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We present a thorough investigation by magneto-optical imaging of the magnetic flux penetration
in Nb thin films with lithographically defined border indentations. We demonstrate that disconti-
nuity lines (d-lines), caused by the abrupt bending of current streamlines around the indentations,
depart from the expected parabolic trend close to the defect and depend on the shape and size of
the indentation as well as on the temperature. These findings are backed up and compared with
theoretical results obtained by numerical simulations and analytical calculations highlighting the
key role played by demagnetization effects and the creep exponent n. In addition, we show that
the presence of nearby indentations and submicrometer random roughness of the sample border
can severely modify the flux front topology and dynamics. Strikingly, in contrast to what has been
repeatedly predicted in the literature, we do not observe that indentations act as nucleation spots
for flux avalanches, but they instead help to release the flux pressure and avoid thermomagnetic
instabilities.

PACS numbers:

I. INTRODUCTION

Many applications of modern superconducting devices
are based on thin film structures, where the response of
the system is dominated by the component of the mag-
netic field perpendicular to the film surface. If the mag-
netic field is applied after cooling to temperatures under
Tc, the flux is forced to enter through the borders of the
sample. For a sample with perfect boundaries, the flux
penetration is typically dictated by the demagnetization
effects. For example, in a square sample, magnetic field
first penetrates through the central part of each side while
it is delayed when approaching the diagonals.1 In reality,
unavoidable geometrical imperfections along the sample
border can act as nucleation points for flux penetration
and substantially change the flux front profile.2

The most commonly modelled border defect consists of
a single semicircular indentation sitting along the perime-
ter of a large superconducting sample. The fact that
the current streamlines running parallel to the sample
border must abruptly circumvent the semicircular defect
encountered in their path gives rise to so-called disconti-
nuity lines (d-lines). Along these lines, the external mag-
netic field is efficiently screened by the sharp bending
of the current,3 leaving clear visible imprints in the flux
profile as local minima in the magnetic flux landscape.
An additional consequence of border defects is that flux
penetrates deeper into the sample, by an amount ∆, as
compared to the penetration without indentations.4

In the framework of the Bean critical state model appli-
cable to bulk superconducting samples without demag-
netization effects, a circular cavity of radius R, where the

density of current j = 0, positioned close to the sample’s
edge should give rise to a parabolic d-line determined by
the equation3,5,6

y(x) =
x2

R
−R, (1)

holding for x ≥ R, with the origin of the reference system
(x, y) = (0, 0) located at the center of the circle. There-
fore, from the curvature d2y/dx2 = 2/R of the parabola
extending into the sample to distances much larger than
the characteristic length scale of the defect, it should be
possible to deduce the size of such a micron-scale defect.
If the defect has a triangular or a rectangular shape in-
stead, the d-lines should still encode information about
the shape and size of the defect but their form will not
longer be exactly parabolic. In addition, within the Bean
model,5 the excess penetration distance is ∆ = R. Later
theoretical investigations have anticipated that these pre-
dictions are expected to be modified (i) when dealing
with thin films,4 where non-local electrodynamic effects
play a major role, (ii) when the critical current density
jc is field dependent,7 and (iii) when taking into account
vortex creep and current crowding effects.4,8

Type II superconductors are characterized by a highly
non-linear electric field-current density constitutive rela-
tion E(j) = Ec(j/jc)

n, where n(T,B) is the creep expo-
nent, for j < jc (creep regime), and E ∝ j for j > jc
(flux flow regime). The Bean critical state model corre-
sponds to the limiting case where n → ∞. It has how-
ever been pointed out that already for n > 3, the cur-
rent streamlines are close to those predicted by the Bean
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model, thus making it difficult to experimentally reveal
the influence of variations in n.9 Numerical simulations
for thin film geometry by Vestg̊arden et al.,4 including
the creep effects mentioned above, gave rise to a series of
interesting predictions. Namely, (1) in contrast to bulk
superconductors, the excess penetration distance ∆ can
be significantly larger than the indentation radius R; (2)
larger indentations produce larger ∆; (3) as the applied
magnetic field increases, ∆ exhibits a non-monotonous
dependence reaching a maximum ∆m at an intermediate
field Hm; (4) as n increases, both ∆m and Hm increase;
(5) the locally enhanced electric field and Joule heating
near edge indentations should facilitate the nucleation of
thermal instabilities; (6) flux avalanches are expected to
be larger and occur more frequently at the indentations.

Earlier theoretical studies by Gurevich and Friesen8,9

had already shown that a narrow slit of length R, inter-
rupting the otherwise straight current path, significantly
perturbs the current and electric field distributions at
distances as large as L‖ ∼ R

√
n in the direction of the

current flow and spans to distances L⊥ ∼ Rn through the
current-carrying cross section. This prediction may sug-
gest that the parabolic boundary delimiting these pertur-
bations, L⊥ ≈ L2

‖/R, and reminiscent of the Bean d-lines,

should be rather independent of the creep exponent n, a
feature that has not been investigated experimentally so
far.

It is worth mentioning here that the Bean model in its
simplest form and its extensions to include a creep expo-
nent ignore the Meissner phase, i.e. assume a first critical
field Hc1 = 0. As was demonstrated recently,10 this over-
simplification of the model needs to be revised in order to
explain the low magnetic field regime in samples with mi-
crostructured borders. In this low field limit, Clem and
Berggren11 have shown, within the London limit, that
the conglomeration of current streamlines around obsta-
cles (current crowding effect) plays a major role in the
nucleation of vortices at microindentations. In particu-
lar, they demonstrated that a triangular notch produces
a more important current crowding than a semicircular
defect and therefore reduces the critical current needed
to introduce vortices into the sample. This has been
shown to be particularly relevant to explain the propa-
gation of thermomagnetic instabilities in microstructured
superconducting films.12

