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A simple analytical approach for formation-keeping of satellites in the presence of both orbital and attitude

requirements is developed. A leader satellite is assumed to be in a J2-perturbed circular reference orbit and each

follower satellite is required to stay in its prescribed, desired orbit with respect to the leader satellite, and at the same

time, to point to an arbitrarily chosen specific spot in space that may be time-varying. Nonlinear relative dynamics is

considered in its entirety without any approximations, and nonlinear controllers are designed to exactly satisfy the

desired orbital and attitude mission requirements for the formation. The analytical approach leads to a separation

principle that points out when orbital control is completely unaffected by attitude control. In the presence of sensor

measurement noise that leads to incorrect initial conditions at the start of the control maneuver the approach

asymptotically satisfies both the orbital and attitude control requirements, at any desired rate of convergence

depending on mission requirements. The effect of small unmodelled dynamics is also considered. A numerical

example demonstrates the simplicity of the approach, its ease of implementation, accuracy of results, and its

robustness to both sensor measurement errors and unmodelled dynamics.

I. Introduction

T HE use of formation flight is expected to afford considerable
advantages for certain space missions when compared with

existing space technology. The configured flight of small multiple
satellites holds out the potential for reducing total mission costs,
performing certain missions more flexibly and efficiently, and
making possible many advanced applications such as space
interferometry and high-resolution imaging [1]. However, formation
flying requires technology from various research fields, such as
relative orbit determination, formation-keeping, formation reconfig-
uration, relative attitude determination, and relative attitude control.
Among these, in this paper, the formation-keeping problem is
considered. Briefly speaking, formation-keeping is the technique to
accurately maintain a desired formation geometry. The aim is to
control each follower satellite (the satellite around the leader satellite)
to achieve a useful formation configuration with the capability of
precision attitude control. The leader satellite may be a satellite
moving along a predefined orbit, or it may be a fictitious satellite
serving as a reference with respect to which a “swarm” of satellites is
required to fly in formation. The leader satellite’s orbit shall be
referred to as the reference orbit. The relative trajectories of the
follower satellites (both with regard to their orbital requirements and
their attitude requirements) that comprise the formationmay be static
in time, or they may be required to change dynamically in some
arbitrarily prescribed manner.
Because formation-keeping is important to successfully achieve a

mission goal by regulating the orbits and attitudes of the satellites that
fly in a cluster, numerous researchers have been attracted to this
problem.Most of the concern to date, however, has been focused only
on orbital dynamics, much less on attitude dynamics. Traditionally,
linear control theories have been used, based on linearized equations
of relative motion, such as a Hill–Clohessy–Wiltshire (HCW)
equation [2,3] for a circular reference orbit, a Tschauner–Hempel

equation [4] for an elliptical reference orbit, or the J2-perturbed
linearized equation [5]. Yan et al. [6] designed a linear quadratic
regulator (LQR) for the satellites’ periodicmotion based on theHCW
equation. Sparks [7] studied the same problem and considered
nonspherical gravity perturbations. Using the HCWequation, Vaddi
and Vadali [8] presented Lyapunov, LQR, and period-matching
control schemes that generate a projected circular orbit (PCO), which
is also chosen as the desired formation geometry in this paper. They
showed that the LQRmethod offers cost benefits, but guarantees only
local stability compared with the others. Won and Ahn [9] assumed
an elliptical reference orbit to develop the state-dependent Riccati
equation control technique for formation-keeping with constant
separation distance between satellites. Because the solutions based
on the linearized equations about Keplerian orbits are suitable only
for very small-sized formations due to the linearizations used,Milam
et al. [10] used a numerical solver, called the nonlinear trajectory
generation software package, to find an optimal controller for
formation-keeping. Based on nonlinear dynamics describing the
relative motion around a circular reference orbit, De Queiroz et al.
[11] developed an adaptive controller for tracking the relative
position. They showed that global asymptotic position tracking errors
are guaranteed even in the presence of unknown slow-varying
perturbation forces. No et al. [12] started with general nonlinear
equations of motion to develop closed-form equations using power
series and trigonometric functions, which enable a series of optimal
impulsive maneuvers to maintain a formation configuration.
A few researchers have incorporated attitude dynamics in

formation flying. Kristiansen et al. [13] derived a nonlinear model
describing relative translational and rotational motion. In [14], a
controller that uses Lyapunov control theory was introduced for
target trackingwhile countering the effect of gravity gradient torques.
Lennox [15] first separately designed two nonlinear Lyapunov
controllers for orbital and attitude control and then integrated them
into a coupled control strategy. Unlike others, he assumed that orbital
control is dependent on the satellite’s attitude for vectored thrust. Ahn
andKim [16] assumed a formation of satellites as a virtual rigid-body
structure to develop an algorithm for pointing to a specified target.
They combined an adaptive control scheme and a sliding mode
control scheme to make the satellites follow the desired position and
attitude command.
Previous work is thus seen to mainly focus on linearized

approaches and, when nonlinear dynamics is considered, the
controllers for formation-keeping have been obtained via the
Lyapunovmethod or by numerical approaches. Recently, a nonlinear
controller that preserves the nonlinearities of the governing dynamics
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was proposed by Udwadia and Kalaba [17–26]. It has a surprisingly
simple, explicit form and is applicable to a number of cases that
have holonomic and/or nonholonomic constraints. Also, no a priori
structure is imposed on this nonlinear controller, as is commonly the
case. Because of its simplicity and generality, this method has been
applied to highly constrained problems, such as control of tethered
satellites [27] or orbit transfers under perturbations [28]. For the
formation-keeping problem, using this approach, Cho and Yu [29]
obtained an analytical solution for formation-keeping when the
leader satellite is in an unperturbed circular orbit. The follower
satellites were constrained to lie in a PCO, and the problem was
solved in the inertial frame first, then transformed into the Hill frame
for better visualization. Cho andUdwadia [30] extended this solution
to more general cases in which the leader satellite follows any
arbitrary orbit and the follower satellites are not initially on the
desired trajectory, thereby taking into account errors that arise during
orbit insertion. The problem was solved in the Hill frame, not in the
inertial frame, because measurements in formation flying are often
taken in the Hill frame or in the so-called local vertical, local
horizontal (LVLH) frame. References [29,30] did not, however,
consider any attitude dynamics. Udwadia et al. [31] solved the
precision tumbling and precision tracking problems for a nonlinear,
nonautonomous, multibody system orbiting a central body with a
nonuniform gravity field. They included attitude dynamics and used
a closed-form control methodology to achieve “exact” control. The
inertial framewas used and the vibrating nonlinear multibody system
was required to be in a precise circular orbit around the central body,
while it underwent arbitrarily prescribed on-orbit precision tumbling.
This paper extends the results of [29–31] to develop a closed-form

nonlinear controller when the leader satellite follows a J2-perturbed
circular reference orbit and the follower satellites point to a specific
spot in space during the maneuver. Each follower may be required to
track a different spot, whichmay be arbitrarily specified and could be
time varying. The satellites are considered as rigid bodies and, for
describing the attitude dynamics quaternions, are used so that
arbitrary orientations can be realized while avoiding singularities.
Using suitable generalized coordinates, it is shown that both orbital
and attitude control can be easily handled in a simple and unifiedway,
yielding closed-form results for the control forces and the control
torques that can be used for real-time control. Numerical simulations
are performed to show the simplicity and accuracy of the approach
developed herein.One of the strengths of this paper lies in the fact that
the closed-form solutions obtained to the nonlinear problem (both in
terms of the dynamics and the control) permit some important
physical insights into the nature of the control, something that would
be difficult to obtain from purely computational approaches. For
example, in the current paper, conditions under which orbital control
is independent of the attitude of the satellite, so that one need not
consider any attitude or quaternions in designing the orbital
controller, are investigated. The methodology permits the inclusion
of sensor measurement errors that result in inaccurate initial
conditions at the start of the maneuver. This specific problem has
been addressed by several investigators [32,33] who showed the
strong sensitivity of currently used control methods (only orbital
control has been considered in these references) to such errors. In
the presence of such measurement errors, the approach presented
herein causes the orbital and attitude requirements to be satisfied
asymptotically at a rate that can be adjusted, depending on the
specific mission requirements. Finally, the effect of unmodeled
dynamics is considered and it is shown that, by augmenting the
closed-form nonlinear controller obtained herein with a simple
proportional-derivative (PD) controller, the control requirements can
be met with high accuracy, thereby pointing out the robustness with
which unmodeled dynamics can be easily handled.
The paper is organized in the following manner. In Sec. II, the

fundamental equations of motion for constrained systems are briefly
introduced, and the explicit closed-form expressions for the control
forces are followed. Section III deals with the unconstrained orbital
and attitude motions separately. Equations of motion are derived for
translational and rotational dynamics when no control is applied, and
they are later combined to handle the control problem in a unifiedway

and to obtain explicit expressions for the control forces and torques.
The methodology is applicable to the situation in which there is
sensor measurement noise that leads to incorrect initial conditions at
the start of the control maneuver. In contrast to other control methods
that show high sensitivity to such errors, the approach provided here
is shown to asymptotically satisfy both the orbital and the attitude
requirements. Because the control forces and torques are obtained in
closed form, it is very easy and fast to implement these results in real
time when making space maneuvers. Insights into the dynamics lead
to the separation principle, which is described in Sec. IV. Finally, in
Sec. V, a specific example is presented to demonstrate the results and
show the efficacy and the accuracy of the closed-form method. The
example shows that, even in the presence of sensor measurement
noise, the exact control requirements are quickly met. It also
demonstrates the ease of obtaining robust control in the presence of
unmodeled dynamics by augmenting the nonlinear closed-form
controller obtained herein with simple PD control.

