f

∗ ∂α1

∂∆εq
sinhα1

fjac(1,j(i)):
∂Γ1

∂ni
=

2q̃

σ2
Y

∂q̃

∂ni
+ 2q1f

∗ ∂α1

∂ni
sinhα1; j = {3, 4, 5, 6, 7} , i = 1, . . . , 5

fjac(1,8):
∂Γ1

∂∆εPM
=− 2q̃2

σ3
Y

∂σY
∂εPM

− 2q1f
∗ ∂α1

∂∆εPM
sinhα1

fjac(1,9):
∂Γ1

∂f
=

2q̃

σ2
Y

∂q̃

∂f
+ 2q1Kf coshα1 + 2q1f

∗ sinhα1
∂α1

∂f
− 2q3f

∗Kf

fjac(2,1):
∂Γ2

∂∆εp
=α2 + ∆εp

∂α2

∂∆εp
−∆εq

∂α3

∂∆εp

fjac(2,2):
∂Γ2

∂∆εp
=− α3 + ∆εp

∂α2

∂∆εq
−∆εq

∂α3

∂∆εq

fjac(2,j(i)):
∂Γ2

∂ni
=∆εp

∂α2

∂ni
−∆εq

∂α3

∂ni
; j = {3, 4, 5, 6, 7} , i = 1, . . . , 5

fjac(2,8):
∂Γ2

∂∆εPM
=∆εp

∂α2

∂∆εPM
−∆εq

∂α3

∂∆εPM

fjac(2,9):
∂Γ2

∂f
=∆εp

∂α2

∂f
−∆εq

∂α3

∂f

fjac(j(i),1):

(
∂Γj(i)

∂∆εp

)

i

=− 1

2q̃

(
H :

∂σ̃dev

∂∆εp
− H : σ̃dev

q̃

∂q̃

∂∆εp

)
; i = 1, . . . , 5

fjac(j(i),2):

(
∂Γj(i)

∂∆εq

)

i

=− 1

2q̃

(
H :

∂σ̃dev

∂∆εq
− H : σ̃dev

q̃

∂q̃

∂∆εq

)
; i = 1, . . . , 5

fjac(j(i),j(i)):

(
∂Γj(i)

∂ni

)

i

=
∂n

∂ni
− 1

2q̃

(
H :

∂σ̃dev

∂ni
− H : σ̃dev

q̃

∂q̃

∂ni

)
; j = {3, 4, 5, 6, 7} , i = 1, . . . , 5

fjac(j(i),8):

(
∂Γj(i)

∂∆εPM

)

i

=0; i = 1, . . . , 5

fjac(j(i),9):

(
∂Γj(i)

∂f

)

i

=− 1

2q̃

(
H :

∂σ̃dev

∂f
− H : σ̃dev

q̃

∂q̃

∂f

)
; i = 1, . . . , 5



220 Appendix B. GUR3Dext derivatives

fjac(8,1):
∂Γ8

∂∆εp
=

∂p̃

∂∆εp
∆εp −

∂q̃

∂∆εp
∆εq − p̃

fjac(8,2):
∂Γ8

∂∆εq
=

∂p̃

∂∆εq
∆εp −

∂q̃

∂∆εq
∆εq − q̃

fjac(8,j(i)):
∂Γ8

∂ni
=
∂p̃

∂ni
∆εp −

∂q̃

∂ni
∆εq; j = {3, 4, 5, 6, 7} , i = 1, . . . , 5

fjac(8,8):
∂Γ8

∂∆εPM
= (1− f)

