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Abstract: Finite element simulation of a sandbox model of thrusting is performed using large
strain analysis and two different non-associated elastoplastic constitutive laws (namely Driicker—
Prager and Van Eekelen criteria). The analysis of strain localization using the Rice bifurcation
criterion coupled with a kinematic indicator shows that, in the early stages of imbricated
thrusting, the development of major shear bands can be influenced by some competition with
second order bands. The influence of the vertical/horizontal stress ratio is checked, as well as the
influence of Lode angle in the constitutive law. Significant differences are found between a
classical plasticity criterion (Driicker—Prager) and a more realistic one (Van Eekelen) regarding
the resistance of the model and the stress paths. These differences may result in erroneous fault

type prediction.

Sandbox experiments have been used extensively
for many years to assist structural interpretation and
validation of tectonic models. Main interests of this
method come from the very large range of initial
geometries which can be investigated and from
the large amount of strain which can be applied.
Physical parameters obtained are mainly displace-
ment fields at different stages, especially since
non destructive methods are used, e.g. X-ray
tomography (Colletta et al. 1991).

The finite element method is also an attractive
method for geological modelling as it enables
computation in several parameters, examples of
which are displacement, strain and stress fields,
and also more recently strain localization analysis.
Moreover it allows the explicit choice of mech-
anical characteristics, constitutive laws and bound-
ary conditions. Abilities of the finite element
method for the investigation of strain localisation
along shear bands and particularly thrusting mech-
anism have already been shown, see, for example,
Miikel & Walters (1993).

The present paper aims to show the relative
influence of the constitutive law in the results
and also to analyse information obtained from
localization analysis.

In the first part, some theoretical considerations
‘are presented: basics of the large strain formulation
used and principle of the finite element method are
given; the choice of a representative constitutive
law for sand between Mohr—Coulomb, Driicker—
Prager and Van Eekelen models is discussed; a
short literature overview of the strain localization
analysis performed in finite element method is
presented; eventually the localisation analysis used
in the present paper is detailed.

From Buchanan, P, G. & Nieuwland, D. A. (eds), 1996, Modern Developments in Structural

The second part is mainly concerned with the
simulation of a sandbox model of thrusting carried
out with the LAGAMINE finite element code.
Early stages of thrust development are analysed in
a first simulation in the light of the Rice bifurcation
criterion and of a kinematic indicator of localiz-
ation. A non-associated Driicker—Prager yield
criterion is used. A remeshing procedure is also
performed in this first simulation to increase the
applied loading value. The influence of the vertical/
horizontal stress ratio is checked in a second
simulation. The last simulation investigates the
influence of the third stress invariant in the
plasticity surface definition using a more sophisti-
cated yield criterion, namely the Van Eekelen.

In the last part, finite element simulation results
obtained are compared with some experiments
performed on sandbox models.

Theory

Simulation of geological deformation often
requires taking into account the occurrence of large
strains, i.e. strains larger than 1-5%. Highlights
of the large strain finite element formulation are
presented. These concepts have been applied for
one decade to metal forming processes. They have
been presented in a set of papers, see for instance
Cescotto (1989) and Cescotto et al. (1989). The
choice of a constitutive law for sand and the strain
localization analysis are also discussed.

Large strains

Modelling of a solid undergoing large strains can
be described in different configurations: the initial
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unstrained configuration, the current deformed
configuration, or any other configuration between
the initial and the present state. In the present
work, equilibrium is expressed using the updated
Lagrangian formulation in the current con-
figuration. The Cauchy stress tensor is adopted.
The constitutive relation can be written in a
general form

v
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gradient L :
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where x are the current co-ordinates and y are the
current velocities.
The Jaumann objective stress rate is adopted
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It must be noticed that equation (2) cannot gener-
ally be integrated, therefore strains associated with
the Cauchy stress tensor do not exist. When the
strains produced by the whole loading processes
analysed later in this paper, the natural strain tensor
will be used

G=hnU (5)

where the stretching tensor U is obtained by the
polar decomposition of the transformation Jacobian
F from the initial to the current configuration, R
being the rigid body rotation tensor

E=RU (6)

This strain measure G coincides with the integral
of (2) in principal axis if they remain unchanged.

Finite element principle

The finite element method is based on the virtual
work principle (Zienckiewicz & Taylor 1988).
It assumes that the local volume and surface
equilibrium conditions are verified if the virtual
work equation

J Q:&dv:J ngTMdv+J tT8uda (1)
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J¢: virtual strain
p: volumic mass
g, gravity acceleration
t: surface forces

where

is satisfied for any virtual displacement Su. The
large transformation effect is here taken into
account because the volume integral is computed
in the current configuration. The virtual strains are

1 {08  oduT
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The virtual work equation is computed in the
current configuration at the end of each load step.

In the finite element method, equation (7) is only
verified for a limited number of virtual displace-
ment fields associated with the mesh degrees of
freedom. Hereafter isoparametric finite elements
with eight nodes (parabolic displacement field) and
four Gauss integration points (under-integration of
the virtual work) are used.

The virtual work equation is non-linear since it
is using an integration on a configuration and on
stresses which are defined at the end of the step and
unknown at the beginning of the step. This non
linearity is solved using the Newton Raphson
iterative method.

)

Constitutive laws for geomaterials

Regarding the choice of a representative con-
stitutive law for sand, the question is open as the
actual behaviour of the sand under small confining
pressure is not very well known. However if we
consider mainly internal frictional characteristics
of sand, several constitutive models can be put
forward. In order to avoid confusion, the choice of
stress sign follows geomechanics convention, i.e.
compressive ones are counted as positive.

