Biochemical markers to monitor the effects of drugs in knee OA patients

Yves Henrotin, PhD
University of Liège
A biomarker is a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.

Biomarkers of cartilage metabolism

NO + O₂ → ONOO⁻

C2C, CIIM
Cleavage site of MMP-1,-8,-13

Coll2-1
HRGYPGLDG
NH₂
Coll2-1NO₂
HRG(Y(NO2))PGLDG
NO + O₂
ONOO⁻

C2C, CIIM
CTX-II
Cleavage site of MMP-1,-8,-13

Type II collagen degradation

Coll2-1NO₂

Type II collagen synthesis

PIINP
PIICP

Oxidative stress

Aging

D-COMP

COMP

Fib3-1

Fib3-2

ARGS
NITEGE
CS-846
KS
Aggrecan degradation
Aggrecan turnover

www.bcru.be
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burden of disease</td>
<td>Biomarker associated with extent of severity of OA.</td>
</tr>
<tr>
<td>Investigative</td>
<td>Biomarker not yet meeting criteria for another category.</td>
</tr>
<tr>
<td>Prognostic</td>
<td>Predicts incidence of progression of disease or likelihood of response to a treatment.</td>
</tr>
<tr>
<td>Efficacy of treatment</td>
<td>Efficacy of intervention « Indicative or predictive of treatment efficacy and for which the magnitude of the change is considered pertinent to the response. »</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Dissociate diseased from non-diseased.</td>
</tr>
<tr>
<td>Safety</td>
<td>Identify adverse effects and provide means of safety.</td>
</tr>
</tbody>
</table>
Biochemical marker concentration differed statistically significantly between patient populations with or without treatment, or before and after treatment within patient.
Levels of qualification of biomarkers for drug development use

Kraus et al. Osteoarthritis Cart, 2011

- **Surrogate**
 - None

- **Characterization**
 - uCTX-II, sMMP-3

- **Demonstration**
 - sC2C, sHA, NTX-1, Coll2-1, Coll2-1NO2

- **Exploratory**
 - COMP, C1,2C, CTX-1, CS846

« To qualify for the efficacy of intervention category, a marker must demonstrate a statistically significant relationship between treatment-related changes in a biomarker and the clinical or imaging outcome »
Is CTX-II an efficacy of intervention biomarker? Interpretation pitfalls!

<table>
<thead>
<tr>
<th>Intervention</th>
<th>CTX-II levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA</td>
<td>↓</td>
</tr>
<tr>
<td>CS</td>
<td>0</td>
</tr>
<tr>
<td>Naproxen, Licofelone</td>
<td>0</td>
</tr>
<tr>
<td>Tibolone</td>
<td>0</td>
</tr>
<tr>
<td>Risedronate</td>
<td>↓</td>
</tr>
<tr>
<td>Calcitonine</td>
<td>↓</td>
</tr>
<tr>
<td>Strontium ranelate</td>
<td>↓</td>
</tr>
<tr>
<td>SERM</td>
<td>↓</td>
</tr>
<tr>
<td>Estradiol</td>
<td>↓</td>
</tr>
</tbody>
</table>

All antiresorptive therapies decrease CTX-II

Richette, Roux Osteoporosis Int 2012

u CTX-II reflects bone rather than cartilage metabolism

TIFLEXY Study
Bio-optimized curcuminoids (BOC)

Curcuminoids /Low availability

« Proof-of-concept study »
- 22 knee OA patients
- 2x3 caps (42 mg BOC)/days
- 3 months treatment

TIFLEXY Study
A proof-of-concept study
Henrotin et al., BMC Complem Altern Med, 2014

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>84 days of treatment</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sColl2-1 (nmol/L)</td>
<td>302.21 +/- 53</td>
<td>257.84 +/- 52.78</td>
<td>0.002*</td>
</tr>
<tr>
<td>sColl2-1NO2 (nmol/L)</td>
<td>0.71 +/- 0.78</td>
<td>0.80 +/- 0.24</td>
<td>NS</td>
</tr>
<tr>
<td>sCTX-II (ng/L)</td>
<td>11.81 +/- 7.98</td>
<td>13.17 +/- 4.96</td>
<td>NS</td>
</tr>
<tr>
<td>sFib3-1 (pmol/L)</td>
<td>707.05 +/- 178.79</td>
<td>765.20 +/- 261.90</td>
<td>NS</td>
</tr>
<tr>
<td>sFib3-2 (pmol/L)</td>
<td>580.58 +/- 103.59</td>
<td>636.74 +/- 119.73</td>
<td>NS</td>
</tr>
<tr>
<td>sCRP (mg/L)</td>
<td>10.42 +/- 30.27</td>
<td>3.10 +/- 2.40</td>
<td>NS</td>
</tr>
<tr>
<td>sMPO (ng/ml)</td>
<td>27.20 +/- 29.05</td>
<td>21.96 +/- 14.65</td>
<td>NS</td>
</tr>
</tbody>
</table>
BIOVISCO study
An open label observational prospective study