(
σY + ∆εPM

∂σY
∂εPM

)

fjac(8,9):
∂Γ8

∂f
=−∆εPMσY + ∆εp

∂p̃

∂f
−∆εq

∂q̃

∂f

fjac(9,1):
∂Γ9

∂∆εp
= − 1− f t

(1 + ∆εp)
2

fjac(9,2):
∂Γ9

∂∆εq
= 0

fjac(9,j(i)):
∂Γ9

∂ni
= 0; j = {3, 4, 5, 6, 7} , i = 1, . . . , 5

fjac(9,8):
∂Γ9

∂∆εPM
= 0

fjac(9,9):
∂Γ9

∂f
= 1

B.3 Tangent matrix derivatives

De�ning:

h1 := (1− f)∆εp

h2 := h
σ̃ : ∆εP

(1− f)σY

where:

h =
∂σY

(
εPM
)

∂εPM

∂Fp
∂σ

=
H : σ̃

σ2
Y

+ 2q1f
∗ sinh (α1)

∂α1

∂σ

∂Fp
∂∆εP
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(
−H : σ̃

σ2
Y
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∗ sinh (α1)

∂α1

∂X

)
∂X

∂∆εP

∂Fp
∂f

=
2q̃

σ2
Y

∂q̃

∂f
+ 2q1Kf coshα1 + 2q1f

∗ sinhα1
∂α1

∂f
− 2q3f

∗Kf

∂Fp
∂σY

=− 2q̃2

σ3
Y

+ 2q1f
∗ sinh (α1)

∂α1

∂σY
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∂2Fp
∂σ2

=
H
σ2
Y

+ 2q1f
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∂σ
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∂σ
+ 2q1f

∗ cosh (α1)
∂α1

∂σ

∂α1

∂f

∂2Fp
∂σ∂σY

=− H : X

σ3
Y

+ 2q1f
∗
(

sinh (α1)
∂2α1

∂σ∂σY
+ cosh (α1)

∂α1

∂σ

∂α1

∂σY

)

∂α1
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Appendix C

Texture characteristics of the DC01

steel sheet

The general methodology considers:

1. The measurement of pole �gures using X-ray di�raction (XRD) at half of
the sheet thickness.

2. The assesment of the orientation distribution function (ODF) using the
MTM-FHM software (Van Houtte, 2004).

3. The use of ODF to get the r-values and yield loci using a full constraint
Taylor, (1938) model.

A previous research in the DC01 steel was conducted in the frame of the SeM-
PeR project. The DC01 steel batch used at this moment was di�erent and new
measurements were taken.

C.1 SeMPeR results

The Sheet Metal Oriented Prototyping and Rapid Manufacturing (SeMPeR)
project gave a qualitative representation of texture to characterize the DC01 sheet
anisotropy. Here we present results taken from Eyckens and van Bael, (2006).
Eyckens et al., (2011a) can also be checked for the same DC01 steel sheet. To
determine the initial texture of each sheet four incomplete pole �gures, namely
(1 1 0), (2 0 0), (2 1 1) and (3 1 0), were measured by means of XRD. The texture
is composed of a full γ-�ber and a partial α-�ber as can be seen in Fig. C.1. The
results of the anisotropic coe�cients are shown in Table C.1. A comparison of the
predicted r-values by crystal plasticity model with the experimental results was
later performed (Eyckens and van Bael, 2007). A reasonable agreement can be
found between the r-values obtained from the tensile tests and those calculated
from the texture with the Taylor model.
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(a) Φ1=0◦ (b) Φ2=45◦ (c) Φ1=90◦

Figure C.1: Section of the ODF for the DC01 carbon steel used in the SeMPeR
project. As expected for a BBC material, at Φ2=45◦ clear α-�ber
and γ-�ber can be observed.

C.2 New results

Three 1 mm× 1 mm squared samples were used for XRD measurements with the
ODF section shown in Fig. C.2. The results are shown in Table C.1 and plotted
in Fig. C.3 together with the SeMPeR results. These new values are lower

Table C.1: Anisotropic coe�cients predicted by the Taylor, (1938) model using
texture measurements from SeMPeR and from the new batch.

