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A simple transformation is used to obtain the first integrals and
the solutions of the Duffing–van der Pol type equation under
certain conditions. It is shown that the system can be totally
integrable and this total integrability admits new solutions. The
new solutions require weaker conditions on the system’s parame-
ters than hereto known. [DOI: 10.1115/1.4024673]

1 Introduction

Many dynamic models of physical systems are represented by
nonlinear differential equations. Among them, the Duffing–van
der Pol type equation has attracted numerous researchers due to
its usefulness in modeling various physical systems. However, the
nonlinearity of the equation makes it very difficult to find the first
integrals and/or its solutions. Finding the first integrals of the
motion is intricately connected with the inverse problem of the
calculus of variations [1]. The standard method to find the first
integrals is first to obtain a Lagrangian function from the differen-
tial equations describing the given mechanical system [2–4] and
then to calculate the Jacobi integral [5] if the Lagrangian function
does not contain time explicitly. In Ref. [4], for example, the first
integrals of some linearly damped multidegree-of-freedom sys-
tems are reported. Prelle and Singer [6] proposed another proce-
dure to find the first integrals of first-order ordinary differential
equations of the form _x ¼ P t; xð Þ=Q t; xð Þ where both P(t, x) and
Q(t, x) are polynomials. Duarte et al. [7] extended this method to
second-order ordinary differential equations. In addition, Lie sym-
metry methods [8] have received considerable attention for their
generality. Recently, the extended Prelle–Singer method and the
Lie symmetry method have been applied to the Duffing–van der
Pol type equation to obtain the first integrals and its solutions in
some very special situations [9,10]. In Refs. [9,10], a new first
integral and a solution in a parametric form are reported under
certain conditions. The purpose of this paper is to obtain the same
first integral of the Duffing–van der Pol type equation for a much
wider set of conditions by using a simpler and more direct
approach without recourse to extensive symbolic computations
and Lie symmetry methods. Moreover, implicit and explicit

solutions for more general cases, which have not yet been
obtained so far, are developed.

2 Integrability and First Integrals of the

Duffing–van der Pol Type Equation

In this section, we derive the first integral of the Duffing–van
der Pol type equation using a simpler, more direct method and
obtain a more general solution, compared with the ones proposed
in Refs. [9,10] and so far known. The main idea is to use a suitable
transformation and then obtain conditions under which the trans-
formed equation is totally integrable. We begin with the following
form of the Duffing–van der Pol type system:

€xþ b x2 � k
� �

_xþ cxþ ax3 ¼ 0 (2.1)

where x(t) is a generalized displacement, dots denote differentia-
tion with respect to time t, and b, k, c, and a are constants. Fur-
thermore, the case b¼ 0 is excluded, since otherwise Eq. (2.1)
does not have any damping term, yielding the first integral and the
solution very easily. Using the transformation

t ¼ � ln s (2.2)

where � is a nonzero constant, Eq. (2.1) becomes

d2x

ds2
¼ �b�s�1x2 dx

ds
þ bk� � 1ð Þs�1 dx

ds
� c�2s�2x� a�2s�2x3

(2.3)

When v is positive, the transformation in Eq. (2.2) corresponds to
an expansion in the time scale. Now we show that by using only
the single transformation Eq. (2.2), the first integrals of Eq. (2.1)
can be directly obtained for a wide class of problems. Further-
more, implicit and explicit solutions are also possible under some
conditions.

Consider the function

G s; xðsÞð Þ ¼ G1s
�1xþ G2s

�1x3 (2.4)

where G1 and G2 are constant. The first derivative of Eq. (2.4)
with respect to s yields

dG

ds
¼ �G1s

�2xþ G1s
�1 dx

ds
� G2s

�2x3 þ 3G2s
�1x2 dx

ds
(2.5)

Comparing Eq. (2.5) with the right hand side of Eq. (2.3), we have

G1 ¼ c�2;G1 ¼ bk� � 1;G2 ¼ a�2; 3G2 ¼ �b� (2.6)

or

c ¼ bk� � 1

�2
; a ¼ � b

3�
(2.7)

