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Abstract

In this paper we study how to shape temporal pulses to switch a bistable system between its stable steady states. Our motivation for
pulse-based control comes from applications in synthetic biology, where it is generally difficult to implement real-time feedback control
systems due to technical limitations in sensors and actuators. We show that for monotone bistable systems, the estimation of the set of
all pulses that switch the system reduces to the computation of one non-increasing curve. We provide an efficient algorithm to compute
this curve and illustrate the results with a genetic bistable system commonly used in synthetic biology. We also extend these results to
models with parametric uncertainty and provide a number of examples and counterexamples that demonstrate the power and limitations
of the current theory. In order to show the full potential of the framework, we consider the problem of inducing oscillations in a monotone
biochemical system using a combination of temporal pulses and event-based control. Our results provide an insight into the dynamics of
bistable systems under external inputs and open up numerous directions for future investigation.

1 Introduction

In this paper we investigate how to switch a bistable sys-
tem between its two stable steady states using external input
signals. Our main motivation for this problem comes from
synthetic biology, which aims to engineer and control bio-
logical functions in living cells [3]. Most of current research
in synthetic biology focusses on building biomolecular cir-
cuits inside cells through genetic engineering. Such circuits
can control cellular functions and implement new ones, in-
cluding cellular logic gates, cell-to-cell communication and
light-responsive behaviours. These systems have enormous
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potential in diverse applications such as metabolic engineer-
ing, bioremediation, and even the energy sector [19].

Several recent works [17,14,29] have showcased how cells
can be controlled externally via computer-based feedback
and actuators such as chemical inducers or light stimuli
[15,13]. An important challenge in these approaches is the
need for real-time measurements, which tend to be costly
and difficult to implement with current technologies. In ad-
dition, because of technical limitations and the inherent non-
linearity of biochemical interactions, actuators are severely
constrained in the type of input signals they can produce.
As a consequence, the input signals generated by traditional
feedback controllers (e.g. PID or model predictive control)
may be hard to implement without a significant decrease in
control performance.

In this paper we show how to switch a bistable system with-
out the need for output measurements. We propose an open-
loop control strategy based on a temporal pulse of suitable
magnitude µ and duration τ :

u(t) = µh(t, τ), h(t, τ) =

{
1 0 ≤ t ≤ τ,
0 t > τ.

(1)
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Our goal is to characterise the set of all pairs (µ, τ) that
can switch the system between the stable steady states and
the set of all pairs (µ, τ) that cannot. We call these sets the
switching sets and a boundary between these sets the switch-
ing separatrix. The pairs (µ, τ) close to the switching sep-
aratix are especially important in synthetic biology applica-
tions, as a large µ or a large τ can trigger toxic effects that
slow down cell growth or cause cell death.

In a previous paper [24], we showed that for monotone sys-
tems the switching separatrix is a monotone curve. This re-
sult was therein extended to a class of non-monotone sys-
tems whose vector fields can be bounded by vector fields of
monotone systems. This idea ultimately leads to robustness
guarantees under parametric uncertainty. These results are
in the spirit of [9,20,21], where the authors considered the
problem of computing reachability sets of a monotone sys-
tem. Some parallels can be also drawn with [6,16], where
feedback controllers for monotone systems were proposed.

Contributions. In the present paper we provide the first com-
plete proof of our preliminary results in [24] and extend
them in several directions. We formulate necessary and suffi-
cient conditions for the existence of the monotone switching
separatrix for non-monotone systems. Although it is gen-
erally hard to use this result to establish monotonicity of
the switching separatrix, we use it to prove the converse.
For example, we show that for a bistable Lorenz system
the switching separatrix is not monotone. We then gener-
alise the main result of [24] by providing conditions for the
switching separatrix to be a graph of a function. We also
discuss the relation between bifurcations and the mecha-
nism of pulse-based switching, which provides additional
insights into the switching problem. We use this intuition
to show and then explain the failure of pulse-based con-
trol on an HIV viral load control problem [1]. We proceed
by providing a numerical algorithm to compute the switch-
ing separatrices for monotone systems. The algorithm can
be efficiently distributed among several computational units
and does not explicitly use the vector field of the model.
We evaluate the computational tools and the theory on the
bistable LacI-TetR system, which is commonly referred to
as a genetic toggle switch [8].

We complement our theoretical findings with several obser-
vations that illustrate limitations of the current theory and
highlight the need for deeper investigations of bistable sys-
tems. For example, we show that for a toxin-antitoxin sys-
tem [5], the switching separatrix appears to be monotone,
even though the system does not appear to be monotone.
Finally, in order to demonstrate the full potential of pulse-
based control, we consider the problem of inducing an oscil-
latory behaviour in a generalised repressilator system [27].

Organisation. In Section 2 we cover the basics of monotone
systems theory, formulate the problem in Subsection 2.1,
and provide an intuition into the mechanism of pulse-based
switching for monotone systems in Subsection 2.2. We also
provide some motivational examples for the development of

our theoretical results, which we present in Section 3. In
Section 4 we derive the computational algorithm and eval-
uate it on the LacI-TetR system. In Section 5, we provide
examples, counterexamples and an application of inducing
oscillations in a generalised repressilator system. The proofs
are found in the Appendix.

Notation. Let ‖ · ‖2 stand for the Euclidean norm in Rn, Y ∗
stand for a topological dual to Y , X\Y stand for the relative
complement of X in Y , int(Y ) stand for the interior of the
set Y , and cl(Y ) for its closure.

2 Preliminaries

Consider a single input control system

ẋ = f(x, u), x(0) = x0, (2)

where f : D × U → Rn, u : R≥0 → U , D ⊂ Rn, U ⊂ R
and u(·) belongs to the space U∞ of Lebesgue measurable
functions with values from U . We say that the system is
unforced, if u = 0. We define the flow map φf : R ×
D × U∞ → Rn, where φf (t, x0, u) is a solution to the
system (2) with an initial condition x0 and a control signal
u. We consider the control signals in the shape of a pulse,
that is signals defined in (1) with nonnegative µ and τ .

In order to avoid confusion, we reserve the notation f(x, u)
for the vector field of non-monotone systems, while systems

ẋ = g(x, u), x(0) = x0, (3)
ẋ = r(x, u), x(0) = x0, (4)

denote so-called monotone systems throughout the paper. In
short, monotone systems preserve a partial order relation in
initial conditions and input signals. A relation �x is called
a partial order if it is reflexive (x �x x), transitive (x �x y,
y �x z implies x �x z), and antisymmetric (x �x y, y �x
x implies x = y). We define a partial order through a cone
K ⊂ Rn as follows: x �x y if and only if x− y ∈ K. We
write x 6�x y, if the relation x �x y does not hold; x �x y,
if x �x y and x 6= y; and x �x y, if x − y ∈ int(K).
Similarly we define a partial order on the space of signals
u ∈ U∞: u �u v, if u(t)− v(t) ∈ K for all t ≥ 0. We write
u �u v, if u �u v and u(t) 6= v(t) for all t ≥ 0. Finally,
a set M is called p-convex if for all x, y in M such that
x �x y, and all λ ∈ (0, 1) we have that λx+(1−λ)y ∈M .

Definition 1 The system (3) is called monotone on DM ×
U∞ with respect to the partial orders �x, �u, if for all
x, y ∈ DM and u, v ∈ U∞ such that x �x y and u �u v, we
have φg(t, x, u) �x φg(t, y, v) for all t ≥ 0. If additionally,
x �x y, or u �x v implies that φg(t, x, u) �x φg(t, y, v)
for all t > 0, then the system is called strongly monotone.