Angle from RD SeMPeR New

0◦ 2.78 2.237± 0.054
15◦ 2.50 2.023± 0.064
30◦ 2.03 1.597± 0.023
45◦ 1.95 1.478± 0.028
60◦ 2.20 1.648± 0.040
75◦ 2.54 2.023± 0.063
90◦ 2.61 2.166± 0.074

r 2.32 1.840± 0.046
∆r 0.74 0.724± 0.036

compared to SeMPeR results but the overall shape of coe�cients versus the angle
to the RD is the same.
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(a) Φ1=0◦ (b) Φ2=45◦ (c) Φ1=90◦

(d) Φ1=0◦ (e) Φ2=45◦ (f) Φ1=90◦

(g) Φ1=0◦ (h) Φ2=45◦ (i) Φ1=90◦

Figure C.2: New ODF sections obtained for the 3 analyzed samples of the DC01
steel sheet. Qualitatively, the results are similar to those in the
SeMPeR project but the iso-values scale is lower.

0 45 90
Angle

1.0

2.0

3.0

Anisotropic coeff.

New
SeMPer

Figure C.3: Anisotropic coe�cients from Table C.1. Despite the di�erence on
the value both follow the same distribution.





Appendix D

Assessment of damage and

anisotropic plasticity models to

predict Ti-6Al-4V behavior

The plastic behavior of the Ti-6Al-4V alloy includes several features
as strength di�erential e�ect, anisotropy and yield strength sensitivity to
temperature and strain rate. Monotonic tensions in the three orthogonal
directions of the material are performed to identify the Hill, (1948) yield
criterion. Monotonic compression and plane strain tensile tests are also
included in the experimental campaign to identify the orthotropic yield cri-
terion of CPB06. An assessment of the two models is done by comparing
the yield loci and the experimental data points for di�erent levels of plas-
tic work. A �rst approach of the damage modeling of the Ti-6AL-4V al-
loy is investigated with an extended Gurson-Tvergaard-Needleman damage
model based on Hill, (1948) yield criterion. Finite element simulations of
the experiments are performed and numerical results allows checking force-
displacement curves until rupture and local information like displacement
and strain �elds. The prediction ability of the Hill '48, CPB and extended
Gurson models are assessed on simple shear and notched tensile tests until
fracture1.

D.1 Introduction

Aerospace and manufacturing industries have a strong interest in numerically as-
sessment of the ductile fracture of Ti-6Al-4V in real components. Indeed the
formability and crashworthiness of Ti-6AL-4V are frequent limitations due to
the material ductile fracture. As for most metals and alloys, Ti-6AL-4V shows
a process of material degradation including three successive stages of damage
mechanism: nucleation, growth and coalescence of voids. Note that the �rst two
mechanisms may occur simultaneously. After nucleation, the voids resulting from
interface decohesion of inclusions or particle fracture grow within the surrounding

1This chapter was originally published in Guzmán et al., (2015)
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matrix and a�ect its plastic deformation. The �rst stage of void growth by rela-
tively homogeneous plastic deformation of the surrounding matrix is interrupted
by the localization of the plastic �ow in the ligament between the voids. This
localization corresponds to the onset of coalescence. There are currently several
damage models avaible in the literature in order to describe the material degrada-
tion. Two categories can be distinguished: the phenomenological (e.g. Lemaitre,
1985)) and the micromechanical approaches. The most popular micromechanical
model for ductile damage is the Gurson-Tvergaard-Needleman (GTN). Gurson,
(1977a) �rst proposed a porous plasticity model with the void volume fraction
as internal variable. The model was further improved to account the loss of load
carrying capacity associated with void nucleation and coalescence (Tvergaard,
1989), hence considering the three stages of damage: void nucleation, growth
and coalescence. Since then, the GTN model has been extended to cover di�erent
applications. For instance, Benzerga and Besson, (2001) performed the same anal-
ysis as Gurson, (1977a) but considering an anisotropic matrix of the Hill, (1948)
type. A fully-implicit integration scheme was proposed by Ben Bettaieb et al.,
(2011c) for this anisotropic GTN model, also including the e�ect of the kinematic
hardening. The main goal of this present paper is to calibrate the GTN model
on bulk Ti-6AL-4V alloy at room temperature and a quasi-static strain rate and
to check its ability to predict fracture. In addition, the load predictions of three
di�erent models applied on notched round bars and holed specimens are assessed.
The �rst model is based on the Hill, (1948) yield criteria, which takes into account
the anisotropic behavior of Ti-6AL-4V alloy. The second model is de�ned by the
orthotropic yield criterion CPB06 that accounts for both the anisotropy and the
strength di�erential e�ect of the alloy (Tuninetti et al., 2015). The third one
predicts damage by the extended version of the GTN model.

