
Online Learning for Strong Branching

Approximation in Branch-and-Bound

Alejandro Marcos Alvarez, Louis Wehenkel, and Quentin Louveaux ⋆

Department of EE&CS, Université de Liège, Liège, Belgium
{amarcos,l.wehenkel,q.louveaux}@ulg.ac.be

Abstract. We present an online learning approach to variable branching
in branch-and-bound for mixed-integer linear problems. Our approach
consists in learning strong branching scores in an online fashion and
in using them to take branching decisions. More specifically, numerical
scores are used to rank the branching candidates. If, for a given variable,
the learned approximation is deemed reliable, then the score for that
variable is computed thanks to the learned function. If the approximation
is not reliable yet, the real strong branching score is used instead. The
scores that are computed through the real strong branching procedure are
fed to the online learning algorithm in order to improve the approximated
function. The experiments show promising results.

Keywords: branch-and-bound, variable branching, online learning

1 Introduction

Branch-and-bound (B&B) [10] is probably the most widely used algorithm to
solve Mixed-Integer Programming (MIP) problems. Despite the conceptual sim-
plicity of B&B, there exist many additional features, such as cutting planes, pre-
solve, heuristics or advanced branching strategies, that can be used to enhance
the performance of the algorithm [1]. Among these, the key element that most
conditions the efficiency of the method is probably the branching strategy [1].

Because of the huge impact that branching strategies have on the perfor-
mance of the solvers, this area naturally attracted a lot of attention from the
community. The very first branching strategy, known as most-infeasible branch-

ing [10], consists in choosing as branching variable the variable whose fractional
part is closest to 0.5. Later on, more evolved techniques were developed. For
instance, pseudocost branching [5] is a procedure that estimates the dual bound
improvement for a candidate variable based on the dual bound improvements
observed during previous branchings. Despite the cleverness of the idea, pseudo-
cost branching is known to make poor choices when not enough historical data

⋆ This work was partially funded by the Dysco IUAP network of the Belgian Sci-
ence Policy Office and the Pascal2 network of excellence of the EC. The scientific
responsibility rests with the authors.

is available. In order to alleviate this problem, Achterberg et al. [2] proposed
to explicitly compute the dual bound improvements for those variables that are
deemed ‘unreliable’. Using this trick to initialize pseudocost branching gave birth
to the famous reliability branching, which is probably one of the most effective
branching strategies ever developed. Finally, let us mention strong branching [4]
that chooses a branching variable by explicitly computing the dual bound im-
provements resulting from the candidate branching. Strong branching is known
to be very time consuming but traditionally yields very small B&B trees.

Following the footsteps of pseudocost branching, some researchers recently
started developing branching procedures relying on information gathered during
an exploratory phase. For instance, backdoor branching [8] and information-

based branching [9] collect information in a first phase consisting in multiple
restarts of the optimization procedure for a given problem. During this first
phase, some information is harvested and is then used in a second phase for the
‘real’ optimization of the problem. In another line of research, Marcos Alvarez
et al. [11] recently proposed learned branching that uses supervised machine
learning techniques to learn a fast proxy to strong branching. In their work, a
function approximating strong branching is first learned in a preliminary phase
and is then used within B&B instead of the ‘real’ strong branching.

