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Li ège(Boulevard du Rectorat 7; B-4000 Liège; Belgium)
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Nonlinear (systems of) ordinary differential equations (ODEs) are common tools in the analysis of com-
plex one-dimensional dynamic systems. We propose a smoothing approach regularized by a quasilinearized
ODE-based penalty. Within the quasilinearized spline based framework, the estimation reduces to a condi-
tionally linear problem for the optimization of the spline coefficients. Furthermore, standard ODE compli-
ance parameter(s) selection criteria are applicable. We evaluate the performances of the proposed strategy
through simulated and real data examples. Simulation studies suggest thatthe proposed procedure ensures
more accurate estimates than standard nonlinear least squares approaches when the state (initial and/or
boundary) conditions are not known.
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1 Introduction

The analysis of one dimensional dynamic systems (e.g. systems evolving over time) represents a crucial
task in many scientific fields. This kind of problem is usuallytackled invoking differential calculus tools
by defining (a system of) ordinary differential equation(s)which (analytic or numerical) solution(s) appro-
priately describes the observed dynamics.
In many circumstances, the parameters and the state (initial and/or boundary) conditions involved in the
differential model synthesizing the observed phenomenon are not known. In these cases statistical pro-
cedures are applied to estimate them from noisy data. In general it is assumed that changes in the states
x (t) ∈ R

d of a dynamic system are governed by a set of differential equations:

dx

dt
(t) = f (t,x,θ) , t ∈ [0;T ] , (1)

wheref is a known nonlinear function in the statesx andθ ∈ R
q an unknown vector of parameters. It

is assumed that only a subsetJ ⊂ {1, . . . , d} of the d state functionsx is observed at time pointtjk,

j ∈ J , k = 1, . . . , nj with additive measurement errorǫjk. We denote byyjk = xj (tjk) + τ
−1/2
j ǫjk the

corresponding measurement. For simplicity, we assume thatthe error termsǫjk are distributed according
to a standardized Gaussian distribution. Our goal is to estimate the ODE parametersθ, the precision of
measurementsτ = vec(τj , j ∈ J ) and to approximate, using basis expansion, the solution of the ODE
model given in Eq. (1) from the (noisy) observations.
Many approaches have been proposed in the literature to estimate these sets of unknowns. The first ref-
erence in this field is probably Hotelling (1927) that tackled this task from a regression point of view.
Following this idea, Biegler et al. (1986) proposed a nonlinear least squares approach for the estimation of
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the ODE parameters using suitable numerical schemes to approximate the state function(s). This approach
suffers of some drawbacks. It can be computationally demanding to deal with complex differential sys-
tems and the quality of the final estimates can be severely influenced by possible error propagation effects
(related to the adopted numerical scheme and to the approximation of the state, initial and/or boundary,
conditions). Finally these techniques become unpracticalfor inferential purposes in complex dynamics.
For these reasons the penalized smoothing collocation approach of Ramsay et al. (2007) represents an
attractive alternative. This estimation procedure consists in a compromise between a flexible (regression
based) description of the recorded measurements and the (numerical) solution of the hypothesized differ-
ential system obtained through a collocation scheme. In particular, this framework exploits a B-spline
approximation of the state function. The flexibility induced by the B-spline approximation is then coun-
terbalanced by a penalty related to the differential model.The ODE-penalty term is defined as the integral
of the ODE operator evaluated at the B-spline approximationof the state function. It measures the fidelity
of the B-spline approximation to the ODE model. An ODE-compliance parameter balances between the
fidelity to the data and the compliance of the B-spline approximation to the ODE model. This approach can
be adopted both in case of linear and nonlinear differentialequations and does not require the estimation
of the state conditions.
In contrast to the linear case, estimation in nonlinear systems using the approach by Ramsay et al. (2007)
requires a nonlinear least squares step and the applicationof the implicit function theorem to obtain point
and interval estimates of the ODE parameters. Furthermore,even if the compliance parameter still tunes
the balance between data fitting and ODE model fidelity, the application of standard selection procedures
can be unpractical dealing with nonlinear ODE systems.
In this paper, we overcome these challenges by introducing aquasilinearization scheme (Bellman and Kal-
aba, 1965) in the estimation procedure. Our quasilinearized ODE-P-spline (QL-ODE-P-spline) approach
can be viewed as a convenient generalization of the P-splinecollocation procedure of Ramsay et al. (2007)
as it permits an explicit link between the spline coefficients and the unknown differential parameters. Fur-
thermore, standard approaches for selecting/optimizing the ODE-compliance parameters become directly
applicable.
In this paper we consider two differential problems as working examples to illustrate our proposal and
evaluate its performances and robustness through simulations: 1) a simple first order ODE having a closed
form solution; 2) the well known Van der Pol system of ODEs. Asfirst example we consider the following
first order initial value problem

{
dx

dt
(t) = (θ1 − 2θ2t)x

2 (t)

x (0) = x0,
(2)

with explicit solution

x (t) =
1

θ2t2 − θ1t+ x−1
0

. (3)

The second working example is represented by theVan der Pol system:





dx1

dt
(t) = θ

(
x1 (t)−

1

3
x3
1 (t)− x2 (t)

)

dx2

dt
(t) =

1

θ
x1 (t) ,

x (t0) = st0 for t0 ∈ T0,

(4)

whereT0 denotes the subset of observed times where the state conditions are imposed. The state function
x1 (t) describes a non-conservative oscillator with nonlinear damping. It was proposed to describe the
dynamics of current charge in a nonlinear electronic oscillator circuit (Van der Pol, 1926). This model also
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found applications in other fields such as biology and seismology. No exact solution can be derived when
the parameterθ differs from zero.
The paper is organized as follows. In Section 2 the key features of the generalized profiling estimation pro-
cedure proposed by Ramsay et al. (2007) are briefly recalled.In Section 3, the introduction of a quasilin-
earization step in the profiling framework is illustrated tohighlight the strengths of our QL-ODE-P-spline
method. Its properties are studied using simulations in Section 4. We conclude the paper with the analysis
of two real(istic) datasets in Section 5 followed by a discussion in Section 6.