- 45 patients with unilateral symptomatic tibiofemoral and/or patellofemoral OA
- 3-weekly intraarticular injection of hyalan G20 (Synvisc®)
- Follow-up D1, D30 and D90 after the last injection

<table>
<thead>
<tr>
<th></th>
<th>D1 (after the last injection)</th>
<th>90 days (after the last injection)</th>
<th>p-Value D1 vs D90</th>
</tr>
</thead>
<tbody>
<tr>
<td>sColl2-1 (nM)</td>
<td>140.34 (882.44-285.32)</td>
<td>128.41 (85.6-241.34)</td>
<td>0.05*</td>
</tr>
<tr>
<td>sColl2-1NO2 (nM)</td>
<td>0.400 (0.050-1.010)</td>
<td>0.370 (0.14-0.870)</td>
<td>0.025*</td>
</tr>
<tr>
<td>uCTX-II (ng/nmolcreat)</td>
<td>392.7 (90.0-816.4)</td>
<td>306.0 (90-1123.9)</td>
<td>0.02*</td>
</tr>
<tr>
<td>sPIICP (ng/ml)</td>
<td>817.9 (131.4-1848.6)</td>
<td>874.8.3 (326.4-1435.0)</td>
<td>0.41</td>
</tr>
<tr>
<td>sC2C (ng/ml)</td>
<td>223.6 (99.4-329)</td>
<td>209.5 (135.9-291.7)</td>
<td>0.11</td>
</tr>
<tr>
<td>sCOMP (U/L)</td>
<td>10.9 (6.0-20.2)</td>
<td>10.5 (6.0-20.0)</td>
<td>0.82</td>
</tr>
<tr>
<td>sCS846 (ng/ml)</td>
<td>99.8 (45.9-172.3)</td>
<td>102.2 (53.0-190)</td>
<td>0.38</td>
</tr>
<tr>
<td>sHA (ng/ml)</td>
<td>34.1 (15.4-211)</td>
<td>33.3 (9.5-230.1)</td>
<td>0.38</td>
</tr>
</tbody>
</table>
BIOVISCO study
Other observations

✓ Only sColl2-1 was significantly decreased 30 days after final injection
✓ Only uCTX-II variation correlated with clinical response (walking pain decrease)
✓ uCTX, sColl2-1 and sHA were independently predictive of clinical response (WP decrease > 30 mm over 90 days)
MOVES study
CS + GuHCL (Droglican) vs Celecoxib
Preliminary data

- 416 knee OA (PP)
- 1200 mg CS/1500 GuHCL
- 200 mg celecoxib
- 6 months treatment

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>AGE</th>
<th>SEX</th>
<th>Weight (Kg)</th>
<th>Height (cm)</th>
<th>BMI (kg/m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>celebrex</td>
<td>202</td>
<td>64</td>
<td>165/37 (82%)</td>
<td>78 (14)</td>
<td>162 (18)</td>
<td>30 (6)</td>
</tr>
<tr>
<td>droglican</td>
<td>214</td>
<td>62</td>
<td>187/27 (87%)</td>
<td>81 (16)</td>
<td>161 (18)</td>
<td>31 (7)</td>
</tr>
<tr>
<td>PP</td>
<td>416</td>
<td>63</td>
<td>352/64 (85%)</td>
<td>80 (15)</td>
<td>162 (18)</td>
<td>30 (6)</td>
</tr>
</tbody>
</table>

Both drugs decreased sColl2-1
Only Droglican decreased significantly Coll2-1
No significant difference between groups
MOVES study
CS + GuHCL (Droglican) vs Celecoxib

OMERACT- OARSI Responders

KL grade III

Joint Swelling

WOMAC baseline ≤369 mm

\[p = 0.009 \]

\[p = 0.039 \]

\[p = 0.026 \]

\[p = 0.028 \]

Mean values + IC (95%)

P value = droglican vs celebrex

www.bcrue.be
Conclusions

- Soluble biomarkers should be included early in the development of a drug: "Drug development tool"
→ Preclinical development and phase 1-4 trials

Why?
→ to assist with selection of lead compound
→ to assess safety, mechanism of action, dose finding and selection, dose response profile, enrichment of a target population, enrichment for progressors, post-marketing safety surveillance
→ Companion biomarker (personalized medicine)
Thank you for your attention!

International collaborations:
F Blanco (La coruna, Spain)
T Conrozier (CHU Lyon, France)
V Kraus (Duke University, USA)
L Punzi (University of Padova, Italy)
A Mobasher (University of Nottingham, UK)
J Monfort (Hospital del mare (Spain))
P Richette (Lariboisiere, France)
J Runhaar (Erasmus MC, Rotterdam)