Eliminating � from these relations yields

c ¼ � 9a2

b2
1þ b2k

3a

� �
(2.8)

so that, Eq. (2.1) becomes

€xþ b x2 � k
� �

_x� 9a2

b2
1þ b2k

3a

� �
xþ ax3 ¼ 0 (2.9)

where a 6¼ 0 is assumed, and considering Eq. (2.7), b 6¼ 0. Com-
bining Eqs. (2.3) and (2.5) then yields

d2x

ds2
¼ dG

ds
(2.10)
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under the constraints given by Eq. (2.7) or Eq. (2.8). Integrating
Eq. (2.10) with respect to s once gives

dx

ds
¼ Gþ C0 ¼ G1s

�1xþ G2s
�1x3 þ C0 (2.11)

where C0 is an integration constant, and G1 and G2 are determined
by Eq. (2.6). Using Eq. (2.2), Eq. (2.11) becomes

� _x ¼ G1xþ G2x3 þ C0e
t
� (2.12)

or

_x� G1

�
x� G2

�
x3

� �
e�

t
� ¼ C0

�
:¼ I (2.13)

Using Eqs. (2.2), (2.6), and (2.8), Eq. (2.13) can be rewritten as

_x� 3aþ b2k
b

xþ b
3

x3

� �
e

3a
b t ¼ I (2.14)

which is a first integral of Eq. (2.1) when the relation given in
Eq. (2.8) is satisfied, i.e., we have the first integral of Eq. (2.9) for
any set of parameters a, b, and k. When a¼ 1 as in Refs. [9,10],
Eq. (2.14) becomes

_x� bkþ 3

b

� �
xþ b

3
x3

� �
e

3
bt ¼ I (2.15)

which is the same as the first integral obtained in Refs. [9,10]. It
must be noted that unlike in Refs. [9,10], the first integral
Eq. (2.15) is derived using only one transformation, Eq. (2.2), and
without the use of extensive symbolic computations. Instead, total
integrability of the transformed equation Eq. (2.3) is focused
upon, and this insight helps in finding the first integral directly.

3 New Solutions of the Duffing–van der Pol Type

Equation

Since the first integral, Eq. (2.14), is obtained, by integrating this
first-order differential equation one can get a solution to the
Duffing–van der Pol type system given by Eq. (2.9). The simplest
case occurs when I¼ 0. At the initial time t¼ 0, Eq. (2.14) becomes

_x0 �
3aþ b2k

b
x0 þ

b
3

x3
0 ¼ I (3.1)

where x0 and _x0 are the initial displacement and velocity, respec-
tively. If we choose the initial conditions x0 and _x0 so that I¼ 0,
that is,

_x0 ¼
3aþ b2k

b
x0 �

b
3

x3
0 (3.2)

then Eq. (2.14) becomes totally integrable

dx

dt
¼ 3aþ b2k

b
x� b

3
x3 (3.3)

The solution to the first-order differential equation Eq. (3.3) is
easily obtained

x tð Þ ¼ 61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

3 3aþ b2k
� �� Ce�

2 3aþb2kð Þt
b

s ; 3aþ b2k 6¼ 0; i:e:; c 6¼ 0
� �

(3.4)

where

C ¼ b2

3 3aþ b2k
� �� 1

x2
0

; 3aþ b2k 6¼ 0 or c 6¼ 0
� �

(3.5)

The sign of x(t) in Eq. (3.4) is determined as follows: (1) if x0> 0,
then x> 0 for all t� 0; (2) if x0< 0, then x< 0 for all t� 0; (3) If
x0¼ 0, then x¼ 0 for all t� 0.

In Eqs. (3.4) and (3.5), it is assumed that 3aþ b2k 6¼ 0 or
c 6¼ 0. If 3aþ b2k ¼ 0 or c¼ 0, Eq. (3.3) is rewritten as

dx

dt
¼ �b

3
x3 (3.6)

The solution to Eq. (3.6) is

x tð Þ ¼ 61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ 2bt

3

r ; 3aþ b2k ¼ 0 or c ¼ 0
� �

(3.7)

where

C ¼ 1

x2
0

(3.8)

The sign of x(t) in Eq. (3.7) is similarly determined as before.
Comparing the new solution Eqs. (3.4) and (3.7) with the previous
solution given in Refs. [9,10], one can find that while both solu-
tions require specific initial conditions Eq. (3.2), the new solution
is an explicit solution and is not in a parametric form as in
Refs. [9,10].