II. Fundamental Equations

This section deals with the explicit equation of motion for a
constrained mechanical system. First, let us consider an
unconstrained, discrete dynamic system of N rigid bodies (or
satellites in this paper) in generalized coordinates. The generalized
displacement vector and velocity vector are denoted byq�t� and _q�t�,
respectively,

q�t� � �q1�t� q2�t� · · · qn�t� �T;
_q�t� � � _q1�t� _q2�t� · · · _qn�t� �T (1)

where t represents time, the superscript T denotes the transpose of a
vector or amatrix, andn is the number of the generalized coordinates.
If the given forces impressed on the bodies are denoted by

Q�t� � �Q1�t� Q2�t� · · · Qn�t� �T (2)

then the Lagrange equation for the unconstrained motion of the
system at a certain instant of time t can now be expressed as an n × 1
matrix equation

M �q�t� � Q�q�t�; _q�t�; t� (3)

or

�q�t� �M−1Q�q�t�; _q�t�; t� ≔ a�t� (4)

where M (which is positive definite in this paper) is an n × n
symmetric mass matrix and a�t� is the n × 1 unconstrained
acceleration (vector) of the system at time t.
It is now considered that the unconstrained system described by

Eqs. (3) and (4) is subjected to p constraints, which are of the form

φj�q; _q; t� � 0; j � 1; 2; · · · ; p (5)

Thesep constraints include both orbital and attitude requirements for
precise formation-keeping in the current paper. More compactly, one
can write Eq. (5) as follows

Φ � �φ1 φ2 · · · φp �T � 0 (6)

Differentiating Eq. (6) with respect to time once (for nonholonomic
constraints) or twice (for holonomic constraints) yields the following
constraint equation

A�q�t�; _q�t�; t� �q�t� � b�q�t�; _q�t�; t� (7)

where the matrix A is a p × n matrix and b is a p × 1 vector.
However, because the initial conditions must be determined from
measurements, and they will be corrupted by sensor noise or
unmodeled dynamics, it is in general difficult to make them satisfy
the given orbital/attitude constraints at the initial time, which means
Φ�t � 0� ≠ 0, and so the constraint equations (6) should bemodified
to [23,34]
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�Φ� α _Φ� βΦ � 0 (8)

where

α � diagfα1; α2; · · · ; αpg; β � diagfβ1; β2; · · · ; βpg (9)

By choosing each αj, βj > 0, j � 1; 2; · · · ; p, Φ (i.e., each con-
straint) approaches zero asymptotically. Thus, from Eq. (8), one can
get a more general constraint equation, which nonetheless retains the
form of Eq. (7).
The presence of the constraints (6) causes additional forcesQC�t�

to be applied to the bodies, and the resulting equation of motion
becomes [17]

M �q�t� � Q�q�t�; _q�t�; t� �QC�t� (10)

where the (constraint) forceQC�t� makes the system asymptotically
satisfy the given constraints of Eq. (6). Historically, there have been a
number of attempts to determine QC�t� and, recently, a simple and
insightful approach was proposed by Udwadia and Kalaba [17–26],
which gives the constraint force QC�t� explicitly as

QC�t� �M1∕2�AM−1∕2���b −Aa� (11a)

or, equivalently,

QC�t� � AT�AM−1AT���b −Aa� (11b)

where the superscript � represents the Moore–Penrose (MP)
generalized inverse.
Thus, the explicit equation of motion of the constrained system is

the following

M �q �Ma�M1∕2�AM−1∕2���b −Aa� (12a)

or

M �q �Ma�AT�AM−1AT���b −Aa� (12b)

Accordingly, the acceleration of the system is obtained by

�q � a�M−1∕2�AM−1∕2���b −Aa� (13a)

or

�q � a�M−1AT�AM−1AT���b −Aa� (13b)

In this paper, Eq. (13) are referred to as the fundamental equations,
and the constraint forceQC�t� in Eq. (11) is used for controlling the
orbital and/or attitudemotion of the follower satellites, so that each of
them satisfies its formation-keeping requirements. Furthermore, it is
shown in [23] that this constraint force QC�t� minimizes at each
instant of time t the quantity �QC�t��TM−1�q; t��QC�t��. In what
follows, the arguments of the various quantities are usually
suppressed, as in Eqs. (12) and (13), unless needed for clarity. Also,
the term “unconstrainedmotion” shall be used tomean “uncontrolled
motion,” and the term “constrained motion” shall mean “controlled
motion.”

III. Formation-Keeping Equations of Motion

It is assumed that there are N follower satellites and that a leader
satellite leads thisN-satellite formation. The ith follower satellite has
a massm�i� and has a diagonal inertia matrix J�i�, whose entries give
the moments of inertia along the body-fixed principal axes of inertia,
whose origin is located at the center of mass of the ith follower
satellite. In what follows, the superscript i shall be used to denote
quantities relevant to the ith follower satellite.
In this paper, three different coordinate frames of reference are

used: an inertial frame, a Hill frame, and a body-fixed frame. The

inertial frame,more precisely the ECI (Earth-centered inertial) frame,
originates at the center of the Earth, the X axis points toward the
vernal equinox, the Y axis is 90 deg to the east in the equatorial plane,
and the Z axis extends through the North Pole [35]. Next, the Hill
frame is useful when describing the relative motion of satellites in
formation. The origin of this frame is located at the leader satellite that
moves in a specified reference orbit, the x axis is directed radially
outward along the local vertical, the z axis is along the instantaneous
orbital angularmomentumvector of the leader satellite, and the y axis
is taken perpendicular to the xz plane, to form a right-handed triad.
Lastly, a different body-fixed frame is used to describe the attitude
motion of each follower satellite. Each axis of the body-fixed frame of
the ith follower satellite points along its principal axes of inertia, and
the origin of this frame is located at its center of mass.
It is assumed that the position vector of the center of mass of

the ith follower satellite in the ECI frame is given by the three

vector X�i� � �X�i� Y�i� Z�i� �T, and its orientation is described

by the quaternion four vector u�i� � �u�i�0 u�i�1 u�i�2 u�i�3 �
T. The

generalized displacement seven vector is then defined as

q�i��t� ≔ �X�i� Y�i� Z�i� u�i�0 u�i�1 u�i�2 u�i�3 �
T;

i � 1; 2; · · · ; N (14)

A. Uncontrolled Orbital Motion

The inertial orbitalmotion of the ith follower satellite, perturbed by
the second zonal harmonics, is governed by the relation [36]

a�i� � �X�i� �

2
64

�X�i�

�Y�i�

�Z�i�

3
75 � −

GML
r�i�

3

2
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3
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−
3

2
J2
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2

! 
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r�i�

!
2

2
666666664

�
1 − 5

�
Z�i�

r�i�

�
2
�
X�i�

r�i��
1 − 5

�
Z�i�

r�i�

�
2
�
Y�i�

r�i��
3 − 5

�
Z�i�

r�i�

�
2
�
Z�i�

r�i�

3
777777775

� a�i�2−body � a�i�J2 (15)

whereX�i� � �X�i� Y�i� Z�i� �T is the position vector of the center

of mass of the ith follower satellite in the ECI frame, r�i� �����������������������������������������
X�i�

2 � Y�i�2 � Z�i�2
p

is the distance from the center of the Earth to
the center of mass of the ith follower satellite, G is the universal
gravitational constant,ML is themass of the Earth,RL is themean

equatorial radius of the Earth, and J2 � 1.0826269 × 10−3 is the
coefficient of the second zonal harmonics of the Earth’s potential. In

the right-hand side of Eq. (15), the first term (a�i�2−body) describes two-

bodymotion and the second term (a�i�J2 ) corresponds to the perturbing
acceleration due to J2.
Next, let us recall the transformation between the ECI frame and

the Hill frame [30]:

"
x�i� � rL
y�i�

z�i�

#
� R

"
X�i�

Y�i�

Z�i�

#
≔

"R1

R2

R3

#
X�i� (16)

where x�i� � � x�i� y�i� z�i� �T is the position vector of the center of
mass of the ith follower satellite in the Hill frame, rL is the distance
from the center of the Earth to the leader satellite (the subscript L
denotes the leader satellite), and R is a 3 × 3 orthogonal rotation
matrix, whose row vectors are R1, R2, and R3. The matrix R
includes the information about the leader satellite’s orbit and each
component of the matrix can be found in [30].
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B. Uncontrolled Rotational Motion

As mentioned, rotational dynamics of each follower satellite is
described in terms of quaternions that expel the troublesome problem
of singularity. Here, the method given in [37] is adopted.
Let us begin with the Lagrange equation

d

dt

�
∂T�i�

∂ _u�i�

�
−
∂T�i�

∂u�i�
� Γ�i�u �u�i�; _u�i�; t� (17)

where u�i� � �u�i�0 u�i�1 u�i�2 u�i�3 �
T is the quaternion four vector

of the ith follower satellite, Γ�i�u �u�i�; _u�i�; t� is the given generalized
force vector, and T�i� is the rotational kinetic energy of the ith
follower satellite, which is defined by

T�i� ≔
1

2
fω�i�gTĴ�i�fω�i�g (18)

where the four vector fω�i�g � � 0 ω�i�x ω�i�y ω�i�z �T �
� 0 ω�i� �T is defined and the three vector ω�i� �
�ω�i�x ω�i�y ω�i�z �T comprises the components of the angular
velocity of the ith follower satellite along its body-fixed coordinate
axes. Also, the 4 × 4 augmented inertia matrix, Ĵ�i� > 0, is defined
as [37]

Ĵ�i� ≔
�
J�i�0 0

0 J�i�

�
�

2
664
J�i�0 0 0 0

0 J�i�x 0 0

0 0 J�i�y 0

0 0 0 J�i�z

3
775 (19)

where J�i�0 is an arbitrary positive number, and J�i�x , J�i�y , and J�i�z are
the moments of inertia along the principal axes of the ith follower
satellite. The augmented angular velocity four vector fω�i�g,
mentioned in Eq. (18), is related with quaternions by

fω�i�g � 2E�i� _u�i�; i � 1; 2; · · · ; N (20)

