
Some examples and counter-examples about the S-adic

conjecture

F. Durand1, J. Leroy1, and G. Richomme2,3

1 Université de Picardie Jules Verne
Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées

CNRS-UMR 6140
33 rue Saint Leu, 80039 Amiens Cedex 01, France.

fabien.durand@u-picardie.fr

julien.leroy@u-picardie.fr
2 Université Paul-Valéry Montpellier 3

UFR 4, Département MIAp
Route de Mende, 34199 Montpellier cedex 5, France.

gwenael.richomme@univ-montp3.fr
3 LIRMM (CNRS, Univ. Montpellier 2) – UMR 5506

161 rue Ada, 34095 Montpellier cedex 5, France.

1 Introduction

A usual tool in the study of sequences (or infinite words) over a finite alphabet A is the
complexity function p that counts the number of factors of each length n occurring in the
sequence (see Chapter 4 of [6] for a survey on this function). This function is clearly bounded
by dn, n ∈ N, where d is the number of letters in A but not all functions bounded by dn are
complexity functions. As an example, it is well known (see [23]) that either the sequence is
ultimately periodic (and then p(n) is ultimately constant), or its complexity function grows at
least like n+1. Non-periodic sequences with minimal complexity p(n) = n+1 for all n exist:
they are called Sturmian sequences and a large bibliography is devoted to them (see Chapter
2 of [22] and Chapter 6 of [17] for surveys on these sequences).

There is a huge literature about sequences with a low complexity. Indeed, see for in-
stance [1,2,3,4,7,8,14,16,18,19,25]. By "low complexity" we usually mean that "the complexity
is bounded by a linear function". Moreover, most of these sequences can also be obtained by
a finite number of morphisms. Formally, an S-adic sequence is defined as follows. Let w be
a sequence over a finite alphabet A. If S is a set of morphisms, an S-adic representation of
w is given by a sequence (σn : A∗

n+1 → A∗
n)n∈N of morphisms in S and a sequence (an)n∈N

of letters, ai ∈ Ai for all i such that A0 = A and w = limn→+∞ σ0σ1 · · · σn(an+1). The se-
quence (σn)n∈N ∈ SN is the directive word of the representation. In the sequel, we will say
that a sequence w is S-adic if there exists a set S of morphisms such that w admits an S-adic
representation.

An open problem is to determine the link between being an S-adic sequence and having a
sub-linear complexity (see [4,15,21]). This problem is called the S-adic conjecture and states
that one can find a condition C such that a sequence has a sub-linear complexity if and only

if it is an S-adic sequence satisfying Condition C. It is clear that we cannot avoid considering
a particular condition since there exist some purely substitutive sequences with a quadratic
complexity.

In this paper, we present some examples either that illustrate some interesting properties
or that are counter-examples to what could be believed to be "a good Condition C". Observe
that, due to lack of space, all proofs are omitted.



In all what follows, we consider that alphabets are finite subsets of N and if σ : A∗ → B∗

is a morphism with A = {0, 1, . . . , k}, we write σ = [σ(0), . . . , σ(k)]. The following example is
classical when considering S-adic sequences.

Example 1.1. Let us define the four morphisms R0, R1, L0 and L1 over {0, 1} by R0 = [0, 10],
R1 = [01, 1], L0 = [0, 01] and L1 = [10, 1]. It is well known (see for instance [5]) that for any
Sturmian sequence w, there is a sequence (kn)n∈N of integers such that

w = lim
n→+∞

Lk0
0 Rk1

0 Lk2
1 Rk3

1 Lk4
0 Rk5

0 · · ·L
k4n+2

1 R
k4n+3

1 (0). (1)

It is important to notice that, when we talk about an S-adic sequence, the corresponding
directive word (σn)n∈N ∈ SN is always implicit (even when it is not unique). Indeed, for a
given set S of morphisms, we will see that two distinct S-adic sequences can have different
properties depending on their respective directive word.

2 Naive ideas

A natural idea to try to understand the conjecture is to consider examples composed of well-
known morphisms. For instance, one could consider the Fibonacci morphism ϕ = [01, 0] whose
fixed point is a Sturmian sequence and the Thue-Morse morphism µ = [01, 10] whose fixed
points both have a sub-linear complexity. We have:

Proposition 2.1. If S = {ϕ, µ} where ϕ and µ are defined above, any S-adic sequence is

uniformly recurrent and has an at most linear complexity.

