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Abstract 

The main objective is studying the fundamental aspect, by the mean of the drying 

kinetics, the application of forced convective drying of wastewater sludge with 

determination of the optimum drying conditions. The drying system is composed of two 

units; small samples of 2.5 g are dried in the first unit and bed of sludge weighting 250 g 

is dried the second unit. The experiments are performed under air temperatures varying 

between 80°C and 200°C. The range of the air velocity and its humidity is 1- 2 m/s and 

0.005-  0.05 kgwater/kgdry air,  respectively. The experiments are performed for two 

different sludges; activated sludge (AS) and thermalized and digested sludge (TDS). 

Usually, three main drying phases are observed during drying of bed of sludge. These 

phases are reduced to only two for small samples. Determination of the influent 

parameters shows that temperature of the drying air and sludge origin can profoundly 

influence the drying kinetic of the sludge. The exergy analysis of the two units of the 

drying system allows selecting 140 °C, 2 m/s, 0.05 kgwater/kgdry air as optimum drying 

condition with an exergy efficiency reaching 90%. 
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KEYWORDS: Micro-dryer, bed dryer, sludge origin, drying conditions 

 

NOMENCLATURE 

A area (m
2
) 

Cp specific heat (J/kg.K) 

E emissive power (W/m
2
) 

F shape factor 

g gravitational acceleration (m/s
2
) 

gc constant in Newton’s law 

J Joule constant 

m mass flow rate (kg/s) 

N number of species 

P pressure (kPa) 

s specific entropy (kJ/kg.K)  

T temperature (K or °C) 

u specific internal energy (kJ/s) 

V velocity (m/s) 

v specific volume (m
3
/kg) 

vol volume (m
3
) 
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z altitude (m) 

Greek symbols 

Exergy efficiency 

 chemical potential (kJ/kg) 

Subscripts 

a air 

i inlet 

0 reference or initial 

∞ ambient  

 

INTRODUCTION 

New published scientific papers confirm that the production of wastewater sludge is still 

increasing for the next years. The most important producers in the world are the 

European Union, China and U.S with an estimated total production of 11.7 million tons, 

9.18 million tons and 8 million tons of dry solids, respectively (Bennamoun, Léonard and 

Arlabosse 2013; Bennamoun 2012a). Managing these huge quantities of sludge is 

presenting real issues. The physico-chemical studies of the wastewater sludge revealed 

the existence of attractive components, such as manganese, zinc and iron that can be 

exploited in agriculture. In addition, wastewater sludge can be considered as a non-

neglected source of nitrogen, carbon, phosphorus and other components that can be 

valuable (Bennamoun, Léonard and Arlabosse 2013). Hazardous components, such as 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

ie
ge

],
 [

D
r.

 I
r 

A
. L

éo
na

rd
] 

at
 0

4:
28

 0
4 

Ja
nu

ar
y 

20
16

 



 

 4 

mercury and arsenic, are also present and their removal before the use of the sludge in 

agriculture is compulsory. Usually, the water existing in the sludge is considered as a 

non-profitable element that causes the increase of handling, storage and transportation 

costs.  The dried wastewater sludge can also be used in incineration as a source of energy 

with high calorific value.  

 

As it is perceived drying is an inevitable process to add value to the wastewater sludge. 

Nowadays, mainly three technologies are used; radiation, conductive and convective 

drying. Microwave and solar energy are the two available processes to dry the wastewater 

sludge using radiation. However, the two techniques are still under intensive research and 

few works are published in this area (Bennamoun 2012a; Léonard et al. 2002; Salihoglu, 

Pinarli and Salihoglu 2007; Slim, Zoughaib and Clodic 2008; Mathioudakis et al. 2013; 

Domingez et al. 2004, Fang et al. 2013). This method presents a complicated technology 

that slow down its use at the industrial scale. Also drying wastewater sludge using solar 

energy is considered as time consuming process and highly depending on the weather 

conditions. Conductive drying of wastewater sludge was extensively explored by Ferasse, 