The 4 × 4 quaternion matrix E�i� that is orthogonal is defined by

E�i� ≔
�
u�i�

T

E�i�1

�
�

2
664
u�i�0 u�i�1 u�i�2 u�i�3
−u�i�1 u�i�0 u�i�3 −u�i�2
−u�i�2 −u�i�3 u�i�0 u�i�1
−u�i�3 u�i�2 −u�i�1 u�i�0

3
775 (21)

Substituting Eq. (20) into Eq. (18) yields the rotational kinetic energy
in terms of quaternions

T�i� � 2 _u�i�
T
E�i�

T
Ĵ�i�E�i� _u�i� (22)

Then, assuming that there is no applied torque (i.e.,Γ�i�u � 0), one can
apply the Lagrange equation under the assumption that the
components of the quaternion four vector are all independent of each
other, to obtain

4E�i�
T
Ĵ�i�E�i� �u�i� � −8 _E�i�

T

Ĵ�i�E�i� _u�i� − 4E�i�
T
Ĵ�i� _E�i� _u�i� (23)

This relation can be written in the form ofM�i�u �u�i� � Q�i�u by setting

M�i�u � 4E�i�
T
Ĵ�i�E�i�, andQ�i�u to be the right-hand side of Eq. (23). It

is noted that the mass matrixM�i�u � 4E�i�
T
Ĵ�i�E�i� is symmetric and

positive definite, and so it always has its inverse.
It is important to stress that, up until now, it has been assumed that

each component of the quaternion vector u�i� is independent of the
others. However, to represent a physical rotation of a rigid body, the
quaternion vector u�i� must have unit norm, so that

ku�i�k2 � u�i�
2

0 � u
�i�2
1 � u

�i�2
2 � u

�i�2
3 � 1 (24)

After by differentiating twice, the following constraint equation of
the form of Eq. (7) is obtained:

2�u�i�0 u�i�1 u�i�2 u�i�3 �

2
664

�u�i�0
�u�i�1
�u�i�2
�u�i�3

3
775 � −2� _u�i�

2

0 � _u�i�
2

1 � _u�i�
2

2 � _u�i�
2

3 �

(25)

so that

A�i�u � 2�u�i�0 u�i�1 u�i�2 u�i�3 �;

b�i�u � −2� _u�i�
2

0 � _u�i�
2

1 � _u�i�
2

2 � _u�i�
2

3 � ≔ −2N� _u�i��
(26)

The resulting rotational equation of motion for the ith follower
satellite is thus given by the fundamental equations (13)

�u�i� � −
1

2
E�i�

T

1 J�i�
−1 � ~ω�i��J�i�ω�i� − N� _u�i��u�i� (27)

where E�i�1 , J�i�, and N� _u�i�� are defined in Eqs. (19), (21), and (26),
respectively, and � ~ω�i�� is a skew-symmetric matrix defined by

� ~ω�i�� ≔
"

0 −ω�i�z ω�i�y
ω�i�z 0 −ω�i�x
−ω�i�y ω�i�x 0

#
(28)

In Eq. (27), the attitude equation of motion has been described by the
eighth-order system of differential equations using the quaternion
and its derivative eight vector �u�i�; _u�i�� instead of a seventh-order
system that consists of the quaternion four vector and the body-fixed
angular velocity three vector �u�i�;ω�i��. It is straightforward to
switch from one to the other using Eq. (20), but the Lagrangian
formulation has been preferred here for its uniformity.

C. Controlled Dynamics of Coupled Orbital and Rotational Motion

In this subsection, the orbital and attitude dynamics are combined.
Defining the generalized displacement seven vector q�i��t� as in
Eq. (14), one can obtain the following equation of unconstrained
motion for each follower satellite from Eqs. (15) and (27)

a�i��t� ≔
�
a�i�1
a�i�2

�
� �M�i��−1Q�i�

�
�

a�i�2−body � a�i�J2
− 1

2
E�i�

T

1 J�i�
−1 � ~ω�i��J�i�ω�i� − N� _u�i��u�i�

�
(29)

where a�i�1 � a�i�2−body � a�i�J2 is a three vector on the right-hand side of

Eq. (15), anda�i�2 � − 1
2
E�i�

T

1 J�i�
−1 � ~ω�i��J�i�ω�i� − N� _u�i��u�i� is a four

vector on the right-hand side of Eq. (27). Also, the 7 × 7 positive

definite mass matrix of the ith follower satellite M�i� is defined as

M�i� ≔
�
m�i�I3×3 03×4
04×3 M�i�u

�
(30)

where m�i� is the mass of the ith follower satellite, I3×3 is the 3 × 3

identity matrix, andM�i�u � 4E�i�
T
Ĵ�i�E�i� is a positive definite 4 × 4

matrix. Then Eq. (29) describes the orbital and attitude dynamics of
the ith follower satellite when no constraint (control) is applied to the
system.

Let FC�i��t� be the control force three vector for orbital control and
ΓC�i�
u �t� be the generalized quaternion torque four vector for attitude

control, then they form the constraint (control) force seven vector

QC�i��t� in Eq. (11), that is,

QC�i��t� �
�
FC�i��t�
ΓC�i�
u �t�

�
(31)

When constraints on either orbital and/or attitude motion, which are
of the form of Eq. (7), are applied, the constraint force and torque
QC�i��t� required to follow the given constrained trajectory
are explicitly determined by Eq. (11). In addition, one can relate
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the generalized quaternion torque four vector ΓC�i�
u to the

physically applied torque three vector about the body axis,

ΓC�i� � �Γ�i�x Γ�i�y Γ�i�z �T, through the relation [37]

ΓC�i� � 1

2
E1Γ

C�i�
u ; i � 1; 2; · · · ; N (32)

where E1 is defined in Eq. (21). The methodology presented earlier
can be more easily explained by taking a specific example, as will be
shown in the next subsection.

D. Determining the Explicit Form of the Control Forces and Torques

With the aid of the analytical expression for the control forces
�FC�i��t�� and torques �ΓC�i�

u �t�� given by Eq. (11), it is possible to
obtain these control functions in closed form once orbital and/or
attitude constraints are given. These analytical solutions providemany
important physical insights into the dynamics of multiple satellites,
which cannot be easily inferred from numerical computations, and
which will be shown in the next section. The methodology adopted in
this paper is general, in the sense that the explicit form of the control
forces and torques is immediately obtained once constraints are given.
Now, the following three kinds of constraints are considered.
Let us first assume that, for the ith follower satellite, the following

form of the constraints is obtained from s consistent orbital
constraints:

A11�X; _X; t� �X � b1�X; _X; t� (33)

where A11 is an s × 3 matrix, �X � � �X �Y �Z �T is the acceleration
three vector of the ith follower satellite in the ECI frame, b1 is an s
vector, and s�≤ 3� is the number of the given (independent) orbital
constraints. Also, as in Eq. (33), the superscript i will be omitted for
brevity from here on, unless required for clarity.
As a specific example, let us consider the PCO [7,8,38]. Let the ith

follower satellite be required to have a PCO expressed in the Hill
frame as

y2 � z2 � ρ20 (34a)

2x � z (34b)

where there are two constraints, and so s is 2. Equation (34a) states
that the follower satellite shouldmove on a circlewith constant radius
ρ0, where ρ0 is the constant distance between the leader satellite and

the ith follower satellite when projected on the local horizontal (y-z)
plane corresponding to it. Equation (35b) makes the relative motion
bounded for every axis, and it also matches the solutions of the HCW
equations satisfying the constraints Eq. (34a) [38]. Each follower
satellite can have its own orbital requirements with respect to the
leader satellite that can be correspondingly expressed as, for example,
in Eq. (34). By transforming Eq. (34) to the ECI frame, the two orbital
constraints can be expressed as

�R2X�2 � �R3X�2 � ρ20 (35a)

2�R1X − rL� � R3X (35b)

whereR1,R2, andR3 are the first, second, and third row vectors of
the rotation matrix R in Eq. (16), respectively. To obtain a general
form of the constraint equation expressed by Eq. (8), the following
are defined:

φ1 ≔ �R2X�2 � �R3X�2 − ρ20 (36a)

φ2 ≔ 2�R1X − rL� −R3X (36b)

so that

_φ1 � 2�R2X�� _R2X�R2
_X� � 2�R3X�� _R3X�R3

_X� (37a)

_φ2 � 2� _R1X�R1
_X − _rL� − � _R3X�R3

_X� (37b)

and

�φ1 � 2� _R2X�R2
_X�2 � 2�R2X�� �R2X� 2 _R2

_X�R2
�X�

� 2� _R3X�R3
_X�2 � 2�R3X�� �R3X� 2 _R3

_X�R3
�X�
(38a)

�φ2 � 2� �R1X� 2 _R1
_X�R1

�X − �rL� − � �R3X� 2 _R3
_X�R3

�X�
(38b)

Then, using Eq. (8), one can obtain the constraint equations in the
form of Eq. (7):

2��R2X�R2 � �R3X�R3� �X � −2� _R2X�R2
_X�2 − 2�R2X�

× � �R2X� 2 _R2
_X� − 2� _R3X�R3

_X�2

− 2�R3X�� �R3X� 2 _R3
_X� − α1 _φ1 − β1φ1 (39a)

�2R1 −R3� �X � 2�rL − 2� �R1X� 2 _R1
_X�

� � �R3X� 2 _R3
_X� − α2 _φ2 − β2φ2 (39b)