Mohr—Coulomb criterion

The well known Mohr—Coulomb failure criterion
expresses a linear relationship between the shear
stress T and the normal stress ¢, acting on a failure
plane

1=C+0,tan ©

Parameters ¢ (friction angle) and C (cohesion) are
commonly identified from conventional triaxial
compression tests (i.e. 0; > 0, = 03) on cylindrical
specimens by construction of the Mohr envelope
at failure. Therefore the friction angle ¢ found
corresponds to a compressive stress path, it can be
called “friction angle in compression’ and noted .
Mohr—Coulomb theory assumes that this friction
angle does not depend on the stress path, for
instance friction angles in compression ¢ and in
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tension (G;<0,=0,) Oy are equal (Desai &
Siriwaradane 1984).

However this model is not convenient to use in
numerical analysis mainly because its represen-
tation in the principal stress space (G, G,, G,) is an
irregular hexagonal pyramid leading to singularities
(the normal of the surface at intersection lines is
not unique). This feature can be seen on Fig. 1
which represents the trace of this plasticity surface
in the deviatoric plane.

Driicker—Prager criterion

An alternative solution to overcome this difficulty
has been proposed by Driicker & Prager (1952)
who defined the yield function F using a linear
relationship between the first stress tensor invariant
and the second deviatoric stress tensor invariant

F=NIly-ml —k=0 (10)
with
1m

I5=0y

1
=~ Gij Gij where “ represents the deviatoric
2 part of the tensor (12)

In the principal stress space, the plasticity
surface becomes a cone which is much easier to
use in numerical algorithms, The trace of this
plasticity surface on the IT plane (i.e. the deviatoric
plane) is then a circle (see Fig. 1).

pure shear line
: S Dricker-Prager
(c =35°

de -68°
Mohr Coulomb

Van Eekelen
e =35°
(o = 38°
B=Lode angle

Fig. 1. Limit surface for Mohr—Coulomb, Driicker—
Prager and Van Eekelen models in the deviatoric plane.
Note that Driicker—Prager criterion can either be chosen
circumscribed or inscribed to the Mohr—Coulomb.
Lode angle B = 30° with respect to the pure shear line
corresponds to triaxial compression and  =-30° to
triaxial extension. Van Eekelen model is a smoothing
of Mohr—Coulomb criterion which can respect both
compression and extension friction angles, but which
can also take different values for these two angles.
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However this quite simple criterion has one main
disadvantage very often neglected and which must
be outlined: it does not incorporate a dependence
on the third stress invariant and thus on the Lode
angle B

U3V my)
B= -3 sin - " with Il = 3 6,68
(13)

which is the angular position of the projection p of
a stress state on the IT plane with respect to the pure
shear line (see Fig. 1). From Fig, 1, P factor is in the
range —30° to 30° triaxial compressive stress paths
correspond to J =30°, whereas triaxial extensive
ones correspond to f=-30°. Consequently
mobilized friction angles are either over or under-
estimated depending on the stress path, leading to
discrepancy in the results obtained (Schweiger
1994): a compression cone (i.e. a circumscribed
cone) induces high friction angle for extension
paths, whereas the internal cone leads to low
equivalent friction angles.

This can be illustrated considering the case
where the compression cone is chosen:

— identification of parameters m and k on the Mohr
envelope as a function of internal friction angle in
compression ¢ and cohesion C then gives (Desai
& Siriwaradane 1984)

2 sin ¢ 6C cos ¢

m= , k= (14)
V3(3 - sin 6) V3(3 - sin 6
— with the definition of reduced radius r
I
r=-2, (15)
10'

expressions of the reduced radius in compression
(rc) and in extension (rg) for triaxial tests can be
deduced from Mohr circle and intrinsic curve,
leading to

1 2 sin ¢ 1 7 2singg
rn=— §{—— y Te=—+—
“\3 (3—sin¢c) B \/3(3+sin¢E)
(16)

which, putting rg =r as the radius is constant,
gives a simple relation between ¢ and ¢g. For
instance if a value ¢ = 35° is chosen, then ¢ takes
the value ¢ = 68° which is much higher than ¢
and far from being realistic.

This can also be seen graphically on Fig. 1: the
Driicker—Prager cone is a only a poor representa-
tion of the Mohr—Coulomb hexagon as one can
either chose a circumscribed cone (Fig. 1), an
inscribed cone, or any intermediate choice between
the last two. None of these choices is actually
satisfactory for any stress path. '
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Classically, the flow rule is associated if G = F,
where G represents the flow potential, which
implies that the plastic flow is normal to the yield
surface and leads to an excess of dilatancy. A
non-associated flow rule G can be defined in an
identical fashion as the yield function F (see
relations (10) and (14)) simply substituting ¢ by y
in equation (14), y being the dilatancy angle.

Van Eekelen criterion

More sophisticated models can be built from the
Driicker—Prager cone by introduction of a depen-
dence on the Lode angle B in order to match more
closely Mohr—Coulomb criterion. Several models
of this type have been described, including the
Matsuoka—Nakai and Van Eekelen. The Van
Eekelen plasticity criterion (Van Eekelen 1980)

F=al (1-bsin3py—NI;=0  (17)

allows an independent choice for ¢ and ¢g via
coefficients a and b

,-_C l/n_1
®

b= , a= 'c
1 +b)y

r 1/n
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e

where r and r are given by equation (16). The
exponent n actually controls the convexity of
the yield surface, condition generally required in
classical plasticity framework. A parametric study
showed that the convexity is always verified with
n=-0.229 provided that ¢, = ¢, which is a
realistic assumption for sand.