Then, one could ask if a sufficient condition to get a sub-linear complexity could simply
be to consider a set S of morphisms such that all morphisms in S admits only fixed points
with sub-linear complexity. The following example negatively answers this question.

Example 2.2. Let α = [001, 1] and E = [1, 0] be morphisms over {0, 1}. Observe that both
αE = [1, 001] and Eα = [110, 0] are primitive, i.e., there is a power of them such that
all letters occur in all images. It is well known that all fixed points of such morphisms are
uniformly recurrent and have a sub-linear complexity. We consider the sequence wα,E =
limn→+∞ αEα2Eα3E · · ·αn−1Eαn(0).

Proposition 2.3 (Cassaigne). The sequence wα,E is S-adic for S = {αE,Eα}, is uniformly

recurrent and has a quadratic complexity.

Remark 2.4. Previous result is even stronger than just considering sets S of morphisms with
fixed points of sub-linear complexity. Indeed, the sequence also has bounded partial quotients,
i.e., all morphisms occur with bounded gaps in the directive word.

An opposite question of the previous one is to ask whether S-adic sequences can have a
sub-linear complexity when S contains a morphism that admits a fixed point that does not
have a sub-linear complexity. The next example positively answers that question.

Example 2.5. Let us consider the morphism α previously defined. From [24] (see also Propo-
sition 3.2) we know that αω(0) has a quadratic complexity. We have:
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Proposition 2.6 ([21]). Let (kn)n∈N be a sequence of non-negative integers. The sequence

w = limn→+∞ αk0µαk1µαk2µ · · ·αknµ(0) is uniformly recurrent. Moreover, w has an at most

linear complexity if and only if the sequence (kn)n∈N is bounded.

As a first conclusion, Proposition 2.6 shows that it is not enough to put some conditions
on the morphisms in S to determine the condition of the conjecture and that we also have
to take care of the directive word. Moreover, Propositions 2.3 and 2.6 show that considering
only "good morphisms" can provide too much complexity and considering "bad morphisms"
does not ensure that the complexity will not be sub-linear.

3 Comparisons with substitutive sequences

When Card(S) = 1, the complexity functions that can occur has been completely determined
by Pansiot in [24]. Indeed, he proved that for purely substitutive sequences w = σω(a),
the complexity function pw can only have five asymptotic behaviors that are Θ(1), Θ(n),
Θ(n log n), Θ(n log log n) and Θ(n2). Moreover, when w is aperiodic, the complexity function
cannot be ultimately constant (due to a result of Morse and Hedlund [23]), i.e., pw 6= Θ(1)
and the class of complexity of the sequence only depends on the growth rate of images.

The aim of this section is to discuss about which results of Pansiot can be transposed
to the case Card(S) > 1. First, let us introduce some notations. Let σ : A∗ → A∗ be a
morphism. We denote by AB the set of bounded letters, i.e., the set of letters a ∈ A such that
limn→∞ |σn(a)| < ∞. For a directive word (σn)n∈N, we denote by AB the set of sequences
(ai)i∈N ∈

∏∞
i=0 Ai such that limn→∞ |σ0σ1 · · · σn(an+1)| < ∞.

3.1 Growth of images

Pansiot’s work implies in particular that any purely substitutive sequence has a reasonably low

complexity (recall that a sequence can have an exponential complexity). Therefore, one could
ask if there exists an equivalent result for S-adic sequences. Proposition 3.1 below negatively
answers this question since it implies that one can get any complexity with an S-adic sequence.

Proposition 3.1 (Cassaigne [9]). Let A be an alphabet. There is a finite set S of morphisms

over A′ = A∪{ℓ}, ℓ /∈ A, such that any sequence over A is S-adic and we have AB = A′N\A∗ℓω.

However, there is something interesting to observe in that result: the fact that AB is
non-empty. This is to be compared with the case of purely substitutive sequences.

Proposition 3.2 (Pansiot [24]). Let w = σω(a) be a purely substitutive sequence over A.

Then its complexity function satisfies pw(n) = Θ(n2) if and only if AB 6= ∅ and there are

some arbitrary large factors of w in A∗
B
.