2 Generalized profiling estimation in a nutshell

In this section, the key steps of the profiling procedure proposed by Ramsay et al. (2007) are briefly
reminded. First of all, each state function involved in the system of (nonlinear) differential equations is
approximated using a B-spline basis function expansion:

x̃j (t|α) =

Kj∑

k=1

bjk (t)αjk = [bj (t)]
⊤
αj

whereαj is a Kj-vector of spline coefficients andbj (t) is theKj-vector of B-spline basis functions
evaluated at timet. The variation of the B-spline approximations are shrunk byintroducing an ODE-based
penalty. More precisely, for each differential equation ofthe system, a penalty term is introduced:

PEN j (α|θ) =

∫ (
dx̃j

dt
(t)− fj (t, x̃,θ)

)2

dt, (5)

whereα = vec(αj ; j = 1, . . . , d). The full fidelity measure to the ODE-model is then defined as:

PEN (α|θ,γ) =
d∑

j=1

γjPEN j (α|θ). (6)

The compromise between data fitting and model fidelity is tuned by the ODE-compliance parametersγ.
For values ofγj close to zero, the final estimates tend to overfit the data by satisfying nearly exclusively
the goodness of fit criterion. Forγj → ∞, the final approximation tends to mimic the solution of the ODE
model used to define the penalty.
The ODE parameters and the spline coefficients are estimatedby profiling the likelihood. This approach
requires to optimize the choice of the ODE parameters by considering the spline coefficients as nuisance
parameters. For given values of the ODE parametersθ, of the precisions of measurement{τ}j∈J

and of
the ODE-compliance parametersγ, the optimal spline coefficients are found as the maximizer of:

J (α|θ,γ, τ ,y) =
∑

j∈J

{nj

2
log (τj)−

τj
2

∥∥yj − x̃j (t)
∥∥2
}
−

1

2
PEN (α|θ,γ) . (7)

In a second step, given the current value of the ODE compliance parameters, the vectorθ is estimated
together with the precisions of measurement optimizing thefollowing data fitting criterion:

H (θ, τ |y, α̂) =
∑

j∈J

{nj

2
log (τj)−

τj
2

∥∥yj −Bjα̂j (θ, τ ,γ,y)
∥∥2
}
, (8)

with Bj the B-spline matrix defined for thejth state function. Following Eilers and Marx (2010), we
suggest to define the B-spline bases using a generous number of equidistant knots. For the degree of the
B-splines we found that a useful rule of thumb is to set it equal to the degree of the differential equation
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plus two. This can be justified by examining the properties ofB-spline functions and their derivatives. The
hth order derivative of a B-spline basis of degreeq is obtained by finite differentiation of splines ofq − h
degree. Aqth degree B-spline isq − 1 times continuously differentiable over the domain span (see e.g.
Golub and Ortega, 1992; Dierckx, 1995). By defining bases of degree equal to the order of the ODE plus
two, we ensure that the bases used to approximate the highestorder derivative appearing in the dynamic
system are at least one time continuously differentiable over the entire domain.
As the definition of the penalty termPEN (α|θ,γ) is based on (a system of) nonlinear differential equa-
tion(s), the minimizer ofJ (α|θ,γ, τ ,y) cannot be found analytically. This makes the dependence ofH
onθ andτ partially implicit. Therefore, the functionH can only be optimized by combining a non linear
least squares solver with the implicit function theorem. Similar arguments are involved in the approxima-
tion of the variance-covariance matrix ofθ̂ and in the estimation of the model effective dimension (see
Ramsay et al. (2007) for details). Finally, the selection ofthe optimal ODE-compliance parameters is a
non trivial task as common smoothing parameter selection criteria cannot be applied.

3 Quasilinearized ODE-P-spline approach

When nonlinearity becomes an issue for the estimation process, it is convenient to approximate nonlinear
functions with linear surrogates (obtained for example through first order Taylor expansion). Quasilin-
earization (Bellman and Kalaba, 1965) generalizes this idea to approximate the solution of differential
equations. In the generalized profiling estimation procedure, provided that differential equations are linear,
the estimation ofθ andτ can be made by iterating simple least squares procedures with ODE compli-
ance parameters selected using standard methods. From the discussion at the end of Section 2 it appears
that dealing with nonlinear ODEs is more challenging. Our main suggestion is to amend the estimation
procedure using quasilinearization.

3.1 Quasilinearization of the penalty

We propose to linearize the nonlinear part of the ODE model using an iterative approximation procedure.
More precisely, given the set of spline coefficientsα(i) at iterationi and the induced estimates of thej-th
state functioñx(i)

j , we propose to approximate thej-th component of the ODE penalty term at iteration
i+ 1 by:

PEN j

(
α(i+1)|α(i),θ

)
≈

∫ (
dx̃

(i+1)
j

dt
(t)− fj

(
t, x̃(i),θ

)
−

d∑

k=1

(
x̃
(i+1)
k (t)

− x̃
(i)
k (t)

) ∂fj
∂xk

(
t, x̃(i),θ

))2

dt. (9)

Then, the overall fidelity measure to the ODE in Eq. (6) can be approximated by:

PEN
(
α(i+1)|α(i),θ,γ

)
=

d∑

j=1

γjPEN j

(
α(i+1)|α(i),θ

)

=
(
α(i+1)

)⊤
R
(
θ,γ,α(i)

)
α(i+1)

+
(
α(i+1)

)⊤
r
(
θ,γ,α(i)

)
+ l
(
θ,γ,α(i)

)
, (10)

whereR
(
θ,γ,α(i)

)
plays the role of a penalty matrix,r

(
θ,γ,α(i)

)
is the penalty vector andl

(
θ,γ,α(i)

)

is a constant not depending on the current values of spline coefficients but only on the previous ones (see
Appendix A for the explicit definition ofR, r and l). In contrast to the inner optimization proposed in
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Ramsay et al. (2007), the substitution of (10) in (7) makes the optimization of the criterionJ with respect
to the spline coefficients a standard least squares problem that does not require any sophisticated mathe-
matical analysis tool. Indeed, Eq. (7) becomes a quadratic form in α(i+1) which optimization does not
require the implicit function theorem anymore.
Similarly to Ramsay et al. (2007) and Frasso et al. (2013), the estimation process for the ODE param-
eters and the spline coefficients implies the iteration of two profiling steps. First, given the last avail-
able estimatesα(i) and for given vectors of ODE parametersθ(i), precisions of measurementsτ (i) =

vec
(
τ
(i)
j ; j ∈ J

)
and compliance parametersγ(i), the spline coefficientsα(i+1) are updated by maximiz-

ing the approximatedJ criterion:

α(i+1) = argmax
α

J
(
α(i+1)|θ(i), τ (i),γ(i),α(i),y

)

=
(
G(i) +R

(
θ(i),γ(i),α(i)

))−1 (
g(i) − r

(
θ(i),γ(i),α(i)

))
, (11)

whereG(i) = diag
(
Z

(i)
j ; j = 1, . . . , d

)
is a block diagonal matrix withZ(i)

j = τ
(i)
j B⊤

j Bj if the j-th

state function is observed and the nullKj × Kj-matrix otherwise andg(i) = vec
(
z
(i)
j ; j = 1, . . . , d

)

with z
(i)
j = τ

(i)
j B⊤

j yj if the j-th state function is observed or null (Kj-vector) otherwise. Here,yj is the
nj-vector of all observations for thej-the state function andBj is a B-spline matrix of dimensionnj×Kj .
The values ofθ andτ are updated by optimizingH givenα(i+1).
Thanks to the quasilinearization, the selection of the compliance parameters can be performed using stan-
dard methods such as AIC, BIC or (generalized) cross-validation. On the other hand, these parameters can
be defined as the ratio of the estimated error variances and the current variance of the penalty (points (c)
and (d) of Algorithm 1) and optimized using the EM-type algorithm proposed by Schall (1991). In this
way we avoid the computation of a selection criterion over a grid of possible values and treat the ODE-
parameter selection as an inner step of the estimation algorithm.
The QL-ODE-P-spline estimation procedure can be summarized as follows:
The following convergence criterion was used throughout tostop the iterative process of Algorithm 1:

[
max

(∣∣∣∣
α(i+1) −α(i)

α(i)

∣∣∣∣
)
,max

(∣∣∣∣
γ(i+1) − γ(i)

γ(i)

∣∣∣∣
)
, max

(∣∣∣∣∣
θ(i+1) − θ(i)

θ(i)

∣∣∣∣∣

)
,max

(∣∣∣∣
τ (i+1) − τ (i)

τ (i)

∣∣∣∣
)]

< 10−4.