Arlabosse and Lecompte (2002), Deng et al. (2009 a,b), Yan et al. (2009), Arlabosse and 

Chitu (2007). They were able to study the fundamental behaviour and the variation of the 

drying kinetics of wastewater sludge during application of conductive drying. The 

temperature of the heated container, the speed of the agitator and the pressure applied 

were the main influent drying parameters. Usually, conductive drying presents several 

disadvantages, such as the non-practical design of the dryer and the long time needed for 

the accomplishment of the process (Bennamoun, Léonard and Arlabosse 2013). The most 
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common method used in industry is convective drying; it presents generally a simple 

design of the system that makes easy the handling of the material and maintenance of the 

drying system. On the other hand, in comparison with conductive drying, the drying time 

of convective drying is always shorter. Léonard et al. (2002), Léonard et al. (2005), 

Léonard et al. (2008), Tao, Peng and Lee (2005, 2006) exhaustively studied the 

fundamental aspects of the wastewater sludge during convective drying with 

determination of the influent parameters. The temperature of the air, its velocity and 

humidity were the most influent parameters that have an effect on the performances of 

the process. It was found that origin of the sludge can also affect the experimental results 

(Léonard et al. 2004). Commonly, application of convective drying of wastewater sludge, 

without prior determination of the optimum drying conditions can lead to have a non-

efficient process, and a non-homogeneous dried material with formation of a skin and 

apparition of cracks (Bennamoun, Léonard and Arlabosse 2013, Bennamoun 2012a, Tao, 

Peng and Lee 2005, Tao, Peng and Lee 2008, Bennamoun, Crine and Léonard 2013, 

Bennamoun, Fraikin and Léonard 2014, Font, Gomez-Rico and Fullana 2011). 

 

The aim of this work is to study the performances of a pilot scale dryer, working in 

forced convection mode with application of several operating conditions and different 

wastewater sludge. The study contains two aspects: the fundamental aspect which is 

related to the drying kinetics of the sludge. However, the second aspect of the work is to 

study the exergy aspect of the two units of the drying system. 

 

MATERIALS AND METHODS 
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Materials  

Two sorts of sludge are tested; activated sludge (AS) collected in a wastewater treatment 

plant (WWTP) situated is Grosses Battes in Liège, Belgium. The second sludge is a 

thermolyzed and digested sludge TDS collected in a WWTP in Bruxelles-Nord, Brussels, 

Belgium. Water to be purified undertakes a primary treatment, an anaerobic phase and an 

alternating aerobic/anoxic phase to produce AS. Finally, phosphate is precipitated by ion 

chloride and biomass in excess is dewatered using a belt filter. AS is collected after 

application of a mechanical dewatering that gives the sample an initial dry matter of 

around 14.5%. TDS undergoes the same treatments except for dehydration which is 

carried out by centrifugation. Subsequently, TDS is subject to a temperature of 160 °C 

and a pressure of 6 bars for 30 minutes. The sludge is then flashed and digested to 

produce biogas. Before the use of the wastewater sludge and application of drying 

process, the material is kept refrigerated at 4 °C until its use. Table 1 shows several 

properties of the two tested materials. 

 

Pilot Scale Dryer  

The pilot scale dryer is constituted of two units. The first unit is represented in Figure 1. 

Before performing drying with this unit also called micro-dryer, the sample was extruded 

in a cylindrical shape that has almost equal diameter and height of about 15 mm. This 

part of the drier is equipped with a surface camera to follow the variation of the volume 

and surface of the samples during application of the process. It is equipped, as well, with 

an infrared pyrometer which gives the surface temperature of the sample. The second part 

of the dryer allows drying a bed of wastewater sludge with a maximum initial weight of 
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about 300 g. Figure 2 represents the second part of the convective dryer. The control 

system of this part allows governing the temperature of the heated air, its velocity and 

humidity. The tested material is introduced in a perforated tray which allows the flow of 

the air within the sludge. The temperature of the product can be taken in three different 

heights of the bed. The system was dotted with sensors in order to register the quantity of 

gaseous emissions during convective drying of wastewater sludge. However we will 

focus in this work on just the variation of the mass and temperature of the samples. 