D.2 Material models

Three di�erent material models are used in the article. In the case of the Hill '48
and the GTN model, the used a Voce type of isotropic hardening law.

σY = σ0 +K
(
1− exp

(
−nεPeq

))
(D.2.1)

where σY is the �ow stress, εPeq is the equivalent plastic strain and K, n, σ0 are
material constants computed from a tensile curve in a reference direction. The
CPB06 model uses also the Voce law as a reference hardening curve (Tuninetti
et al., 2015).

D.2.1 Hill '48 model.

In the yield criteria introduced by Hill, (1948) the material has three orthogonal
symmetry planes and three principal axes of anisotropy: x, y and z. In terms of
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the anisotropic axis:

Fp (σij) =
1

2

[
F (σyy − σzz)2 +G(σzz − σxx)2 +H(σxx − σyy)2

+ 2Lσyz
2 + 2Mσzx

2 + 2Nσxy
2
]
− σY 2 = 0 (D.2.2)

where F , G, H, L, M , N are material parameters. Note that if F = G = H = 1.0
and L = M = N = 3.0, the Hill '48 yield locus recovers the isotropic von Mises
yield locus.

D.2.2 The CPB06 model.

The orthotropic yield criterion CPB06 was developed by Cazacu et al., (2006).
The criterion is de�ned by:

Fp (σij) = (|Σ1| − kΣ1)
a + (|Σ2| − kΣ2)

a + (|Σ3| − kΣ3)
a (D.2.3)

where k is a parameter which takes into account the strength di�erential (SD)
e�ect and a is the degree of homogeneity. Σ1, Σ2, Σ3 are the principal values of
the second-order tensor Σij = Cijkl : Skl, where Cijkl is a fourth-order orthotropic
tensor that accounts for the plastic anisotropy of the material and Sij is the
deviatoric part of the Cauchy stress tensor.

D.2.3 The GTN yield surface.

The classical GTN yield surface is de�ned by:

Fp(σij, f, σY ) =
σ2
eq

σ2
Y

− 1 + 2q1f cosh

(
−3q2

2

σm
σY

)
− (q1f)2 = 0 (D.2.4)

where σeq is the (macroscopic) equivalent stress related to Hill '48 yield criterion,
σY the yield stress of the matrix material, σm the macroscopic mean stress and
f is the void volume fraction (also called porosity), de�ned as the average ratio
of the void volume to the total volume of the material. The damage parameters
q1 and q2, originally equal to 1.0 in the initial Gurson model, are usually set
to q1 =1.5 and q2 =1.0 allowing the continuum model to be in good agreement
with the localization strain for cell analysis (Tvergaard, 1989). The extended
Gurson model used for the simulations has been implemented by Guzmán, (2014),
featuring Hill '48 type anisotropy of the matrix coupled with a mixed hardening
law (Ben Bettaieb et al., 2011c) and classical nucleation and coalescence laws
proposed in the GTN model. The evolution of voids is additevely decomposed in
the nucleation (fn) and growth part (fg), hence:

ḟ = ḟn + ḟg =
fN

SN
√

2π
exp

[
−1

2

(
εPM − εN
SN

)2
]
ε̇PM + (1− f) tr ˙εij

p (D.2.5)
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with εPM as the equivalent plastic strain in the matrix and fN , SN , εN as material
parameters. Coalescence is determined by the e�ective porosity f ∗ function:

f ∗ =





f if f < fcr

fcr +

1
q1
− fcr

fF − fcr
(f − fcr) if f > fcr

(D.2.6)

where fcr and fF are material parameters.