(12)

In order to simplify the notation, in the rest of our discussion the iteration indexes for theθ, γ andτ
vectors will be omitted when not necessary.
The initial values for the ODE parameters and the precision of measurements can be either chosen by the
analyst on the basis of prior knowledge or estimated from theraw measurements. In the latter case dif-
ferent alternatives are possible. One possibility is to invert the ODE system using the spline coefficients
estimated by P-splines (with optimal smoothing parameter selected through standard methods such as gen-
eralized cross validation, AIC, BIC and others). Alternatively, the estimates of a NLS analysis (based on
the numerical solution of the ODE) can be used. The ODE compliance parameters can be set at large val-
ues (as in Ramsay et al. (2007)) if the interest is exclusively focused on ODE parameter estimation. Then,
step (d) in Algorithm 1 can be skipped.
The proposed procedure requires also an initial vector of spline coefficients: we recommend to use a stan-
dard P-spline smoother (Eilers and Marx, 1996) to start withreasonable initial coefficientsα(0). The ODE
model combined with the initial ODE parameters (θ(0)) and the initial spline coefficients associated to the
observed state functions can be used to deduce initial spline coefficients for the unobserved state functions.
On the other hand, according to our experience, the quality of the final estimates is not dramatically influ-
enced by the choice ofα(0).
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Data: Set of (noisy) measurements driven by a dynamic system.
Result: Estimation of optimalα, θ, γ andτ via QL-ODE-P-splines.
Initialization: Smooth the data using standard P-splines to estimate the initial spline coefficients
α(0). Set the initialθ(0), τ (0) andγ(0).
while Convergence is not achieveddo

(a) Given the currentα(i) andγ(i) linearize the ODE based penaltiesPENj (see Appendix A) ;
(b) Computeα(i+1) as Eq. (11) using the linearized penalties and computex̃(i+1)(t) = Bα(i+1)

;

(c) Updateτ (i+1) =
N − ED(i+1)

‖y − x̃(i+1)(t)‖2
(the effective dimension is computed as

ED(i+1) = tr

[
B
(
G(i) +R(θ(i),γ(i),α(i))

)−1

τ (i)B⊤

]
andG(i) = τ (i)B⊤B following

Hastie and Tibshirani (1990)) ;

(d) Compute
[
σ2

PEN

](i+1)
=

PEN
(
α(i+1)|α(i),θ(i),γ(i)

)

ED(i+1)
and ODE compliance parameters

γ(i+1) = 1/[σ2
PEN ](i+1);

(e) Given the current values of the other unknowns, update the ODE parameters by minimizing
Eq. (8);
(f) Compute the convergence criterion in Eq. (12).

end

Algorithm 1: Quasilinearized ODE-P-spline estimation algorithm.

This issue is illustrated by the results of a simulation study summarized in Table 1. One hundred data sets
have been generated by adding a zero mean Gaussian noise to the solutions of the ODE problems pre-
sented in Section 1. These data have been analyzed using QL-ODE-P-splines with initial ODE parameters
set either to their true valuesθ∗, to 0.5θ∗ or to2θ∗. The initial spline coefficients have been obtained: by
smoothing of the raw measurements with standard P-splines (Strategy 1), or by assuming constant state
functions (Strategy 2). The smoothers have been built on cubic B-splines defined over 40 equidistant in-
ternal knots to approximate the state function in the first order ODE model (Example 1) and using fourth
order spline functions computed on 150 equidistant internal knots for the simulation of the Van der Pol
system (Example 2). Samples ofN = 50 andN = 100 observations have been generated for Example 1
and 2 respectively.
Figure 1 shows possible estimation steps for Example 1 starting with a constant state function and wrong
initial ODE parameters. These plots clearly show the impactof the bad initial guesses (upper left panel).
At the second estimation step, the ODE-compliance parameter γ becomes small giving more weight to
the goodness-of-fit term in Eq. (7). Then, the (fitted) black curve tends to overfit the data with estimated
ODE parameters different from the true ones (θ∗1 = θ∗2 = 1). As the number of iterations increases, the
ODE compliance parameter also increases, yielding more weight to the ODE-based penalty in Eq. (7) and
ensuring that the estimated state functions and ODE parameters get closer and closer to their true values.
Figure 2 shows similar results for Example 2 (based on the Vander Pol system). It is remarkable that, even
with initial spline coefficients chosen without taking intoaccount the ODE model and/or the observations,
we properly approximate both the observed (x1(t)) and unobserved (x2(t)) state functions.
Table 1 shows the (average) root mean squared error w.r.t. the data (RMSE(y) = 0.01

∑100
k=1

√
N−1‖yk − x̃k‖2)

and the RMSE w.r.t. the state function (RMSE(x) = 0.01
∑100

k=1

√
N−1‖xk − x̃k‖2): the influence of

the initial guesses on the goodness of the final fit appears negligible. Analogously, the compliance of the
approximated state functions to the simulated ones does notseem affected by the specification of the initial
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settings. On average, the choice of the initial values for the spline coefficients seems to have a limited
impact on the number of iterations required to achieve convergence (# Iter). From these results, we can
conclude that Algorithm 1 ensures estimates robust with respect to the choice of initial parameters (ODE-
parameters and spline coefficients).
Finally notice that, like in the framework of Ramsay et al. (2007), our QL-ODE-P-spline procedure does
not require the knowledge (or approximation) of initial state conditions. This is a major advantage over
traditional numerical procedures such as Runge-Kutta based nonlinear least squares approaches. On the
other hand, as pointed by Frasso et al. (2013), in some cases these conditions arise as characteristic of the
data or as theoretical requirements and cannot be ignored inorder to obtain meaningful estimates of the
parameters and relevant approximations to the state function(s). In these cases the state conditions can be
included in the framework above (see Appendix C).

[Figure 1 about here.]

[Figure 2 about here.]

[Table 1 about here.]

3.2 Approximate sampling variances of̂θ and x̃ at convergence

In step (e) of Algorithm 1 the unknown ODE parameters are estimated by maximizing (8). Plugging-in

the (current) precision parameterτ̂j =
(N − ED)

∥∥yj −Bjα̂j (θ, τ ,γ,y)
∥∥2 into H(θ, τ |y,α), the criterion to be

maximized becomes:

H (θ|y, α̂, τ̂ ) =
∑

j∈J

{
−
τ̂j
2

∥∥yj −Bjα̂j (θ, τ ,γ,y)
∥∥2
}
, (13)

from which, at convergence of the QL-ODE-P-spline algorithm, (the inverse of) the Fisher information
matrix (FIM) can be computed to approximate the variance of the estimated ODE parameters:

var(θ̂) ≈

[
−E

(
∂2H

∂θ2

∣∣∣∣
θ̂

)]−1

. (14)

This approximation is analogous to the one in Rodriguez-Fernandez et al. (2006) and Xue et al. (2010) but
the quasilinearization of the penalty greatly simplifies the computation of the second derivatives in Eq. 14
(see Appendix B for details and for comparisons with the estimator suggested by Ramsay et al. (2007)).
The proposed QL-ODE-P-spline also simplifies the approximation of pointwise confidence bands forx̃.