In an attempt to push further the ideas proposed by the previous information-
based branching strategies, we present an approach that combines the ideas
behind learned branching [11] and reliability branching [2]. More specifically,
the proposed method uses online learning algorithms to learn a proxy to strong
branching (SB). The idea is similar to the one developed by Marcos Alvarez
et al. [11] in the sense that the goal is to take SB-like decisions without the
computational cost induced by the real SB. However, in this case, the learning
is performed in an online manner, during the course of the optimization, which
alleviates some important shortcomings of the previous approach. Indeed, since
the learning is made online, no preliminary phase is required in order to learn
the proxy and no computing time is thus wasted in such a step. Additionally,
the learned function is really tailored to the studied problem rendering previous
machine learning (ML) concerns obsolete. Moreover, our method uses a reliability
mechanism similar to that of reliability branching [2] to decide how the SB score
is going to be computed. Technically speaking, our method uses SB scores in
order to rank the possible branching variables. The candidate with the largest
score is chosen as branching variable. These scores can be computed in two
ways: either through the normal SB procedure, or thanks to our learned proxy
function. More specifically, if the approximation of the SB score for a candidate
variable is deemed unreliable, the real SB score is used, and, conversely, if the
approximation is trusted for that variable, the learned proxy is used to generate
the score. The proxy function is expected to yield approximate SB scores that
are close enough to the real scores, but in a much shorter amount of time than
the real SB procedure. The SB proxy is learned in an online fashion because
the data used to train the function is generated during the course of B&B. The
performed experiments show promising results.

2 Preliminaries

We focus on Mixed-Integer Linear Programming (MILP) problems of the form

minimize c⊤x (1)

s.t. Ax ≤ b

∀j ∈ I : xj ∈ {0, 1} , ∀j ∈ C : xj ∈ R+,

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m denote the cost coefficients, the coefficient

matrix, and the right-hand side, respectively. I and C are two sets containing
the indices of the integer and continuous variables, respectively. We denote the
solution at a given node of the B&B by x∗, and we will call, with a little abuse,
the variable xi, with i ∈ I, a fractional variable if it has a fractional value in the
current solution x∗. The set of fractional variables of x∗ is denoted F .

MILP problems as defined in Equation (1) are usually solved by the branch-
and-bound (B&B) algorithm [10]. B&B builds an optimization tree in which
each node represents a version of the initial optimization problem where some
integrality constraints of the variables in I are relaxed. Consequently, the prob-
lem contained in each node of the tree is called a linear programming relaxation
(LP-relaxation) of the initial problem, which is solved with a standard LP opti-
mization algorithm. If the solution found at one node violates some of the initial
integrality constraints, i.e., F 6= ∅, the algorithm creates two nodes, correspond-
ing to two new subproblems. In the case of binary problems, one subproblem is
created by adding to the current subproblem one constraint of the form xi ≤ 0
and the other subproblem is created by the addition of xi ≥ 1, such that vari-
able i is forced to an integral value in the descendants of those nodes. This
operation is called branching on variable i. On the other hand, when the solu-
tion found at one node respects all initial integrality constraints, i.e., F = ∅, then
the algorithm has found a solution (not necessarily optimal) of the problem and
the exploration of that branch of the tree is stopped. Once the tree is entirely
explored, the integral solution with the smallest objective value is returned as
the optimal solution of the initial problem.

The branching strategy, i.e., the function that chooses a variable i in the
set F , is probably the component of B&B that most conditions the efficiency
of the algorithm. Indeed, the branching strategy directly influences the number
of nodes that the algorithm explores before terminating. This number of nodes
needs to be as small as possible so as to minimize the time required to solve the
problem, but the time spent choosing the branching variable is also an important
aspect that needs to be taken into account. In general, taking a good branching
decision, i.e., a decision that minimizes the number of nodes, is time consuming.
Consequently, compromises must be made between the time spent choosing a
branching variable and the resulting number of nodes of the optimization tree.

In this work, we use supervised machine learning (ML) techniques. In a few
words, ML can be used (among other applications) to automatically construct

functions from data. Let D = ((φi, yi))
N

i=1
∈ (Φ × Y)N be a dataset of input-

output pairs, a supervised ML algorithm A yields a function

f∗ = A (D) = argmin
f∈F

N∑

i=1

L (yi, f (φi)) ,

where F : Φ 7→ Y represents a set of functions that map input values in Φ ⊂ R
d

to output values in Y ⊂ R. The output f∗ is such that a chosen loss function L
is minimized on the input dataset D. In the machine learning community, the
inputs φ of the functions f are called ‘features’. Those features are usually not
provided as is and they need to be carefully designed for each application.