D.3 Identi�cation of material parameters

The experiments are performed on a bulk Ti-6AL-4V alloy, depicted in Fig.
D.1(a). The elasto-visco-plastic behavior of this bulk alloy has been previously
characterized by Tuninetti and Habraken, (2014) and Tuninetti et al., (2015).

D.3.1 Plasticity characterization.

The tensile tests were performed in LD direction until fracture using universal
testing machine and a three 3D optical strain measuring systems (DIC Limess),
allowing obtaining the local strain within the localized zone of the specimens and,
consequently, the true stress-true strain curves even after the onset of necking.
These data have been used in order to obtain a new set of parameters of the Voce
hardening law for the reference direction LD of the CPB06 model (Table D.1).
The former hardening parameters used in Tuninetti and Habraken, (2014) and
Tuninetti et al., (2015) were identi�ed using stress-strain curves until 0.1 axial
strain leading to lower values of the axial tensile stress after the onset of necking
compared with the experimental data, and therefore lower values of the load in
specimen subjected to axial load. Fig. D.1(b) shows the results using the old set
of parameters (Voce 0.1) and the new ones (Voce 0.2).

Table D.1: New Voce-type of hardening material parameters for the Ti-6AL-4V.

K n σ0

918.0 5.8 290.0

The anisotropy of the material is described by measuring the �ow stress under
di�erent stress states and work hardening levels. The anisotropy parameters for
the Hill '48 model are shown in Table D.2, while for CPB06 they have been
reported previously (Tuninetti and Habraken, 2014). Evaluating these two models
by looking at their analytical prediction in the stress space (Fig. D.2), clear
di�erences appear for the plane stress biaxial and compression states.

D.3.2 GTN identi�cation.

The identi�cation of the GTN model parameters does not follow the same method-
ology of the previous plasticity models. The nature of the model, mixing macro-
scopic and microscopic variable, implies that the search of parameters does not
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(a) (b)

Figure D.1: (a) Material directions of the TI-6AL-4V ingot (dimensions in
[mm]). Longitudinal (LD), Transverse (TD) and Short Transverse
(ST) directions. (b) Hardening curve for the TI-6AL-4V, showing
the newly identi�ed Voce law until 0.2 axial strain using the DIC
curve.

Table D.2: Anisotropic parameter of the initial Hill '48 yield locus for
Wp =1.857 [J cm−3], identi�ed from tensile data in the three or-
thogonal material directions (LD, TD and ST) and the simple shear
in LD-ST plane.

H F G N L M

1.017 0.958 0.983 3.278 3.278 3.278

(a) π-plane at Wp1. (b) LD-TD plane at Wp5.

Figure D.2: Comparison between initial (Wp1=1.857 [J cm−3]) and �nal yield
surfaces (Wp5=1.857 [J cm−3]) de�ned by Hill '48 and CPB06 at
di�erent planes in the stress space.
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rely in a single approach. Moreover, the use of a optimization algorithm could
be an ine�ective tool due to the appearance of several local roots. As �rst step
towards a correct identi�cation of the model based on notched tensile tests, the
set of parameters of Table D.3 was found to be in good agreement with the exper-
imental results. Di�erent microscopic measurements by optical microscopy and
tomography con�rm that initial porosity is very low (f0 <1.0× 10−6).

Table D.3: Set of parameters used for the GTN model.

f0 fN SN εN fcr fF

coa1 0.0 0.04 0.10 0.30 0.03 0.04
coa2 0.0 0.04 0.10 0.30 0.04 0.06

D.4 Simulations

Finite element (FE) simulations are performed using the updated Lagrangian
FE code Lagamine developed by the ArGEnCo Department of the University of
Liège. The 8-node 3D brick element, called BWD3D (Duchêne et al., 2007), with
a mixed formulation adapted to large strains and large displacements is selected.
It involves a reduced integration scheme (with only one integration point) and an
hourglass control technique. The three models are compared on three di�erent
tests: tensile test on notched specimens with radius R =1.5 [mm] and R =5.0 [mm]
(Tuninetti et al., 2015), plus a tensile test in a specimen with a central hole of
R =2.0 [mm] (Tuninetti and Habraken, 2014). The results are shown in Fig. D.3.