Indeed, by defining the hat matrix asA = B
(
G(τ̂ ) +R(θ,γ, α̂(i))

)−1

τ̂B⊤, one obtains var(x̃) ≈

τ̂
−1
(
A⊤A

)
. Approximate pointwise confidence bands can be computed using x̃± 2

√
diag[var(x̃)].

4 Practical implementation and simulation

In this section the results of simulation studies based on the wo examples presented in Section 1 are reported
to illustrate the properties of the proposed approach. It isfirst shown how these ODEs can be linearized to
define the steps in the QL-ODE-P-spline estimation algorithm.
The ODE given in Eq. (2) can be linearized at iterationi+ 1 as follows:

dx̃(i+1)

dt
(t) = (θ1 − 2θ2t)

[
x̃(i+1) (t)

]2

≈ 2 (θ1 − 2θ2t) x̃
(i) (t) x̃(i+1) (t)− (θ1 − 2θ2t)

[
x̃(i)(t)

]2
.
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In the Van der Pol system, only the first differential equation has a nonlinear term. It can be linearized
using:

dx̃
(i+1)
1

dt
(t) = θ

(
x̃
(i+1)
1 (t)−

1

3

[
x̃
(i+1)
1 (t)

]3
− x̃

(i+1)
2 (t)

)

≈ θ

(
1−

[
x̃
(i)
1 (t)

]2)
x̃
(i+1)
1 (t)− θx̃

(i+1)
2 (t) +

2θ

3

[
x̃
(i)
1 (t)

]3
.

These approximations are then used to build the penalty terms in Eqs. (5) and (6). The spline coefficients
and the other parameters are jointly updated with the ODE-compliance parameters (using the EM-type
approach by Schall (1991)) as in Algorithm 1.

4.1 Evaluation of estimation accuracy

An intensive simulation study is presented here to study theproperties of the proposed methods. We have
generated a large number of datasets using the ODE models in Eqs. (2) and (4) by perturbing the analytic
or numerical solutions of the differential models by an additive zero mean Gaussian noise.
We aim to assess the quality of the estimates provided by the QL-ODE-P-spline framework. The perfor-
mances of the proposed approach are compared with those achieved by a direct NLS analysis based on a
Runge-Kutta numerical scheme.

4.1.1 First order ODE simulation results

In this section, the results of simulations based on Eq. (2) are discussed. The (analytic) state function has
been computed withθ1 = θ2 = 1 andx(0) = 1. Gaussian noise with mean zero and varianceσ2 = 0.0452

has been added toN values of the state function evaluated at time points uniformly sampled in[0, 2]. The
data generation process has been repeated 500 times under four sample sizesN = (20, 50, 100, 500).
Table 2 summarizes the estimation performances whenx(0) is unknown and provides the bias (in percent-
age), the averaged standard errors, the relative mean squared error and standard deviation ofθ̂1, θ̂2 andτ̂ .
In all the simulation settings we used cubic B-splines defined on 40 equidistant internal knots. The qual-
ity of the QL-ODE-P-spline estimates are compared with those of the Runge-Kutta based nonlinear least
squares approach with initial state conditions approximated using smoothing splines (Wu et al., 2008).
The table clearly shows that the quasilinearized ODE-P-spline provides better estimates of the unknown
ODE parameters than the NLS-based approach. The biases for all the parameter estimates are small and
similar whatever the sample size. Similar results are obtained for the estimation of the standard deviations
and the root mean squared errors of the parameter estimators.

[Table 2 about here.]

4.1.2 Van der Pol system simulation results

A simulation study was also performed with the Van der Pol system in Eq. (4). Five hundreds datasets
of sizeN = (50, 100, 500, 1000) have been obtained by adding a random Gaussian noise component
with zero mean and varianceτ−1 = σ2 = 0.072 to uniformly sampled values of the numerical solution
to Eq. (4). The solution has been approximated using a Runge-Kutta scheme for values oft in [0, 10]
and considering initial value conditionsx1(0) = x2(0) = 1 for θ = 1. Table 3 compares the QL-ODE-P-
splines method and the Runge-Kutta NLS approach in terms of estimation performances. The results of our
smoothing-based procedures have been obtained using fourth order B-splines defined on 150 equidistant
internal knots. The initial state conditions for the NLS-based approach have been approximated using
smoothing splines.
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Analogously to the previous simulation example, the QL-ODE-P-spline approach seems to ensure better
performances and this becomes even more evident for moderate sample sizes. The biases and the root
mean squared errors of the estimates of the ODE parameters and of the state function att = 0 are quite
small and tend to decrease with sample size.

[Table 3 about here.]

5 Two real(istic) examples

In this section the QL-ODE-P-spline procedure is illustrated by analyzing two real(isitc) data examples.
As first application we focus on a simulated experiment inspired by the heartbeat phenomenological model
proposed by dos Santos et al. (2004). In the second example, (a subset of) the well known Canadian lynx-
hare abundance data (Elton and Nicholson, 1942; Holling, 1959) are analyzed by estimating the parameter
and the solution of a Lotka-Volterra system of equations viaQL-ODE-P-splines.

5.1 A realistic model for the analysis of heartbeat signals

The normal cardiac rhythm depends on the aggregate of cells in the right atrium defining the sino-atrial
(SA) node which constitutes the normal pacemaker. The SA node generates electrical impulses that spread
to the ventricules through the atrial musculature and conducting tissues, the AV node. The idea of treating
the heart system using differential models dates back to thework by Van der Pol and Van der Mark (1928).
In their pioneering paper the authors proposed to model the SA/AV system by a coupled set of electronic
systems exhibiting relaxation oscillations. The Van der Pol and Van der Mark (1928) model represents a
convenient description of the hearth dynamics due to its parametric simplicity and ability to cover complex
periodicity. Successively, other systems have been proposed generalizing this original framework in order
to better synthesize the biological complexity of the phenomenon under consideration (see Formaggia et al.
(2010) for more details).
Among all the alternatives proposed in the specialized literature, we adopt the following system of coupled
oscillators (dos Santos et al., 2004):





dx1

dt
(t) = x2 (t)

dx2

dt
(t) = κ(x1 (t)− w1)(x1 (t)− w2)x2 (t)− b1x1 (t) + c1(x3 (t)− x1 (t))

dx3

dt
(t) = x4 (t)

dx4

dt
(t) = κ(x3 (t)− w1)(x3 (t)− w2)x4 (t)− b2x3 (t) + c2(x1 (t)− x3 (t))