The trace of this plasticity surface in the IT plane
is shown on Fig. 1. Such a model is actually a
smoothing of the Mohr—Coulomb hexagon, but it
fits much better the Mohr—Coulomb criterion and
experimental data than the Driicker—Prager failure
criterion (Matsuoka & Nakai 1982). Moreover this
criterion allows for an independent choice of
friction angles in compression and extension (see
Fig. 1 with ¢, = 35°, ¢ = 38°).

As for Driicker—Prager model, the flow rule G
can either be defined associated (G = F) or non-
associated (G # F).

A noteworthy feature of this more sophisticated
criterion is that no additional material parameters
are required compared to a Driicker—Prager
criterion. Simply the friction angle in extension ¢g
is explicit here whereas it was implicit in the
Driicker—Prager criterion.

(18)

Contact friction law

For rigid wall/sand contacts, the Coulomb friction
law (Charlier & Cescotto 1988) is generally
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considered
F=\2+2-C-pP=0 (19)

where W is the friction coefficient, C the cohesion,
P the contact pressure, Tg and T the shear stresses.
The cormresponding boundary condition is imple-
mented using interface finite elements (Charlier
& Cescotto 1988; Charlier & Habraken 1990;
Cescotto & Charlier 1993).

Bifurcation and shear band localization
of deformation

Bifurcation phenomenon can be viewed as alterna-
tive stress and strain paths under a given loading
condition, which traduces mathematically by the
loss of uniqueness of the solution. Strain localiz-
ation along shear bands, which represents one
potential bifurcation mode, is known to occur
frequently in frictional materials.

The study of problems involving shear band
localization by the finite element method faces
several difficulties.

(1) The constitutive relation considered in the
finite element model must allow for bifurcation.
For elastoplastic laws it has been demonstrated that
localization requires at least either a hardening/
softening law or a non-associated one (Rice 1976).
Bifurcation can occur at the peak load for strain
softening models, but also in the hardening range
if a non-associated law is considered (Rice 1976).
This last feature has actually been observed in
experiments on dense sands (Desrues 1984) in
which localization occurs before the stress peak.

(2) Unique solution at the bifurcation point must
be determined. If strain softening is introduced in
a classical continuum model, the condition for
localization coincides with the loss of ellipticity of
equations. As a result, the finite element solution
shows pathological mesh dependence because the
band thickness is undetermined (De Borst 1993). In
classical finite element computations, the band
thickness has usually the size of an element (Ortiz
et al. 1987, De Borst & Sluys 1991). This diffi-
culty is still a very active field of research, and up
to now 3 main approaches have been developed
to overcome this problem by introduction of an
internal length scale in the problem, which causes
the problem to remain well-posed at localization:
higher order strain gradients (De Borst 1992)
introduced in the constitutive equation; non local
constitutive relations in which some variables are
taking into account the spatial variation of strain
and micro-polar (or Cosserat) continuum in which
rotational degrees of freedom are added in the
element formulation (De Borst 1993). However a
meaningful physical interpretation for the internal
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scale has still not been found. Therefore identi-
fication of this parameter is an open question and
obviously the value chosen in numerical analyses
is arbitrary.

(3) The post-bifurcation behaviour must be
correctly computed, and here several approaches
have been described in literature. They aim to
provide an improved strain computation in shear
bands (which are characterized by high strain
gradients): mesh refinement around the band,
higher order shape functions of finite elements
(Ortiz et al. 1987) are some of the possible
strategies.

The simulations presented in this paper are
performed in the framework of classical continuum
theory. Non-associated constitutive relations are
considered to allow for bifurcation. A local
analysis of strain localization is performed at
the element level based on a criterion for shear
band bifurcation (Rice 1976; Wang 1993). A
kinematic indicator is also found useful to follow
accurately the evolution of strain localization,
especially initiation. An adaptive remeshing
technique has also been used here to avoid large
distortion of elements and thus enables the
modelling to be carried out until larger loading
values. All these features are described more
explicitly in the next three sections.

Local shear band bifurcation criterion

The Rice criterion (Rice 1976) analyses the stress
state and investigates the possibility of a bifurcation
by formation of a shear band in the stress and strain
paths. The theoretical scheme of a shear band is
presented in Fig. 2. Its development has become
classical. It is based on a kinematic condition, a
static condition and on the constitutive equation.
We note © variables outside the band and ! variables
inside the band.

The static condition expresses the surface
equilibrium at the interface between the inner and
outer band

n6};=6}) =0

(20)

IR

X,

Fig. 2. Theoretical scheme of a shear band.
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The kinematic condition expresses the strain
jump across the band interface by a dilatant strain
jump and a shear strain jump, but without any
longitudinal strain jump

L'=L"+3®7 @n.

where L is the velocity gradient, n is the normal to
the band, and g is a vector describing the band
mode (from shearing to dilatation, from mode IT
to mode I).

The third equation introduced in the Rice
criterion is the constitutive law. For an elastoplastic
or an elastic law, one has

¢=DL @2)

where the constitutive tangent tensor D includes
the objective stress rate correction, usually the
Jaumann one.