In general, it is hard to verify monotonicity of a system
with respect to an order other than an order induced by an
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orthant (e.g., positive orthant Rn≥0). Hence throughout the
paper, by a monotone system we actually mean a monotone
system with respect to a partial order induced by an orthant.
A certificate for monotonicity with respect to an orthant is
referred to as Kamke-Müller conditions [2].

Proposition 2 ([2]) Consider the system (3), where g is dif-
ferentiable in x and u and let the sets DM , U be p-convex.
Let the partial orders�x,�u be induced byPxRn≥0,PuRm≥0,
respectively, where Px = diag((−1)ε1 , . . . , (−1)εn), Pu =
diag((−1)δ1 , . . . , (−1)δm) for some εi, δi in {0, 1}. Then

(−1)εi+εj
∂gi
∂xj
≥ 0, ∀ i 6= j, (x, u) ∈ cl(DM )× U

(−1)εi+δj
∂gi
∂uj
≥ 0, ∀ i, j, (x, u) ∈ DM × U

if and only if the system (3) is monotone on DM ×U∞ with
respect to �x, �u.

If we consider the orthants Rn≥0, Rm≥0, then the conditions
above are equivalent to checking if for all x �x y such that
xi = yi for some i, and all u �u v we have gi(x, u) ≤
gi(y, v).

2.1 Problem Formulation

We confine the class of considered control systems by mak-
ing the following assumptions:

A1. Let f(x, u) in (2) be continuous in (x, u) on Df × U .
Moreover, for each compact sets C1 ⊂ Df and C2 ⊂
U , let there exist a constant k such that ‖f(ξ, u) −
f(ζ, u)‖2 ≤ k‖ξ − ζ‖2 for all ξ, ζ ∈ C1 and u ∈ C2;

A2. Let the unforced system (2) have two stable steady
states in Df , denoted as s0

f and s1
f ;

A3. Let Df = cl(A(s0
f ) ∪ A(s1

f )), where A(sif ) stands
for the domain of attraction of the steady state sif for
i = 0, 1 of the unforced system (2);

A4. For any u = µh(·, τ) with finite µ and τ let φf (t, s0
f , u)

belong to int(Df ). Moreover, let the sets

S+
f = {µ, τ > 0

∣∣∣ lim
t→∞

φf (t, s0
f , µh(·, τ)) = s1

f}

S−f = {µ, τ > 0
∣∣∣ lim
t→∞

φf (t, s0
f , µh(·, τ)) = s0

f}

be non-empty.

Assumption A1 guarantees existence, uniqueness and con-
tinuity of solutions to (2), while Assumptions A2–A3 de-
fine a bistable system on a set Df controlled by pulses. In
Assumption A4 we define the switching sets: the set S+

f ,
which contains all (µ, τ) pairs that switch the system, and
the set S−f , which contains all pairs that do not. The bound-
ary between these sets is called the switching separatrix. In

the rest of the paper, we focus on the control problem of
estimating the switching sets.

2.2 Mechanism of Pulse-Based Switching

The general problem of switching a bistable system with
external inputs is amenable to an optimal control formula-
tion. However, in applications such as synthetic biology, op-
timal control solutions can be very hard to implement due to
technical limitations in sensors and actuators. Additionally,
the solution of this optimal control problem may be tech-
nically challenging. Hence applying open-loop pulses can
be a reasonable solution, if we can guarantee some form of
robustness. As we shall see later, our results show that for
monotone systems, pulse-based switching is computation-
ally tractable and robust towards parameter variations.

Before presenting our main results, we first provide an intu-
itive link between monotonicity and the ability to switch a
system with temporal pulses. If we consider constant inputs
u = µ and regard µ as a bifurcation parameter, we have the
following result with the proof in the Appendix.

Proposition 3 Let the system (3) satisfy Assumptions A1–A4
and be monotone onDg×U∞ with respect to Rn≥0, R≥0. Let
µmin be such that all pairs (µ, τ) ∈ S−g for 0 < µ < µmin,
and any finite positive τ . Let also ξ(µ) = lim

t→∞
φg(t, s

0
g, µ)

and η(µ) = lim
t→∞

φg(t, s
1
g, µ). Then

(1) If µ ≤ λ < µmin then ξ(µ) �x ξ(λ), η(µ) �x η(λ);
(2) If 0 < µ < µmin then ξ(µ) ∈ A(s0

g) and ξ(µ) ≺x η(µ);
(3) The function ξ(µ) is discontinuous at µmin.

In many applications, the functions ξ(µ), η(µ) are simply
evolutions of the steady states s0

g , s1
g with respect to the

parameter µ, respectively. Hence, statement (1) of Propo-
sition 3 shows how the steady states move with respect to
changes in µ. Statement (2) ensures that there are at least
two distinct asymptotically stable equilibria for µ < µmin.
Finally, statement (3) indicates that the system undergoes a
bifurcation for µ = µmin. The particular type of the bifur-
cation will depend on a specific model. Next we investigate
further aspects of this result with some examples of mono-
tone and non-monotone bistable systems.

Example 1: LacI-TetR Switch. The genetic system composed
of two mutually repressive genes LacI and TetR is typically
called the genetic toggle switch and was a pioneering sys-
tem for synthetic biology [8]. Presently, toggle switches are
widely used in synthetic biology to trigger cellular func-
tions in response to extracellular signals [3,11]. We consider
its control-affine model, which is consistent with a toggle
switch actuated by light induction [13]:

ẋ1 =
p1

1 + (x2/p2)p3
+ p4 − p5x1 + u,

ẋ2 =
p6

1 + (x1/p7)p8
+ p9 − p10x2,

(5)
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Fig. 1. A schematic depiction of the evolution of the stable nodes
s0
g(µ), s1

g(µ) and the saddle sug (µ) with respect to µ in the ge-
netic toggle switch system. By slow manifold we mean a mani-
fold connecting stable equillibria and a saddle. The arrows show
the direction of the equillibria movements with increasing µ.
Note that s0

g(µ), s1
g(µ) are increasing in the order induced by

diag{1, −1}R2
≥0. At µmin the equilibria s0

g(µ) and sug (µ) collide
resulting in a saddle-node bifurcation preserving only s1

g(µ).

where xi represents the concentration of each protein, whose
mutual repression is modelled via a rational function. The
parameters p2 and p7 represent the repression thresholds,
whereas p4 and p9 model the basal synthesis rate of each
protein. The parameters p5 and p10 are the degradation rate
constants, p1, p6 describe the strength of mutual repres-
sion, and p3, p8 are called Hill (or cooperativity) parame-
ters. By means of Proposition 2 we can readily check that
the model is monotone on R2

≥0 × R≥0 for all nonnega-
tive parameter values with respect to the orders induced by
diag{1, −1}R2

≥0 × R≥0. It can be verified by direct com-
putation that the system satisfies Assumptions A1–A4 with
Df = R2

≥0. We chose the following values of parameters

p1 = 40, p2 = 1, p3 = 4, p4 = 0.05, p5 = 1,

p6 = 30, p7 = 1, p8 = 4, p9 = 0.1, p10 = 1,
(6)

and numerically found a bifurcation to occur at µmin ≈
1.4077. For µ < µmin the system has two stable nodes and a
saddle. We observe that ξ(µ) = η(µ) for all µ > µmin, and
therefore we conclude that the system undergoes a saddle-
node bifurcation, as illustrated in Figure 1.