where(x1, x2) and(x3, x4) describe the electrical activity in the SA (sino-atrial) and AV (atrio-ventricular)
nodes respectively. Parametersb1 andb2 determine the normal mode frequencies and(w1, w2) characterize
the non-linearity of the system. A central role is played by parameters(c1, c2) determining the kind of
diffusivity described by the coupled oscillators. Forc1 = c2 = 0 the SA node undergoes periodic regular
oscillations, while for non-nullc1 < c2 the system describes a bidirectional asymmetric coupling.
The right panels in Figure 3 depict the simulated measurements (dots) and the numerical solution of the
system (dashed lines) together with the state function approximated via the QL-ODE-P-spline method
(black full lines). The data have been obtained by adding a zero mean Gaussian noise to200 uniformly
sampled values of the first derivatives of the numerical solutions of the system defined by using ODE-
parameters consistent with those in dos Santos et al. (2004). The system has been solved numerically
for x1(0) = 1, x2(0) = 1, x3(0) = 1, x4(0) = 1 taking t ∈ (0, 20). Table 4 shows the estimated
parameters and their standard errors. In order to appropriately approximate the complexity of the observed
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dynamics, fourth order B-splines built on 250 equidistant internal knots have been used in this example.
From Figure 3 and Table 4 one can appreciate the quality of theperformances achieved by the QL-ODE-
P-spline procedure.

[Table 4 about here.]

[Figure 3 about here.]

5.2 Canadian lynx and snowshoe hare life cycles

In this section, we analyze the well known Canadian lynx and snowshoe hare data (Elton and Nicholson,
1942; Holling, 1959). The lynx and hare abundances have beencollected from historical pelt-trading
records of the Hudson Bay Company in a period between 1862 and1930. Here, we consider a subset of
the original sample analyzing the abundances observed between 1900 and 1920 (see figure 4). For these
data the standard Lotka-Volterra system of ODEs can be estimated to obtain a meaningful description the
life cycles of the two populations:





dx1

dt
(t) = x1 (t) [β − ζx2 (t)]

dx2

dt
(t) = −x2 (t) [δ − ηx1 (t)]

where(x, y) indicate the prey (hare) and the predator (lynx) abundancesrespectively,β andη are the
intrinsic growth rates of the prey and predator populationsand(ζ, δ) are the predator-pray meeting and the
predator death rates respectively.
The parameter estimates obtained with the quasilinearizedODE-P-splines are given in Table??. These
results were computed using cubic B-splines defined on a set of 100 internal knots. The initial values for the
ODE and precision parameters,θ(0) = (0.547, 0.028, 0.843, 0.026) andτ (0) = 0.01, were obtained using
nonlinear least squares withx1 andx2 approximated using standard P-splines (Eilers and Marx, 1996)
with smoothing parameter selected by generalized cross validation (Wahba, 1990). Figure 4 shows the
approximated state functions and compares them with the rawmeasurements and the numerical solutions
of the ODE system (black dashed lines). These numerical solutions were computed using a Runge-Kutta
scheme for ODE parameters and initial values set at their QL-ODE-P-spline estimates.
Applying the proposed QL-ODE-P-spline method, a smoother consistent with the ODE model is estimated
(Figure 4): the approximated state functions (solid gray lines) and the numerical solutions (black dashed
lines) overlap. In our opinion, these estimates guarantee agood description of the data although the fitted
state functions do not catch the trend observed in the years 1905 to 1910. This miss-fitting effect is a
consequence of the poor flexibility of the Lotka-Volterra model. However we consider it a small price to
be payed given the model parsimony and interpretability.
This fitting issue could also be related to the data collection process. Indeed, data before 1903 represent fur
trading records while they were derived from questionnaires after 1903 (Zhang et al., 2007). This might
have influenced the observations in the years between the twopeaks. Finally, according to our experience,
we advise to start the estimation process by taking a reasonably largeγ(0) parameter if the research interest
is focused on the estimation of the ODE parameters and the approximation of state functions consistent
with the ODE system.

[Table 5 about here.]

[Figure 4 about here.]

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journalxxx (2015) xxx 11

6 Discussion

In this paper we have introduced the quasilinearized (QL-) ODE-P-spline approach as a tool for the esti-
mation of the parameters defining (systems of) nonlinear ODEs and for the approximation of their state
functions starting from a set of (noisy) measurements. Thismethodology is inspired by the generalized
profiling framework of Ramsay et al. (2007). The estimation procedure exploits a penalized likelihood
formulation to build a compromise between a B-spline based description of the observations and the B-
spline collocation solution to the ODE. The estimation process alternates two steps: 1) estimation of the
optimal spline coefficients given the other unknowns; 2) estimation of the ODE parameters treating the
spline coefficients as nuisance parameters. The compromisebetween data smoothing and compliance to
the differential model is tuned by an ODE-compliance parameter to be selected in an upper optimization
level. Dealing with nonlinear ODEs, the application of the original proposal of Ramsay et al. (2007) is
demanding as it implies a nonlinear least squares step and the use of the implicit function theorem both
for point and interval estimates. This is a consequence of the non explicit relationship between the spline
coefficient estimates and the other unknowns.
The introduction of a quasilinearization step overcomes these hitches leading to a valuable simplification
of the estimation procedure. The quasilinearization of theODE-based penalty term (Bellman and Kalaba,
1965) permits to analytically link the spline coefficients to the differential parameters. This makes possible
to select the ODE-compliance parameters using standard approaches and simplifies the approximation of
the var-cov of the unknown parameters. Indeed, within our quasilinearized spline based framework, the
estimation process reduces to a conditionally linear problem for the optimization of the spline coefficients.
We suggest to view the ODE-compliance parameter as the ratioof the noise and of the penalty variances
and to estimate it using the EM-type approach proposed by Schall (1991). The quasilinearized estimation
process requires initial valuesα(0) for the spline coefficients (Algorithm 1). Good initial spline coeffi-
cients can be obtained by smoothing the raw data with standard P-splines (Eilers and Marx, 1996) even
if, according to our experience, the choice ofα(0) hardly influences the quality of the final estimates (see
Section 3).
The performances of the proposed method have been evaluatedthrough intensive simulations (Section 4).
Two simulation studies have been conducted by generating data from a simple first order ODE in the first
case and by considering a relaxation oscillator governed bythe Van der Pol equation in the second case.
The proposed approach has been compared with the direct NLS estimation procedure based on a Runge-
Kutta numerical scheme. For the latter, the required initial values for the state function were approximated
using smoothing splines. The simulation results confirm that our approach ensures better performances
than the ones provided by a Runge-Kutta NLS approach.
In Section 5, the quasilinearized spline based methodologyhas been applied in two real(istic) data ana-
lyzes. In the first example we have analyzed a set of 150 synthetic SA/AV voltage measurements generated
perturbing with an additive Gaussian noise the first derivatives of the (numerical) solutions of an unforced
system of coupled Van der Pol equations (dos Santos et al., 2004). In the second example we have analyzed
the (yearly) lynx-hare abundances (MacLulich, 1937; Eltonand Nicholson, 1942) recorded in Canada be-
tween 1900 and 1920. In this case, we used a QL-ODE-P-spline approach with a penalty based on a
Lotka-Volterra system.
Our future research will focus on possible extensions of theQL-ODE-P-spline framework. First of all, we
think that the linearized ODE penalty and the profiling estimation settings can be adapted to hierarchical
settings with random ODE parameters. Second, the presentedapproach can be also adapted to analyze
(noisy) realizations of dynamic systems evolving in space and time and described by nonlinear partial
differential equations (PDEs). Finally, the introductionof a quasilinearization step should facilitate the
generalization of the approach proposed by Jaeger and Lambert (2013) to analyze nonlinear differential
systems in a Bayesian framework.
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Appendix