 

EXERGY ANALYSIS 

As reported by Prommas, Rattanadecho and Jindarat (2012), Prommas, Keangin and 

Rattanadecho (2010), Prommas, Rattanadecho and cholaseuk (2010), the second law of 

thermodynamics introduces the useful concept of exergy in the analysis of thermal 

system. Exergy analysis evaluates the available energy at different points in a system. 

Exergy is a measurement of the quality or grade of energy that can be destroyed in the 

thermal system. The second law states that the part of exergy entering a thermal system is 

destroyed within the system due to the irreversibility. The second law of thermodynamics 

uses an exergy balance for the analysis and the design of thermal systems usually 

represented by the following equation (Chowdhury, Bala and Haque, 2011): 

0 0

4 4 3

0 c c i i ic

r
Exergy (u u ) T (s s )N ( )

J 2gJ

y
(z z ) ( )N E A F (3T T 4T T )

gcJ

 (1) 

The right side of the equation are representing respectively (from the left to the right) the 

internal energy, the entropy, the work, the momentum, the gravity, chemical reaction and 

radiation emission. In our studied cases, the predominant energy is the entropy part and 
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its exergy can be written under the following form (Akyol, Akan and Durak, 2015, 

Aviara et al. 2014): 

a a

r
Exergy m Cp | (T T ) T ln |

m
  (2) 

The exergy efficiency of the drying system can then be calculated based on the 

application of the exergy balance between the inlet air that flows inside the drying 

chamber and the outlet air (Bennamoun 2012b, Akyol, Akan and Durak, 2015, Aviara et 

al. 2014) represented by: 

  inlet loss outlet

inlet inlet

Exergy Exergy Exergy

Exergy Exergy
  (3) 

 

RESULTS AND DISCUSSION  

Forced convective drying is performed under the conditions shown in Table 2, applied for 

three sorts of experiments. The two first experiments are performed with the micro-dryer 

(Figure 1). AS and TDS sludge were tested by using small samples having an initial mass 

of 2.5 g. The experiments will be noted respectively AS1 and TDS2. During the third 

experiment noted AS3; 250g of AS are introduced in a bed and dried using the second 

unit of the dryer (Figure 2). Based on the official methods determination of the initial 

moisture was obtained by inserting a mass of the tested material in an oven under 105°C 

until the sample mass becomes constant. The initial moisture content can be then easily 

determined. The results show that the initial moisture of AS1 and AS3 changed from 2.05 

kg/kg to 2.19 kg/kg calculated in dry basis. The initial moisture content is 4.97 kg/kg dry 

basis for TDS2. 
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Fundamental Results Of Application Of Forced Convective Drying Of Wastewater 

Sludge 

Figure 3 shows the drying kinetic of AS1 and TDS2 during convective drying performed 

under COND1. 

 

Contrary to other studies (Léonard et al. 2002, Léonard et al. 2003), the figure shows the 

existence of mainly two phases for both tested sludge; a short adaptation phase and a 

falling drying rate period. The adaptation phase represents the first reaction of the 

material to the application of the drying conditions. Commonly, it is distinguished by an 

important increase of the drying rate versus a small decrease in the moisture content of 

the material. At the end of this phase the maximum value of the drying rate is reached. 

After that the drying rate starts decreasing until the end of the process. Figure 3 shows, as 

well, that the origin of the sludge can play an important role on its behaviour, as we can 

see that the maximum value of the drying rate of the TDS2 is more important than AS1. 