3 Online learning of strong branching scores

Strong branching (SB) [4] is a very popular branching heuristic that selects a
branching variable by explicitly computing the dual bound improvements for
each candidate. SB is known to perform very well in terms of the number of
nodes of the resulting B&B tree, but requires a very large amount of computa-
tional effort to take a decision. In order to alleviate this problem, the method
that we propose learns, during the course of the optimization, a function that
approximates SB and that can be evaluated more quickly. The approximation of
SB is done with a very simple machine learning technique, namely linear regres-
sion. Moreover, the method that we propose uses a reliability mechanism that
is similar to the one used by reliability branching [2]. Note that applying linear
regression to predict a SB score for a given variable requires that the variable be
described by a set of features, or explanatory variables. These features need to
be carefully designed in order for the method to be effective. We use the same
features as in learned branching [11].

Technically speaking, the branching strategy that we propose (olb) is as
follows. When B&B needs to branch, a set of candidate variables is selected from
the set of fractional variables at the current node and a score is computed for each
variable. The variable with the largest score is then selected for branching. These
scores can be computed in two ways. On the one hand, if the approximation that
we create for the variable is deemed unreliable, the real SB score is computed,
together with a set of features describing that variable at the current node. The
computed score is used to rank the candidate variable, but it is also stored in a
dataset (with the computed features) to improve the approximation of the SB
proxy. On the other hand, if the approximation is deemed reliable, the features
describing the current candidate are computed and fed to the approximated
version of SB, i.e., the function learned with linear regression, in order to quickly
generate an approximate SB score, hopefully close to the real SB score.

The real SB scores that are generated when the approximation cannot be
trusted are used to train a simple linear regression, whose goal is to predict
approximate SB scores. The learning is performed in an online fashion with a
simple gradient descent algorithm (using line search) to allow the approximation
to evolve during the course of the optimization. In order to determine whether

the approximation for a given variable is reliable or not, we simply count the
number of samples (i.e., computed real SB scores and features) that have been
generated previously for each variable. This mechanism is comparable to the
reliability mechanism of reliability branching [2].

The complete description of our branching strategy is given in Algorithm 1.
The proposed method requires four main parameters. First, λ ∈ N

+

0 controls
the number of variables that can be considered as branching candidates at each
iteration. Second, η ∈ N

+

0 indicates how many samples are required in order to
trust the approximation for a specific variable. Lastly, δ ∈ R

+
0 and σ ∈ R

+
0 are

used to limit the convergence of the gradient descent algorithm in order to avoid
undesirable oscillations (cf. Algorithm 1, line 32).

One of the limitations of olb is that there is only a limited number of learning
samples per variable. If the dynamics for a variable change, for instance because
the tree grows bigger, then the learned linear regression becomes useless, as it
does not represent anymore the correct dynamics for that variable. Allowing the
linear regression to learn during the entire course of B&B is one way to avoid this
issue. We call the resulting method online perpetual learning branching (oplb).
The basic mechanisms remain unchanged. The only difference is that, when a
branching is actually performed and a real SB score is not generated, some
information (the node, the objective value, and the features for the branching
variable) is recorded in an ad hoc data structure. When both child nodes created
during that branching are explored, the resulting dual bound improvement can
be computed exactly. This improvement, which actually corresponds to the real
SB score, is then added, together with the stored features, to the learning queue
in order to be processed by the learning algorithm. Using this trick allows the
branching strategy to adapt over time, even if the dynamics of the problem for
a given variable change.

4 Experiments

We assess the efficiency of the proposed approach by comparing different branch-
ing strategies on a selection of problems from MIPLIB [6, 3], listed in Table 1.
We select only binary problems of small to medium size. The experiments con-
sist in optimizing the selected problems while plugging in different branching
strategies. Each problem is optimized 10 times with 10 different random seeds
(from 0 to 9). We impose a time limit of 7200 seconds for each optimization.