A. Construction of the quasilinearized penalty matrix in a general system of nonlinear
ODEs

In this appendix we define the matrixR
(
θ,γ,α(i)

)
, the vectorr

(
θ,γ,α(i)

)
and the constantl

(
θ,γ,α(i)

)

involved in the linearized ODE-penalty. Consider a generalsystem of ODEs:




dx1

dt
(t)− f1(t,x,θ) = 0

...
dxd

dt
(t)− fd(t,x,θ) = 0

(A.1)

wherefj(t,x,θ) is a known function of the state variables and of the unknown ODE parametersθ that we

consider fixed over time. With quasilinearization, given the estimatẽx(i) at stepi, Eq. (A.1) suggests to
require that̃x(i+1) checks:





dx̃
(i+1)
1

dt
(t)−

d∑

k=1

x̃
(i+1)
k

∂f1
∂xk

(
t, x̃(i),θ

)
− f1

(
t, x̃(i),θ

)
+

d∑

k=1

x̃
(i)
k

∂f1
∂xk

(
t, x̃(i),θ

)
= 0

...

dx̃
(i+1)
d

dt
(t)−

d∑

k=1

x̃
(i+1)
k

∂fd
∂xk

(
t, x̃(i),θ

)
− fd

(
t, x̃(i),θ

)
+

d∑

k=1

x̃
(i)
k

∂fd
∂xk

(
t, x̃(i),θ

)
= 0

If αj denotes the vector of spline coefficients to be estimated in the jth state function, the updatedjth
penalty term at iterationi+ 1 is given by:

PEN j

(
α

(i+1)
j |α

(i)
j

)
≈

∫ T

0

(
dx̃

(i+1)
j

dt
(t)− fj

(
t, x̃(i),θ

)

−
d∑

k=1

(
x̃
(i+1)
k − x̃

(i)
k

) ∂fj
∂xk

(
t, x̃(i),θ

))2

dt,

≈

∫ T

0

([
α

(i+1)
j

]⊤
b
(1)
j (t)

−
d∑

k=1

[
α

(i+1)
k

]⊤
b
(0)
j (t)

∂fi
∂xk

(
t, x̃(i),θ

)
− vj (t)

)2

dt

with vj (t) = fj

(
t, x̃(i),θ

)
−

d∑

k=1

x̃
(i)
k (t)

∂fj
∂xk

(
t, x̃(i),θ

)
and b

(0)
j (t), b(1)j (t) are, respectively,Kj-

dimensional vectors of B-spline functions and their derivative such that̃x(i)
j (t) =

[
b
(0)
j (t)

]⊤
α

(i)
j ,

dx̃
(i)
j

dt
(t) =
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[
b
(1)
j (t)

]⊤
α

(i)
j . Thejth element of the penalty can be computed as:

PENj =
[
α

(i+1)
j

]⊤(∫
b
(1)
j (t)

[
b
(1)
j (t)

]⊤
dt

)
α

(i+1)
j

−
[
α

(i+1)
j

]⊤(∫ ∂fj
∂x1

(
t, x̃(i),θ

)
b
(1)
j (t)

[
b
(0)
1 (t)

]⊤
dt · · · ,

∫
∂fj
∂xd

(
t, x̃(i),θ

)
b
(1)
j (t)

[
b
(0)
d (t)

]⊤
dt

)
α(i+1)

−
[
α(i+1)

]⊤




∫
∂fj
∂x1

(
t, x̃(i),θ

)
b
(0)
1 (t)

[
b
(1)
j (t)

]⊤
dt

...∫
∂fj
∂xd

(
t, x̃(i),θ

)
b
(0)
d (t)

[
b
(1)
j (t)

]⊤
dt




α
(i+1)
j

+
[
α(i+1)

]⊤




cj11 cj12 · · · cj1d
cj21 . . . . . . cj2d

...
...

.. .
...

cjd1 . . . . . . cjdd


α(i+1) (A.2)

+ 2
[
α(i+1)

]⊤




∫
vj (t)

∂fj
∂x1

(
t, x̃(i),θ

)
b
(0)
j (t)dt

...∫
vj (t)

∂fj
∂xd

(
t, x̃(i),θ

)
b
(0)
j (t)dt




− 2

(∫
vj (t) b

(1)
j (t)dt

)⊤

α(i+1) +

∫
v2j (t)dt,

with

cjkl
=

∫
∂fj
∂xk

(
t, x̃(i),θ

) ∂fj
∂xl

(
t, x̃(i),θ

)
b
(0)
k (t)

[
b
(0)
l (t)

]⊤
dt.

The overall penalty termPEN (i+1) =
∑d

j=1 γjPEN
(i+1)
j , at stepi+ 1 is therefore equal to:

PEN (i+1) =
[
α(i+1)

]⊤
R
(
θ,γ,α(i)

)
α(i+1) + 2

[
α(i+1)

]⊤
r
(
θ,γ,α(i)

)
+ l
(
θ,γ,α(i)

)
.

The matrixR
(
θ,γ,α(i)

)
has dimensionK ×K, is symmetric and block-diagonal. The block(k, l) has

dimensionKk ×Kl and is computed as:
[
δklγk

∫
b
(1)
k (t)

[
b
(1)
k (t)

]⊤
dt− γk

∫
∂fj
∂xk

(
t, x̃(i),θ

)
b
(1)
k (t)

[
b
(0)
l (t)

]⊤
dt

−γl

∫
∂fj
∂xl

(
t, x̃(i),θ

)
b
(0)
l (t)

[
b
(1)
k (t)

]⊤
dt+

d∑

i=1

γicikl

]
,

wherek, l ∈ {1, . . . , d} andδkl = 1 if k = l and zero otherwise. The vectorr
(
θ,γ,α(i)

)
has lengthK

with kth component given by

d∑

j=1

γj

(∫
vj (t)

∂fj
∂x1

(
t, x̃(i),θ

)
b
(0)
k (t) dt

)
− γk

∫
vk (t) b

(1)
k (t)dt.
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Finally the constantl
(
θ,γ,α(i)

)
in the penalty is equal to

d∑

j=1

γj

∫
v2j (t)dt.