Equation (39) can be compactly written as

"
2��R2X�R2 � �R3X�R3�

2R1 −R3

#
�X �

2
664

−2� _R2X�R2
_X�2 − 2�R2X�� �R2X� 2 _R2

_X� − 2� _R3X�R3
_X�2

−2�R3X�� �R3X� 2 _R3
_X� − α1 _φ1 − β1φ1

2�rL − 2� �R1X� 2 _R1
_X� � � �R3X� 2 _R3

_X� − α2 _φ2 − β2φ2

3
775 (40)

which is of the form of Eq. (33) with

A11�X; _X; t� �
"
2��R2X�R2 � �R3X�R3�

2R1 −R3

#
(41a)

b1�X; _X; t� �

2
664

−2� _R2X�R2
_X�2 − 2�R2X�� �R2X� 2 _R2

_X� − 2� _R3X�R3
_X�2

−2�R3X�� �R3X� 2 _R3
_X� − α1 _φ1 − β1φ1

2�rL − 2� �R1X� 2 _R1
_X� � � �R3X� 2 _R3

_X� − α2 _φ2 − β2φ2

3
775 (41b)

where A11 is a 2 × 3 matrix and b1 is a two-vector. It is noted in
passing that the matrix A11 and the vector b1 do not involve any
quaternions. As with Eq. (34), it shall be assumed from here on
that the s�≤ 3� orbital constraints for each of the follower satellites
are independent of one another, so that the rank of the matrix A11 is
full.
Next, let us consider attitude constraints for target tracking. It is

assumed that the z axis of the body frame of the ith follower satellite
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describedby theunit vector ẑ�i�body � � 0 0 1 �T is required topoint toa
given target and that the target’spositionvector in theECI frame,which is
given byX�i�t �t� � �X�i�t �t� Y�i�t �t� Z�i�t �t� �T, may be an arbitrarily
prescribed time-varying function. This constraint can bemathematically
expressed using the fact that, in the body frame of reference, the vector

ẑ�i�body should be parallel to the vector ξ�i��t� ≔ X�i�t �t� −X�i��t� �
�X�i�t �t� − X�i��t� Y�i�t �t� − Y�i��t� Z�i�t �t� − Z�i��t� �T ≠ 0 con-

necting the follower satellite and the target. As before, the superscript i
shall be dropped in what follows, for brevity, but note that each follower
satellite is required to track, in general, a different target whose position
may be arbitrarily prescribed in time. The aim is to perform, along with
precise orbital control, attitude control, so that each follower satellite can
precisely track its assigned target.
LetTbe the transformationmatrix thatmaps theECI frame into the

body frame of the ith follower satellite, which is of the form

T≔

"T1

T2

T3

#
≔

"
T11 T12 T13

T21 T22 T23

T31 T32 T33

#

�
"
u20� u21 − u22 − u23 2�u1u2 � u0u3� 2�u1u3 − u0u2�
2�u1u2 − u0u3� u20 − u21� u22 − u23 2�u2u3 � u0u1�
2�u1u3 � u0u2� 2�u2u3 − u0u1� u20 − u21 − u22� u23

#

(42)

whereT1,T2, andT3 are the first, second, and third rowvectors of the
T matrix, respectively. Then, Tξ�t� is the vector connecting the
follower satellite and the target expressed along the body frame, and
the attitude constraint for target pointing becomes

ẑbody × Tξ ≔ ẑbody ×

2
4T1ξ
T2ξ
T3ξ

3
5 � 0 (43)

Equation (43) describes the attitude tracking requirement for the ith
follower satellite, and each of the N follower satellites can have
their own time-varying attitude requirements for tracking different
targets.
Expanding Eq. (43) for the ith follower satellite, one has

2
664
0 −1 0

1 0 0

0 0 0

3
775
2
664
T1ξ

T2ξ

T3ξ

3
775 �

2
664
0 −1 0

1 0 0

0 0 0

3
775

×

2
664
T11�Xt − X� � T12�Yt − Y� � T13�Zt − Z�
T21�Xt − X� � T22�Yt − Y� � T23�Zt − Z�
T31�Xt − X� � T32�Yt − Y� � T33�Zt − Z�

3
775 �

2
664
0

0

0

3
775 (44)

Then, the two constraints for target pointing are given by

−�T21�Xt − X� � T22�Yt − Y� � T23�Zt − Z�� � 0 (45a)

T11�Xt − X� � T12�Yt − Y� � T13�Zt − Z� � 0 (45b)

Equations (45a) and (45b) can also be compactly written, for future
use, as

−T2ξ � 0 (45c)

T1ξ � 0 (45d)

As before, the following are defined:

φ3 ≔ −T2ξ; _φ3 ≔ − _T2ξ − T2
_ξ (46a)

φ4 ≔ T1ξ; _φ4 � _T1ξ� T1
_ξ (46b)

Besides these two requirements, it is necessary to impose an
additional constraint that the quaternion four vector of each follower
satellite must have unit norm, so that physical rotations are described.
This constraint is of the form

N�u� ≔ u20 � u21 � u22 � u23 � 1 (47)

so that

φ5 ≔ u20 � u21 � u22 � u23 − 1;

_φ5 � 2�u0 _u0 � u1 _u1 � u2 _u2 � u3 _u3�
(48)

Following the same procedure in the orbital part, one can have the
following attitude constraint equations:

�A21 A22 �
�
�X
�u

�
� b2 (49)

A21�u� �
"
T21 T22 T23

−T11 −T12 −T13

0 0 0

#
≔
�
�A21�u�
01×3

�
(50)

A22�X;Xt;u�

�

2
6666666666666664

2�u3 −u0 −u1 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775 2�−u2 u1 −u0 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775 2�−u1 −u2 −u3 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775 2�u0 u3 −u2 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775

2� u0 u3 −u2 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775 2�u1 u2 u3 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775 2�−u2 u1 −u0 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775 2�−u3 u0 u1 �

2
664
Xt − X

Yt − Y

Zt − Z

3
775

2u0 2u1 2u2 2u3

3
7777777777777775

≔
� �A22�X;Xt;u�

2uT

�
(51)
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b2�X;Xt;u; _X; _Xt; _u; �Xt� �

2
6666664

�
4� _u1 _u2 − _u0 _u3��Xt − X� � 2� _u20 − _u21 � _u22 − _u23��Yt − Y� � 4� _u2 _u3 � _u0 _u1��Zt − Z�
�2 _T21� _Xt − _X� � 2 _T22� _Yt − _Y� � 2 _T23� _Zt − _Z� � T21

�Xt � T22
�Yt � T23

�Zt

�
− α3 _φ3 − β3φ3

−
�
2� _u20 � _u21 − _u22 − _u23��Xt − X� � 4� _u1 _u2 � _u0 _u3��Yt − Y� � 4� _u1 _u3 − _u0 _u2��Zt − Z�
�2 _T11� _Xt − _X� � 2 _T12� _Yt − _Y� � 2 _T13� _Zt − _Z� � T11

�Xt � T12
�Yt � T13

�Zt

�
− α4 _φ4 − β4φ4

−2N� _u� − α5 _φ5 − β5φ5

3
7777775

≔
� �b2�X;Xt;u; _X; _Xt; _u; �Xt�

−2N� _u� − α5 _φ5 − β5φ5

�
(52)

whereN� _u� ≔ _u20 � _u21 � _u22 � _u23. ThematrixA21 is a 3 × 3matrix,
A22 is a 3 × 4 matrix, and b2 is a three vector; to obtain the
corresponding barred quantities, the last row in each of thesematrices
needs to be dropped. In Appendix A, it is shown thatA22 always has
full rank.
Finally, the constraint equation, which is of the form of Eq. (7),

including both orbital and attitude constraints, is written as

A �q ≔
�
A11 0

A21 A22

��
�X
�u

�
≔
�
b1

b2

�
≔ b (53)

where the matrix A is, in general, �s� 3� × 7) and s ≤ 3 is the
number of independent orbital constraints or the number of the
independent rows of the matrix A11. Then, the control force and
torque are explicitly calculated using Eqs. (11a) or (11b). In
Appendix A, it is proved that the matrixA in Eq. (53) always has full
rank. Then, one can use the regular inverse instead of the MP-
generalized inverse of the matrix AM−1AT in Eq. (11b), so that the
control forces �FC�t�� and torques �ΓC

u �t�� on the ith follower satellite
are given explicitly by the seven vector

QC�t� ≔
�
FC�t�
ΓCu �t�

�
� AT�AM−1AT�−1�b −Aa� (54)

Using the regular inverse as in Eq. (54), instead of the MP-
generalized inverse as in Eq. (11b), saves considerable computation
time and dramatically improves numerical accuracy. The first
component of QC�t�, which is a three vector, FC�t�, is the control
force for orbital control, whereas the second component, which is a
four vector, ΓC

u �t�, is the generalized control torque for attitude
control. InAppendixB, it is shown that the right-hand side of Eq. (54)
simplifies to yield

FC�t� � mαO �mP1A
T
21D�b2 −A21a1 −A22a2 −A21αO�

� mαO �mP1A
T
21αO;A (55)

ΓC
u �t� � mAT

22D�b2 −A21a1 −A22a2 −A21αO� � mAT
22αO;A

(56)

where

P0�X; _X; t� ≔ AT
11�A11A

T
11�−1A11 � A�11A11

P1�X; _X; t� ≔ I3×3 − P0�X; _X; t� � I3×3 −AT
11�A11A

T
11�−1A11

� I3×3 −A�11A11 (57)

αO�X; _X; t� ≔ AT
11�A11A

T
11�−1�b1 −A11a1� � A�11�b1 −A11a1�

D�X;Xt;u; _X; t� ≔ �A21P1A
T
21 �mA22M

−1
u AT

22�−1 (58)

and

αO;A�X;Xt;u; _X; _Xt; _u; �Xt; t�
≔ D�b2 −A21a1 −A22a2 −A21αO� (59)

The matrices P0 and P1 are orthogonal projection operators because
they are both symmetric idempotent matrices. The matrix P0 is a
projection onto the column space of AT

11, and the matrix P1 is the
projection onto the null space of A11. It should be noted that the
matrixD in Eq. (58) is well defined because the 3 × 4matrixA22 has
full rank (see Appendix A), so that A22M