A natural open question is therefore to ask whether any high complexity can be reached
by S-adic sequences satisfying the ω-growth Property, i.e., by S-adic sequences such that
AB = ∅. The following result is a partial answer to that question since it deals with everywhere

growing S-adic sequences, i.e., S-adic sequences satisfying the ω-growth Property and such
that |σ(a)| ≥ 2 for all morphisms σ in S and all letters a.

Proposition 3.3 ([21]). If w is an everywhere growing S-adic sequence such that Card(S) <
∞, there is a constant C such that pw(n) ≤ Cn log n for all integers n ≥ 1. Moreover, there

exists an everywhere growing S-adic sequence with complexity p(n) = Θ(n log n).
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3.2 Comparable lengths of images

For purely substitutive sequences w = σω(a) over A, Pansiot proved that when pw(n) 6= Θ(n2)
and AB 6= ∅, there exist two morphisms f : B∗ → B∗ and g : B → A such that w = g(fω(b))
for b ∈ B and BB = ∅. This is to be compared with the following result that can be found
in [15] (see also [21]).

Proposition 3.4 ([15,21]). Any uniformly recurrent sequence with an at most linear com-

plexity is S-adic and satisfies the ω-growth Property.

Pansiot also proved the following result and Durand generalized it.

Proposition 3.5 (Pansiot [24]). Let w = σω(a) be an aperiodic purely substitutive sequence

over A. If AB = ∅, we have pw(n) = Θ(n) ⇔ ∃K > 0 : ∀n,maxa,b∈A
|σn(a)|
|σn(b)| ≤ K.

Proposition 3.6 (Durand [11]). If w is an S-adic sequence satisfying the ω-growth Property

with Card(S) < ∞ and if there is constant K such that ∀n,maxa,b∈An+1

|σ0···σn(a)|
|σ0···σn(b)|

≤ K, then

w has an at most linear complexity.

In particular, this implies that all primitive S-adic sequences with Card(S) < ∞ have an
at most linear complexity, where primitive S-adic means that there is a constant r such that
for all s ≥ 0, all letters in As occur in all images σs · · · σs+r(a), a ∈ As+r+1. These conditions
are too restrictive for the conjecture since there exist some Sturmian sequences that do not
satisfy maxa,b∈An+1

|σ0···σn(a)|
|σ0···σn(b)|

≤ K (see Example 1.1 with (kn)n∈N unbounded).
However, we can observe in this example that this condition is still infinitely often satis-

fied. Indeed, let us consider the directive word (τn)n∈N defined by τ0 = Lk0
0 Rk1

0 L1, τ2n+1 =

L
k4n+2−1
1 R

k4n+3

1 L0 for n ≥ 0 and τ2n = Lk4n−1
0 R

k4n+1

0 L1 for n ≥ 1. For all n, there exist some
integers i and j such that either τn = [0i10j+1, 0i10j ] or τn = [1i01j , 1i01j+1]. With these
morphisms, we have

τ0τ1 · · · τn · · · = Lk0
0 Rk1

0 Lk2
1 Rk3

1 · · ·L
k4n+2

1 R
k4n+3

1 · · · (2)

and maxa,b∈An+1

|τ0···τn(a)|
|τ0···τn(b)|

≤ K. The sequence (τn)n∈N is called a contraction of the directive

word (Lk0
0 Rk1

0 · · · ). Observe that the set S = {τn | n ∈ N} of morphisms might be infinite
(when (kn)n∈N is unbounded). Consequently, it may be interesting to work either with infinite
set of morphisms or with contractions. But, Example 2.5 shows that Proposition 3.6 is not true
anymore when Card(S) = ∞. Indeed, if we consider the contraction (σn)n∈N of the directive
word of Proposition 2.6 defined for all n ≥ 0 by

σn = αknµ, (3)

we have |σ0 · · · σn(0)| = |σ0 · · · σn(1)| for all n although the complexity is not sub-linear as
soon as the sequence (kn)n∈N is unbounded.

3.3 Number of different powers and their size

There are still significant differences between the two contractions in Equations (2) and (3):
the number of different powers and their size. First, let us introduce some notations. Let
σ : A∗ → B∗ be a morphism and b a letter in B. We let Powσ(b) denote the set of integers
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i such that there is a letter a ∈ A and two letters c 6= b and d 6= b in B such that σ(a) ∈
{B∗cbidB∗, bidB∗, B∗cbi}.