Broadly, the three models gives acceptable predictions, with the CPB06 model
slightly overpredicting the force. As underlined in Tuninetti et al., (2015), the FE
prediction with CPB06 is quite sensitive to its identi�cation methodology. The
data set used here (CPB06 identi�cation 4 in Tuninetti et al., (2015)) provides
optimal notch results but is less adapted for the case of the specimen with the
central hole, where more shear is present. Hill '48 predictions are better, reach-
ing force values which are in close agreement with experiments. Looking at the
damage set of parameters coa1 and coa2, the force reduction is more a�ected in
the notched specimens, in particular R =5.0 [mm]. In the other side, the spec-
imen with a hole is less a�ected by the damage development giving almost the
same results as Hill '48. In the latter, and even if the damage development is not
noticeable, coa2 data set gives a good prediction of the onset of coalescence. This
data set is able to predict correctly the onset of coalescence for the notched spec-
imen, but for an underestimated force. Coa1 data set is more accurate predicting
the onset of coalescence for the notched specimen R =1.5 [mm], but also for an
underestimated force.
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(a) Notch R =1.5 [mm]. (b) Notch R =5.0 [mm].

(c) Specimen with a hole.

Figure D.3: Comparison of the three di�erent models with experimental results,
for three di�erent geometries. The stars at the end of the curves
indicate the onset of coalescence and experimental scattering is
expressed by error bars.

D.5 Conclusions

In this article, a comparison between two plasticity models (Hill '48 and CPB06)
and the GTN damage model has been done. From the analyzed specimens, it is
clear that a certain amount of damage is being accumulated leading to ductile
fracture. The fracture prediction, despite not being perfect, gives a hint of the
importance of void nucleation mechanism leading to a ductile fracture. Despite
that a single set of parameters matching all the experiments was not possible to
obtain, material parameter variation is not severe and the sets should be regarded
within a con�dence interval. Future work in this topic will be focused in a deeper
micromechanical review of the material, plus a more precise characterization of the
damage parameters of the GTNmodel. This also involves damage characterization
at low triaxialities or shear-type loads, which is a trending topic in recent years.





Appendix E

Parallelization of the LAGAMINE

code

E.1 Introduction

Some type of simulations, like the ones involved in single point incremental forming
(SPIF), can take several hours even using coarse meshes and simple constitutive
laws. Research on more complex geometries and material models can take large
amount of CPUT time in normal computers, preventing to perform more complex
analysis. Nonetheless, current computers make extensive use of parallelism, i.e.
at least two threads are executed simultaneously to solve a problem, allowing to
concentrate computational resources in demanding parts of the code. Hence, it
seems straightforward to take advantage of the current low cost computer with
parallel processing. Moreover, calculation speed can be greatly boosted using
computer clusters.

The question now is how to use this parallel computer capabilities. This greatly
depends on the architecture of the computer, for instance:

• Distributed memory architecture, where each processor has its own private
memory and information is interchanged between processor through mes-
sages.

• Shared memory architecture, where each processor has access to a globally
shared memory.

For distributed memory, message passing interface (MPI) can be used as a proto-
col to program parallel computers. Basically, it creates a �xed number of identical
tasks at program startup and do not allow tasks to be created or destroyed dur-
ing program execution. For shared memory architectures, open multi-processing
(OpenMP) o�ers a simple and �exible interface for developing parallel applica-
tions. By default, each thread executes the parallelized section of the code inde-
pendently. Compared to MPI, OpenMP is easier to implement but understanding
and managing (variable) locality is more di�cult.