Example 2: Lorenz system. Consider a system

ẋ1 = σ(x2 − x1) + u

ẋ2 = x1(ρ− x3)− x2 + u

ẋ3 = x1x2 − βx3

with parameters σ = 10, ρ = 21, β = 8/3, which is non-
monotone and bistable with two stable foci. Numerical com-
putation of the sets S− and S+ in Figure 2 suggests that the
switching separatrix is not monotone. We will revisit this
conclusion in the next section using our theoretical results.

Example 3: HIV viral load control problem. In [1] the authors
considered the problem of switching from a “non-healthy”
(s0) to a “healthy” (s1) steady state by means of control in-
puts u1 and u2 that model different drug therapies. Due to
space limitations we refer the reader to [1] for a description
of the model. It can be verified that both steady states are

Pulse length τ

P
u
ls

e
 M

a
g

n
it

u
d

e
µ

40

30

20

10

5 10 15 20 25

Fig. 2. Switching sets for the Lorenz system. We simulated the
Lorenz system for (µ, τ) pairs taken from a mesh grid. The
green and red crosses correspond to the pairs that switched or not
switched the system, respectively.

stable foci and that the model is not monotone. Although the
system can be switched with non-pulse control signals [1],
using extensive simulations we were unable to find a com-
bination of pulses in u1 and u2 switching the system.

As in the case of a monotone bistable system, we found a
bifurcation with respect to constant control signals u1 = µ1

and u2 = µ2. More specifically, we fixed µ2 = 0.4, and
numerically found a bifurcation at µ1 ≈ 0.7059. The major
difference between this case and the monotone system case
(Example 1) is that the steady state s1(0.7059, 0.4) lies the
domain of attraction of s0(0, 0). Hence if we stop applying
the constant control signal we regress back to the initial point
s0(0, 0). Furthermore, with increasing µ1 the steady state
s1(µ1, 0.4) is moving towards the origin, which also lies in
the domain of attraction of s0(0, 0). This makes pulse-based
switching very difficult, if not impossible.

3 Theoretical Results

In [24] we showed that the switching separatrix of a mono-
tone bistable system ẋ = g(x, u) is non-increasing. Here we
present a generalisation of this result by formulating neces-
sary and sufficient conditions for the switching separatrix to
be monotone, the proof of which is found in the Appendix.

Theorem 4 Let the system (2) satisfy Assumptions A1–A4.
Then the following properties are equivalent:

(1) If φf (t, s0
f , µh(·, τ)) belongs to A(s0

f ) for all t ≥ 0,
then φf (t, s0

f , µh(·, τ)) belongs to A(s0
f ) for all t ≥ 0,

and for all µ, τ such that 0 < µ ≤ µ, 0 < τ ≤ τ .
(2) The set S−f is simply connected. There exists a curve

µf (τ), which is a set of maximal elements of S−f in
the standard partial order. Moreover, the curve µf (τ)
is such that for any µ1 ∈ µf (τ1) and µ2 ∈ µf (τ2),
µ1 ≥ µ2 for τ1 < τ2.

Theorem 4 shows that the computation of the set S−f is re-
duced to the computation of a curve µf (τ). This result also
provides a connection between the geometry of domains of
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attraction of the unforced system and the switching separa-
trix. As shown next, Theorem 4 can also be used to establish
non-monotonicity of the switching separatrix.

Remark 5 (Lorenz system revisited) Consider the Lorenz
system from the previous section and three different pulses
ui(t) = µih(t, τ) with µ1 = 24, µ2 = 25, µ3 = 26, and τ =
1. Numerical solutions show that the flows φ(t, s0, u1) and
φ(t, s0, u3) converge to s0, whereas φ(t, s0, u2) converges
to s1. Application of Theorem 4 proves that the switching
separatrix is not monotone.

The major bottleneck in the direct application of Theorem 4
is the verification of condition (1), which is generally compu-
tationally intractable. For example, condition (1) is satisfied
if the partial order is preserved for control signals. That is for
any u �u v, it should follow that φg(t, s0

g, u) �x φg(t, s0
g, v)

for all t > 0. Although this property is weaker than mono-
tonicity, it is not clear how to verify it. Monotonicity, on
the other hand, is easy to check and implies condition (1) in
Theorem 4. This is used in the following result.

Theorem 6 Let the system (3) satisfy Assumptions A1–A4
and be monotone on Dg × U∞. Then:

(1) The set S−g is simply connected. There exists a curve
µg(τ), which is a set of maximal elements of S−g in
the standard partial order. Moreover, the curve µg(τ)
is such that for any µ1 ∈ µg(τ1) and µ2 ∈ µg(τ2),
µ1 ≥ µ2 for τ1 < τ2.

(2) The set S+
g is simply connected. There exists a curve

νg(τ), which is a set of minimal elements of S+
g in

the standard partial order. Moreover, the curve νg(τ)
is such that for any ν1 ∈ νg(τ1) and ν2 ∈ νg(τ2),
ν1 ≥ ν2 for τ1 < τ2.

(3) Let the system (3) be strongly monotone and ∂A be the
separatrix between the domains of attractions A(s0

f )

and A(s1
f ) of the unforced system (3). Let additionally

∂A be an unordered manifold, that is, there are no x,
y in ∂A such that x �x y. Then νg(τ) = µg(τ) for
all τ > 0 and the curve µg(·) = νg(·) is a graph of a
monotonically decreasing function.

We note that our computational procedure (see Section 4)
does not require that µg(τ) = νg(τ) or that µg(·), νg(·) are
graphs of functions. Hence we treat point (3) in Theorem 6
as a strictly theoretical result, but remark that sufficient con-
ditions for the separatrix ∂A to be unordered are provided in
[10, Theorem 2.1]. The most relevant condition to our case
is that the unforced system is strongly monotone, which we
also assume in Theorem 6.

Besides µg(τ) 6= νg(τ), there are other pathological cases.
For example, applying constant input control signals u = µ
typically results in a system (2) with a different set of steady
states than s0

f or s1
f . Moreover, the number of equilibria

may be different. Hence, with τ →∞ the set S+
f typically

State 1

S
ta

te
 2 boundary of

boundary of  

boundary of  

Fig. 3. A schematic depiction of conditions (8) and (9). Condi-
tion (8) ensures that all the steady states lie in the intersection of
the corresponding domains of attractions (violet area). The steady
state s1

f cannot lie in the dashed blue box due to (9).

does not contain the limiting control signal u = µ. If the set
of pairs (µ, τ) resulting in these pathological cases is not
measure zero, then the sets cl(S+

f ) and cl(R2
≥0\S

−
f ) are not

equal, which can complicate the computation of the switch-
ing sets. However, in many applications, the sets cl(S+

f ) and
cl(R2

≥0\S
−
f ) appear to be equal. Therefore in order to sim-

plify the presentation we study only the properties of S−f .

If the system ẋ = f(x, u) is not monotone, then the curve
µf (τ) may not be monotone, which is essential for our com-
putational procedure. Instead, we estimate inner and outer
bounds on the switching set provided that the vector field of
the system can be bounded from above and below by vector
fields of monotone systems. This is formally stated in the
next result with the proof in the Appendix.