Figure 1 shows the phase diagram obtained using Eq. (3.4) and
its derivative. The displacement (x) and the velocity ð _xÞ of the
Duffing–van der Pol system given by Eq. (2.9) are plotted for the
case a¼ 1, b¼ 3, c¼�4, and k¼ 1. The simulation is shown for
a duration of 10 s and the initial condition is chosen as
x0; _x0ð Þ ¼ 3;�15ð Þ, which satisfies Eq. (3.2). As Eq. (3.4) indi-

cates, the displacement converges to x tð Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

3 3aþb2kð Þ

r
¼ 2 as

time goes to infinity. In Fig. 2 (left), the time history of the
displacement of the system is shown by plotting Eq. (3.4). The nu-
merical solution (for these same parameter values) of Eq. (2.9) is
computed in the MATLAB environment, using a variable time step
ode45 integrator with a relative error tolerance of 10�8 and an
absolute error tolerance of 10�12. Figure 2 (right) shows the
difference between the analytical solution and the numerical
solution. As seen, the difference is small (of the order of 10�10),
showing that the numerically obtained solution is consistent with
the new analytical result given in Eq. (3.4).

The standard form of the Duffing–van der Pol system has posi-
tive b and k¼ 1 so that Eq. (2.9) can be rewritten as

Fig. 1 Phase diagram of the Duffing–van der Pol system
Eq. (2.9) with a 5 1, b 5 3, c 5 24, and k 5 1
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€xþ b x2 � 1
� �

_xþ j1xþ j2x3 ¼ 0; b > 0 (3.9)

with

j1 ¼ �3a 1þ 3a

b2

� �
¼ bv� 1

v2
; and j2 ¼ a ¼ � b

3v
(3.10)

In the modeling of most mechanical systems, the coefficient j1 is
usually positive, signifying a positive “spring” stiffness. Our
results go beyond those in Ref. [9] where only the case when j1 is
negative and j2¼ 1 is handled.

Perhaps the most useful characteristic in modeling physical sys-
tems by the Duffing–van der Pol system is the self-excited oscilla-
tion property that the system can exhibit. Unfortunately, limit
cycles do not appear in Eq. (3.9) when the stiffness term j1> 0
(see the Appendix). This appears to be connected to the fact that
the first integrals and the Lagrangians for both the standard van
der Pol oscillator and the Duffing–van der Pol oscillator are not
known to date.

One can find another solution when I 6¼ 0. From Eq. (2.14), we
have the following first-order differential equation:

dx

dt
¼ a1x� a2x3 þ Ie�

3a
b t (3.11)

where

a1 ¼
3aþ b2k

b
; a2 ¼

b
3

(3.12)

Using the transformation

x tð Þ ¼ u tð Þea1t (3.13)

Eq. (3.11) becomes

du

dt
¼ �a2u3e2a1t þ Ie�

3a
bþa1ð Þt (3.14)

A second transformation

T ¼ a2

2a1

e2a1t (3.15)

where we assume a1 6¼ 0, further reduces Eq. (3.14) to the first-
order equation

du

dT
¼ �u3 þ I1Tg (3.16)

where

I1 ¼
2a1

a2

� �g I

a2

and g ¼ �
3 4aþ b2k
� �

2 3aþ b2k
� � (3.17)

Although simple and elegant, Eq. (3.16) is of the so-called Abel
type, and it is difficult to get analytical solutions for it. Closed-
form solutions can be found when g¼�3/2 and g¼ 0 at which
values the equation is variable separable. When g¼�3/2, how-
ever, the second of Eq. (3.17) would require a¼ 0, and from
Eq. (2.9), this would mean that we no longer have a Duffing–van
der Pol system! Hence we consider only the case when g¼ 0, i.e.,
a ¼ �ðb2kÞ=4. Then, Eq. (3.16) givesð

du

I1 � u3
¼
ð

dT (3.18)

and integration on both sides yields

1

6d2
ln

d2 þ duþ u2

d � uð Þ2
þ 2

ffiffiffi
3
p

tan�1 2uþ dffiffiffi
3
p

d

� �" #
¼ T þ C (3.19)

where C is an integration constant, and

d ¼ I
1=3
1 ¼ 3I

b

� �1=3

(3.20)