235
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In this report the Lagamine FE code parallelization using and OpenMP and
implementation into a cluster is discussed. The scope is to review the already
implemented parallelization and extensions to computer clusters.

E.2 LAGAMINE parallelization

The Lagamine parallelization is described in a series of works by Montleau et
al., (2002), Moto Mpong and Montleau, (2002), and Moto Mpong et al., (2002).
OpenMP was selected as the parallelization protocol based on the hardware avail-
able (shared memory computers) and the relatively easy implementation process
compared to other protocols, like MPI. According to Montleau et al., (2002), 98%
of the CPU time is consumed between the element loop and linear system solver.
Lagamine is a code developed essentially following the old Fortran 77 standard,
having a sequential structure as shown in Fig. E.1.

Initializing

Loading loop

Non-linear
Iteration

Elements loop

Solver

Convergence?

End of
loading loop

End

Figure E.1: Structure of the Lagamine FE code. The green blocks indicate
the parallelized zones. Adapted from Montleau et al., (2002).

The parallelization using OpenMP is carried out at the element loop level
(subroutine ELEMB). The loop is parallelized using a PARALLEL DO construct and
shared among threads using SCHEDULE(DYNAMIC,5), where DYNAMIC stands for
a dynamic repartition of tasks and 5 is the number of threads packs which was
found to give the best results. Within the subroutine ELEMB, several variables
are assigned with the OpenMP attributes PRIVATE or SHARED. By default, all
variables are SHARED between threads but in some loops this may lead to several
threads trying to access to the same memory location, giving unexpected results.
Hence, PRIVATE attribute should be employed in order to reserve a variable for
the thread. This authorize only a single thread to update the memory location.



E.3. Implementation 237

The solver can also be parallelized. Within the Lagamine FE code, there
are two di�erent methods of banded matrix storage: Morse and Skyline. In the
original article by Montleau et al., (2002), a parallel direct solver called CAESAR
was available. This solver used a Morse type of storage, METIS programs (Karypis
and Kumar, 1998) for �ll reducing orderings of sparse matrices and parallelized
LU factorisation. Unfortunately, this solver is no longer available so by default
the skyline storage plus Cholesky decomposition (KTYPE=4) is used instead.

E.3 Implementation

The parallelized version is implemented in di�erent CÉCI clusters (acronym of
Consortium des Équipements de Calcul Intensif ). In its current status, 7 di�er-
ent clusters are available, each one with di�erent characteristics. Among them,
Vega (ULB) and HMEM (UCL) are chosen based on their capabilities for shared
memory computing.

In this section, the procedure to implement both Lagamine and Prepro

into CÉCI clusters is explained. This implies getting the sources from the Obelix
server, compilation in the CECI cluster, launching simulations and debugging. A
set of bash scripts were developed to carry on these tasks, which are organized
within a folder as shown in Fig. E.2.

Scripts
folder

Build

lagamine.build.sh

Interactive

prepro.sh

lagamine.sh

prepro.slurm.sh

lagamine.slurm.sh

Figure E.2: Structure of the scripts folder.

E.3.1 Updating the sources

1. Open Alacarte, which is available in Obelix. This program allows to
convert the minor di�erences between the Linux and Windows version of
Lagamine.

2. After opening Alacarte, select the location of the Lagamine sources into
the Obelix server (which is a Windows server). They are located in:

\obelix\sources\Lagamine\
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Then you must select UNIX_NIC, with Suppresion des commentaires Ccpp
option marked.

3. The ALACARTE_Lagamine folder is generally created in:

C:\Documents and Settings\[username]\Local Settings\Temp\

This is an hidden folder, so probably you will need to change your folder
visualization options in order to see it.

4. You need to transfer the �les from Windows to a Linux server. From Win-
dows, one (easy) way to do that is using FileZilla, which is simple FTP
server.