To the best of our knowledge, as of today, a direct
experimental evidence scrutinizing the theoretical pre-
dictions of flux penetration in a superconductor with in-
dentations is still lacking. The few existing experimental
reports typically involve rather large (R� λ) and irreg-
ular (uncontrolled shape) indentations.2,4,19,20 It is then
the main objective of this work to present an exhaus-
tive experimental investigation of the flux penetration in
rectangular Nb thin films with micron-sized indentations,
lithographically defined within a resolution of a few nm.
We investigate the effect of shape, size, and periodicity
of these artificial cavities through direct visualization of
the magnetic flux landscape by magneto-optical imag-

ing. We demonstrate that the parabolas are wider (i.e.
smaller curvature) than predicted by the Bean model.
Numerical simulations show that the presence of demag-
netizing effects play a crucial role in the concavity of the
parabola. We also show that the curvature of the d-lines
emerging from the defect decreases as the temperature
is increased. Moreover, in opposition to what has been
repeatedly suggested based on the Bean model,2–4,13 in-
dentations do not seem to be distinguished places for the
nucleation of flux jumps but rather the opposite, a place
where flux avalanches will not take place. The exten-
sion of our results to samples with defects inside rather
than at the border of the films is straightforward. Since
unwanted fabrication defects are ubiquitous in supercon-
ducting materials, our results may not be only of aca-
demic interest but also important for technological de-
velopments.

II. EXPERIMENTAL DETAILS

The 100 nm-thick Nb films were prepared in a home-
built electron beam UHV evaporator. The base pres-
sure before evaporating the film was 2× 10−10 Torr and
reached 2.5×10−8 Torr during the evaporation. The film
was evaporated at a rate of 0.1 nm/s on a silicon substrate
which was at room temperature (28◦C before and 45◦C
after the process). The structures were patterned us-
ing a Zeiss scanning electron microscope equipped with
Raith patterning generator. The mask was a 270 nm-
thick PMMA single layer resist (AR-P 679.04). After de-
velopment of the resist, a 50 nm-thick aluminium mask
was evaporated in a Plassys electron beam evaporator.
After lift-off of the aluminium film the niobium film was
dry etched by a reactive ion etch (2 min with SF6 gas).
Finally the remaining Al on top of the Nb structures was
removed with a basic solution (Megaposit MF 26A De-
veloper).

The different sample layouts investigated in this work
are summarized in Fig. 1. Several rectangular samples
of 400 µm × 800 µm size evaporated on the same sub-
strate were measured at the same time. Performing si-
multaneous measurements guarantees the same magnetic
field H and temperature T for all samples, thus allowing
a reliable comparison between them. The indentations
were introduced along the longest sides of the rectangu-
lar films. Single indentations were located at the mid-
point of the longest side. We fabricated three different
motifs: triangular (T), semicircular (C), and rectangular
slit (S), as shown in the optical images of Fig. 1. For the
triangular defect, we prepared five different sizes R: 0.5,
2, 5, 8, and 10 µm. Moreover, for the 10 µm-size triangu-
lar indentation, we investigated five different separations
between neighbouring defects: a single indentation, 100,
50, 10, and 0 µm separation. The tags referring to each
individual case are listed in the table of Fig. 1. For the
sake of completeness, we have also measured a plain rect-
angular film without artificial indentations. In addition
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FIG. 1: In the upper left corner, an optical microscopy image shows the dimensions (400 µm × 800 µm) and the position of
the artificial defects on the longest side for one of the Nb films. In this work, we studied 3 shapes of defects: triangular (T),
semicircular (C) and rectangular (S). The corresponding panels show optical images of these indentations with the relevant
distances reported in the table on the right side. The influence of the defect size and periodicity is studied for the triangular
defect, where 5 sizes from 0.5 µm to 10 µm and 4 periods from 0 µm to 100 µm are considered (see panel T10p10 for an image
for period 10 µm). For the sake of completeness, we also treat the case of a plain film with smooth borders (rugosity smaller
than 0.2 µm) (P). Finally, we repeat the whole set of samples with rough borders of rugosity 0.8 µm (R).

to the previous samples, characterized by a roughness
with a standard deviation of 0.03µm, we have repeated
the same set of 12 samples, but now with an artificial
roughness14 of 0.1µm standard deviation along the long
sides of the rectangular samples. This later case will
allow us to comment about the robustness of our conclu-
sions drawn from the ideal case.

The visualization of the magnetic flux landscape is
performed through the Faraday rotation of 532 nm lin-
early polarized Hg light in a Bi-doped yttrium iron gar-
net with in-plane magnetic domains, a technique known
as magneto-optical imaging.6,15 This 3 µm-thick optical
indicator has been epitaxially grown on a 450 µm-thick
Gd3Ga5O12 transparent substrate and has a Verdet con-
stant of 2.9×105 rad T−1m−1. A 100 nm-thick Al mirror
has been deposited on top of the indicator. The garnet
is then placed on the sample, with the mirror side down.
The sample is mounted on the cold-finger of a closed-
cycle optical cryostat with temperature stability better
than 0.01 K and base temperature of ∼ 4 K. The exter-
nal magnetic field, in the range of ±12 mT, is provided
by a cylindrical copper coil fed by a Keithley-2440 cur-