For an elastoplastic law this equation becomes

1 1 1
6=C" 5(L+LT) +Q§(L—LT)T+§(L—L7)Q
23

It is important to point out that equation {23]
assumes loading or unloading stress paths. The
obtained bifurcation criterion is therefore a lower
bound (if the loading tensor is used) and not an
exact one,

Introducing (23) into (20) and (21), one obtains
a third order equation system which unknowns are
the components of the g vector. The trivial splution
g = 0 is always possible but it means that not
shear band can appear. The condition g #0 can
be transformed in a fourth order equation in
tan (0) = ¢, with O being the angle between the band
normal and the x axis (Wang 1993)

at +bP +ct +dt+e=0 24

At the beginning of loading, this equation does not
have any real solution. After some load steps, the
first real solution is a double one. More generally
one or two solutions are possible.

The Rice bifurcation criterion indicates the
possibility of a shear band appearance from a
local stress point of view. It actually does not
show developing shear bands effectively. From a
practical point of view, this criterion is computed
at every iteration for all integration points.

Kinematic indicator of localization

Analysis of the strain field can actually show strain
localization. The simplest analysis of a shear band
apparition is based on the visualization of the
cumulated equivalent strain map

&, =VG6,6; (25)
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where G is given by relation (5). However, maps of
this type show well achieved shear bands when
localization has strongly developed, but does not
give the possibility of showing early stages of
localization.

In order to overcome this deficiency, a kine-
matic scalar indicator o can be defined, based on
some propositions by Vilotte et al. (1990)

At At
u\_q_

€,y

(26)

where At is the numerical time step increment and
is the incremental deviatoric strain rate.
'Iths indicator represents the incremental
equivalent strain related to cumulated equivalent
strain. It enables localization to show much earlier
than relation (26).

Adaptive remeshing

Under the intense shearing occurring in shear
bands, elements are distorted and quickly fail.
Remeshing techniques are powerful methods
to overcome this difficulty and to enable the
simulation to carry on.

Adaptive remeshing procedures have been
initially developed in fluid dynamics and in metal
forming modelling (see for example Cheng (1988)
and Habraken & Cescotto (1990)). The general
procedure is in three steps:

(1) evaluation of the remeshing need, based on
some indicator. One can use an error estimate
algorithm (Zienkiewicz & Zhu 1987) or a
localization indicator. In the present case,
remeshing is based more arbitrarily on a
convergence criterion.

(2) creation of a new mesh, based on a meshing
algorithm with variable element density in
order to produce a mesh adapted to the
deformations to be modelled.

(3) transfer of state variables (mainly stresses)
and kinematics variables (nodal velocities)
from the old mesh to the new one using the

J. D. BARNICHON & R. CHARLIER

following interpolation algorithm

a)y  ifrys<r,
a(@)
ah= | ety o @D
1
y —

where a is the quantity to transfer, ‘ relates to
the old mesh and 7/ to the new one, x are
co-ordinates, r; Tir is the distance between
point ! and 7, p is the order of inter-
polation and the summation sign indicates a
summation over all integration points of the
old mesh.

It must be pointed out that after these operations,
the simulation re-start is always slightly difficult
because the new configuration is never perfectly
equilibrated. This difficulty appears as a small
discontinuity on the load/displacement curve at
remeshing points (indicated with arrows on Fig. 5).

Application: simulation of sandbox
thrusting model

Geometry, boundary conditions and
discretization

Plane strain two dimensional simulation of thrust-
ing in a sandbox model has been performed using
the LAGAMINE finite element code. The basic
model consists of a 20 cm length/1.4 cm thick
horizontal sand layer laying on a horizontal rigid
basement (see Fig. 3). The right hand side of the
model is horizontally fixed. A horizontal displace-
ment u is applied to the rigid wall at the left hand
side of the model using incremental dlsplacements
Au.

Contact between rigid wall/basement and sand
is managed via 58 frictional interface elements. The
basal contact actually represents a basal detachment
plane whose position is given a priori, i.e. which
represents a major rheological discontinuity.

Free surface
/ Length=20 cm

Y. w— rigid wall
L,

sand

Initial lithostatic state of stress :

Oy
-0,

Fig. 3. Geometry and boundary conditions for the basic model.
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Discretization of the sand massif is achieved using
400 elements (0.4 x 0.175 cm).

The convergence criterion for the Newton—
Raphson iterative method is based on a displace-
ment and a force criterion. An adaptive step size
method based on convergence criteria is used in
which size of loading increments is allowed to vary
between 1075 and 10~! cm.

A balanced lithostatic stress field is introduced
in the initial conditions of the model. Considering
the orientation of the y axis shown in Fig. 3,
vertical stresses @, are given by

G, =P8y (28)

and horizontal stresses 0, are defined by the ratio
K, with

(29

Physical parameters

Three sets of numerical simulations have been
carried out. Rigid wall/sand contacts are simulated
using non-associated Coulomb law; the parameters
are given in Table 1. A non-associated elastoplastic
law without dilatancy (y=0°) and without
hardening/softening is chosen for the sand in all
three sets of experiments. A Driicker—Prager (DP)
criterion is considered for experiments 1 and 2
whereas a Van Eekelen (VE) criterion is chosen for
experiment 3. The major difference between those
two models comes mainly from the friction angle
in extension ¢, (see Table 1).

Results

All the maps presented hereafter represent only the
left part of the model as in the right part almost
nothing occurs (far field limit).

Simulation 1 (sml): initial model

In this simulation, a remeshing procedure has been
used twice in order to carry on simulation when
convergence could no longer be achieved, respec-
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tively at #u=0.5cm and 4 =0.8 cm, u being the
displacement applied to the rigid wall. Therefore
this simulation consists of three consecutive runs
from which several computed results can be
analysed.