B Hessian ofH(θ|y, α̂, τ̂ )

In Section 3 we suggest to approximate the sampling variation of the unknown ODE parameters using
the Fisher information matrix (FIM) at convergence of the QL-ODE-P-spline algorithm. This requires the
computation of the Hessian matrix of:

H(θ|y, α̂, τ̂ ) =
∑

j∈J

{
−
τ̂j
2

∥∥yj − x̃j

∥∥2
}
,

with x̃j = Bjα̂j(θ̂, τ̂ , γ̂,y). As shown before, the quasilinearization of the penalty term makes possible
to work out an analytic expression for the vector of spline coefficients and this greatly simplifies the com-
putation of∂2H/∂θ2.
To simplify our notation assume that one is only interested in the approximation of a single state func-
tion (J = 1). Suppose that at iterationi + 1 the QL-ODE-P-spline algorithm reaches convergence. At
convergence the optimal vector of spline coefficients can bewritten as (with the hat symbols omitted):

α(i+1) =
(
G+R

(
θ,γ,α(i)

))−1 (
g − r

(
θ,γ,α(i)

))
,

From our previous discussion it clearly appears that the penalty matrixR and the penalty vectorr do not
depend on the current spline coefficients but only on the previous ones. It is then possible to show that the
(k, l)−element of the second derivative matrix ofH can be computed as:

∂2H

∂θkθl
= −τ̂

[
−y⊤ ∂2x̃

∂θk∂θl
+

(
∂2x̃

∂θk∂θl

)⊤

x̃+

(
∂x̃

∂θk

)⊤
∂x̃

∂θl

]
. (B.1)

Let C =
(
G+R(θ,γ,α(i))

)−1
andg = τ̂B⊤y, then the first and second derivatives of the approxi-

mated state function (at convergence) w.r.t.θ can be computed as:

∂x̃

∂θk
= −BC

dR

dθk
C
(
τ̂B⊤y − r

)
+BC

(
−

dr

dθk

)
, (B.2)

∂2x̃

∂θk∂θl
= BC

dR

dθl
C

dR

dθk
C
(
τ̂B⊤y − r

)
−BC

d2R

dθkdθl
C
(
τ̂B⊤y − r

)

+BC
dR

dθk
C

dR

dθl
C
(
τ̂B⊤y − r

)
−BC

dR

dθk
C

(
−

dr

dθl

)

−BC
dR

dθl
C

(
−

dr

dθk

)
+BC

(
−

d2r

dθkdθl

)
. (B.3)

The derivatives of the penalty matrixR and vectorr can be easily computed using the fact that they only
depend on the values of the spline coefficients at the previous step (see Appendix A).
Simulations suggest that the results obtained with the sophisticated pseudoδ-method by Ramsay et al.
(2007) are very similar. Table 6 compares the (average) standard errors of the ODE-parameters computed
from the FIM of the QL-ODE-P-splines at convergence with those computed via the pseudoδ-method in a
generalized profiling framework. The comparison is based onthe simulation studies discussed in Section 4
with compliance parameters for the generalized profiling approach set at their estimated values following
the QL-ODE-P-spline procedure.

[Table 6 about here.]
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C Including state conditions in the estimation process

A (system of) differential equation(s) can have a unique solution if condition(s) are imposed on the value(s)
of the state function(s) and/or of one of its derivatives at agiven time point(s). Initial and boundary value
conditions are usually distinguished. In what follows, forthe sake of brevity, we generically refer to them
as “state conditions”.
In many real data analyzes the state conditions are not knownin advance and need to be estimated from the
data. In some cases, these conditions can arise as characteristic of the observed dynamics or as theoretical
constraints for the final fit. A real data example is discussedin Frasso et al. (2013) where the authors
analyze a set of call option prices. In this case the non-arbitrage state conditions need to be satisfied by
the approximated state function in order to obtain reasonable estimates. If available, such information can
easily be included in the estimation process dealing with linear differential equations (Frasso et al., 2013).
The same is true after quasilinearization of a nonlinear system.
Consider the general differential problem given by:

{
dx

dt
(t) = f (t,x,θ) ,

x (t0) = st0 for t0 ∈ T0,

whereT0 denotes the subset of observed times wherex is forced to be equal tost0 . Using the B-spline
approximation, these conditions become:

Sα(i+1) = st0 , (C.1)

whereS is a matrix with each row containing B-spline functions evaluated at a givent0 ∈ T0. These state
conditions can be included in the estimation process using two strategies.
The first one consists in treating them as an extra least squares penalty. Then, the optimal spline coefficient
can be obtained by maximizing the following modified fitting criterion:

J
(
α(i+1)|θ,γ, τ ,α(i),y

)
=

∑

j∈J

{
nj

2
log (τj)

τj
2

∥∥∥yj − x̃
(i+1)
j (t)

∥∥∥
2
}

−
1

2
PEN

(
α(i+1)|α(i),γ,θ

)

−
κ

2

(
Sα(i+1) − st0

)⊤ (
Sα(i+1) − st0

)
, (C.2)

whereκ is set at an arbitrary large value. Note that with such an extra penalty, the state condition is
imposed only in a least square sense. With the fitting criterion in Eq. (C.2), the optimal spline coefficients
at iteration(i+ 1) become:

α(i+1) = argmax
α

J
(
α(i+1)|θ, τ ,γ,α(i)y

)

=
(
G+R

(
θ,γ,α(i)

)
κS⊤S

)−1 (
g − r

(
θ,γ,α(i)

)
+ κS⊤st0

)
.

If κ is equal to zero, then one gets back the estimation procedurediscussed before, while forκ tending to
infinity, the state functions are forced to meet the imposed conditions.
The second approach consists in forcing the smooth estimates of the state function to check the prescribed
conditions by the introduction of Lagrange multipliers. Starting from Eq. (7) the Lagrange function for the
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constrained optimization problem is:

L
(
α(i+1),ω|θ,γ, τ ,α(i),y

)
=

∑

j∈J

{
nj

2
log (τj)−

τj
2

∥∥∥yj − x̃
(i+1)
j (t)

∥∥∥
2
}

−
1

2
PEN

(
α(i+1)|α(i),γ,θ

)

− ω⊤
(
Sα(i+1) − st0

)
, (C.3)

whereω is the vector of Lagrange multipliers. Following Currie (2013), the maximization ofL can be
obtained by solving:

(
G+R

(
θ,γ,α(i)

)
S⊤

S 0

)(
α(i+1)

ω

)
=

(
g − r

(
θ,γ,α(i)

)

st0

)
.

Whatever the selected approach to force the state conditions, the estimates of the ODE parametersθ are
updated using Eq. (8).
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Again only the first derivative of the signal is observed (x4). Two hundred measurements per node have
been simulated.
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Figure 4 Raw data and estimates obtained for the Canadian lynx vs snowshoe hare predator-pray dynam-
ics. In this example we take into account the yearly observations recorded between 1900 and 1920.
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Table 1 Robustness of the QL-ODE-P-spline estimation approach to the choice of initial spline coeffi-
cients and ODE parameters. The first two rows of each sub-table show the (average) RMSEs between the
approximated state function and the simulated measurements taking either constant initial values for the
spline coefficients (Strategy 1) or a standard P-spline smoother (Strategy 2). Rows 3 and 4 report the (aver-
age) RMSEs computed with respect to the analytic/numericalsolution of the ODE model. The remaining
part of each sub-table reports the average number of iterations (# Iter) required to achieve convergence.