E.3.2 Compilation

Depending on the clusters, di�erent compilers are available. In general, the most
popular and commonly used are: the GNU Fortran compiler, the Intel compiler
and the Portland Group (PGI) compiler. Is always is a good idea to compile with
di�erent compilers because it allows to evaluate the robustness of the code and
the syntax. In this section the focus is on the Intel compiler.

1. Connect to a CÉCI cluster from your computer. This is widely documented
within the CÉCI website so no details will be given here.

2. Copy and paste the Fortran �les.

3. To compile, use the lagamine.build.sh script located in the
/scripts/build folder:

> ./lagamine_build.sh [compiler_name]

The following options are available, all of them using the available intel
compiler:

• intel_seq for sequential version.

• intel_par for parallel version (-openmp).

• intel_deb for debugging version (-openmp -g -traceback).

All the compilations have the -O2 optimization �ag. The �le
lagamine.build.sh is only an interface for calling the makefile contained
in the sources folder.

4. For Prepro there is no script. You need �rst to add the module:

> module add [compiler_module]

where [compiler_module] could be intel/compiler/64/11.0/074 de-
pending on the selected cluster. Then compile:

> make

http://www.ceci-hpc.be
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Note. If using Intel MKL subroutines, it is mandatory to use the following
environmental variables:

export MKL_NUM_THREADS=$nbr_cpu

export MKL_DYNAMIC=true

which are de�ned in all the �les within the scripts/interactive/ folder.

E.3.3 Launching simulations

Since the clusters are operated under GNU/Linux environments, you can compile
and launch simulations directly from the GNU/Linux terminal of your machine.
Nevertheless, for Windows users who only want to launch simulations there is
another way to access to the clusters through the SSH Secure Shell Client. Both
the software and the documentation can be found in CÉCI website.

To launch simulations, the procedure (both for Windows and GNU/Linux) is
the following:

1. Log in into the CÉCI cluster.

2. Locate the execution scripts prepro.slurm.sh and lagamine.slurm.sh.

3. Go to the location where the simulations are located and then launch the
proper scripts:

> $HOME/scripts/prepro.slurm.sh [lag_file]

Note: You should be careful when naming your simulations �les. Linux is
case sensitive, so simu.lag is not the same as SIMU.lag. As a general rule,
name your �les as follows:

simu.lag

simuex.dat

simu.dep

simu.pri

4. If everything is OK with Prepro (you can read NORMAL TERMINATION OF PREPRO

in the output.prepro �le), proceed with Lagamine:

> $HOME/scripts/lagamine.slurm.sh [execution_file] [lag_file]

[number_of_processors] [compiler_name] [compiler_type] [user_email]

An example of the last one can be:

> $HOME/scripts/lagamine.slurm.sh simuex simu 8 intel parallel foo@ulg.ac.be

http://www.ceci-hpc.be
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5. You will receive an email con�rming that the simulation started in a node.
The simulation is performed in a temporary folder (environmental variable
$TMPSCRATCH), which is specially de�ned by the cluster to be faster than
other directories. If you simulation crashes, the launching script will not
be able to retrieve the �les from the temporary folder so you will have to
manually copy and paste the �les into your personal folder.

After a submitting a job, squeue gives you the JOBID of your running jobs
and the node on which they run. For instance:

$> squeue -u [user_name]

Troubleshooting. Sometimes, it is possible to �nd segmentation errors
(faults) in the Lagamine output �le. It can appear before the element loop
or after a couple the iterations, in the form of a SIGSEGV fault. In both cases, the
most possible cause is the lack of stack memory1 given to each OpenMP thread.
This can be easily modi�ed augmenting the value of the environmental variable:

> export OMP_STACKSIZE=16m

where the size is increased to 16 MB per thread. Another option is increase in the
size of the initial (master) thread:

> ulimit -s unlimited

Even if the last option only a�ects one thread, for some clusters both
OMP_STACKSIZE and ulimit must be de�ned.

1Stack memory, contrary to heap memory, has a limit on the size of variables that can be
store.
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