Equivalent strain. Figure 4 represents isovalue
maps of the evolution of equivalent strain cumu-
lated (see equation [25]) over each remeshing phase
(i.e. between 0 and 0.5 cm, 0.5 and 0.8 cm, 0.8 and
0.9 cm respectively), i.e. equivalent strain is reset
to zero at the begin of each remeshing. As this
deformation measurement is cumulated over one
run, it gives rather rough indication of what
actually happens within the model. However it
clearly shows the formation of three main shear
bands.

(@) From u=0 to 0.5 cm (Fig. 4a), a major
synthetic reverse shear band (called band n. 1)
develops in front of the rigid wall. This band is
linked to the free surface but does not reach the
bottom part of the model.

(b) From u =0.5 to 0.8 cm (Fig. 4b), a second
major synthetic reverse shear band (called band
n. 2) develops in front of the band n. 1, with the
same orientation than the latter. However an
antithetic reverse shear band (band n. 3) has also
developed to a lesser extent; these two reverse
faults define a pop-up structure. Clearly band n. 1
has been inactive during this stage.

(c) From # = 0.8 to 0.9 cm (Fig. 4c), most of the
deformation is achieved along the band n. 2 in
which cumulated equivalent strain reaches locally
30%. Little deformation is achieved along band
n. 3, and a new antithetic reverse band (band n. 4)
is developing on the left of band n. 3. The close left
boundary does not allow to argue for relevance
of this latter band.

Strain localization analysis. Localization of
deformation can be analysed using information
obtained from the Rice criterion and from the
kinematic indicator o. It is also interesting to
incorporate in this analysis the force/displacement
curve given in Fig. 5.

The localization of deformation along band n. 1
is quite clear, four phases can be distinguished.

(1) From u =0 to 0.247 cm

Table 1. Physical parameters for the three sets of experiments

Contact Sand
Simulation C I Law E \ C ¢c (o L o]
(Pa) type (Pa) (Pa) ©) © © (kg/m?)
1 0 1 DP 5104 0.2 20 35 68 0 2250 0.25
2 0 1 DP 510% 0.2 20 35 68 0 2250 1.0
3 0 1 VE 5104 0.2 20 35 35 0 2250 0.25
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Contour intervals = 40 (*10?)
min=0., max=0.407

a)
Bandn°3  Band n°2
Contour intervals = 40 (*107)
| min=0., max=0.350
b)
Contour intervals = 40 (*10)
min=0., max=0.301
c)

Fig. 4. Isovalues maps of cumulated equivalent strain for each respective mesh of simulation 1. (a) u=0 10 0.5 cm:
mainly the synthetic reverse shear band n°l develops.(b) u = 0.5 to 0.8 cm: the synthetic reverse shear band n°2 and
in a lesser extent the antithetic shear band n°3 have developed during this phase. (¢) = 0.8 to 0.9 cm: mainly the
band n°2 is active, band n°3 is only a little active. A new antithetic reverse shear band (n°4) starts to develop.

The loading curve slope is positive (Fig. 5), the
Rice criterion and the kinematic indicator give
rather diffuse information. However as the imposed
displacement gets closer to u = 0.247 cm, the slope
of the loading curve decreases progressively and
the kinematic indicator shows that localisation
starts along band n. 1.

(2) From u =0.247 t0 0.257 cm

The loading curve slope is negative (Fig. 5)
corresponding to an unloading phase. It is worth
mentioning that such phenomenon can be referred
to as structural (or geometrical) softening because
no hardening/softening is included in the constitu-
tive equation. Therefore in the model, a global
‘softening’ response does not even require intro-
duction of softening in the constitutive law.

The Rice criterion (Fig. 6a) is represented at each
potentially bifurcated point using arrows which
indicate the potential two directions for bifurcation
(computed from 0 given by equation [24]). During
this phase, the two localization indicators give
almost the same result, i.e. all the deformation
which occurs in the model is localized along band
n. 1 (see Figs 6a and b). This phase corresponds

to an active phase of localization. One must point
out that during this phase of active localization,
numerical convergence could only be achieved
with very small loading increments (<1075 cm).

(3) From u =0.257 to 0.29 cm

The loading curve slope becomes positive again
(Fig. 5). The Rice indicator gives again a rather
diffuse information, whereas the kinematic
indicator shows that two ‘second order’ shear
bands appear in the basal area and compete with the
main band n. 1 (‘second order’ refers to the point
that these bands develops from a major band where
almost the whole strain is achieved). One of these
second order shear is shown at u=0.27 cm on
Fig. 6¢. These second order bands indicate a
clockwise rotation of the base of the main shear
band n. 1.

(4) For u>0.29 cm

As the applied displacement u increases further,
band n. 2 and 3 develop. Formation of these 2 faults
does not appear in a very active localization phase
as band n. 1: for example see Fig. 5 where the
negative slope phase at u=0.325cm is quite
reduced compared with the one at u = 0.25 cm.
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Horizontal Reaction (kN/cm)
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Begining of the 2nd remeshing

Begining ot the 13t remeshing

——sm 1 - Mesh n°1
=== sm 1 - Mesh n°2 (1st remeshing)
------ sm 1 - Mesh n°3 (2nd remeshing)

0.151 — -8sm2 - Meshn®1
—sm 3 - Mesh n°1
0.10
0.05 1
0.00 N N ) . N . N .
0.00 0.10 0.20 030 040 050 0.60 0.70 0.80 0.80 1.00

Horizontal Displacement (cm)