This difference is probably due to quantity of moisture contained in TDS2, which is more 

important than in AS1. These observations are with agreement with other experimental 

results (Léonard et al. 2004, Bennamoun, Fraikin and Léonard 2014). It is important to 

attract the attention that during convective drying of the two sludges it was possible to 

register all the changes in volume and surface of the samples. The results show that 

shrinkage is happening and varying linearly with the moisture content of the materials 

(Bennamoun et al. 2013).  Shrinkage of TDS2 was more important than AS1 and at the 

end of the process the volume of TDS2 was 37% of its initial volume against 55% for 

AS1 (Bennamoun et al. 2013), as it is indicated in Table 1. In the case, the volume  of the 
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samples changes, such as for shrinkage during drying of wastewater sludge, it is more 

accurate to represent the drying rate or the flux per unit of surface (Bennamoun, Crine 

and Léonard 2013, Bennamoun, Fraikin and Léonard 2014, Bennamoun et al. 2013), as it 

is shown in Figure 3.      

 

Figure 4 shows a different behaviour of the bed sludge drying kinetic, comparing to the 

small sample, with appearance of almost a constant phase before the falling drying rate 

phase. The influence of the drying conditions is shown in the figure, as well. The increase 

of the drying air temperature causes the increase of the flux. However, almost the same 

results are obtained for (140°C, 2 m/s) and (200°C, 1 m/s). On the other hand, the 

maximum value of the drying rate was more important during application of COND2 

than the other operating conditions. This difference slightly decreased with the moisture 

decrese. Similar results and observations were obtained by Bennamoun, Crine and 

Léonard (2013), during forced convective drying of a small sample of wastewater sludge. 

The second unit of the dryer, related to dry a bed of sludge, is not equipped with camera. 

Accordingly, it was not possible to follow the variation of the volume and the surface 

during the process. This reason pushes us to make the graphical presentation of the 

drying rate without including the change of the surface (drying rate give in g/min).  

 

Figure 5 shows the evolution of the temperature of wastewater sludge AS1 and AS3 

during forced convective drying. The figure shows that drying a small sample of 2.5 g 

(AS1) has a different behaviour comparing to bed drying (AS3). Mainly, the energy, used 

to dry samples using AS1 condition, is used at the same time for removing the water of 
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the product and to increase its temperature. Similar results were obtained by Bennamoun, 

Crine and Léonard (2013) and Bennamoun et al. (2013). However, following the 

temperature of the bed of sludge shows different behaviour and confirms the results 

obtained in Figure 4 with the existence of a constant drying rate phase. Accordingly, the 

temperature of the sample passes by three phases. Adaptation phase is the first observed 

phase, during this phase the product adapts itself to the applied drying conditions and the 

energy serves essentially to heat-up the product. T1, T2 and T3 represent respectively the 

product temperatures at h/4, h/2 and 3h/4, where h is the height of the bed. The figure 

shows that during the adaptation phase there is no difference between the different 

heights of the bed. After this phase, the temperature of the product shows a constant 

profile (representing the constant drying rate phase). At this stage, the acquired energy is 

used for just evaporation of the moisture of the tested sample. Figure 5 shows that drying 

is performed with a non-homogenous manner as sludge at h/4 takes shorter time than h/2 

and 3h/4. Similarly, the constant drying rate phase is accordingly shorter for h/4 than 

other heights. In the falling drying rate phase, the energy is serving for the evaporation of 

the product moisture and the increase of its temperature. The temperature of the product 

is then increasing until reaching the temperature of the drying air temperature. 

Furthermore, the figure shows that drying time of AS3 is longer than AS1 and this is 

probably due to the initial mass, as increasing the quantity of the samples leads to the 

increase of the drying time, as confirmed by  the work published by Bennamoun and 

Belhamri (2003), dealing with forced convective drying of food stuffs. 