With the same notations of (2) and (3), for all n we have Card (Powτn(0)) ∈ {1, 2},
Card (Powτn(1)) ∈ {1, 2} although Card

(

Powαknµ(0)
)

= 1 and Card
(

Powαknµ(1)
)

= kn + 1.

For purely substitutive sequences w ∈ AN, it is known (see [12]) that if w is k-power-free
(i.e., there is no factor of w that can be written uk with u 6= ε), then pw(n) ≤ Cn log n for
all n ≥ 1. Moreover, if Card(A) = 2 and if k ≥ 3, then we even have pw(n) ≤ Cn for all
n ≥ 1 (see [13]). Our approach is a little bit different since we do not count the maximal
power k that one can observe in a sequence but the number of distinct powers. Now let us
give some examples with interesting behaviors: all of them are uniformly recurrent and have a
sub-linear complexity but the number of powers of letters in images is sometimes unbounded.
In that case, the thing to observe is that the size of the different powers grows exponentially.

Indeed, in Example 3.9 we have max
{

i
j

∣

∣

∣
i, j ∈ Powβn(1)

}

= max
{

i
j

∣

∣

∣
i, j ∈ Powγn(0)

}

= 3n

although we have max
{

i
j

∣

∣

∣
i, j ∈ Powαknµ(1)

}

= kn + 1.

Example 3.7. For all positive integers k, let us consider the morphism χk over {1, 2, 3} defined
by χk = [2, 31k , 31k−1]. Cassaigne proved the following result that can be found in Chapter 4
of [6].

Proposition 3.8 (Cassaigne). If S = {χk | k ≥ 1}, then for any S-adic sequence w, we

have

1. for all n ≥ 0, pw(n+ 1)− pw(n) ∈ {2, 3}, the value 2 being assumed infinitely often;

2. for all n ≥ 1, pw(n) ≤ 3n and lim infn→+∞ pw(n)− 3n = −∞.

Moreover, we can easily see that Card(Powχk
(i)) ∈ {1, 2} for all i in {1, 2, 3}.

Example 3.9. Let us define the morphisms β and γ over {0, 1} by β = [010, 111] and γ =
[000, 101]. We consider the sequence wβ,γ = limn→+∞ βγβ2γ2β3γ3 · · · βnγn(0).

Proposition 3.10. The sequence wβ,γ is uniformly recurrent and has an at most linear com-

plexity. Moreover, for all n we have Card(Powβn(1)) = Card(Powγn(0)) = n and Card(Powβn(0)) =
Card(Powγn(1)) = 1.

As a kind of generalization of these examples, we can prove the following.

Proposition 3.11. Let w be a sequence over A. If there is a constant C ≥ 1, a sequence

(un)n∈N of factors of w and an increasing sequence (kn)n∈N of positive integers such that

(|un|)n∈N is increasing and for all n, the word uin is a factor of w for all integers i such that
kn
C

≤ i ≤ kn, then w does not have a sub-linear complexity.

4 Conclusion

From all considered examples in the paper, a first remark is that there is no obvious property
that we can find to determine a statement of the conjecture. However, we think that it could
be interesting to deepen the reflexion about powers introduced in Section 3.3. Indeed, another
similar result to all considered examples is the case of uniformly recurrent sequences with
complexity 2n. For those sequences, we can prove that there is a set S of morphisms over
{0, 1, 2} with Card(S) = 5 such that any such sequences is S-adic (see [20]). We can also
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prove that there is a contraction of its directive word such that all contracted morphisms σn
are strongly primitive and that Card(Powσn(i)) ≤ K for a constant K. Furthermore, the set
S of contracted morphisms σn can be partitioned into a finite number of set Si such that for
all i, all morphisms in Si are equals excepts for the values in Powσn(i).

A nice thing in that result is that the employed techniques to obtain the S-adic represen-
tation are similar to those used to prove Proposition 3.4. Consequently, one could hope finding
something similar for the general case, but this question seems to be very difficult. However,
some other methods related to return words might be fruitful in that direction. They also
could yield to other interesting questions.
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