Fig. 5. Plot of the horizontal displacement versus horizontal reaction for the three simulations. For sml and sm2,
bifurcation appears as an unloading phase at # = 0.247 and 0.219 cm respectively. For sm3, bifurcation occurs earlier,
i.e. at u = 0.129 cm. Note also that prior localization, the reaction is lower for sm3 compared with sm1 and sm2.

a) B‘éxx X § ngw

Contour intervals = 100 (*10%)
min=0., max=0.097

b)
Second order shear band {E::)m :nn;i:gl 35=1 S0
0% /
c)
D [

©

Fig. 6. Strain localization analysis for simulation 1. (a) Rice bifurcation at « = 0.25 cm: the two potential directions
for bifurcation show localization along band n°1. (b) Isovalues map of the kinematic indicator o at ¥ = 0.25 cm:
localization occurs clearly along band n°l. Note that information is comparable to (a). (¢) Isovalues map of the
kinematic indicator o at # = 0.27.cm: a ‘second order band’ is developing at the bottom part of the model and

indicates a clockwise rotation of band n°1.
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The ‘fault activity’ (which is represented by the
kinematic indicator a) shows non negligible
variations as bands n. 2 and 3 are initiated. It
actually illustrates transient faulting phases (i.e.
which do not accommodate important deformation)
and shear band competition. It also shows locking
of some major bands (see for example band n. 1
for u>0.5 cm). A sketch of the overall fault
activity between ¥ =0 and ¥ =0.9 cm is given in
Fig. 7. In this diagram, locations referred as ‘low
fault activity’ are sketched to record that localiz-
ation has occurred ‘in these areas at some time
during the loading process. No localisation is
actually occurring at the respective loading stage
they are sketched.

This competition between bands is likely to be
partly induced by the elastoplastic parameters
chosen, especially regarding softening: as no
hardening/softening is taken into account in the
constitutive relation, the material remains ‘virgin’
or unweakened even when it experiences deforma-
tion. However such phenomenon of competition
between shear bands has also been observed in
experiments performed on sand samples (Desrues
1984), i.e. on strain hardening/softening materials.

The localization analysis enables study at a small
loading scale where localization actually occurs
and allows visualization of competition phenom-
enon between bands as well as second order faults,
phenomenon which were not seen with classical
equivalent strain maps.

Shear band orientation. Principal stress tensors
are plotted on Fig. 8a. Maximum principal stress
(o,) directions deduced from the stress field at
u=0.2 cm are represented in dotted lines on Fig.
8b. Note the clockwise rotation of G, direction

J. D. BARNICHON & R. CHARLIER

close to the basal interface, which is induced by
shear stresses on the sand/rigid basement interface.

This principal stress rotation has two main
effects on orientation of shear bands, whose
positions are illustrated on Fig. 8b:

e bands n. 1 and 2 exhibit concave upward shapes,
the actual dip (angle with respect to horizontal)
for band 1 and 2 varies vertically between 25
and 38°,

e dip for band n. 3 is approximately 46°, which is
a much higher angle than for the other 2 bands.

Identical effects of basal shear stresses on shear
band orientation have already been suggested by
some previous authors (Mandl & Shippam 1981).
This has also been verified in some finite element
analysis (Makel & Walters 1993).

If angles of shear bands with respect to G,
direction are now considered, it is found that all
the bands develop with an approximate angle
© =36° with respect to ¢,. This angle value is
compatible with the range theoretically predicted
for granular media

€——-— (30)

where the lower bound is obtained from classical
Coulomb prediction and the upper bound is given
by Arthur et al. (1977). Here with ¢ = ¢~ = 35° and
y = 0°, equation (30) leads to

25.7£0,,, £36.25°

theo

The value obtained © = 36° is compatible with
©,,,,- If the upper bound for friction angle is

] = high
Fault activity | — average
— low

~

=0.25cm

u=0.27 cm

u=0.29 cm

u=0.40cm

Z

u=0.50 cm

u=0.80cm

u=090cm ‘g; Z

Fig. 7. Schematic relative fault activity (based on kinematic indicator o) for simulation 1.
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— : Barscale=3.43 10’ Pa
min=0., max=3.43 10’ Pa
) BE :
o g :
PSP s i
b)
Contour intervals = 3°
min=-1° max=30°
]

Fig. 8. Simulation 1. (a) Stress tensor representation at 4 = 0.20 cm, i.e. prior localization. (b) Dotted lines:
maximum principal stress (6,) direction built from the stress field given in (a) at u = 0.20 cm; in the left part of
the model, stresses are clockwise rotated due to shear stresses which develop at the model basement. Bold lines:
schematic location of the future shear bands with approximate angles values at initiation (location of points A,
B and C refer to Fig. 12). (¢) Lode angle (B) isovalues map at « = 0.25 cm: in most of the left part, B falls in the
range —1 < B < 9°, which indicates a stress path with a shearing component.

considered (i.e. O =68°), the predicted friction
angle given by equation (30) is lower than the
values obtained.

As expected, the thickness of the band is found to
be approximately the size of one element. It must
also be pointed out that no evident relation has been
found to determine the position of the band. Clearly
there is some competition between shear stresses on
the basal interface and internal shear resistance of
the material. It must be pointed out that in the early
stages of localization (see Figs 6a—b), the shear
band n. 1 does not initiate from the base of the
model (see Figs 6a-b), whereas this is the case
when no frictional interface is given in initial
conditions (Makel & Walters 1993).