−1
u AT

22 is positive definite,
andA21P1A

T
21 is semipositive definite because P1 is idempotent. Let

us briefly investigate the relationship between P0 and P1. First, it
should be pointed out that [39]

rank�P0� � rank�A�11A11� � rank�A11� � s (60)

Because the column space of P1 � I3×3 −A�11A11 is the same as the
null space of A11 [39], the rank of P1 is

rank�P1� � nullity�A11� � 3 − s (61)

Combining Eqs. (60) and (61) yields

rank�P0� � rank�P1� � 3 (62)

and Eqs. (61) and (62) will be used later.
The structure of Eqs. (55) and (56) is better exposed when written

in the form

�
FC�t�
ΓC�t�

�
� m

�
I3×3 P1A

T
21

0 1
2
E1A

T
22

��
αO

αO;A

�
(63)

where Eqs. (21) and (32) have been used in Eq. (63) to obtain the
physical torque three vector ΓC applied to the follower satellite.
Equation (63) is valid whether or not there is sensor measurement
noise that causes the initial conditions, both in orbit and attitude, of
the follower satellites to be incorrect at the start of the maneuver.
One can further particularize the general result given in Eq. (63)

when the attitude constraints (45) and the unit-norm constraint (47)
are satisfied and there are no attitude sensor measurement errors. As
pointed out earlier, the attitude constraints will be asymptotically
satisfied in the presence of sensor measurement noise. Recalling that
[see Eqs. (50–52)], if the attitude constraints and the unit-norm
constraint are met,

A21 �
�

�A21

01×3

�
; A22 �

�
�A22

2uT

�
; b2 �

�
�b2

−2N� _u�

�
(64)

and one can find that the control force and the physically applied
torque can be rewritten as (see Appendix C)

FC�t� � mαO �mP1
�AT
21 �αO;A (65)

ΓC�t� � m
2
E1

�AT
22 �αO;A (66)

where

�D�X;Xt;u; _X; t� � � �A21P1
�AT
21 �

m

4
�A22E

T
1 J

−1E1
�AT
22�

−1

�αO;A�X;Xt;u; _X; _Xt; _u; �Xt; t�
� �D� �b2 − �A21a1 − �A22a2 − �A21αO� (67)
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withP1 andαO defined in Eqs. (57) and (58). Also, the invertibility of

the matrix �D in Eq. (67) is guaranteed. Note that the matrix

A22M
−1
u AT

22 is positive definite where

A22M
−1
u AT

22 �
1

4

� �A22

2uT

�
�u ET

1 �
� 1
J0

0

0 J−1

��
uT

E1

�
� �AT

22 2u �

� 1

4

� �A22

2uT

��
1

J0
uuT �ET

1 J
−1E1

�
� �AT

22 2u �

� 1

4

� �A22E
T
1 J

−1E1
�AT
22 0

0 4
J0

�
> 0 (68)

and Eqs. (19), (21), and (64), and the identity E1u � 0, have been
used in deriving Eq. (68), assuming that the attitude constraints and
the unit-norm constraint, Eqs. (45c), (45d), and (47), are satisfied, so

that �A22u � 0 in Eq. (A3) of Appendix A. From Eq. (68), it is

concluded that the matrix �A21P1
�AT
21 � �m∕4� �A22E

T
1 J

−1E1
�AT
22 is

positive definite because �A22E
T
1 J

−1E1
�AT
22 is positive definite and

�A21P1
�AT
21 is semipositive definite, so that �D [see Eq. (67)] is well

defined. Equation (63) now reads

�
FC�t�
ΓC�t�

�
� m

�
I3×3 P1

�AT
21

0 1
2
E1

�AT
22

��
αO

�αO;A

�
(69)

where the barred quantities are given in Eqs. (50–52), �αO;A is defined
in Eq. (67), and P1 is defined in Eq. (57).
In conclusion, Eqs. (63) and (69), which explicitly give the control

forces and control torques, form part of the central results of this
paper. It is important to note that Eq. (63) is more general than
Eq. (69), in that Eq. (63) is applicable to cases when the attitude
constraints (45c) and (45d) are not exactly satisfied, for example,
when initial condition errors caused by sensormeasurement noise are
present. Equation (69) is simpler than Eq. (63), but it is obtained
based on the assumption that the attitude constraints (45c) and (45d)
are satisfied throughout the maneuver (including at the time of
insertion), though not necessarily the orbital constraints. More
precisely, Eq. (69) requires the unit-norm constraint (47) as well. If
this constraint is not satisfied, it is impossible to describe physical
rotation; hence, the quaternions have unit norm at the initial time and
are controlled to maintain this norm by the controller developed in
this paper.
Also, the accelerationvector of the constrained (controlled) system

is explicitly obtained from Eq. (63) as

�q �
� �X

�u

�

�
�a1
a2

�
�m

�
mI3×3 0

0 Mu

�−1� I3×3 P1A
T
21

0 AT
22

�� αO

αO;A

�

�
�
a1

a2

�
�
�
I3×3 P1A

T
21

0 mM−1
u AT

22

�� αO

αO;A

�
(70)

or from Eq. (69) as

�q �
� �X

�u

�

�
�a1
a2

�
�m

�
mI3×3 0

0 Mu

�−1� I3×3 P1
�AT
21

0 �AT
22

�� αO

�αO;A

�

�
�a1
a2

�
�
�
I3×3 P1

�AT
21

0 mM−1
u

�AT
22

�� αO

�αO;A

�
(71)

As before, Eq. (71) is restricted to situations when the attitude
constraints (45c) and (45d) [and the unit-norm constraint (47)] are
satisfied, Eq. (70) being the more general result. From Eqs. (58) and
(59), it is seen that αO is a function only of the orbital constraints

(requirements), whereas αO;A depends on both the orbital and the
attitude constraints (requirements). Thus, from Eq. (63), when
P1A

T
21αO;A � 0, the control force FC�t� required to be applied to the

follower satellite for orbital control does not depend on the attitude of
the follower satellite or the attitude constraints it is required to satisfy.
On the other hand, the control torques ΓC�t� are dependent, in
general, on both the orbital and the attitude requirements, and they
depend on the orbital position and velocity of the follower satellite,
and of course on _u and _u. This leads to an important principle,
explained in the next section.

IV. Separation Principle

The structure of Eq. (63) leads to the following result.
When the independent orbital trajectory constraints (trajectory

requirements) for the ith follower are such that

A11�X; _X; t� �X � b1�X; _X; t� (72)

where X�t� � �X�t� Y�t� Z�t� �T is the position vector of the ith
follower satellite in the ECI frame, and the attitude pointing
constraints (requirements) are such that

�A21 A22 �
�
�X
�u

�
� b2 (73)

whereu is the quaternion four vector describing the orientation of the
follower satellite, then the control forceFC�t� on the follower satellite
needed at time t to satisfy the orbital constraints (requirements) will
be independent of any attitude pointing constraints (requirements) at
time t, provided at that time

P1A
T
21αO;A � 0 (74)

is satisfied, where P1 and αO;A are, respectively, defined in Eqs. (57)
and (59). The corresponding control force at time t is given by
FC�t� � mαO, where αO is explicitly given in Eq. (58), and it does
not depend on the attitude of the follower satellite. Equation (74) can
be often satisfied in one of two different ways, leading to the
following two cases.
Case 1: When P1 � 0. For any controller that does exact orbital

control, for all time, is independent of attitude control (or any attitude
consideration) ifA11 is invertible (i.e., if there are three independent
orbital constraints). Only these three orbital constraints fully
determine the orbital state vectorX�t� and _X�t�with the given initial
conditions. Regarding the controller employed in the current paper,
when the matrixA11 is an invertible 3 × 3matrix, P0 � I3×3, so that
P1 � 0 and P1A

T
21αO;A � 0. The orbital control force will not then

depend on the attitude of the follower satellite. More explicitly, it is
obtained as

FC�t� � m�A−1
11b1 − a1� (75)

Equation (75) is quite natural, in that mA−1
11b1 is the total force to

satisfy the full orbital constraint and ma1 is just the force resulting
from the unconstrained system, and so m�A−1

11b1 − a1� is the
additional control force that is necessary to satisfy the given orbital
constraints. Also, fromEq. (58),D � �1∕m��A22M

−1
u AT

22�−1 and the
attitude control torque is explicitly given by

ΓC�t��1

2
E1A

T
22�A22M

−1
u AT

22�−1�b2−A22a2−A21A
−1
11b1�

�1

2
E1A

T
22�A22M

−1
u AT

22�−1
�
b2−A22a2−A21a1−

1

m
A21F

C

�
(76)

where Eq. (75) has been used in the last equality and Eq. (76) shows
the relationship between the orbital control forces FC�t� and the
attitude control torques ΓC�t�. If Eq. (66) is employed, the attitude
control torque is alternatively given by
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ΓC�t�� 2E1
�AT
22� �A22E

T
1 J

−1E1
�AT
22�−1� �b2− �A22a2− �A21A

−1
11b1�

� 2E1
�AT
22� �A22E

T
1 J

−1E1
�AT
22�−1

�
�b2− �A22a2− �A21a1−

1

m
�A21F

C

�
(77)

FromEqs. (76) and (77), it is noted that the attitude control in general
depends on the follower satellite’s orbital tracking requirements.
Such a situation (A11 is invertible) would occur, for example, if

instead of Eq. (34a), the two constraint equations y � ρ0 cos�ω0t�
and z � ρ0 sin�ω0t�, where ω0 is a given orbital frequency in the yz
plane of the Hill frame, are used to specify the orbital requirements
for the ith follower, so that along with Eq. (34b) there exist three
independent orbital constraints (requirements). The invertibility of
A11 assures that the three orbital requirements are independent of one
another and the control force needed to satisfy them then becomes
independent of the follower satellite’s attitude. In brief, if there are
three independent orbital constraints, then there is no need to consider
any attitude constraints in designing the orbital controller.
Case 2:WhenP1A