Theorem 7 Let systems (2), (3), (4) satisfy Assumptions A1–
A4. Let DM = Dg ∪ Df ∪ Dr, the systems (3) and (4) be
monotone on DM × U∞ and

g(x, u) �x f(x, u) �x r(x, u) on DM × U . (7)

Assume that the stable steady states s0
g , s0

f , s0
r , s1

f satisfy

s0
g, s

0
f , s

0
r ∈ int

(
A(s0

g) ∩ A(s0
f ) ∩ A(s0

r)
)
, (8)

s1
f 6∈

{
z|s0

g �x z �x s0
r

}
. (9)

Then the following relations hold:

S−g ⊇ S−f ⊇ S
−
r . (10)

The technical conditions in (8), (9) (which are illustrated in
Figure 3) are crucial to the proof and are generally easy to
satisfy. Verifying the condition (9) reduces to the computa-
tion of the stable steady states, as does checking the condi-
tion (8). Indeed, to ensure that s0

f belongs to the intersection
of A(s0

g), A(s0
f ), A(s0

r), we check if the trajectories of the
systems (3), (4) initialised at s0

f with u = 0 converge to s0
g

and s0
r , respectively, which is done by numerical integration

of differential equations. The computation of stable steady
states can be done using the methods from [32].
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In some applications, we need to find a subset of the pairs
(µ, τ) that switch the system (2) from s0

f to s1
f . Due to the

inclusion S−g ⊇ S−f , existence of the system (3) allows to do
that. In this case, we are only interested in finding the sys-
tem (3), hence the condition (9) is not required and the con-
dition (8) is transformed to s0

g , s0
f ∈ int

(
A(s0

g) ∩ A(s0
f )
)

.

Remark 8 The proofs of Theorems 6 and 7 are adapted in a
straightforward manner to the case when systems are mono-
tone with respect to orders �x, �u induced by an arbitrary
cone Kx and R≥0, respectively. In examples, however, we
always assume that Kx is an orthant.

Theorem 7 also provides a way of estimating the switching
set under parametric uncertainty, which is stated in the next
corollary.

Corollary 9 Consider a family of systems ẋ = f(x, u, p)
with a vector of parameters p taking values from a com-
pact set P . Let the systems ẋ = f(x, u, p) satisfy Assump-
tions A1–A4 for every p in P . Assume there exist parame-
ter values a, b in P such that the systems ẋ = f(x, u, a)
and ẋ = f(x, u, b) are monotone on DM × U∞, where
DM = ∪

q∈P
Df(·,·,q) and

f(x, u, a) �x f(x, u, p) �x f(x, u, b), (11)

for all (x, u, p) ∈ DM × U × P . Let also

s0
f(·,·,p) ∈ int

(
∩
q∈P
A(s0

f(·,·,q))

)
, (12)

s1
f(·,·,p) 6∈

{
z|s0

f(·,·,a) �x z �x s
0
f(·,·,b)

}
, (13)

for all p in P . Then the following relations hold:

S−f(·,·,a) ⊇ S
−
f(·,·,p) ⊇ S

−
f(·,·,b) ∀p ∈ P. (14)

The proof follows by setting g(x, u) = f(x, u, a) and
r(x, u) = f(x, u, b) and noting that the conditions
in (12), (13) imply the conditions in (8), (9) in the premise
of Theorem 7.

Theorem 7 states that if the bounding systems (3), (4) can be
found, the switching sets S−g , S−r can be estimated, thereby
providing approximations on the switching set S−f . Here we
provide a procedure to find monotone bounding systems if
the system (2) is near-monotone, meaning that by removing
some interactions between the states the system becomes
monotone (see [22] for the discussion on near-monotone sys-
tems). Let there exist a single interaction which is not com-
patible with monotonicity with respect to an order induced
by Rn≥0. Namely, let the (i, j)-th entry in the Jacobian ∂fi

∂xj

be smaller than zero. A monotone system can be obtained

by replacing the variable xj with a constant in the function
fi(x, u), which removes the interaction between the states
xi and xj . If the set D is bounded then clearly we can find
xj and xj such that xj ≥ xj ≥ xj for all x ∈ D. If the set
D is not bounded, then we need to estimate the bounds on
the intersection of A(s0

f ) and the reachability set starting at
s0
f for all admissible pulses. Let gk = rk = fk for all k 6= i,
gi(x, u) = fi(x, u)

∣∣
xj=x

j

, and ri(x, u) = fi(x, u)
∣∣
xj=xj

. It

is straightforward to show that ẋ = g(x, u), and ẋ = r(x, u)
are monotone systems and their vector fields are bounding
the vector field f from below and above, respectively. Note
that in order to apply Theorem 7 we still need to check if
these bounding systems satisfy Assumptions A1–A4.

In the case of Corollary 9, the procedure is quite similar.
If the system ẋ = f(x, u, p) is monotone for all parameter
values p, then we can find a, b if there exists a partial order
in the parameter space. That is a relation �p such that for
parameter values p1 and p2 satisfying p1 �p p2 we have that

f(x, u, p1) �x f(x, u, p2) ∀x ∈ D, u ∈ U .

If a partial order is found, the values a and b are computed
as minimal and maximal elements of P in the partial order
�p. This idea is equivalent to treating parameters p as inputs
and showing that the system ẋ = f(x, u, p) is monotone
with respect to inputs u and p.

4 Computation of the Switching Separatrix

The theoretical results in Section 3 guarantee the existence
of the switching separatrix for monotone systems, but in
order to compute µ(τ) we resort to numerical algorithms.

Given a pair (µ, τ) we can check if this pair is switching
the system using numerical integration. If the curve µ(τ) is
a monotone function, then for every τ there exists a unique
pulse magnitude µ = µ(τ). Let T = {τi}Ni=1 be such that
τmin = τ1 ≤ τi ≤ τi+1 ≤ τN = τmax for all i. Clearly,
for every τi we can compute the corresponding µi using
bisection. We start the algorithm by computing the value µ1

corresponding to τ1. Due to monotonicity of the switching
separatrix, the minimal switching magnitude µ2 for the pulse
length τ2 is smaller or equal to µ1. Therefore, we can save
some computational effort by setting the upper bound on
the computation of µ2 equal to µ1. The computation of the
pairs (µ, τ) can be parallelised by setting the same upper
bound on µi, · · · , µi+Npar

, where Npar is the number of
independent computations. As an output we obtain Mmin

andMmax, which are the sets of pairs (µ, τ) approximating
the switching separatrix from below and above, respectively.

In order to evaluate the error of computing the switching
separatrix consider Figure 4. According to the definitions in
the caption of Figure 4 we define the relative error of the
approximation as

Erel = (µerr/(µmax − µmin) + τerr/(τmax − τmin))/2.
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Fig. 4. Illustration of the error of computation of the switching
separatrix between the values τmin, τmax. The black curve is the
switching separatrix to be computed, the red and green circles are
the upper and lower bounding points, respectively. The switching
separatrix should lie between the coloured regions due to its mono-
tonicity. The values µerr and τerr are the largest height and width
of boxes inscribed between the coloured regions, respectively.

Note that, even if the green and red circles lie very close to
each other the relative error can be substantial. In numerical
simulations we use a logarithmic grid for τ , which yields
a significantly lower relative error in comparison with an
equidistant grid. This can be explained by an observation
that in many numerical examples µ(τ) appears to be an
exponentially decreasing curve.

There are a few drawbacks in the bisection algorithm. Firstly,
it requires a large number of samples. Secondly, the choice
of the grid is not automatic, which implies that for switch-
ing separatrices with different geometry the relative error
on the same grid may be drastically different. Finally, the
algorithm relies on the assumption that µ(τ) is a graph of
a monotone function, which may not be true. In order to
overcome these difficulties, we have derived Algorithm 1
based on random sampling, which converges faster than the
bisection algorithm, has higher sample efficiency, does not
require a predefined grid and the graph assumption. Some
of the steps in Algorithm 1 require additional explanation:

Step 7. Find two boxes: the box Bµ with the maximal height
(denoted as µerr) and the box Bτ with the maximal width
(denoted as τerr) that can be inscribed between the coloured
regions as depicted in Figure 4.