rent source. The whole setup is mounted on an actively
damped optical table. All images were taken with a CCD
camera RETIGA-4000 with 4.2 Mpixels of 7.4 µm × 7.4
µm pixel size, through an objective of 5× magnification,
N.A.=0.13 and working distance 15 mm. Each pixel in
the images corresponds to an area of 1.618× 1.618µm2.
We have estimated a sensitivity of 5 × 10−2 mT−1 and
an extinction coefficient of about 2×10−3 for our optical
configuration. This value is indicative of the depolarisa-
tion of the light beam, occurring in the microscope, the
cryostat windows and the garnet, and it is fair in com-
parison to other similar experimental setups.16,17 In or-
der to increase the signal-to-noise ratio, we recorded the
average of 500 images. Post-image processing to remove
fluctuations of intensity in the Hg-lamp, inhomogeneous
illumination and field-independent background is done
with specially tailored Matlab scripts and the ImageJ
software. We took particular care to avoid the prolifer-
ation of magnetic domain walls in the indicator since in
their presence, the local magnetic field is modified and
the technique can therefore no longer be considered as
non-invasive.21
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FIG. 2: (a) The critical temperature Tc = 9 K is determined
by magnetization measurements (open squares). Similar mea-
surements were carried with the magneto-optical imaging
technique (MOI) by applying a field-cooling procedure with
µ0H = 1 mT and subsequently taking µ0H = 0 mT (blue
circles). Images of the samples are then taken for different
temperatures and the average intensity I is measured in the
30 × 30 µm2 square frame at the center of one sample (see
inset). I is normalized by the intensity I0 measured above
Tc. The rectangular Nb samples shown in the inset have di-
mensions of 400 × 800µm2. (b) Upper critical field Hc2(T )
obtained from magnetizations measurements in a 2× 2 mm2

Nb film without indentations. The line is a fitting based on
the Ginzburg-Landau expression. The dashed area indicates
the field-temperature region where thermomagnetic instabil-
ities (TMI) develop. The inset shows the field dependence
of the critical current density obtained from magnetization
measurements at T = 5 K. The dotted line at low fields is a
guide to the eye.

Fig. 2(a) shows the temperature dependence of the ir-
reversible magnetization after zero-field cooling as mea-
sured by a SQUID magnetometer with µ0H = 1 mT
(square open symbols). The critical temperature Tc =
9 K is consistent with magneto-optical measurements
obtained with the sample in the remanent state after
field-cooling in µ0H = 1 mT and subsequently setting

µ0H = 0 mT. As the temperature was increased, the
average intensity (blue circles) was then tracked by the
CCD camera in a square area of 30 µm × 30 µm in the
center of one sample (square frame in the inset of Fig.
2(a)). The separation between neighbouring samples is
800 µm, thus ensuring negligible field cross talking be-
tween samples. The main panel of Fig. 2(b) shows the
upper critical field Hc2(T ) as determined from M(H)
loops in a 2 × 2 mm2 Nb film without indentations.
By fitting these data with the Ginzburg-Landau expres-
sion Hc2(T )=Φ0/2πξ(T )2 where ξ(T )=ξ(0)/

√
1− T/Tc,

we deduce ξ(0)=9.7 nm. The dashed area indicates the
field-temperature region where thermomagnetic instabil-
ities (TMI) develop as evidenced by sudden jumps in
M(H).18 This region may slightly change from one exper-
imental instrument to another, depending of the refrig-
eration power, environment, and heat removal efficiency.
The inset shows the field dependence of the critical cur-
rent density obtained from magnetization measurements
at T = 5 K.

III. NUMERICAL MODELLING

The experimentally obtained isothermal magnetic flux
penetration (i.e. in absence of thermomagnetic instabili-
ties) will be compared with the macroscopic electromag-
netic behavior of a superconductor characterized by a
current dependent resistivity

ρ(j) = ρ0(j/jc)
n−1, (2)

where ρ0 is the cut-off resistivity, jc is the critical current
density and n is the flux creep exponent. For the sake
of completeness we treated two different cases. On the
one hand, we modelled a superconducting system without
non-local demagnetizing fields, the so-called longitudinal
geometry. It is precisely within this configuration that
Eq. (1) is valid. On the other hand, we modelled sam-
ples with strong demagnetizing fields, with the so-called
transverse geometry, of particular importance when de-
scribing the field penetration in thin films such as in the
present manuscript. In both cases, the resistivity in Eq.
(2) was cut off to ρ = ρ0 for j > jc in order for the simu-
lations to converge; we checked that the resulting d-line
are insensitive to the actual value used for the current
cut-off. More details about each method are presented
below.

A. Without demagnetization effects

For an infinitely long bar subject to a time-varying ex-
ternal homogeneous field Ha(t) applied along the axis of
the bar ẑ, the total field H(x, y, t) = Ha(t) + h(x, y, t),
with h(x, y, t) the current-induced field in the supercon-
ductor, becomes independent of z. It can be determined
by Ref. 1:
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FIG. 3: Numerical simulations of the magnetic field h for
similar partial flux penetration in a superconducting sample
with a border defect (a) without and (b) with demagnetizing
field. The streamlines converge to the d-lines. We used the
parameters ρ0 = 10−14 Ω. m and jc = 1010 A.m−2. In (b),
the sample thickness is 100 nm.

∂h

∂t
= ∇ · (ρ∇h)/µ0 −

∂Ha

∂t
, (3)

where ρ(j) is given by Eq. (2), j = ∇× hẑ, and E = ρ j.
Equation (3) was integrated in a finite elements solver22

with Dirichlet boundary conditions h = 0. The d-lines
can be easily seen by plotting the streamlines of h, as
shown in Fig. 3.

B. With demagnetization effects

As discussed by Brandt,23 an accurate description of
the currents and fields in a superconducting film must
take into account the long range effects of the demagne-
tizing field. Following Ref. 23, the principal quantity to
be calculated is the sheet current density

J(x, y) =

∫ d/2

−d/2
dzj(x, y, z), (4)

where d is the film thickness. The sheet current can
be derived from a stream function g(x, y) that satisfies
J = ∇×(ẑg) = (∂g/∂y,−∂g/∂x). By fixing g = 0 at the
boundaries of the sample, it follows that g(r) represents
the total current passing between (x, y) and the border,
in the case of a simply connected sample, and it is re-
lated to the perpendicular component of the magnetic
field Hz(x, y, 0) by

Hz(r) = Ha +

∫
S

d2r′Q(r, r′)g(r′), (5)

where Ha corresponds to an external field and the inte-
gral on the right stands for the demagnetizing field. S is
the surface of the sample and the function Q(r, r′) is the
2-dimension Biot-Savart kernel