The experiments are carried out on a 16-core computer, equipped with two
Intel Xeon E5520 (2.27GHz, 8 cores) and 32GB RAM, running CPLEX 12.6.
We disable presolve in CPLEX but leave the default values for the other pa-
rameters (except for the seed). Additionally, we disable parallelism.We compare
our approach to three other branching strategies, namely full strong branching
(fsb) [4], reliability branching (rb) [2], and learned branching (learned) [11]. The
default parameter values λ = 4 and η = 8 are used for rb [2]. For fsb, the SB
LP-relaxations are solved to optimality, and there is no limit on the number
of candidate fractional variables at each node. For learned, we use the default

Algorithm 1 Online learning branching (olb). Note that all variables are as-
sumed to be global.

Inputs: x∗ and o are the solution and the objective value at the current B&B node,
respectively — w is the weight vector (i.e., the parameters) of linear regression
— i is the learning iteration — q is the learning queue — cL and cP are data
structures that count, respectively, the number of samples already learned and the
number of samples waiting in the queue for each variable

Parameters: λ, η, δ, σ

1: procedure olb(x∗, o, w, i, q, cL, cP)
2: best variable = -1 ; best score = -1
3: for each fractional variable j in x∗ do

4: if number of evaluated candidate variables > λ then

5: break

6: end if

7: if cL(j) + cP (j) < η then ⊲ variable j is unreliable
8: s = strongBranchingScore(j,x∗, o) ⊲ compute real SB score
9: φ = computeFeatures(j,x∗, o)
10: q = q ∪ (φ, s) ⊲ add score and features to q

11: cP (j) ++
12: else ⊲ variable j is reliable
13: if cL(j) < η then ⊲ if samples are not learned yet, learn
14: learn(w, i, q, cL, cP)
15: end if

16: φ = computeFeatures(j,x∗, o) ⊲ compute features φ for variable j

17: s = w⊤φ ⊲ compute approx. SB score for j
18: end if

19: if s > best score then

20: best variable = j ; best score = s

21: end if

22: end for

23: if size(q) > maximum allowed size then ⊲ limit the size of the queue
24: learn(w, i, q, cL, cP)
25: end if

26: return best variable
27: end procedure

28: procedure learn(w, i, q, cL, cP)
29: for (φ, s) ∈ q do

30: l = s−w⊤φ ⊲ current loss
31: ∇l = −lφ ⊲ current gradient of the loss
32: w = w − exp(−δ⌊iσ−1⌋) −l

φ⊤∇l
∇l ⊲ update equation

33: i = i+ 1
34: end for

35: q = ∅ ⊲ clear learning queue
36: ∀j : cL(j) = cL(j) + cP (j); cP (j) = 0 ⊲ increase reliability of all variables
37: end procedure

Table 1. List of problems (44) from MIPLIB3 [6] and MIPLIB2003 [3].

10teams aflow30a aflow40b air03 air04 air05 cap6000 dcmulti

egout fiber fixnet6 harp2 khb05250 l152lav lseu mas74

mas76 misc03 misc06 misc07 mitre mod008 mod010 mod011

modglob nw04 opt1217 p0033 p0201 p0282 p0548 p2756

pk1 pp08a pp08aCUTS qiu rentacar rgn set1ch stein27

stein45 tr12-30 vpm1 vpm2

parameters [11], i.e., N = 100, k = |φ|, and nmin = 20. The parameters for our
methods, online learning branching (olb) and online perpetual learning branch-
ing (oplb), are λ = 4, η = 8, δ = 0.01, and σ = 500.