Step 9. Generate Nε samples of τ using a probability dis-
tribution δ between τmin and τmax. For every τ generate a
value µ using a distribution δ such that µ lies in the area
between the coloured regions. Repeat this step by first gen-
erating µ between µmin and µmax using a distribution δ, and
then generating τ for every generated µ in the area between
the coloured regions.

Step 13. First, we update the setsMmin,Mmax by adding
the samples that do not switch and switch the system, respec-
tively. Now if there exist two pairs (µ1, τ1) and (µ2, τ2) in
the setMmin (resp.,Mmax) such that µ1 ≤ µ2 and τ1 ≤ τ2,
then delete the pair (µ1, τ1) from the set Mmin (resp., the
pair (µ2, τ2) from the setMmax).

Algorithm 1 Computation of Switching Separatrix Based
on Random Sampling

1: Inputs: The system ẋ = f(x, u) with initial state s0
f , fi-

nal state s1
f , total number of samplesN , simulation time

te, lower and upper bounds on τ , τmin and τmax respec-
tively, the numbers Ngr, Nε, probability distribution δ

2: Outputs: setsMmin andMmax

3: Compute µmin and µmax using bisection for values τmin

and τmax

4: SetMmax =Mmin = {(µmax, τmin), (µmin, τmax)}
5: Set Npar = 2(Ngr +Nε)
6: for i = 1, . . . , [N/Npar] do
7: Compute the values µerr, τerr, and the corresponding

boxes Bµ, Bτ .
8: Generate Ngr samples (µ, τ) in each of the boxes
Bµ and Bτ using a probability distribution δ

9: Generate randomly 2Nε samples
10: for j = 1, . . . , Npar do
11: Check if the samples (µ, τ) switch the system
12: end for
13: Update and prune the setsMmin,Mmax

14: end for

Note that Step 11 is the most computationally expensive
part of the algorithm and its computation is distributed into
Npar independent tasks. In our implementation, we chose δ
as a Beta distribution with parameters 1 and 3, and adjusted
the support to a specific interval. Note that the set between
the coloured regions is getting smaller with every generated
sample, hence the relative error of Algorithm 1 is a non-
increasing function of the total number of samples. In fact,
numerical experiments show that this function is on average
exponentially decreasing. After the sets Mmin and Mmax

are generated one can employ machine learning algorithms
to build a closed form approximation of the switching sep-
aratrix (e.g., Sparse Bayesian Learning [28]; see also [31],
[18] for efficient algorithms).

Evaluation of the Computational Algorithm. Here we com-
pare the bisection algorithm and Algorithm 1 with different
parameter values, as well as their distributed implementa-
tions on the LacI-TetR switch introduced in Subsection 2.2.
Note that Algorithm 1 does not depend explicitly on the
dynamics of the underlying system. Therefore, the conver-
gence and sample efficiency results presented here will be
valid for a broad class of systems. In Figure 5, we com-
pare the error against the total number of generated samples.
Since checking if a sample switches the system or not is the
most expensive part of both algorithms, the total number of
samples reflects the computational complexity. In the case
of Algorithm 1 with Nε = 0 the randomisation level is not
high, hence an average over ten runs is sufficient to demon-
strate the average behaviour of this algorithm. Note that Al-
gorithm 1 with Nε = 0 outperforms the bisection algorithm
in the centralised and parallelised settings.

Some computational effort in Algorithm 1 goes into comput-
ing the error. However, this effort appears to be negligible in
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Fig. 5. Average error against total number of generated samples.
The curves corresponding to the bisection algorithm are computed
by a single run of the algorithm. The curves corresponding to
Nε = 0 are averages over ten runs of Algorithm 1, while the curves
for Nε > 0 are the averages over twenty runs of Algorithm 1.
Recall that Npar = 2(Ngr +Nε) for Algorithm 1. In the table we
list sample efficiency Neff in percent. In the notation x± y, x, y
stand for the emperical mean, standard deviation, respectively.

comparison with numerically solving a differential equation
for a given pair (µ, τ) even for such a small system as the tog-
gle switch. We run the simulations on a computer equipped
with Intel Core i7-4500U processor and 8GB of RAM. Us-
ing the centralised version of Algorithm 1 we achieved on
average a relative error equal to 0.0448 in 87.65 seconds,
while it took 89.17 seconds to obtain a relative error equal
to 0.0842 with the bisection algorithm. For systems with a
larger number of states the difference may be larger.

In Figure 5, we also compare the sample efficiency of the
algorithms, which we define as

Neff = |Mmin ∪Mmax|/N,

where N is the total number of generated samples, and
|Mmin∪Mmax| is the number of samples in the setMmin∪
Mmax. Results in Figure 5 indicate that Algorithm 1 has
higher sample efficiency than the bisection algorithm.

Our results also indicate that Algorithm 1 with Ngr = 5,
Nε = 5 has on average a higher empirical convergence
rate and a higher sample efficiency than Algorithm 1 with
Ngr = 10,Nε = 0. This indicates that a combination of non-
zero Ngr, Nε improves convergence and sample efficiency,
which can be explained as follows. When the total number
of generated samples is low, we do not have sufficient infor-
mation on the behaviour of the switching separatrix. There-
fore we need to explore this behaviour by randomly gener-
ating samples, before we start minimising the relative error.
This idea is similar to the so-called exploration/exploitation
trade-off in reinforcement learning [4].

5 Examples, Counterexamples and Applications

Robust Switching in the LacI-TetR System introduced in Sub-
section 2.2. We specify a system Fupper with p1 = 40,

40

30

20

10

0
0 5 10 15 20

Pulse length τ

P
u
ls

e
 M

a
g
n

it
u
d
e

µ

Switching separatrices

Fig. 6. Switching separatrices for the LacI-TetR system (5).

p4 = 0.05, p6 = 30, p9 = 0.1 and a system Flower with
p1 = 20, p4 = 0.01, p6 = 45, p9 = 0.3. The remain-
ing parameters are the same as in (6). After that we com-
pute the switching separatrices and plot them in Figure 6.
According to Corollary 9, the system with parameter val-
ues p1 ∈ [20, 40], p4 ∈ [0.01, 0.005], p6 ∈ [30, 65],
p9 ∈ [0.1, 0.3] and the remaining parameters as in (6) will
have the switching separatrix lying between the solid and
dashed green curves in Figure 6. If other parameters are var-
ied then the bounds on the separatrices may be looser as dis-
cussed in [24]. Therein we also illustrate the application of
Theorem 7 to a perturbed non-monotone LacI-TetR switch.

Toxin-Antitoxin System describes interaction between the
toxin proteins T and antitoxin proteins A [5]:

Ṫ =
σT

(1 +
[Af ][Tf ]
K0

)(1 + βM [Tf ])
− 1

(1 + βC [Tf ])
T,

Ȧ =
σA

(1 +
[Af ][Tf ]
K0

)(1 + βM [Tf ])
− ΓAA+ u,

ε ˙[Af ] = A−
(

[Af ] +
[Af ][Tf ]

KT
+

[Af ][Tf ]2

KTKTT

)
,

ε ˙[Tf ] = T −
(

[Tf ] +
[Af ][Tf ]

KT
+ 2

[Af ][Tf ]2

KTKTT

)
,

where [Af ], [Tf ] is the number of free toxin and antitoxin
proteins. In [5], the authors considered the model with ε = 0,
but in order to simplify our analysis we set ε = 10−6.
If the parameters are chosen as follows: σT = 166.28,
K0 = 1,βM = βc = 0.16, σA = 102, ΓA = 0.2, KT =
KTT = 0.3, then the system is bistable with two stable
nodes. But the system is not monotone and we were not
able to find bounding systems satisfying Assumptions A1-
A4. Nevertheless, we estimated the switching separatrix on
a mesh grid and noticed that the switching separatrix ap-
pears to be monotone. We can provide some intuition be-
hind this phenomenon. With ε tending to zero, we can ap-
ply singular perturbation theory (cf. [12]) to eliminate the
states [Af ], [Tf ]. Numerical computations indicate that the
reduced order system is not monotone in R2

≥0, however, it is
monotone around the stable equilibria, which may explain
monotonicity of the switching separatrix.
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Fig. 7. Switching between steady states in a generalised repressilator system. All trajectories generated by the pairs (µ, τ) corresponding
to the black crosses in the left panel will converge to a steady state with the same rate as the black curve in the right panel. Similar
correspondence is valid for the red and green crosses in the left panel and the red and green curves in the right panel. This observation
indicates that the closer the pair (µ, τ) is to the switching separatrix the longer oscillations will persist.