Q(r, r′) = lim
z→0

2z2 − |r − r′|2

4π(z2 + |r − r′|2)5/2
. (6)

The constitutive relation E = ρ(J)J/d, along with the
induction law µ0H = −∇×E, gives rise to the following
expression for the total field:

∂Hz

∂t
= ∇ · (ρ∇g)/µ0d. (7)

Then, by taking the time derivative of Eq. (5), and in-
serting into Eq. (7), the following equation for g is ob-
tained:∫

S

d2r′Q(r, r′)
∂g(r′)

∂t
= ∇ · (ρ∇g(r))/µ0d−

∂Ha

∂t
. (8)

In this form, Eq. (8) cannot be easily time integrated.23

In Fourier k-space, by exploiting the fact that F(Q) '
k/2,24 and that the integral in Eq. (8) is a convolution,
we obtain:

∂g

∂t
= F−1

(
2

k
F
(
∇ · (ρ∇g) /µ0d−

∂Ha

∂t

))
, (9)

with k = |k|, and where F and F−1 denote the Fourier
and inverse Fourier transforms respectively. The stream
function can then be time integrated by Runge-Kutta.
The calculation of ∂g/∂t however requires the determi-
nation of ∂Hz/∂t in the superconducting sample (H in

z )
and in a small area outside the sample (Hout

z ) by an it-
erative method24

i) Initially, at t = 0, for the first iteration step g = 0, an
approximation for ∂g/∂t is given by

∂g1
∂t

= F−1
(

2

k
F
(
−∂Ha

∂t

))
. (10)

For later times, Eq. (9) should be used instead. The k−1

factor introduces a singularity when k = 0. This means
that the zeroth order of the spectrum is undetermined
and that ∂g/∂t can be shifted by an additive constant,
chosen such that its average out of the sample is zero.
ii) Since g is known, the field inside the superconducting
sample is calculated with Eq. (7). The field out of the
sample is approximately obtained with

∂Hout
z(i+1)

∂t
=
∂Hout

z(i)

∂t
−F−1

(
k

2
exp(−δ2k)F

(
∂gouti

∂t

))
.

(11)
As steps i) and ii) are repeated, ∂gouti /∂t goes to zero,
and ∂Hout

z(i)/∂t converges to its right value, except for an

additive constant calculated by requiring that the area
integral of ∂Hz(i)/∂t−∂Ha(i)/∂t is zero. The exp(−δ2k)
factor in Eq. (11) corresponds to a filter aimed to cut
the high frequency components that are amplified by the
k/2 term, and leads to divergence of the method. The
parameter δ corresponds to the separation between grid
points in real space.

The simulations have been performed for a Nb film
with ρ0 = 10−14 Ω.m, jc = 1010 A.m−2 and using a rate

of change of the magnetic field Ḃ(r, t) = 10−3 T.s−1 cor-
responding to the experimental conditions.
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IV. RESULTS AND DISCUSSION

We will first discuss the results concerning the prop-
erties of the discontinuity lines emerging from the litho-
graphically defined indentations. An analytical calcula-
tion of the functional form of the d-lines for different in-
dentation shapes is deduced from the critical state model
(n→∞). This is then used to fit the experimental data
and afterwards compared with the case of finite n ob-
tained by numerical modeling. The analysis of the excess
flux ∆ and the influence of indentation on the thermo-
magnetic instabilities is deferred to the sections there-
after.

A. Indentation induced discontinuity lines

1. Functional form of the d-lines according to the critical
state model

In this section, we consider the critical state model
for the penetration of the magnetic flux inside a super-
conductor in two different geometries: (i) a longitudinal
geometry, e.g. a long cylinder or a slab subjected to a
parallel magnetic field, and (ii) a transverse geometry,
e.g. a thin film subjected to a perpendicular magnetic
field.

The critical state model assumes that the supercon-
ducting regions which are subjected to a varying flux
density, however small, develop ’maximal’ shielding cur-
rents with a density jc. The value of jc results from an
equilibrium between the vortex driving force j × B and
the pinning force at the defects25. Upon an increase in
the applied magnetic flux, the force balance is broken and
vortices progress further into the superconductor until a
new equilibrium is reached. The critical current density
jc depends in principle on the local value of the magnetic
flux density B. In the following, we assume the simplest
model with a constant jc.

In the longitudinal geometry, an increase of the ex-
ternal magnetic flux induces shielding currents in the pe-
ripheral region of the superconductor and leaves the inner
region flux-free. The resulting magnetic field decreases
from the external boundary according to Ampere’s law
∇×H = j, where |j| = jc in the flux penetrated region,
whereas both H and j vanish in the flux-free region.

In the transverse geometry, the magnetic flux and
shielding current distributions are affected by demagne-
tizing effects. Moreover, even very small variations of the
external magnetic field lead to shielding currents flowing
over the entire film26. As a result, the sheet current den-
sity J =

∫
dz j varies continuously over the area of the

superconducting film, from |J| = J = 0 to J = jcd. Two
distinct regions can then be identified: (i) a fully pen-
etrated region with J = jcd and (ii) an inner flux-free
region with J < jcd and Hz = 0. In the fully penetrated
region, we have |∇ × (gẑ)| = jcd, where g is the current
stream function.

FIG. 4: Discontinuity-lines in the critical state model for de-
fects of size R = 10µm: a semicircular indentation (C, left
panel), a triangular indentation with b = 20µm (T10, middle
panel) and a rectangular indentation with b = 1µm (S, right
panel). The d-lines are described by parabola branches P, but
for the T10 and S indentations, the branches in the vicinity
of the defect (y < yP) correspond to straight lines L.