Lode angle. Lode angle value B (see equation
(13)) indicates whether the current state of stress
follows compressive (B =30°) or extensive
(B =-30°) stress paths. From the isovalue map of
B presented in Fig. 8¢, it is clear that Lode angle
values fall in the range -1 < <30° if the left
part of the model is considered. As we get closer
to the bands, 8 actually ranges between —1 and 9°

which indicates a stress path with shear component,
which is far from being purely compressive. As a
result, mobilized friction angle ¢ deduced from
the DP criterion in this part of the model is much
higher than the value ¢ = 35° (see description of
Driicker-Prager criterion) and ranges between
35 and 55°. Effects of this friction angle over-
estimation will be investigated in simulation 3
using Van Eekelen criterion.

Simulation 2 (sm2). influence of the K, ratio
The aim of this second simulation is only to check
the influence of K|, ratio on localisation. Therefore
the difference between this simulation and sml
comes from the K, value which here is equal to one,
that is the initial state of stress is hydrostatic.
Computations are only performed for displacement
values up to # = 0.5 cm without remeshing.
Regarding the loading/displacement curve (see
Fig. 5), one can observe that localization occurs
here for an identical loading value than for sml,
i.e. approximately 0.30 kN cm™!. For identical dis-
placement values, the horizontal reaction is slightly
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Contour intervals = 40 (*107)

| min=0., max=0.454

Fig. 9. Isovalues maps of cumulated equivalent strain for simulation 2 for 4 = 0 to 0.5 cm. Bands n°l and 2 have
developed as in sm1. However as localization occurred earlier in this simulation than in sm1, these 2 bands are better
developed, especially band n°2 (compare with Fig. 4a at identical loading).

higher here than for sm1. This results directly from
the increase of confining pressure induced by K|,
ratio. The two curves have almost identical shapes
apart that localization occurs earlier in sm2 than in
sml (#=0.219 cm and u = 0.247 cm respectively).

Regarding displacement field and strain localiz-
ation computed at the end of the simulation, direct
comparison of equivalent strain at u=0.5cm
between sm2 (Fig. 9) and sml (Fig. 4a) can be
made. Few differences are found with sml: the
main difference comes actually from the band n. 2
which is markedly more developed here. This
results from the earlier localization which occurs
in this simulation.

Simulation 3 (sm3): influence of the Lode angle
The difference between this simulation and sml
comes from the plasticity criterion which here is a

Van Eekelen one whereas a Driicker—Prager was
used in sml. Computations are performed for
displacement values up to u=0.22cm without
remeshing.

Strain localization. Localization occurs earlier
in this model (x = 0.129 cm), i.e. for lower loading
values than in sm1 and sm?2 (see Fig. 5). Map of the
kinematic indicator a presented on Fig. 10a shows
that two imbricated synthetic shear bands have
started to develop in the left part of the model at
u=0.2 cm, which is qualitatively similar to sml
and sm2. However the analysis of the equivalent
strain map (Fig. 10b) shows that the main part of
deformation (locally up to 80%) has occurred close
to the basement model along a basal slip. This
directly results from the mobilised friction angle
¢,,, which is lower here (35 < ¢, < 40°) than in sm1
and sm2 (35< ¢, <55°). Thus, as the interface

. Contour interval = 4 (*107)
. min=0., max=3.639 10°

Contour interval = 10 (*10)
min=0., max=0.807

Fig. 10. Isovalues maps for simulation 3 at # = 0.2 cm. (a) Kinematic indicator c. (b) Equivalent strain: higher strain

values are located along the basal slip.
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friction angle corresponds to 45°, plastic failure
preferentially occurs in the sand massif instead of
occurring along the frictional interface.

Additional differences with smi. Another differ-
ence can be expected between sm3 and sml: as
mobilized friction angle is lower here than in sml,
sm3 model should b e less resistant than sm1. This
is in fairly good agreement with finite element
results obtained at « <0.129 cm: the horizontal
reaction is found to be slightly lower for sm3 than
for sm1 (see Fig. 5).

However the Lode angle influence has even
induced more subtle differences between sm1 and
sm2, i.e. some important changes in the stress
path followed. Figures 1la-b present, in the
deviatoric plane, the stress paths followed by the
3 points A, B and C (previously located on
Fig. 8) between u=0 and #=0.2 cm (i.e. prior
localization), for simulation 1 and simulation 3
respectively.

In the first stages, in both cases the stress paths
are close to the hydrostatic axis and follow triaxial
compression ones: this is quite normal as at the
beginning of computation, ¢, is vertical and
©, = G5 are horizontally oriented.

As the loading increases, the stress paths for sm1
and sm3 are no longer similar as shown in the
deviatoric plane (see Fig. 10a-b): there is an
important stress rotation in sm1 whereas almost
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none occurs in sm3, and the ¢, and ¢, components
are greater in sml than in sm3. These differences
might be explained as follow considering the left
part of the model: for the two simulations, 6, = ©,
is almost horizontal (see Fig. 8a-b), 0;=0, is
vertical and constant due to the body forces (see
equation (28)); as the loading increases, 6, and G,
will increase by moving onto the yield surface;
however the different shapes of the two yield
surfaces with o, constant will lead to different
stress paths and stress states, which will result in a
higher increase of 6, and ¢, in sm1 than in sm3 and
thus which will traduce in a larger rotation of stress
path in deviatoric plane for sm1. This important
change in stress distribution can be seen clearly on
Figs 11c—d showing the evolution of the stress
shape factor Ry

_9%92-9

R (withO<Rg<1) (1)

0;-0;

and for which the Ry values are lower in sm1 (Fig.
11c) than in sm3 (Fig. 11d).