Switching in a Mass Action Kinetics System from [30]:

ẋ1 = f1(x1, x2) = 2k1x2 − k2x
2
1 − k3x1x2 − k4x1 + βu,

ẋ2 = f2(x1, x2) = k2x
2
1 − k1x2.

Without loss of generality we assume that k2 = 1, since we
can remove one of the parameters using a simple change of
variables. Let L = k1 − 4k3k4, if L > 0 then the unforced
system is bistable with stable nodes s0, s1 and a saddle su:

s0 =

(
0

0

)
su =

 k1−
√
k1L

2k3(√
k1−
√
L

2k3

)2

 s1 =

 k1+
√
k1L

2k3(√
k1+
√
L

2k3

)2


It can be verified that the system is monotone on D =
{x1, x2|0 ≤ x1 ≤ 2k1/k3}, which also contains the equi-
libria and hence the system satisfies our assumptions.

The derivatives of f1, f2 with respect to k1 do not have
the same sign hence the system is not monotone with re-
spect to parameter k1. This term appears due to so-called
mass action kinetics, which are common in biological ap-
plications and hence this problem is met often. A straight-
forward solution is to treat every instance of k1 as an inde-
pendent parameter. Hence we have a vector of parameters
[k11, k3, k4, k12], where k11 is the instance of k1 enter-
ing the first equation, and k12 is the instance of k1 entering
the second equation. Let k1 ∈ [7.7, 8.3], k3 ∈ [1, 1.2],
k4 ∈ [1, 1.2] and consider the lower bounding parameter
vector pl = [7.7, 1.2, 1.2, 8.3], and the upper bounding pa-
rameter vector pu = [8.3, 1, 1, 7.7]. We apply Corollary 9
only to relatively small perturbations in parameters, since
with larger variations the system becomes mono- or unsta-
ble. There is no indication that this problem is unique to this
system, and does not appear in other mass-action systems.

We conclude this example by performing a sweep for the
parameter k1 ∈ [6, 10], while k2 = k3 = 1. Numerical sim-
ulations suggest that for any k1 ∈ (6, 10) the switching sep-
aratrix appears to lie between the switching separatrices for
k1 = 6 and k1 = 10, respectively. Again we can only pro-
vide some intuition behind this observation. It is straight-
forward to verify that the gradient of su with respect to k1

is a negative vector, and the gradient of s1 with respect to
k1 is a positive vector. Hence the equilibria depend on k1

in the way which is consistent with a behaviour of a mono-
tone system. This example indicates that the behaviour of
the equilibria may be one of the necessary conditions al-
lowing the switching separatrix to be a monotone curve and
change monotonically with respect to parameter variations.

Shaping Pulses to Induce Oscillations in an Eight Species
Generalised Repressilator. An eight species generalised
repressilator is an academic example, where each of the
species represses another species in a ring topology. The
corresponding dynamic equations for a symmetric gener-
alised repressilator are as follows:

ẋ1 =
p1

1 + (x8/p2)p3
+ p4 − p5x1 + u1,

ẋ2 =
p1

1 + (x1/p2)p3
+ p4 − p5x2 + u2,

ẋi =
p1

1 + (xi−1/p2)p3
+ p4 − p5xi, ∀i = 3, . . . 8,

(15)

where p1 = 40, p2 = 1, p3 = 3, p4 = 0.5, and p5 = 1.
This system has two stable nodes s1 and s2 and is mono-
tone with the respect to PxR8 × PuR2, where Px =
diag([1, −1, 1, −1, 1, −1, 1, −1]), Pu = diag([1, −1]).
The control signal u1 can switch the system from the state
s1 to the state s2, while the control signal u2 can switch
the system from the state s2 to the state s1. The switching
separatrix for the control signal u1 is depicted in the left
panel of Figure 7. Note that the separatrix is identical for
the control signal u2, since the repressilator is symmetric.

Numerical simulations suggest that the trajectories exhibit
an oscillatory behaviour, while switching between the stable
steady states using a pulse. This is in agreement with pre-
vious studies that showed the existence of unstable periodic
orbits [27] in a generalised repressilator. Switching trajecto-
ries of species x1 for various pairs (µ, τ) are depicted in the
right panel of Figure 7. The observations made in the cap-
tion of Figure 7 indicate that the closer the pair (µ, τ) is to
the switching separatrix the longer oscillations will persist.
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Fig. 8. Inducing oscillatory behaviour in the generalised repressi-
lator system with eight species. The pulses for both u1 and u2 are
equal, and are generated using a pair (µ, τ) = (48, 4.8). The pair
(48, 4.8) lies relatively far from the switching separatrix, hence
the time between switches is not large.

We can set up another control problem: to induce oscilla-
tions in the generalised repressilator. One can address the
problem by forcing the trajectories to be close to the un-
stable periodic orbit of the system, which, however, is very
hard to compute. In [25], it was proposed to track other pe-
riodic trajectories instead. However, the solution was very
computationally expensive and offering little insight into the
problem. Here we will use pulses to induce oscillations as
was proposed in [27]. In contrast to [27], we provide a way
to shape all possible pulses inducing oscillations.

Let the initial point be s1. We can shape the control signal
u1 to switch to the state s2. Once we have reached an ε-ball
around the state s2, we can shape the control signal u2 to
switch back to the state s1 and so on. During switching we
will observe oscillations depending on the position of the
pair (µ, τ) with respect to the switching separatrix. Now we
need to define an automatic way of switching between the
steady states. Let Mε be equal to {z

∣∣s1 + εPx1 �x z �x
s2 − εPx1}, where 1 is the vector of ones and ε > 0. It
can be verified that the trajectories observed in Figure 7 lie
inMε for a small enough ε due to monotonicity. Since the
repressilator is symmetric we can assume that the shape of
pulses for both u1 and u2 is the same and formalise our
control strategy as follows. If the event x(te) �x s1 + εPx1
occurs at time te, then

u1(·) = µh(·, te + τ) u2(·) = 0

If the event x(te) �x s2 − εPx1 occurs at time te, then

u1(·) = 0 u2(·) = µh(·, te + τ)

Note that we change the entire control signals when the event
occurs at some time te. Due to this fact, the pulseµh(·, te+τ)
is of length τ . The resulting trajectories for the species x1

and x2, as well as control signals are depicted in Figure 8.
Our control algorithm falls into the class of event-based
control, with the events occurring if x(te) leavesMε. For a
small enough ε, our control strategy induces oscillations.