We now turn to determine the equations of the d-
lines emerging from an indentation within the critical
state model, concentrating for each geometry on the fully
penetrated regions. In both the longitudinal geometry
(where |∇×H| = jc) and the transverse geometry (where
|∇×(gẑ)| = jcd), the magnetic flux penetration is charac-
terized by a spatial decrease of Hz or g from the external
boundary inwards with a constant gradient. As a result,
the contour lines of Hz in the longitudinal geometry (or
those of g in the transverse geometry) are at a constant
perpendicular distance from the edges. Currents flow
parallel to these contour lines and, in regions where two
or more flux fronts meet, they undergo sharp changes of
direction. These changes give rise to discontinuity lines,
or d-lines, which appear at the locus of points equidistant
from the edges of the sample, including the edges of the
indentation.

Semicircular indentation.- For a semicircular indenta-
tion of radius R, the d-lines are defined as the locus of
points equidistant from the straight edge and the arc of
circle of radius R. This gives two arcs of parabola placed
symmetrically about the indentation, described by27

y(x) =
x2

2R
− R

2
, (12)

and illustrated in the left panel of Fig. 4

Triangular indentation.- A triangular indentation of
width b and height R gives rise to two symmetric d-lines,
each composed of two parts: (i) a straight line L, which is
the locus of points equidistant from the straight edge and
from one of the sides of the triangle, and (ii) a parabola
branch P , corresponding to the locus of points equidis-
tant from the straight edge of the sample and the tip of
the triangle. For the right branch (x > b/2), we have
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L : y = (x− b

2
)
b

2R

(
1 +

√
1 + 4

R2

b2

)
, (13)

P : y =
x2

2R
+
R

2
. (14)

These two curves join continuously (their derivatives are
also continuous) at the point of coordinates

xP =
b

2

(
1 +

√
1 + 4

R2

b2

)
, (15)

yP =
b2

4R

(
1 +

√
1 + 4

R2

b2

)
+R. (16)

The left branch is obtained from a mirror symmetry op-
eration x 7→ −x, as illustrated in the middle panel of
Fig. 4.

Rectangular indentation.- A rectangular indentation of
width b and height R gives rise to two d-lines, each made
of a straight line L, corresponding to points equidistant
from the straight edge and from one of the indentation
sides, and a branch of parabola P , corresponding to an
equidistance from the straight edge and one the rectangle
corners at y = R. The right branch (x > b/2) is given as

L : y = x− b

2
, (17)

P : y =
(x− b/2)2

2R
+
R

2
. (18)

The two curves join continuously (their derivatives are
also continuous) at the point of coordinates

xP =
b

2
+R, (19)

yP = R. (20)

The left branch is obtained from a mirror symmetry op-
eration x 7→ −x, as illustrated in the right panel of Fig. 4.

It is noteworthy that independently of the shape of the
indentation, the d−lines take the following asymptotic
form for y � R:

y ≈ x2

2R
, (21)

where R is the height of the defect.

2. Experimental results

In Fig. 5(a) we show a typical field pattern in a sam-
ple with a single indentation (T10), where the following
characteristic parameters are indicated: the distance D
between the flux front and the sample border, and the ex-
cess flux penetration ∆. The parabolic d-line determined

by the local minima in the flux profile is highlighted by
the white dashed line. The inhomogeneous penetration
of the magnetic flux leads to an irregular flux front. This
may be caused by uncontrolled edge defects of size com-
parable to ξ(T ) ≈ 15 nm or local changes in the material
properties.

The spatial identification of the d-lines has been done
numerically by searching in the plane of the sample the
(x, y) coordinates where the intensity is minimum. The
position of the sample border is defined by the line y = 0
and the indentation is centered at x = 0. An example of
line profile of the magnetic field along the dotted straight
line (black) depicted in the upper panel of Fig. 5(a) is
shown in the lower panel of the same figure. Since the
position of the d-lines is field independent, we present the
data corresponding to the highest possible field exhibit-
ing optimum contrast. The fitting is based on eq. (12),
(14) and (18) and was limited to a distance y = 100µm
from the border.

In Fig. 5(b), the d-lines for two different triangular
indentations, T0.5 and T8, are plotted at the reduced
temperature T/Tc = 0.68. Within the Bean critical state
model the d-lines follow a parabolic dependence as long as
the indentation has a semicircular shape. As we pointed
out above, for other shapes, the parabolic dependence re-
mains applicable only for values of the y coordinate larger
than yP. Since the largest size of the studied defects is
10 µm, while d-lines extend about 100 µm inside the
sample, we can safely fit the experimentally determined
discontinuity lines with y = ax2 + c. We are particularly
interested in the determination of the concavity a which,
according to the critical state models, should be inversely
proportional to the size R of the defect. In other words, a
larger indentation should lead to a wider parabola. This
trend is confirmed by the representative d-lines shown in
Fig. 5(b).

In Fig. 5(c), the influence of size is studied for five tri-
angular defects with sizes R between 0.5 µm and 10 µm.
Even though the T10 indentation has a different aspect
ratio than the other triangular defects, eq. (14) shows
that the parabolic dependence is solely determined by the
height of the triangle. The prediction of the Bean model
for longitudinal geometry, (2a)−1 = R, is also plotted as
a dashed line in the same figure. A clear discrepancy be-
tween the experimental data and the Bean model can be
observed. First, the linear dependence between (2a)−1

and R extrapolates to a finite a even if the defect is ab-
sent (R = 0)28, as evidenced by the plain line used as a
guide to the eye. Secondly, the R values deduced from the
Bean model largely overestimate the actual size of the de-
fects. These observations lead us to question the validity
of Eq. (12) in the present study. In our case, an empiri-
cally estimated shift of 9 µm needs to be subtracted from
the experimentally determined value of 1/2a in order to
find the actual size of the defect. Possible sources of dis-
agreement come from the fact that the Bean model for
longitudinal geometry (i) neglects the surface barrier for
vortex penetration, (ii) corresponds to an unrealistically
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FIG. 5: (a) Field penetration for the T10 indentation at T/Tc = 0.5 (upper panel). The intensity profile shown in the lower panel
is taken along the black dotted straight line and shows where the deep minima corresponding to the d-lines are located. We fit
these d-lines with a parabola (white dashed line) of concavity a. The flux front penetration D and the excess flux penetration ∆
measured from the sample border are also represented. In (b), parabolas are shown for the T0.5 and T8 indentations centered
at x = 0. The sample border is at y = 0. As also represented in (c), an increase in the triangular indentation size leads to
the widening of the parabolas. The solid line is used as a guide to the eye, while the dashed line shows the predictions of the
Bean model for the longitudinal geometry. (d) For defects of the same size but with different shapes (C, S and T), there is
little change in a. The raise of the temperature leads to a widening of the parabola, shown in (e) for the T10 indentation. The
temperature dependence of a is shown in (f) for T10, S and C, where solid lines are used as guides to the eye. The error bar
indicated for the first point of each indentation is valid for all the points belonging to the same group.

high creep exponent n, (iii) fails to describe the non-local
nature of thin films, and (iv) assumes a field independent
critical current density jc.