T
21 � 0. First, it is noted that the third column of

the 3 × 3 matrix P1A
T
21 is always zero because A

T
21 � � �AT

21 03×1 �.
For the controller designed in the current paper, the orbital control is
independent of the attitude control (or any attitude constraints) at
each instant of time t when there exists a 3 × 3 matrix H such that

AT
21 � P0H (78)

The following is the derivation of Eq. (78). The solution AT
21 to the

matrix equation P1A
T
21 � 0 is given by [39]

AT
21 � �I3×3 − P�1 P1�H (79)

where H is an arbitrary 3 × 3 matrix. With the fact that P�1 �
�I3×3 − P0�� � �I3×3 −A�11A11�� � I3×3 −A�11A11 � P1 and the
matrix P1 is idempotent, the right-hand side of Eq. (79) becomes
P0H, which proves Eq. (78). With Eq. (78), it follows that

P1A
T
21 � P1P0H � �I3×3 − P0�P0H � �P0 − P2

0�H
� �P0 − P0�H � 0 (80)

so that the separation principle holds. This case is more limited than
the previous one, in that Eq. (78) may be satisfied only at several time
points during the maneuver. In Appendix A, it is shown that the 2 × 3
matrix �A21 always has full rank, that is, a rank of 2. Then, the rank of
the matrix AT

21 is 2 and the rank of the matrix P0 is s, and so it is
concluded that, from Eq. (78),

rank�AT
21� � rank�P0H� ≤ rank�P0� (81)

which yields

2 ≤ s (82)

Equation (82) states that, for a matrix H to exist, the number of
independent orbital constraints should be equal to or more than two.
If s � 3, the matrix A11 at the time t is invertible, P1 � 0, and this
falls under case 1, and the separation principle always applies. If
s � 2, then rank�P1� � 3 − s � 1 from Eq. (61), so that the rank of
the 3 × 3 matrix P1A

T
21 is zero or one. The rank of zero means that

P1A
T
21 is a null matrix, Eq. (74) is satisfied, and the separation

principle holds. The rank of one means that the first two nonzero
columns of the 3 × 3 matrix P1A

T
21 are linearly dependent and the

separation principle holds only at the time instantswhen there exists a

three vector αO;A, such that P1A
T
21αO;A � 0. Finally, if s � 1, a

matrix H does not exist and P1A
T
21 is never zero, and the rank of

P1A
T
21 is one or two (because the third column of P1A

T
21 is always

zero).When the rank is one, the separation principle holds only at the
instants whenP1A

T
21αO;A � 0 is satisfied as before.When the rank is

two, P1A
T
21αO;A ≠ 0 as long as αO;A ≠ 0 because no linear

combination of the two nonzero columns of P1A
T
21 makes

P1A
T
21αO;A zero, which means that the separation principle never

holds. The results are summarized in Table 1.
Remark: One of the strengths of the analytical solution is that it is

possible to estimate in advance the magnitude or the order of the
required control force and/or torque. For example, the second
component of FC�t� is

mP1
�AT
21 �αO;A � mP1

�AT
21
�D� �b2 − �A21a1 − �A22a2 − �A21αO� (83)

fromEq. (65).With the definitions of each term in the right-hand side

of Eq. (83), thematrix norm of �D is very small if the absolute distance
between the follower satellite and the target, that is, kξ�t�k �
kXt�t� −X�t�k is sufficiently large. For example, provided that the

target is set as the center of the Earth, kξ�t�k is of the order of 106 (in
meters) if the follower satellite is in low Earth orbit. Then, the matrix

norm of �A22, which is almost the same as kξ�t�k, is also large, which
makes the norm of �D very small because �D is the inverse of thematrix

multiplication of two �A22 matrices. The norms of the elements in

the parentheses (i.e., k �b2k, k �A21a1k, k �A22a2k, and k �A21αOk) of the
right-hand side of Eq. (83) are much smaller than kξ�t�k because the
norm of a2 is of the order of the norm of k _uk2, and the norms kP1k
and k �A21k are both of the order unity. It is therefore concluded that

mP1
�AT
21 �αO;A is a lot smaller than mαO. Hence, in many cases, the

first componentmαO dominates the second componentmP1
�AT
21 �αO;A

in the control force FC�t� for orbital control.
For reference, the attitude control torques are described by

ΓC�t� � �m∕2�E1
�AT
22 �αO;A from Eq. (66) and it is shown in

Appendix A that the rank of thematrix �A22E
T
1 has full rank (i.e., rank

of two), so that ΓC�t� is never zero as long as �αO;A is not zero. Also,

although �αO;A � �D� �b2 − �A21a1 − �A22a2 − �A21αO�may be small as

stated earlier, the torque ΓC�t� is not negligible because the matrix

norm of �A22 is large (of the order of kξk).

V. Numerical Example

In this section, an example is introduced to demonstrate the
applicability of the control methodology suggested in the preceding
sections. It is straightforward to extend this example for applications
to more general situations. The numerical integration throughout this
paper is done in the MATLAB environment, using a variable time
step (4, 5)-modified Runge–Kutta integrator with a relative error
tolerance of 10−13 and an absolute error tolerance of 10−16.
Let us consider a formation system in which there is one follower

satellite whose mass is m � 6.5 kg. Also, its moments of
inertia along its respective body-fixed axes are taken to be J �
diag� 1.88 1.88 1.1 � kg · m2. It is assumed that the leader
satellite is in a J2-perturbed circular reference orbit around the oblate
Earth whose initial radius is rL � 7.1781363 × 106 m (i.e., the
altitude is 800 km). The initial right ascension of the ascending node
ΩL and the inclination iL of the leader satellite’s orbit are 30 and
80 deg, respectively, and it is assumed that the leader satellite is at the
ascending node at the initial time (t � 0). The leader satellite’s
“nominal” orbital frequency and its nominal orbital period (the orbit
is not closed) are given by, respectively,

Table 1 Various conditions for the separation principle
depending on the rank s of A11

s Rank (P1A
T
21) Separation principle

1 1 Holds only at the time sections

when P1A
T
21αO;A � 0

2 Never holds as long as
αO;A ≠ 0

2 0 Holds
1 Holds only at the time points

when P1A
T
21αO;A � 0

3 0 Always holds
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nL �

���������������
GML
r3L

s
� 1.0381292 × 10−3 rad∕s;

PL �
2π

nL
� 6.0524127 × 103 s � 1.6812257 h

(84)

and 2PL is chosen as the duration of time used for numerical
integration. Figure 1 shows the leader satellite’s trajectory in the ECI
frame. The trajectory in three-dimensional space is given in the upper
left figure. The upper right, the lower left, and the lower right figures
show the trajectories projected onto the XY, YZ, and XZ planes,
respectively. The trajectory is not closed due to the J2 perturbation,
although it is difficult to see this from the figure.
For orbital control, the follower satellite, which is also under the J2

perturbation, is required to satisfy Eq. (34) or stay on a circle with a
constant radius ρ0 � 2 km when projected onto the yz plane in the
Hill frame (centered at the leader satellite). As an attitude
requirement, the z axis of the body frame of the follower satellite is
required to point to the center of the leader satellite at all times, that is,
Xt�t� is the position vector of the leader satellite. One of the correct
initial conditions for orbital motion of the follower satellite in theHill
frame is given by

x�0� � 0 m; y�0� � 2000 m;

z�0� � 0 m _x�0� � 1.0381290 m∕s;

_y�0� � −0.02076223 m∕s; _z�0� � 2.0762581 m∕s

(85)

However, because the relative initial position and velocity should be
measured, for example, from a carrier-phase differential GPS sensor,
they may be corrupted by sensor noise. With filtered carrier-phase
differential GPS signals, the relative position measurements are
predicted to be accurate to approximately 2–5 cm and the velocity
noise is predicted to be on the order of 2–3 mm∕s [40]. In the current
paper, for illustration purposes, let us consider measurement errors in
excess of these estimates. The errors in the initial position are taken to
be�

���
6
p

cm in the radial direction (x direction in the Hill frame) and
�

���
6
p

cm in the in-track direction (y direction in the Hill frame), and
the errors in the initial velocity are taken to be �2 and �2 mm∕s,
respectively, in the radial and in-track directions, that is,

x�0� � 0.0244949; y�0� � 2000.0244949;

z�0� � 0 _x�0� � 1.0401290; _y�0� � 0.002;

_z�0� � 2.0762581

(86)

and Eq. (86) can be transformed into the ones in the ECI frame using
Eq. (16):

X�0� � 6.2162748 × 106; Y�0� � 3.5893689 × 106;

Z�0� � 1.9696396 × 103 _X�0� � −646.8736516;

_Y�0� � 1118.3457218; _Z�0� � 7338.9841623

(87)

The initial conditions for attitude motion are chosen as

u0�0� � 0.07073720; u1�0� � 0.9915440;

u2�0� � 0.1024636;

u3�0� � 0.0365786 _u0�0� � −5.6671227 × 10−4;

_u1�0� � 2.8402648 × 10−6; _u2�0� � 3.6375241 × 10−4;

_u3�0� � 0

(88)