6 Conclusion and Discussion

In this paper we have presented a framework for shap-
ing pulses to control bistable systems. Our main motivation
comes from control problems arising in Synthetic Biology,
but the results hold in other classes of bistable systems. We
considered the problem of switching between stable steady
states using temporal pulses. We showed that the problem is
feasible, if the flow of the controlled system can be bounded
from above and below by flows of monotone systems. We
presented a detailed analysis of the conditions needed for
switching, together with an algorithm to compute the pulse’s
length and duration. We illustrated the theory with a number
of case studies and counterexamples that shed light on the
limitations of the approach and highlight the need for further
theoretical tools to control bistable non-monotone systems.

Throughout this work we did not take into account stochas-
ticity in the model dynamics, which can be particularly im-
portant in biochemical systems [7]. Noisy bistable dynamics
can be controlled, for example, using reinforcement learn-
ing algorithms as the ones described in [25,26]. These ap-
proaches, however, require large amounts of measurement
data that are typically impractical to acquire. A promis-
ing extension to our results is the switching problem in
stochastic bimodal systems. This requires the use of the so-
called stochastically monotone Markov decision processes,
for which a whole new set of theoretical tools needs to be
developed. Work in this direction started in [23] and the ref-
erences within, addressing the extension of the concept of
monotonicity to stochastic systems.
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A Proofs

Proof of Proposition 3. (1) Here we simply need to notice
that by monotonicity with t→∞ we have

ξ(µ)← φg(t, s
0
g, µ) �x φg(t, s0

g, λ)→ ξ(λ).

Similarly we can show that η(µ) �x η(λ).
(2) First, we need to show that ξ(µ) ∈ A(s0

g) for all 0 <
µ < µmin. This is straightforward, since due the definition
of µmin the flow φg(t, s

0
g, µh(·, τ)) converges to s0

g for all
the pairs (µ, τ) ∈ S− for 0 < µ < µmin. Hence the limit
lim
t→∞

φg(t, s
0
g, µ) belongs to A(s0

g).

Now, we show that s0
g ≺x s1

g . Consider u = 0 and v =

λh(·, τ) such that (λ, τ) ∈ S+. Therefore we have

s0
g = φg(t, s

0
g, u) �x φg(t, s0

g, v)→ s1
g,

with t→∞. Since s0
g is not equal to s1

g , we have s0
g ≺x s1

g .
Now the claim ξ(µ) ≺x η(µ) for all 0 < µ < µmin follows
by monotonicity.
(3) Consider µ = µmin + ε and τ large enough that the
pair (µ, τ) ∈ S+. Hence the flow φg(t, s

0
g, µh(·, τ)) con-

verges to s1
g . By monotonicity we have that φg(t, s0

g, µ) �x
φg(t, s

0
g, µh(·, τ)), which implies that ξ(µ) �x s1

g for arbi-
trarily small ε > 0. Since ξ(µmin−ε) lies in A(s0

g) we have
that ‖ξ(µmin − ε)− ξ(µ)‖2 > 0, which proves the claim.

Proof of Theorem 4 . 1)⇒ 2) A. It is straightforward to
verify that the premise of Theorem 4 implies that any point
lying in the set S−f is path-wise connected to a point in the
neighbourhood of the origin. In order to show that the set is
simply connected, it is left to prove that there are no holes
in the set S−f . Let η(µ, τ) be a closed curve which lies in
S−f . Consider the set

Sη =
{

(µ, τ)
∣∣0 < µ ≤ µη, 0 < τ ≤ τη, (µη, τη) ∈ η(µ, τ)

}
.

Since the set S−f is in R2
>0, the set Sη contains the set en-

closed by the curve η(µ, τ). It is straightforward to show
that Sη is a subset of S−f by the premise of the theorem.
Hence there are no holes in the area enclosed by the arbi-
trary curve η ∈ S−f . Since the curve η is in R2 we can shrink
this curve continuously to a point, which belongs to the set
S−f . Since the curve is an arbitrary closed curve in S−f , the
set S−f is simply connected.
B. Let us show here that there exists a set of maximal ele-
ments in S−f . Let a pair (µu, τu) not belong to S−f . If there
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exists a pair (µ, τ) ∈ S−f such that µ ≥ µu, τ ≥ τu, then by
the arguments above the pair (µu, τu) must also belong to
S−f . Hence, all pairs (µ, τ) such that µ ≥ µu, τ ≥ τu do not
belong to S−f . This implies that there exists a set of maxi-
mal elements of S−f in the standard partial order, which is
a segment of the boundary of S−f excluding the points with
µ and τ equal to zero.
C. It is left to establish that the set of maximal elements is
unordered. Let the mapping µf (τ) denote the set of max-
imal elements of S−f and let τ1 < τ2. Since the mapping
µf (τ) are the maximal elements in S−f , we cannot have
µf (τ1) < µf (τ2). Hence, µf (τ1) ≥ µf (τ2), for all τ1 < τ2.
2)⇒ 1) The claim follows directly from the fact that there
exists a set of maximal elements µf (τ) in the simply con-
nected set S−f .

Proof of Theorem 6. 1) Due to Assumption A4, there exists
at least one point (µl, τ l) in S−g . Let us show that if a pair
(µl, τ l) belongs to S−g , then all pairs (µ, τ) such that 0 <

µ ≤ µl, 0 < τ ≤ τ l also belong to S−g . By the definition of
the order in u, for every 0 < µ ≤ µl, 0 < τ ≤ τ l we have
0 �u µh(t, τ) �u µlh(t, τ l). The following then holds

s0
g �x φg(t, s0

g, µh(·, τ)) �x φg(t, s0
g, µ

lh(·, τ l)).

By assumption, there exists a T such that for all t > T the
flow φg(t, s

0
g, µ

lh(·, τ l)) belongs to A(s0
g) and converges

to s0
g . Therefore φg(t, s

0
g, µh(·, τ)) converges to s0

g with
t → +∞, and consequently the pair (µ, τ) does not toggle
the system and thus belongs to S−g . Therefore, by Theorem 4
µg(τ1) ≥ µg(τ2), for all τ1 < τ2.
2) Due to Assumption A4, there exists at least one point
(µl, τ l) in S+

g . Similarly to point 1) above, we can show
that, if a pair (µl, τ l) belongs to S+

g , then by continuity of
solutions to (3) there exist ε > 0, δ > 0 such that the pairs
(µ+ε, τ+δ) also belong to S+

g for all 0 < ε < ε, 0 < δ < δ.
Hence the set S+

g has a non-empty interior. The rest of the
proof is the same as the proof of the implication 1) ⇒ 2)
in Theorem 4.
3) We prove the result by contradiction. Let there exist
a τ and an interval I = (µ1, µ2) such that for all µ ∈
I the flow φg(t, s

0
g, µh(·, τ)) does not converge to s0

g or
s1
g , but belongs to the interior of Dg . This means that the

flow φg(t, s
0
g, µh(·, τ)) evolves on the separatrix ∂A be-

tween domains of attraction A(s0
g) and A(s1

g) for all t > τ .
Let µ1, µ2 belong to I and µ1 < µ2, which implies that
φg(t, s

0
g, µ1h(·, τ)) �x φ(t, s0

g, µ2h(·, τ)) and both flows
belong to ∂A. This in turn implies that the set ∂A contains
comparable points, that is, the set ∂A is not unordered. We
arrive at a contradiction, and hence the interval I is empty
and for any τ there exists a unique µg(τ). This is equiva-
lent to µg(·) being a graph of a function. Using similar ar-
guments, we can show that the inverse mapping µ−1

g (τ) is
also a graph of a function, which indicates that µg(·) is a

State 1

S
ta

te
 2

Fig. A.1. An illustration to the proof of Lemma 10 for a two-state
system. We assume that xb, xl lie in A(s0

g) (violet area) and
xb �x xc �x xl with xc lying on the boundary of ∂A(s0

g).
We show that, if the trajectory φg(t, x

c, 0) is on the boundary
of A(s0

g), it has to converge to s0
g , which cannot be true due to

monotonicity of the system.

decreasing function.
Similarly, we can show that for any µ the minimum value of
τ2 − τ1, such that the pairs (µ, τ1 − ε) ∈ S−g , (µ, τ2 + ε) ∈
S+
g for all ε > 0, is equal zero. This readily implies that
µg(τ) = νg(τ) and completes the proof.