Let us first discuss the influence of finite penetration
field for vortex entry in samples with border defects.10,29

Recent reports have shown that crowding of Meissner
currents can severely affect the conditions for vortex en-
try in sharp-bends10,30–33. Within this scenario, border
indentations of different shapes lead to different suppres-
sions of the flux entry barrier. In particular, it was shown
that triangular indentations should allow a more prema-
ture vortex entry than rounded indentations. Therefore,
if current crowding (ignored in the Bean model) were an
important ingredient to consider, we should be able to
see its influence by changing the shape of the indenta-
tions. A comparison of d-lines obtained for three dif-
ferent shapes of indentation is presented in Fig. 5(d) at
T/Tc = 0.68. Note that the curvature of the d-line emerg-
ing from the semicircular indentation is slightly bigger
than for the triangular and slit indentations. Moreover,
far away from the border defect, the curvature is smaller
for the slit than for the triangular indentation. As it was
demonstrated in the previous section, the d-lines ema-
nating from a slit, a triangular or a semicircular defect,

do not follow exactly the same functional form. For a
given y0 coordinate, the local Bean model predicts that
the x0 loci of the d-line should be the largest for the cir-
cular defect and smallest for the triangular, in contrast to
what is observed experimentally. Although these results
seem to indicate that current crowding may indeed play
a role, the observed minor differences suggest that its ef-
fect in the form of the parabolic d-line is rather small.
In the next section, we will see that current crowding ef-
fects manifest themselves in a substantial increase of the
excess penetration distance ∆.

Assessing the relevance of the creep exponent n on the
flux entrance can be experimentally done by changing
temperature. Indeed, since n = U0/kBT , where U0 is the
activation energy over the pinning barrier, n decreases
as the temperature increases, reaching the Ohmic value
n = 1 at the vortex liquid phase very close to Tc.

34 In
Fig. 5(e), the temperature dependence of the flux pen-
etration is plotted at two different temperatures for the
triangular indentation T10. The increase of the temper-
ature leads to a significant opening of the parabola, i.e.
a decrease of the concavity a. In Fig. 5(f), the tempera-
ture dependence of the concavity is shown for the T10, S
and C indentations. Remarkably, the progressive open-



9

ing of the parabolic d-lines as temperature increases is
at odds with the theoretical predictions of Ref. 8 which
foresees a discontinuity line rather independent of the n
value. A possible explanation for this effect is the fact
that the first vortex penetration field Hp is lowered at
the indentation compared to its value elsewhere. Since
current crowding is more severe as n approaches unity,
when T approaches Tc, the difference between Hp at the
border and at the indentation will increase, causing the
entering flux to spread around the indentation.

The influence of the border’s roughness on the
parabolic d-lines has also been studied by comparing
samples with smooth (P) and rough (R) borders. While
the penetration dynamics is different, with flux enter-
ing the sample smoothly in the R borders and in small
jumps in the P borders, the d-lines are not affected by
the roughness of the edges for mean values of roughness
ten times smaller than the indentation size. In order
to artificially create a roughness similar to the inden-
tation size, we designed samples with borders featuring
several indentations of the same size, arranged in a peri-
odic pattern (T10p0, T10p10, T10p50 and T10p100 bor-
ders). In these samples, we found no difference between
the parabolic d-lines originating from the indentations
and the d-lines for a single T10 indentation, as long as
the distance between the indentations is big compared to
y. When y becomes comparable to the distance between
indentations, the d-lines interfere and follow a line per-
pendicular to the sample border, exactly in the middle
of two neighbouring indentations. Such configuration of
d-lines was already suggested for the magnetic flux pene-
tration in bulk superconductors with a periodic array of
holes35.

3. Numerical results

Unfortunately, it is difficult to determine experimen-
tally the influence of demagnetization effects on the cur-
vature a of the d-lines. This would imply the investi-
gation of a large range of sample thicknesses, assuming
that the superconducting properties themselves are not
influenced by this change. Instead, in this section, we
perform a theoretical modelling of the system allowing
us to compare the longitudinal and transversal geome-
tries, as well as the impact of the creep exponent and the
field dependence of the critical current density.

The dependence of 1/2a on the creep exponent n, ob-
tained from the numerical modelling of the T10 sample, is
summarized in Fig. 6 for the case of a full magnetic field
penetration, as in the experiments. The corresponding
parabolic d-lines are extracted using the same algorithm
as for the experimental data, which gives results similar
to the streamlines of h as shown in Fig. 3. The dashed
line corresponds to what is predicted by the Bean model
(jc constant) in the longitudinal geometry. Simulations
for the longitudinal geometry, in the case of finite values
of the creep exponent n and constant jc, are shown with

FIG. 6: Numerical simulations of 1/2a for the T10 inden-
tation, where a is the concavity of the parabola fitting the
d-lines. The dashed line shows the value obtained for the crit-
ical state model. The parabolas in the local case (full squares)
yield values of 1/2a smaller than for the Bean model, while
the Bean model limit is recovered for n→∞. The non-local
case and its extension to account for the field dependence of
the current, based on the experimental data of Fig. 2(b),
slightly modify 1/2a, but remain below the Bean model limit.

solid squares. Note that 1/2a is smaller for finite n than
for n→∞ (Bean model). In other words, the more real-
istic model of finite creep exponent predicts parabolic d-
lines with curvature larger than in the Bean model. The
fact that the concavity increases as n decreases is at odds
with the experimental results. Indeed, since n ∝ T−1,
we observe experimentally that 1/2a increases as n de-
creases.