These initial conditions do not satisfy the attitude constraints (45c)
and (45d), but do satisfy the unit-norm constraint (47) to describe a
physical rotational motion. Thus, sensor errors in attitude
measurements are also included. More specifically, if θ is defined
as the angle between thevector ẑbody and thevectorTξ connecting the
follower satellite and the target (the leader satellite), that is, θ ≔
∠�ẑbody;Tξ� (see Fig. A1 in Appendix A), then θ is approximately
θ�0� ≃ 1.02 deg at the initial time; exact satisfaction of the attitude
constraints would require θ to be zero [see Eq. (45)]. It should be
noted that, because sensormeasurement noise is present, affecting the
correct values of the initial conditions, both in orbit and attitude,
Eq. (63) should be used to obtain the control force and torque [instead
of Eq. (69)] and Eq. (70) should be used to obtain the controlled
position and velocity history of the follower satellite [instead of
Eq. (71)]. The parameter values, αi � 0.002 and βi � 0.002 (i � 1,
2, 3, 4, 5) are chosen in the constraint equations (8).
Figure 2 represents the orbits of the follower satellite with control

projected on the yz and xz planes in the Hill frame, respectively. The
scale is normalized by ρ0 and these trajectories are obtained by
integrating twice the analytical results given in Eq. (70). Although it
is not obvious from this figure, there are small initial discrepancies
from the desired formation configuration of the follower satellite due
to the incorrect initial conditions caused by sensor measurement
errors. Despite these measurement errors, asymptotic convergence to
the desired orbital and attitude trajectories occurs, which will be
discussed later. As seen in Fig. 2, the follower satellite quicklymoves
on the constraint circle of (normalized) radius unity and satisfies the
linear constraint as required by Eq. (34). Figure 3 depicts the orbits of
the follower satellitewithout control projected on the yz and xzplanes
in the Hill frame, respectively. As seen from the figures, without
control, the follower satellite appears to show unboundedmotion and
moves leftward in the y direction, necessitating control.
In Fig. 4, the time histories of each component of the quaternion for

the follower satellitewith control are shownwhere time is normalized
by PL, the nominal period of the leader satellite [see Eq. (84)].
Figure 5 depicts quaternion time histories for the follower satellite
without control. As expected, each component starts with its initial
quaternionvalue andwith the initial slope of its quaternion derivative,
and eachmaintains this oscillation in the absence of any control force
and/or torque.
Figure 6 depicts the control forces FC�t� per unit mass of the

follower satellite to maintain the desired orbital formation. These
forces are directly obtained using the analytical results, Eq. (63). The
force components are described in the ECI frame, and time is
normalized by the nominal period of the leader satellite (i.e., PL). As
seen, relatively large control forces are brought into play initially to
eliminate the initial errors in the orbit of the follower satellite. After
this initial adjustment, as seen from the figure, the forces required for
orbital control become small. One can reduce the magnitude of the
control force by choosing smaller values of αi and βi than those used
here; but this would, of course, come at the expense of a longer timeFig. 1 Leader satellite’s trajectory in the ECI frame.
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duration needed to get the follower satellite to its required trajectory.
Figure 7 illustrates the control torques ΓC�t� per unit mass of the
follower satellite for satisfying the attitude requirements. These
torques are also directly obtained using the new analytical results,
Eq. (63). The torque components are described in the body frame of
the follower satellite, and it is seen again that relatively large control
torques are required tomitigate initial attitude errors. From the figure,
little torque along the z axis is needed once the target pointing
becomes accurate. This means that only the x and y components are
necessary to control the orientation of the follower satellite. This

result can be derived from the analytical solution given in Eq. (66).
From Eq. (A4) of Appendix A, it is seen that the third row of the
matrix E1

�AT
22 is zero because T1ξ � T2ξ � 0 if the attitude

constraints are satisfied by Eqs. (45c) and (45d), and so the z-
component of the control torque is identically zero.
Figure 8 represents errors in the satisfaction of the desired

trajectory requirements in the presence of sensormeasurement errors.
The first error plotted is e1�t� ≔

���������������������������������������
�R2X�2 � �R3X�2

p
− ρ0 [see

Eq. (35a)] and the second error e2�t� ≔ 2�R1X − rL� −R3X [see
Eq. (35b)], both being measured in meters. The third error is the

Fig. 2 Controlled orbital motion in the yz and xz-planes of the follower satellite.

Fig. 3 Uncontrolled orbital motion in the yz and xz-planes of the follower satellite.

Fig. 4 Quaternion of the follower satellite with control.
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Fig. 5 Quaternion of the follower satellite without control.

Fig. 6 Required control forces per unit mass in the ECI frame for the follower satellite from Eq. (63).

Fig. 7 Required control torques per unit mass in the body frame for the follower satellite from Eq. (63).

Fig. 8 Errors in orbital and attitude requirements with control and sensor measurement errors.
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pointing error. As previously defined, θ is the angle between the
vector ẑbody and the vector Tξ, so that e3�t� ≔ θ in degrees, which is
required to be zero. The fourth error is the unit-norm quaternion
constraint e4�t� � u20 � u21 � u22 � u23 − 1. Initially, the first three
errors are large because the incorrect initial conditions, because of
sensor measurement noise, are used; however, they asymptotically
converge to zero, as expected, as time progresses. The small boxes
that magnify the errors over the duration 1.95PL–2PL confirm this;
the final errors in the satisfaction of the desired trajectory
requirements are of the order of 10−7, 10−7, 10−6, and 10−15,
respectively. Even in the presence of the incorrect initial conditions,
the final orbital tracking errors are remarkably small, when compared
with existing results. In Ref. [32] in which linear programming is
employed, the authors require the follower satellite to stay around the
leader satellitewithin an error boxwith dimensions of several meters.
Also, for comparison, the same errors are plotted in Fig. 9, in which
no control forces and no control torques are applied. As expected, it is
seen that the errors are very large by several orders of magnitude.
The analytical results obtained in Sec. IV related to the separation

principle can provide new insights into the control dynamics.
Because there are two independent orbital constraints (34a) and (34b)
in this example (i.e., s � 2), fromTable 1 the rank ofP1A

T
21 should be

zero or one during the maneuver. When the rank is zero, the
separation principle holds and when the rank is one, the two nonzero
column vectors of P1A

T
21 are linearly dependent and the separation

principle holds only at the instants whenP1A
T
21αO;A � 0 is satisfied.

According to the numerical computation, the rank ofP1A
T
21 is always

one throughout the maneuver in this example. Fig. 10 shows that the
separation principle appears to apply only at isolated times, as

happens for the first time at t � 0.0058367PL, at which time the three
components of the vector P1A

T
21αO;A [the second term on the right-

hand side in Eq. (55)] simultaneously become zero. At the beginning,
the separation principle applies relatively frequently (see the upper
inset box in Fig. 10), but as the errors become small, the frequency
with which it applies decreases (see the lower inset box). At times,
other than when P1A

T
21αO;A � 0 the orbital control is not, strictly

speaking, independent of the attitude of the follower satellite, though
the contribution ofP1A

T
21αO;A is several orders of magnitude smaller

than that of the first term αO [see Eq. (63)]. Comparison with Fig. 6
shows that the first term αO, which is of the order of 10−4, mostly
determines the orbital control force FC�t�.
As a final application of the approach developed in this paper, the

question of robustness under unmodeled dynamics is addressed.
Though a full treatment of this topic would take us far afield, here
only “small” unmodeled dynamics is considered and a simple
approach is presented for robust control. The analytical results
obtained herein can then be thought of as reference inputs in the
presence of small external disturbances. In the presence of
disturbances, the displacement vector q�t� of the follower satellite
will differ from its reference displacement qref�t�, which is obtained
by integrating Eq. (70) twice, assuming no disturbances. If the
error e�t� ≔ qref�t� − q�t� is small, then linear control theory would
apply, and the closed-form analytically obtained control force
[obtained fromEq. (63)] can be simply augmented by a PDcontroller,
so that

M �q � Q�QC � � ~Q� KD _e� KPe� (89)

Fig. 9 Errors in orbital and attitude requirements with no control.

Fig. 10 Each component of the P1A
T
21αO;A to check if the separation principle holds.
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whereM is the mass matrix, q is the generalized displacement vector
required to track qref , Q is the given (impressed) force, QC is the
nominal control force and torque analytically obtained by Eq. (63),
and ~Q is the unmodeled external disturbance. The parametersKD and
KP are the control gains of the PD controller. Figure 11 illustrates a
block diagram showing the error correction that is embedded in
Eq. (89). For example, assume that the following orbital disturbance
force ~Q applies to the follower satellite:

~Q� �fD�0.1fD sin�nLt� fD�0.1fD cos�nLt� fD 0 0 0 0 �T

(90)

where fD � 2.418 × 10−6 N and nL is the nominal orbital frequency
of the leader satellite given in Eq. (84). Figure 12 shows the results

when using an add-on PD controller [Eq. (89)] with gains of KD �
0.02 kg∕s andKP � 0.5 kg∕s2 to compensate for the disturbance ~Q
given by Eq. (90). As seen, each component of the position vector is
bounded with steady-state tracking errors of the order of 10−5 m.
Figure 13 shows the control forces per unit mass exerted by the PD
controller. The magnitude of each component is much smaller than
that shown in Fig. 6, and hence adding this PD controller to the
original controller designed using Eq. (63) would lead to robust
control provided, of course, that the control design requirements
permit the presence of such small steady-state tracking errors.

VI. Conclusions

In this paper, a simple analytical solution for the precision
formation-keeping problem, which also considers attitude require-
ments, is presented. The leader satellite is assumed to be in a J2-
perturbed circular reference orbit, and each of the N follower
satellites, which are also under the J2 perturbation, is required to track
different orbital and time-varying attitude requirements. The method
fully preserves the complete nonlinearities of the dynamic system
and handles both orbital and attitude dynamics in a simple and unified
way. Even in the presence of sensor measurement noise, which
causes errors in the initial conditions pertaining to both orbital and
attitudinal motion, the methodology developed here provides a
nonlinear closed-form controller that asymptotically tracks both the
orbital and attitude mission requirements with very high accuracy.
Also, because the orbital constraints and the attitude target pointing
constraints are independent of each other, as shown in AppendixA, it
is possible to obtain the explicit form of the solutions, which enables
further insights into the dynamics of a multiple-satellite system.
Specifically, it is shown under what conditions the attitude dynamics
can be ignored, or separated away, when designing a controller for
exact orbital control, leading to the statement of the separation
principle. Some cases wherein the separation principle holds are
summarized in Table 1. As a special case, if there are three
independent orbital constraints given, the separation principle is
always satisfied throughout the maneuver. Two types of solutions,
Eqs. (63) and (69), are presented depending on whether the attitude
constraints and the unit-norm constraint [Eqs. (45c), (45d), and (47)]
are satisfied; this would depend on the presence of attitude sensor
measurement errors. The simpler solution, Eq. (69), results from the
absence of attitude sensor measurement errors when the attitude
constraints are exactly satisfied. In addition, the method is easy to
computationally implement and yields results with high numerical
accuracy. A numerical example that includes sensor measurement
errors shows the simplicity, efficacy, and robustness of the approach.
Via this example, it is also shown that the analytical results related to
the closed-form controller obtained in this paper can be easily used
for robust control in the presence of unmodeled dynamics by adding
to this closed-form controller an additional simple PD controller to
mitigate the effect of small unknown disturbances.