As a result, the predicted type of faulting at
a given loading will be different in the two cases.
For instance at ¥ =0.2cm and according to the
classification given in Sassi & Faure (1995), in sm1
the faulting would consist of pure reverse faulting,
whereas in sm3 it would rather consist of a

»
—P» 00
0z )

Fig. 11. Stress path and shape ratio for points A, B and C, for 0 < # < 0.2 cm (for exact location, refer to Fig. 8).
(a, b) Stress paths in the deviatoric plane for simulation 1 and simulation 3, respectively. (¢, @) Stress shape ratio,
R, versus horizontal displacement, », for simulation 1 and simulation 3, respectively.
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combination of reverse strike-slip and pure reverse
faulting.

Thus the influence of the Lode angle in the
constitutive relation is non-negligible on the stress
path and on the stress shape ratio Rg, which might
be of some importance when these are used to
interpret faulting regimes (Sassi et al. 1993; Sassi
& Faure 1995).

Comparison with analogue experiments

Although a very large number of physical experi-
ments have been performed using sandbox models,
it is only recently that the computer assisted
tomography has improved significantly the amount
of information which can be obtained from these
experiments. One of the published experiments
(Colletta et al. 1991) is of great interest here as
the initial geometry used is almost identical to the
one described in Fig. 3. However, the loading
displacement values at which experimental results
are given (u = 3.6 cm) are much higher than in the
numerical simulations performed here (¥ = 0.9 cm
for sml).

The structural interpretation of the physical
experiment and the present numerical simulation |
is presented on Figs 12a—b: fault locations are built
in the first case from computed tomography
pictures (Colletta et al. 1991) and in the second
case from the cumulated equivalent strain for
0<u<09cm (summation of values given in
Figs 4a, b, c). '

Strong similarities exist between the physically
observed and numerically predicted structures:
in both cases some imbricated forward thrusts
develop in front of the left boundary whereas one
backthrust develop close to the left boundary. The
foreland migration of thrusting observed by
Colletta et al. (1991) is also observed here as band
n. 1 develops prior band n. 2. The pop-up structure
observed is in front of the thickened wedge is not
present here due to the smallest amount of applied
displacement.

J. D. BARNICHON & R. CHARLIER

Conclusion

The three numerical simulations of a sandbox
compression experiment performed in this study
lead to several comments.

Two simulations performed using a ‘classical’
Driicker—Prager yield criterion lead to the
formation of several shear bands, which can be
interpreted as reverse faults (forward thrusts and
backthrusts). Especially the phenomenon of
localization could be followed in a very attentive
way using Rice criterion and a kinematic indicator,
which enable the second order bands associated
with shear band competition to be visualized. The
orientation of those shear bands is compatible with
theoretical predictions; the backthrust dip is found
greater than the forward one, which is explained by
the clockwise rotation of principal stresses induced
by the basal shear. A comparison with a similar
sandbox experiment shows that numerical displace-
ment fields and shear band localization are in
fairly good agreement with what is observed in
experiments.

An interesting feature is that a structural (or
geometrical) softening in the force/displacement
curve could be observed even if no softening was
introduced in the constitutive relation.

The effect of initial stress state has been checked
using two different values for the horizontal/
vertical stress ratio K. Results show that, for the
hydrostatic (K, = 1) and the deviatoric (K, = 0.25)
state of stress, the resulting displacement fields and
shear band localization are almost identical; the
main difference consists only in the slightly lower
displacement required to obtain bifurcation in the
hydrostatic case compared with the deviatoric one.

Regarding the friction angle effects, some
significant differences between Driicker—Prager
and Van Eekelen criterion are observed: (a)
Driicker—Prager model in which extension friction
angle is excessively high (e.g. ¢ = 68° if ¢ = 35°)
leads to an overestimation of the sand resistance,
which results in an overestimation of forces, (b)

A\

b)

Fig. 12. (a) Structural interpretation of thrust propagation experiments performed on sandbox models at u = 3.6 cm
(adapted after Colletta ef al. 1991): three imbricated forward thrusts have developed close to the vertical boundary,
with only one associated backthrust. A new pop-up structure starts to develop in the foreland at the right part of the
thickened wedge. (b) Structural interpretation from cumulated equivalent strain for numerical simulation 1 at

u = 0.9 cm: two imbricated forward thrusts and one backthrust have developed.
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strain localization occurs in both cases, although an
additional basal slip plane develops in the VE
model due to the relative friction angle between the
sand and interface, (c) the 2 models lead to very
different stress paths and thus may lead to a quite
strong modification the stress shape ratio, which
has a non-negligible influence when faulting
analysis based on the stress shape factor is
performed.

Clearly the Van Eekelen criterion seems a quite
promising criterion for simulation of frictional
material as sand. It is also worth pointing out that
this criterion actually does not necessarily require
laboratory identification of any additional material
parameters as ¢ becomes an explicit parameter,
whereas ¢ is a hidden one in the Driicker-Prager
criterion.

Further investigations should show the effect of
other parameters (basal friction, cohesion, elastic
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module) on the Lode angle, the position and
orientation of faults. In that sense, a kind of inverse
analysis of the significant material parameters
could be done. Some improvements of the finite
elements with regards to localization should be
incorporated in such analysis in the future (see
e.g. Wang 1993). Three dimensional aspects and
hydromechanical coupling and other localization
considerations could also be analysed in future
work.

The authors thank Jean Chéry, Dick Nieuwland and an
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first manuscript. Dominique Fourmaintraux who initiated
this project and the research group Geofrac (EIf
Aquitaine, Institut Frangais du Pétrole and Total, which
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