First order ODE Van der Pol system
Initial α θ∗ 0.5θ∗ 2θ∗ Initial α θ∗ 0.5θ∗ 2θ∗

RMSE(y) Strategy 1 0.041 0.040 0.041 Strategy 1 0.042 0.040 0.041
Strategy 2 0.042 0.040 0.041 Strategy 2 0.042 0.040 0.041

RMSE(x)
Strategy 1 0.012 0.013 0.013 Strategy 1 0.011 0.013 0.013
Strategy 2 0.011 0.013 0.013 Strategy 2 0.011 0.013 0.013

# Iter Strategy 1 16 22 21 Strategy 1 16 14 14
Strategy 2 18 23 21 Strategy 2 16 14 14
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Table 2 Simulation results for the first order ODE example. For the two approaches, the bias, the root mean squared errors, the standard deviations
and the average standard errors of the estimated parameters(ODE and initial values) are provided. In the last row of the right part of the table, the
(average) optimal ODE-compliance parameters are shown.

Runge-Kutta NLS QL-ODE-P-splines

Parameter N = 20 N = 50 N = 100 N = 500 N = 20 N = 50 N = 100 N = 500

θ1 1.018% 0.165% 0.046% 0.093% -0.244% 0.038% 0.003% -0.034%
Bias θ2 0.999% 0.173% 0.156% 0.106% -0.183% 0.021% 0.024% -0.028%

x(0) -0.049% -0.005% 0.039% 0.012% 0.082% 0.016% 0.023% 0.015%
τ 33.265% 12.647% 4.927% 1.237% 32.198% 9.294% 4.724% 0.892%

θ1 1.34E-01 9.14E-02 6.74E-02 3.27E-02 7.85E-02 5.54E-02 3.60E-02 1.86E-02
RMSE θ2 9.77E-02 6.23E-02 4.53E-02 2.11E-02 5.65E-02 3.89E-02 2.53E-02 1.33E-02

x(0) 4.40E-02 3.13E-02 2.31E-02 1.15E-02 2.48E-02 1.76E-02 1.19E-02 5.68E-03
τ 6.04E-01 2.67E-01 1.55E-01 6.28E-02 1.27E-03 4.93E-04 3.22E-04 1.34E-04

θ1 1.33E-01 9.15E-02 6.75E-02 3.27E-02 7.86E-02 5.55E-02 3.60E-02 1.86E-02
Std dev θ2 9.72E-02 6.23E-02 4.53E-02 2.11E-02 5.65E-02 3.90E-02 2.54E-02 1.33E-02

x(0) 4.40E-02 3.13E-02 2.32E-02 1.16E-02 2.48E-02 1.76E-02 1.19E-02 5.68E-03
τ 5.05E-01 2.36E-01 1.47E-01 6.16E-02 5.47E-01 2.29E-01 1.54E-01 6.66E-02

E(σθ1) 1.25E-01 9.24E-02 6.96E-02 3.26E-02 7.52E-02 5.23E-02 3.80E-02 1.77E-02
E(σθ2) 9.00E-02 6.32E-02 4.67E-02 2.14E-02 5.38E-02 3.70E-02 2.68E-02 1.25E-02
E(γ) 2.52E+07 2.44E+07 2.41E+07 2.40E+07
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Table 3 Simulation results with a Van der Pol system: the biases, root mean squared errors, standard deviations and (average) standard errors for
parameter estimates using QL-ODE-P-splines and Runge-Kutta based nonlinear least squares procedures. In the last rowof the right part of the table,
the (average) optimal ODE-compliance parameters are shown.

Runge-Kutta NLS QL-ODE-P-splines

Parameter N = 50 N = 100 N = 500 N = 1000 N = 50 N = 100 N = 500 N = 1000

θ -0.378% -0.210% 0.065% 0.012% 0.165% -0.015% -0.002% -0.009%
Bias x1(0) 0.146% 0.174% 0.011% 0.018% -0.178% -0.045% 0.015% -0.021%

x2(0) -0.009% 0.062% -0.071% 0.049% -0.166% 0.059% 0.034% -0.002%
τ 9.971% 5.424% 4.743% -0.892% 7.495% 3.936% 0.699% 0.292%

θ 6.73E-02 4.76E-02 7.48E-03 6.63E-03 3.28E-02 2.35E-02 1.01E-02 8.23E-03
RMSE x1(0) 3.83E-02 2.71E-02 1.02E-02 7.02E-03 3.07E-02 2.14E-02 9.23E-03 6.90E-03

x2(0) 2.45E-02 1.76E-02 7.08E-03 1.13E-02 5.83E-02 4.12E-02 1.82E-02 1.36E-02
τ 2.58E-01 1.67E-01 6.18E-02 4.60E-02 2.42E-01 1.57E-01 6.67E-02 4.65E-02

θ 6.73E-02 4.76E-02 7.46E-03 6.63E-03 3.28E-02 2.35E-02 1.01E-02 8.24E-03
Std dev x1(0) 3.83E-02 2.71E-02 1.02E-02 7.02E-03 3.07E-02 2.14E-02 9.24E-03 6.90E-03

x2(0) 2.45E-02 1.76E-02 7.05E-03 1.13E-02 5.84E-02 4.13E-02 1.82E-02 1.37E-02
τ 2.39E-01 1.59E-01 6.13E-02 4.59E-02 2.30E-01 1.52E-01 6.64E-02 4.64E-02

E(σθ) 2.38E-02 1.69E-02 7.47E-03 6.74E-03 2.90E-02 2.11E-02 9.67E-03 7.05E-03
E(γ) 8.65E+07 8.74E+07 8.69E+07 8.58E+07
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Table 4 ODE and precision parameter estimated for the observed coupled Van der Pol system (dos Santos
et al., 2004). In the first column the true values of the ODE andprecision parameters are indicated.

True parameter Estimates S. E.
b1 = 1.5 1.514 0.018
b2 = 0.1 0.120 0.022
κ = −1.8 -1.887 0.049

w1 = −0.2 -0.197 0.012
w2 = 2 1.972 0.020

c1 = 0.05 0.044 0.016
c2 = 0.55 0.537 0.023

τ = 30 29.79
γ̂ 9.12E+03
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Table 5 Estimated parameters of the Lotka-Volterra system defined for the lynx-hare data example. The
optimal ODE compliance parameters have been found equal to 2.71E+06.

Parameter Estimates S. E.
β 0.481 3.70E-02
ζ 0.025 2.00E-03
δ 0.927 7.60E-02
η 0.028 2.00E-03

τ̂ 3.863
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Table 6 Average standard errors of the ODE-parameters computed using the FIM of the QL-ODE-P-
splines and the pseudoδ-method in a generalized profiling framework.

First Oredr ODE example

QL-ODE-P-Splines Generalized Profiling
N = 20 N = 50 N = 100 N=500 N = 20 N = 50 N = 100 N=500

θ1 7.52E-02 5.23E-02 3.80E-02 1.77E-02 7.25E-02 5.12E-02 3.75E-02 1.72E-02
θ2 5.38E-02 3.70E-02 2.68E-02 1.25E-02 6.78E-02 5.67E-02 2.60E-02 1.21E-02

Van der Pol example

QL-ODE-P-Splines Generalized Profiling
N = 50 N = 100 N = 500 N = 1000 N = 50 N = 100 N = 500 N = 1000

θ1 2.90E-02 2.11E-02 9.67E-03 7.05E-03 2.76E-02 2.11E-02 1.01E-02 7.97E-03

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