Introducing demagnetizing fields (non-local case) also
modifies the concavity of the d-lines. This is shown by
the open square symbols in Fig. 6. In particular, de-
magnetizing effects lead to a broadening of the parabola
when compared to the longitudinal geometry, although
the values of 1/2a still remain below the dashed line ob-
tained from the Bean model. In order to account for the
field dependent jc(B) shown in the inset of Fig. 2(b), we
have modified Eq. (2) by using jc(B) = j0(Bc2/B)γ ,36

with γ and Bc2 obtained from fitting the experimental
data. The results are represented by the open circles in
Fig. 6 and lead to a further opening of the parabola. This
result is in agreement with what has been suggested in
Ref. 7,37. In the limit n → ∞, we expect the field de-
pendent non-local case to converge towards the results of
the local case, 1/2a = 10µm. The fact that there is no
significant deviation with respect to the situation with
no field dependence at all is consistent with the results
of Ref. 36, where the authors showed that increasing the
exponent γ is equivalent to increasing the effective creep
exponent.
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FIG. 7: Panel (a) shows the distance D between the flux front
penetration at the indentation and the border at T/Tc = 0.5
for the T10, T0.5, S and C indentations and for a plain film
(P) without indentations. Flux penetration is enhanced at the
indentations compared to the plain film. This effect is shown
in panels (b)-(d), where the difference ∆ between the flux
front at the indentation and at the smooth border surpasses
several times the actual size of the indentation. The lines are
guides to the eye.

B. Excess flux penetration

The border indentation produces an enhancement of
the magnetic flux penetration when compared to the pen-
etration along the smooth border. This excess flux pene-
tration has been quantified by Vestg̊arden et al.4 by intro-
ducing a parameter ∆ corresponding to the distance be-
tween the flux fronts originating from the indentation and
those developing from the smooth border (see Fig.5(a)).
Based on numerical simulations, these authors predict
that ∆ should be field independent and equal to the size
of the defect (R) in the case of the Bean model in the
longitudinal configuration (i.e. without demagnetization
effects), whereas a non-monotonous function ∆(H), with
a maximum value exceeding the defect size at H = Hm

and decreasing asH further increases, should be obtained
for thin films in the transversal geometry, dominated by
non-local effects. As suggested by these authors, the ul-
timate reason for the excess penetration distance is that
Meissner currents concentrate in front of the indentation
(current crowding), where their density reaches jc, and
hence lead to even deeper flux penetration. This is why
the flux front near the indentation advances faster than
in the rest of the film for H < Hm.

In order to corroborate these predictions, we measured
∆(H) experimentally by performing zero field cooling ex-
periments on the samples presented in Fig. 1. The tem-

perature was set at T/Tc = 0.5. The magnetic field µ0H
was then gradually increased by steps of 0.01 mT and
images were recorded for each step. We defined the mag-
netic flux front as the iso-field line corresponding to a
threshold value of the magnetic field. This translates to
a threshold intensity Ithres, calculated in each image with
the following formula:

Ithres = Icenter +
1

2
(Iout − Icenter), (22)

where Icenter is the intensity at the sample center (B ∼
0) and Iout is the intensity far away from the sample
(B ∼ H) . These values are calculated by averaging the
intensity in 5× 5 px2 squares.

Fig. 7(a) shows the evolution of the distanceD between
the sample border and the flux front emerging from the
indentation (see Fig. 5(a)) as H increases. The distance
D for the plain film (P) rises monotonically as the field
increases and tends towards 200µm, the half-width of the
sample, when the flux has invaded the whole sample. For
the samples featuring an indentation, the high field limit
remains the same since it corresponds to a geometrical
constraint, but the values ofD for intermediateH are sig-
nificantly higher. This behavior evidences the fact that
the flux penetration is enhanced at the indentations. We
notice that D is slightly smaller for indentations C and
T0.5 than for S and T10, likely due to less severe current
crowding effects for smaller and round-shaped defects.

In order to determine ∆, we compute the differ-
ence between D at the position of the indentation and
away from the indentation, where the flux penetration is
undisturbed.38 Fig. 7(b)-(d) shows the obtained ∆(H)
for C, S, T10 and T0.5 defects. The data points concern-
ing samples T0.5 and C have been truncated because
magnetic domains coming from the garnet suddenly ap-
peared in the images, thus perturbing the flux distribu-
tion in the superconductor. The general shape is the
same for all curves: for low H, ∆ increases as the field
increases and reaches a maximum value ∆m, larger than
the defect size R, at fields µ0Hm between 2 and 3 mT.
In other words, for H < Hm, the flux penetrates into
the sample more easily via the indentation than through
the smooth border. For H > Hm, the tendency inverts
since the progression of the flux front emerging from the
indentation slows down when approaching the center of
the sample, as illustrated in Fig. 7(a). It it important
to point out that the noisy appearance of the curves
does not correspond to limitations in the measurement
technique, but are inherent to the physical process under
study. Indeed, the flux propagates into the sample in a
discontinuous way, progressing by small jumps of several
micrometers, which are reflected in the ∆(H) curves, as
clear oscillations.

It was shown in Ref. 4 that a larger defect gives rise
to a larger ∆m. This is confirmed in our experiments
when comparing the samples T10 and T0.5. We find ex-
perimentally that ∆m can be several times larger than
the defect size, whereas an increase of about 50% was re-
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FIG. 8: Temperature dependence of the maximum excess flux
penetration ∆m (a) and its corresponding field Hm (b). The
dotted lines are guides to the eye.

ported theoretically4. Note that current crowding effects
could account for the fact that ∆m is larger for the S and
T10 defects than for the C defect. All in all, our mea-
surements in clean and well defined border indentations
seem to confirm the general trend of the magnetic flux
front evolution predicted by Vestg̊arden et al.4.