Using the transformations Eqs. (3.13) and (3.15), Eq. (3.19) is
described in terms of x(t) and t as

1

6d2
ln

d2 þ dxe�
bk
4

t þ x2e�
bk
2

t

d � xe�
bk
4

t
� �2

8><
>:

9>=
>;þ 2

ffiffiffi
3
p

tan�1 2xe�
bk
4

t þ dffiffiffi
3
p

d

 !2
64

3
75

¼ 2

3k
e

bk
2

t þ C (3.21)

where

C ¼ 1

6d2
ln

d2 þ dx0 þ x2
0

d � x0ð Þ2

( )
þ 2

ffiffiffi
3
p

tan�1 2x0 þ dffiffiffi
3
p

d

� �" #
� 2

3k

(3.22)

Fig. 2 Time history of the displacement of the system (left) and the difference between the numerical and the new analytical
solutions Eq. (3.4) (right)
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In brief, Eq. (3.21) gives the closed-form solution to the following
Duffing–van der Pol system:

€xþ b x2 � k
� �

_xþ 3b2k2

16
x� b2k

4
x3 ¼ 0 (3.23)

The solution is valid for all initial conditions.

4 Conclusions

In this paper, a new and simple method is introduced for
obtaining the first integrals of the Duffing–van der Pol type
equation under a wider set of circumstances than obtained
hereto. New solutions are also obtained. Comparing with the
existing methods such as the Prelle–Singer method [6] and the
Lie symmetry method [8], this approach is much simpler and
makes it possible to derive new and more general solutions with
weaker parametric constraints than hereto known. The simplicity
lies in the fact that the Duffing–van der Pol type equation can be
transformed into a special form that admits total integrability in
certain situations. Although the approach employed herein is
simple and easy, a more rigorous and systematic way for arriv-
ing at the first integrals and the solutions under more general
conditions needs much more work. At present, it remains an
open problem. In addition, we still have no first integrals for the
standard van der Pol system which has no cubic term, that is,
when a¼ 0 in Eq. (2.1). As seen here, the cubic term plays an
important role in our approach for finding the first integrals and
the solutions. In future work, more general cases will be consid-
ered and other proper transformations that allow total integrabil-
ity will be developed.

Appendix

We show that the Duffing–van der Pol equation in Eq. (3.9)
does not have any limit cycle surrounding the origin when j1> 0,
i.e., when b� > 1. We replace t by –t in Eq. (3.9) so that we are
now investigating what happens as t! �1. The orbits remain
the same but their direction is reversed. In particular, any
limit cycle L is unchanged in location in the phase portrait.
Equation (3.9) then becomes

€xþ b 1� x2
� �

_xþ j1xþ j2x3 ¼ 0; b > 0 (A1)

Denoting

f xð Þ ¼ b 1� x2
� �

; g xð Þ ¼ b� � 1

�2
x� b

3�
x3;

F xð Þ ¼
ðx

0

f uð Þdu ¼ bx 1� x2=3
� � (A2)

Eq. (A1) can be rewritten as

_x ¼ y� F xð Þ
_y ¼ �g xð Þ

(A3)

The fixed points of this dynamical system are located at
O � 0; 0ð Þ; A � x�; x�=vð Þ; and B � �x�;�x�=vð Þ; where

x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� b�ð Þ�1
h ir

. Linearization of the above equations

about these fixed points reveals that the fixed point at the origin,
O, is a stable node, while the other two fixed points are saddles.
One therefore cannot have a limit cycle around the origin that
includes all three fixed points because the sum of the indices of
these fixed points would add to �1; in a similar fashion, one can-
not have a limit cycle around the origin that includes the origin
and only one of the saddle points. Thus, the only limit cycle
around the origin O that is possible is one that (i) only includes
the origin and (ii) cuts the (open) line segment AOB at two points,
one on either side of O, so that none of the saddle points are
included in the cycle. We next show that such a limit cycle is not
possible.