Before we proceed with the proof of Theorem 7 we will
need two additional results.

Lemma 10 Let the system ẋ = g(x, 0) satisfy Assump-
tion A1 and be monotone on A(s0

g), where s0
g is a sta-

ble steady state and A(s0
g) is its domain of attraction. Let

xb and xl belong to A(s0
g). Then all points z such that

xl �x z �x xb belong to A(s0
g).

Proof. We will show the result by contradiction. Let xl,
xb belong to A(s0

g), let xc be such that xl �x xc �x xb
and not belong to A(s0

g). Without loss of generality assume
that xc belongs to the boundary of A(s0

g) (see Figure A.1).
Therefore the flow φg(t, x

c, 0) is on the boundary of A(s0
g).

Let the distance between s0
g and this boundary be equal to

ρ. Clearly there exists a time T1 such that for all t > T1 the
following inequalities hold

‖s0
g − φg(t, xb, 0)‖2 < ρ/2,

‖s0
g − φg(t, xl, 0)‖2 < ρ/2.

Moreover, there exists a time T2 > T1 such that for all
t > T2 and all z such that φg(t, xl, 0) �x z �x φg(t, xb, 0)
we have ‖s0

g − z‖2 < ρ/2. Now build a sequence {xn}∞n=1

converging to xc such that all xn lie in A(s0
g) and xl �x

xn �x xb. Due to monotonicity on A(s0
g), we have

φg(t, x
l, 0) �x φg(t, xn, 0) �x φg(t, xb, 0)

for all n and t. Hence, for all t > T2, we also have that
‖s0
g − φg(t, xn, 0)‖2 < ρ/2. Since the sequence {xn}∞n=1

converges to xc, by continuity of solutions to (3), for all
t > T2 we have ‖s0

g − φg(t, x
c, 0)‖2 ≤ ρ/2, which is a

contradiction since ‖s0
g − φg(t, xc, 0)‖2 ≥ ρ for all t.
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Lemma 11 Consider the dynamical systems ẋ = f(x, u)
and ẋ = g(x, u) satisfying Assumption A1. Let one of the
systems be monotone on DM × U∞. If g(x, u) �x f(x, u)
for all (x, u) ∈ DM ×U then for all t, and for all x2 �x x1,
u2 �u u1 we have φg(t, x2, u2) �x φf (t, x1, u1).

Proof. Without loss of generality let ẋ = g(x, u) be mono-
tone with respect to Rn≥0. Let 1 be a vector of ones, xm2 =

x2 + 1/m · 1, and ẋ = g(x, u) + 1/m. Denote the flow of
this system φm(t, xm2 , u2). Clearly for a sufficiently small
t the condition φm(t, xm2 , u2) �x φf (t, x1, u1) holds. As-
sume there exists a time s, for which this condition is vio-
lated. That means that for some i we have φim(t, xm2 , u2) >
φif (t, x1, u1) for all 0 ≤ t < s, where the superscript i de-
notes an i-th element of the vector. While at time s we have
φim(s, xm2 , u2) = φif (s, x1, u1). Hence we conclude that

d

dt
(φim(t, xm2 , u2)− φif (t, x1, u1))

∣∣∣
t=s
≤ 0. (A.1)

However,

dφif (t, x1, u1)

dt

∣∣∣
t=s

= fi(φf (s, x1, u1), u1) < (A.2)

gi(φf (s, x1, u1), u1) + 1/m ≤ (A.3)

gi(φm(s, xm2 , u2), u2) + 1/m =
dφim(t, xm2 , u2)

dt

∣∣∣
t=s

.

The inequality in (A.2) holds due to the bound g(x, u) +
1/m �x f(x, u). Since the system ẋ = g(x, u) + 1/m
is monotone, the inequality in (A.3) holds as well accord-
ing to the remark after Proposition 2. This chain of in-
equalities contradicts (A.1), hence for all t we have that
φm(t, xm2 , u2)�x φf (t, x1, u1). With m→ +∞, by conti-
nuity of solutions we obtain φg(t, x2, u2) �x φf (t;x1, u1),
which completes the proof.

Proof of Theorem 7. A. First we note that the assumption
in (8) implies that s0

g �x s0
f �x s0

r . Indeed, take x0 from
the interior of the intersection of the sets A(s0

g), A(s0
f ),

A(s0
r). By Lemma 11 for all t, we have φg(t, x0, 0) �x

φf (t, x0, 0) �x φr(t, x0, 0), and thus taking the limit t →
∞ we get s0

g �x s0
f �x s0

r .
B. Next we show that g(x, u) �x f(x, u) for all (x, u) ∈
DM × U implies that S−g ⊇ S−f . Let the set V be such that
u = µh(·, τ) ∈ V if (µ, τ) ∈ S−f .
Due to s0

g �x s0
f and g �x f on DM ×U∞, by Lemma 11,

we have that s0
g �x φg(t, s

0
g, u) �x φf (t, s0

f , u), for all
u ∈ V . Note that the first inequality is due to monotonicity
of the system ẋ = g(x, u). The flow φf (t, s0

f , u) converges
to s0

f with t → +∞. Therefore, there exists a time T such
that for all t > T we have s0

g �x φg(t, s0
g, u)�x s

0
f+ε1 for

some positive ε. Moreover, we can pick an ε such that s0
f+ε1

lies in A(s0
g) (due to (8)). Since the system ẋ = g(x, u) is

monotone, according to Lemma 10, the flow φg(t, s
0
g, u) lies

in A(s0
g). Hence, no u in V toggles the system ẋ = g(x, u)

either and we conclude that S−g ⊇ S−f . The proof that S−g ⊇
S−r follows using the same arguments as above.
C. Finally, we show that S−f ⊇ S−r . Let the set W be such
that u = µh(·, τ) ∈ W if (µ, τ) ∈ S−r .
Due to s0

g �x s0
f �x s0

r and g �x f �x r on DM ×U∞, by
Lemma 11, we have that

φg(t, s
0
g, u) �x φf (t, s0

f , u) �x φr(t, s0
f , u)

for all u ∈ W . Now, monotonicity of ẋ = g(x, u) implies
that s0

g �x φg(t, s0
g, u). Furthermore, there exists a T such

that s0
g �x φf (t, s0

f , u) �x s0
r + ε1 for all t > T , for all

u ∈ W and some small positive ε. This is due to the fact
that φr(t, s0

f , u) → s0
r with t → +∞. We can also choose

an ε such that s0
r + ε1 lies in DM due to (8). Hence, the

flow of ẋ = f(x, u) for all u ∈ W belongs to the set
{z|s0

g �x z �x s0
r + ε1} for all t > T .

Now, assume there exists uc ∈ W that toggles the system
ẋ = f(x, u). This implies that the flow φf (t, s0

f , u
c) con-

verges to s1
f with t → ∞. Therefore we have that s1

f be-
longs to the set {z|s0

g �x z �x s0
r + ε1} for an arbitrarily

small ε, and consequently s1
f �x s0

r . This contradicts the
condition (9) in the premise of Theorem 7. Hence, no u in
W toggles the system ẋ = f(x, u) and S−f ⊇ S−r .
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