 

Exergy Analysis Of The Pilot Scale Convection Dryer 
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Figure 6 shows the variation of the exergy efficiency of the drying system during forced 

convective drying of wastewater sludge. It shows that the general tendency of the exergy 

is to increase with drying time with a certain constant part probably corresponding to the 

constant drying rate phase. Exergy efficiency gives an idea about how much energy is 

used to perform the process. The figure confirms that increasing the temperature of the 

drying air, in order to have a shorter drying time, does not include assuredly that the 

process is efficient. It is clearly shown that application of COND2 was more efficient 

than the other operating conditions COND1 and COND3. Operating with COND2 allows 

having a better use of the energy to perform drying process with an efficiency varying 

from 70 to 90%. For COND1, the efficiency was not high, which means that the energy 

loss is important; the exergy efficiency varies from 60 to around 80%. For COND3, 200 

minutes were necessary to attain an exergy efficiency of 85%. Similar tendency of the 

presented results were obtained by Prommas, Rattanadecho and Jindarat (2012), 

Prommas, Keangin and Rattanadecho (2010), Prommas, Rattanadecho and cholaseuk 

(2010) during performing forced convective drying of different materials inserted in thin 

and bed layers. 

 

Figures 7a and 7b show the variation of the exergy efficiency during forced convective 

drying of wastewater sludge AS1 and TDS2. The figures show similar behaviour. The 

performances during application of COND3 are not considerably good as the exergy 

efficiency is decreasing with time. Contrary, the application of COND1 and COND 2 

shows an increase in the exergy efficiency nevertheless the performances of COND2 

were better than the others, as the efficiency varies from 85 to 90% for both sludges AS1 
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and TDS2. The comparison of the obtained optimum operating conditions represented by 

COND2 for AS1 and TDS2 shows that the exergy efficiency for AS1 is slightly better, 

which means that the origin of the sludge can also influence the performances of the 

dryer and its exergy efficiency. 

 

CONCLUSION 

Such pilot scale drying system, dotted with two different drying systems, one for small 

2.5 g samples and the other for bed layers of 250 g, allows having and comparing 

fundamental results related to forced convective drying of different sorts of wastewater 

sludges. During bed layers drying, the material passes through three phases; adaptations 

phase, constant drying rate phase and falling drying rate phase. The constant drying rate 

phase is missed during drying of samples of 2.5 g and mainly two phases can be 

observed; the adaption phase and the falling drying rate phase. The recorded sample 

temperature confirms the previous observations and the different phases for both cases.  

 

The drying air temperature and the origin of the sludge can be presented as important 

parameters that highly influence the behaviour of the drying kinetic of the wastewater 

sludge during forced convective drying. 

 

The exergy study of the drying systems shows different behaviour of the two units of the 

drying system with better results obtained at the application of the following conditions: 

drying air temperature of 140°C with air velocity of 2 m/s and a humidity of 0.05 kg 

water/kg dry air, for both sludge with an exergy efficiency reaching 90%. 
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Table 1. Information related to the tested wastewater sludge 

 AS TDS 

Origin Grosses Battes (Liege, 

Belgium) 

Bruxelles-Nord (Brussels, 

Belgium) 

Population-Equivalent 59000 1400000 

Mechanical dewatering system Belt filter Centrifuge 

Dry matter (%) 17 31 

Volatile compound (%) 64 46 

Initial moisture content (kg/kg 

dry basis) 

2.05-2.19 4.97 

Final volume after drying  

(small samples) 

0.55 (vol)0 0.37 (vol)0 
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Table 2. Operating drying conditions 

Noted conditions Temperature (°C) Velocity (m/s) Humidity (kg water/kg dry air) 

COND 1 200 1 0.005 

COND 2 140 2 0.050 

COND 3 80 1 0.005 
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Figure 1. Simplified schema of the first part of the dryer 
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Figure 2. Simplified schema of the second part of the dryer (Fraikin et al., 2011). 
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Figure 3. Influence of the sludge origin on the behaviour of the drying kinetic 
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Figure 4. Influence of the operating drying conditions on the behaviour of the drying 

kinetic for AS3 
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Figure 5. Registered product temperature during convective drying of AS1 and AS3 
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Figure 6. Exergy efficiency during forced convection bed drying of wastewater sludge 

AS3 
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Figure 7 a. Exergy efficiency of the drying system during forced convection drying of 

AS1 Figure 7 b. Exergy efficiency of the drying system during forced convection drying 

of TDS2 
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