As we pointed out in the introduction, Ref. 4 also pre-
dicts that as n increases, both ∆m and Hm increase.
Since n decreases by increasing T , we expect a decrease
of ∆m and Hm with increasing temperature. Fig. 8
shows the temperature dependence of ∆m and its cor-
responding field Hm is shown in panel (b) of the same
figure. Although Hm is a decreasing function of T , as
predicted numerically, ∆m(T ) shows a tendency opposed
to the predictions. This discrepancy between theory and
experiment can be explained by a more rapid decrease
of jc when increasing temperature, as compared to the
difference H2 − H1 between the first penetration fields
at the indentation and at the smooth border. Vodolazov
et al.39 have investigated theoretically the influence of
sample defects in the penetration of vortices in a homo-
geneous superconductor. These authors concluded that

the presence of surface defects causes a drop in the first
penetration field and leads to a qualitative change in the
magnetization curve. Unfortunately, there is no detailed
investigation of the temperature dependence of this ef-
fect, but we can safely assume that, as for the smooth
border, the penetration field at the defect also decreases
when the temperature raises. Therefore, also H2 − H1

should decrease with increasing T . In a first approxima-
tion (Bean critical state model), the difference ∆ between
the flux front positions goes as ∆ ∼ (H2 − H1)/jc. If
the inevitable decrease of jc when T raises is faster than
the decrease of H2 −H1, we speculate that ∆ should in-
crease with T , as observed in the experiments. Clearly,
further numerical studies will be necessary to unambigu-
ously pinpoint the origin of the reported effect.

C. Flux avalanches in indented samples

Due to the large electric fields and the larger traffic of
vortices at defects, it is widely believed and repeatedly
predicted that indentations should represent preferred
nucleation spots for the development of thermomagnetic
instabilities.2–4 In order to corroborate this hypothesis
we performed both field cooling and zero-field cooling
experiments to observe the position of avalanches in the
Nb film with a periodic row of indentations (T10p100
and T10p50) as well as in the T10 and S samples.

In Fig. 9(a), we show the flux penetration in a sam-
ple with optimum borders after zero-field cooling at 3.6
K and applied field µ0H = 2 mT. In this sample, the
top defect is S and the bottom corresponds to T10. No
evidence of flux avalanches is observed. However, by ap-
plying a magnetic field of 12.5 mT before cooling down
to 3.6 K, and subsequently reducing the field to 1 mT,
clear avalanches of negative flux (i.e. polarity opposed
to the applied field) are observed as shown in Fig. 9(b).
Note that the thermomagnetic instabilities are not trig-
gered at the indentations, in striking contrast to what
was expected.

Panels (c) and (d) of the same figure show a geometry
similar to panels (a) and (b), but now the indentations
are positioned along rough (R) borders (Fig. 1), while the
short indentation-free borders are smooth. In this case,
for both zero-field-cooling (Fig. 9(c)) and field-cooling
(Fig. 9(d)), avalanches are triggered at the smooth short
side of the sample, not in the vicinity of the indenta-
tions. This confirms the fact that smooth borders are
more prone to exhibit avalanches than rough borders.
Adding more indentations, as shown in Fig. 9(e) and (f),
does not help to force the instabilities to be triggered at
this electric field hot spots.

A possible explanation for this surprising result might
involve an effective reduction of the critical current den-
sity at the indentation as a consequence of the reduction
of the surface barrier for vortex entrance, as discussed in
Ref. 10. In simple words, the indentation seems to act as
a magnetic flux faucet that helps to release the magnetic
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FIG. 9: MO images of the Nb film at 3.6 K show the flux pen-
etration (a,c,e) when a 2 mT magnetic field is applied after
ZFC or (b,d,f) in a 1 mT field after FC in 12.5 mT. In (a-d),
the samples feature the S (top) and T10 (bottom) indenta-
tions, while (e) and (f) show the T10p100 (top) and T10p50
(bottom) indentations. Contrarily to what was predicted in
the literature, avalanches are not preferentially triggered at
indentations, as they decrease the magnetic pressure, but tend
to appear at the smooth borders. The comparison of samples
(a,b,e,f), having four smooth sides, with (c,d), having rough
long-sides (R) shows the importance of smooth borders to
trigger avalanches.

pressure at the sample border by enhancing the smooth
flux penetration in its vicinity.

V. CONCLUSION

The present investigation reveals unexpected features
of discontinuity lines generated by border defects in Nb
thin film superconductors. In particular, we find out that
(i) the concavity of the parabolic d-lines is smaller than
what is expected from the Bean model for longitudinal

geometry, and (ii) against the common wisdom, inden-
tations are not inducers of thermomagnetic instabilities
that cause flux avalanches. We demonstrate that the d-
lines encode information about the demagnetization ef-
fects, the size and shape of the defect, the creep exponent
n, and the field dependence of the critical current density.
However, none of these ingredients is able to fully account
for the observed effects. We speculate that a premature
flux penetration at the indentation due to a reduction of
the threshold field for the first vortex penetration, not
included in the macroscopic description of the electrody-
namics of superconducting films, could be the cause of
the puzzling results. Further investigations on samples
with artificial defects placed away from the border, and
thus not influencing the surface barrier, may provide a
way to discern the influence of first vortex nucleation on
the d-lines.

It has been shown that macroscopic drilled holes in
high-Tc superconductors, introduced with the aim to
improve oxygen diffusion and heat exchange, need to
be placed strategically along the d-lines generated by
neighbouring holes if trapped magnetic flux is to be
maximized.35 A similar study in thin films, where d-lines
are influenced by non-local effects, may be of technolog-
ical interest.
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