We use performance profiles [7] to compare the different approaches. The
performance profiles are drawn considering that the pairs composed of a prob-
lem and a seed are a single problem. Consequently, the performance profiles
are constructed with 440 problems (every combination of problem and seed).
Figure 1(a) illustrates the performance of the methods in terms of time, while
Figure 1(b) focuses on the number of nodes required to solve the problems. The
results show that fsb behaves as expected: very good in terms of nodes, but
rather slow in general. The proposed method (olb, oplb) compares favorably to
the other methods. It takes rather good branching decisions and is shown to
be very fast in the beginning of the optimization (better than the others when
the time ratio is less than ≈3.5). Learned branching is dominated by olb and
oplb in the beginning but catches up quite quickly1 (the ratio of solved instances
exceeds the other methods when a large enough amount of time is provided).
Learned is also very effective in terms of nodes. Overall, rb is dominated by the
other approaches both in terms of time and in terms of nodes. Finally, we note
that learning perpetually (oplb) does not improve significantly the performance
of the normal online learning approach (olb).

5 Conclusion

We propose a branching strategy based on online machine learning algorithms
that is similar in its mechanisms to reliability branching. The method is meant
to work with a supposedly good branching strategy. During the branching pro-
cedure, if a candidate variable is deemed unreliable, the good branching strategy
is used, which increases the confidence level of the candidate variable. At some
point in time, the variable can be trusted and, from that moment on, an ap-
proximation of the score generated by the good strategy is used instead of the
real score. The real score is approximated using online supervised learning. We
focus on strong branching, but the proposed approach can be applied to any
branching strategy. Our results show that our approach compares favorably to
other branching strategies both in terms of time and in terms of nodes.

1 It is to be noted that the time taken to train the ‘learned’ branching strategy is not
taken into account in the performance profiles.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fsb
rb
learned
olb
oplb

(a) Performance profile in terms of time

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fsb
rb
learned
olb
oplb

(b) Performance profile in terms of nodes

Fig. 1. Performance profiles for the competing methods. The performance profiles re-
port the probability that a solver solves a problem vs. a performance ratio. A point
(x, y) on a performance profile curve should be understood as ‘there is a probability y

that the method solves a problem if it is given at most x times as much budget as the
best solver needs to solve the problem’. The leftmost part of the performance profiles
indicate how good the solvers are, i.e., how fast they solve the problems in terms of the
chosen metric (time or number of nodes, in this case). On the other hand, the rightmost
part of the graphs are usually an image of the robustness of a method, i.e., this part
indicates the proportion of problems that will eventually be solved by a method.

Bibliography

[1] T. Achterberg and R. Wunderling. Mixed integer programming: analyzing
12 years of progress. In Facets of Combinatorial Optimization, pages 449–
481. Springer, 2013.

[2] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Opera-

tions Research Letters, 33(1):42–54, 2005.
[3] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research

Letters, 34(4):361–372, 2006.
[4] D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. Finding cuts in the

tsp (a preliminary report). Technical Report 05, DIMACS, 1995.
[5] M. Benichou, J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and

O. Vincent. Experiments in mixed-integer linear programming. Mathe-

matical Programming, 1(1):76–94, 1971.
[6] R.E. Bixby, S. Ceria, C. McZeal, and M.W.P. Savelsbergh. An updated

mixed integer programming library: MIPLIB 3.0, 1996.
[7] E.D. Dolan and J.J. Moré. Benchmarking optimization software with per-

formance profiles. Mathematical programming, 91(2):201–213, 2002.
[8] M. Fischetti and M. Monaci. Backdoor branching. INFORMS Journal on

Computing, 25(4):693–700, 2012.
[9] F.K. Karzan, G.L. Nemhauser, and M.W.P. Savelsbergh. Information-based

branching schemes for binary linear mixed integer problems. Mathematical

Programming Computation, 1(4):249–293, 2009.
[10] A.H. Land and A.G. Doig. An automatic method of solving discrete pro-

gramming problems. Econometrica: Journal of the Econometric Society,
pages 497–520, 1960.

[11] A. Marcos Alvarez, Q. Louveaux, and L. Wehenkel. A supervised machine
learning approach to variable branching in branch-and-bound. 2014.

	Online Learning for Strong Branching Approximation in Branch-and-Bound