Consider an orbit through the point x0; x0=vð Þ; where x0 6¼ 0
and x0 6¼ 6x�. Such an orbit of Eq. (A3), which does not start at
any of the three fixed points, always satisfies the equation

y tð Þ ¼ x tð Þ=� (A4)

because from Eqs. (A2) and (A3) _yðtÞ ¼ ðxðtÞ=�2Þ � ðbxðtÞ=vÞ
þðbxðtÞ3=3vÞ ¼ _xðtÞ=v is satisfied.

As such, the line y tð Þ ¼ x tð Þ=� represents an orbit in the phase
plane, and since two orbits cannot cross, there can be no limit
cycle whose orbit includes the origin and cuts the line segment
AB.

References
[1] Santilli, R. M., 1978, Foundations of Theoretical Mechanics I: The Inverse

Problem in Newtonian Mechanics, Springer-Verlag, New York.
[2] Leitmann, G., 1963, “Some Remarks on Hamilton’s Principle,” ASME J. Appl.

Mech., 30, pp. 623–625.
[3] Udwadia, F. E., Leitmann, G., and Cho, H., 2011, “Some Further Remarks on

Hamilton’s Principle,” ASME J. Appl. Mech., 78, p. 011014.
[4] Udwadia, F. E., and Cho, H., 2012, “Lagrangians for Damped Linear Multi-

Degree-of-Freedom Systems,” ASME J. Appl. Mech., 80, p. 041023.
[5] Pars, L. A., 1972, A Treatise on Analytical Dynamics, Ox Bow Press, Wood-

bridge, CT.
[6] Prelle, M., and Singer, M., 1983, “Elementary First Integrals of Differential

Equations,” Trans. Am. Math. Soc., 279, pp. 215–229.
[7] Duarte, L. G. S., Duarte, S. E. S., da Mota, A. C. P., and Skea, J. E. F., 2001,

“Solving the Second-Order Ordinary Differential Equations by Extending the
Prelle–Singer Method,” J. Phys. A, 34, pp. 3015–3024.

[8] Hydon, P. E., 2000, Symmetry Methods for Differential Equations, Cambridge
University Press, New York.

[9] Gao, G., and Feng, Z., 2010, “First Integrals for the Duffing–van der Pol Type
Oscillator,” Electron. J. Differ. Equations, 19, pp. 1–12.

[10] Feng, Z., Gao, G., and Cui, J., 2011, “Duffing–van der Pol Type Oscillator
System and Its First Integrals,” Commun. Pure Appl. Anal., 10, pp. 1377–1391.

034501-4 / Vol. 81, MARCH 2014 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 12/01/2013 Terms of Use: http://asme.org/terms

http://dx.doi.org/10.1115/1.3636630
http://dx.doi.org/10.1115/1.3636630
http://dx.doi.org/10.1115/1.4002435
http://dx.doi.org/10.1115/1.4023019
http://dx.doi.org/10.1090/S0002-9947-1983-0704611-X
http://dx.doi.org/10.1088/0305-4470/34/14/308
http://dx.doi.org/10.3934/cpaa.2011.10.1377

	s1
	s2
	E2.1
	E2.2
	E2.3
	E2.4
	E2.5
	E2.6
	E2.7
	E2.8
	E2.9
	E2.10
	l
	E2.11
	E2.12
	E2.13
	E2.14
	E2.15
	s3
	E3.1
	E3.2
	E3.3
	E3.4
	E3.5
	E3.6
	E3.7
	E3.8
	E3.9
	F1
	E3.10
	E3.11
	E3.12
	E3.13
	E3.14
	E3.15
	E3.16
	E3.17
	E3.18
	E3.19
	E3.20
	E3.21
	E3.22
	F2
	E3.23
	s4
	APP1
	EA1
	EA2
	EA3
	EA4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10