Fig. 11 Block diagram showing compensation for unmodeled dynamics
using a PD controller for robust control.

Fig. 12 Tracking errors in position showing robust control in the
presence of small unmodeled dynamics. Note the vertical scale.

Fig. 13 Control forces per unit mass exerted by the PD controller.
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Appendix A: Rank of Matrix A

Now it is shown that the matrixA in Eq. (53) always has full rank,
as long as A11 is full rank. The assumption that A11 has full rank is
equivalent to assuming that the orbital tracking requirements for the
ith follower satellite are independent of one another.
Let us first show that the matrix �A21 always has full rank, that is, a

rank of two. From the definition of �A21 in Eq. (50),

�A21 �
�

T2

−T1

�
(A1)

Because the transformation matrix

T �
"T1

T2

T3

#

is orthogonal, it is obvious that the two rows of �A21 are linearly
independent, which proves that �A21 has full rank.
Next, it is shown that the 3 × 4 matrix A22 always has full rank,

namely a rank of three. Because the matrix E [see Eq. (21)] is
orthogonal, rank�A22� � rank�A22E

T�, and fromEqs. (21) and (51),
one has

A22E
T �

�
�A22

2uT

��
u ET

1

�
�
�
�A22u �A22E

T
1

2 01×3

�
(A2)

becauseuTu � 1 (assuming that the unit-norm constraint is satisfied
throughout the maneuver to realize physical rotations) and
E1u � 03×1. Also,

�A22u �

2
666664
� 4�u0u3 − u1u2� −2�u20 − u21 � u22 − u23� −4�u0u1 � u2u3� �

"
Xt − X
Yt − Y
Zt − Z

#

� 2�u20 � u21 − u22 − u23� 4�u0u3 � u1u2� 4�u1u3 − u0u2� �
"
Xt − X
Yt − Y
Zt − Z

#
3
777775 � 2

�
−T2ξ
T1ξ

�
(A3)

where in the second equality the relation (42) has been used.Also, it is
noted that, when the attitude constraints (45c) and (45d), are satisfied,
�A22u in Eq. (A3) is exactly zero.
Likewise, �A22E

T
1 simplifies to

�A22E
T
1 � −2

�
T3ξ 0 −T1ξ
0 T3ξ −T2ξ

�
(A4)

With Eqs. (A3) and (A4), Eq. (A2) then becomes

A22E
T �

�
�A22u �A22E

T
1

2 01×3

�

�
"−2T2ξ −2T3ξ 0 2T1ξ

2T1ξ 0 −2T3ξ 2T2ξ
2 0 0 0

#
(A5)

and the rank of A22E
T is three (full rank) if T3ξ is not exactly zero.

Because Tξ is the vector connecting the follower satellite and the
target expressed along the body frame,T3ξ (the z component ofTξ in
the body coordinate frame) is zero only when the z axis of the body
frame is perpendicular to the vector connecting the follower satellite
and the target (i.e., θ � 90 deg in Fig. A1). In typical cases, the
attitude control begins with a little error angle θ between the z axis of
the body and the vector Tξ, and this angle converges to zero by the
attitude controller [see Eq. (8)], and so it is guaranteed that T3ξ ≠ 0

during the maneuver A22E
T, and A22 has full rank. Because the

constraint matrix A has the form of

A �
�
A11 0

A21 A22

�
(A6)

and A22 has three linearly independent rows, no linear combination
of these rows ofA22 can make any zero rows, as required in the (1, 2)
element of the matrix in the right-hand side of Eq. (A6). Hence, the
matrix A has full rank if A11 is full rank, and this is the end of the
proof.

Appendix B: Derivation of Eqs. (55) and (56)

To evaluate the right-hand side of Eq. (54), the matrix
�AM−1AT�−1 is first computed:

AM−1AT �
�
A11 0

A21 A22

��
1
m I3×3 03×4

04×3
1
4
ETĴ−1E

��
AT

11 AT
21

0 AT
22

�

�
�

1
mA11A

T
11

1
mA11A

T
21

1
mA21A

T
11

1
mA21A

T
21 � 1

4
A22E

TĴ−1EAT
22

�
(B1)

where the matrix E is given in Eq. (21) and is orthogonal. The (1,1)
component of Eq. (B1), which is the s × s matrix �1∕m�A11A

T
11, is

invertible if A11 has full rank or the orbital constraints are linearly
independent of each other. Let B be the inverse of the symmetric
matrix AM−1AT, so that

B � �AM−1AT�−1 �
�
B11 B12

BT
12 B22

�
(B2)

BecauseA has full rank (see Appendix A) andM is positive definite,

the matrix AM−1AT is also positive definite, which guarantees

that �1∕m�A11A
T
11 [its (1,1) component] and �1∕m�A21A

T
21�

1
4
A22E

TĴ−1EAT
22 [its (2,2) component] are positive definite, as well.

Then,

Fig. A1 During attitude control, the angle θ remains small, which
guarantees nonzero T3ξ.

CHO AND UDWADIA 603

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

SO
U

T
H

E
R

N
 C

A
L

IF
O

R
N

IA
 o

n 
Se

pt
em

be
r 

13
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.5
58

73
 



QC�t� � AT�AM−1AT�−1�b −Aa� �
�
AT

11 AT
21

0 AT
22

��
B11 B12

BT
12 B22

���
b1

b2

�
−
�
A11 0

A21 A22

��
a1
a2

��

�
�
�AT

11B11 �AT
21B

T
12��b1 −A11a1� � �AT

11B12 �AT
21B22��b2 −A21a1 −A22a2�

AT
22B

T
12�b1 −A11a1� �AT

22B
T
22�b2 −A21a1 −A22a2�

� (B3)

As noted earlier, the first component (which is a three vector) of
QC�t� is the control force for orbital control, and the second
component (which is a four vector) of QC�t� is the generalized
quaternion torque for attitude control. To use the result of Eq. (54), the
explicit forms of B11, B12, and B22 should be determined first.
Hence, the following well-known result is employed.
The inverse of a partitioned symmetric matrix

V �
�
V11 V12

VT
12 V22

�

is the symmetric matrix W [41]

W � V−1 �
�
W11 W12

WT
12 W22

�

with

W11 � �V11 − V12V
−1
22V

T
12�−1

� V−1
11 � V−1

11V12�V22 − VT
12V

−1
11V12�−1VT

12V
−1
11 ;

W12 � −V−1
11V12W22

W22 � �V22 − VT
12V

−1
11V12�−1

� V−1
22 � V−1

22V
T
12�V11 − V12V

−1
22V

T
12�−1V12V

−1
22

By this theorem, the control force three vector for orbital control is
explicitly determined as

FC�t� � �AT
11B11 �AT

21B
T
12��b1 −A11a1� � �AT

11B12 �AT
21B22��b2 −A21a1 −A22a2�

� mAT
11�A11A

T
11�−1�b1 −A11a1� �m�I3×3 −AT

11�A11A
T
11�−1A11�AT

21

· �A21A
T
21 �mA22M

−1
u AT

22 −A21A
T
11�A11A

T
11�−1A11A

T
21�−1�b2 −A21a1 −A22a2 −A21A

T
11�A11A

T
11�−1�b1 −A11a1�� (B4)

and the generalized quaternion torque four vector for attitude control
is explicitly determined as

ΓC
u �t��AT

22B
T
12�b1−A11a1��AT

22B
T
22�b2−A21a1−A22a2�

�mAT
22�A21A

T
21�mA22M

−1
u AT

22−A21A
T
11�A11A

T
11�−1A11A

T
21�−1

× �b2−A21a1−A22a2−A21A
T
11�A11A

T
11�−1�b1−A11a1��

(B5)

whereMu ≔ 4ETĴE. Equations (B4) and (B5) are the same as those
given in Eqs. (55) and (56) upon definingP0 andP1 as in Eq. (57), αO

and D as in Eq. (58), and αO;A as in Eq. (59).

Appendix C: Simplification of Control Force
and Control Torque

Here, it is shown that the control force and torque in Eq. (63) can be
simplified more if the attitude constraints and the unit-norm
constraint, Eqs. (45c), (45d), and (47), are satisfied. Using Eqs. (50–
52), the matrices A21, A22, and b2 are decomposed as

A21 �
�

�A21

01×3

�
; A22 �

�
�A22

2uT

�
; b2 �

�
�b2

−2N� _u�

�
(C1)

where φi and _φi (i � 3, 4, 5) are all zero because the attitude
constraints are assumed to be satisfied. Then, inserting these relations
into Eqs. (B4) and (B5), one can finally obtain the following
simplified control force and generalized quaternion torque:

FC�t� � mAT
11�A11A

T
11�−1�b1 −A11a1� �mP1

�AT
21

· � �A21P1
�AT
21 �

m

4
�A22E

T
1 J

−1E1
�AT
22�

−1

× � �b2 − �A21P1a1 − �A22a2 − �A21A
T
11�A11A

T
11�−1b1� (C2)

ΓC
u �t� � m �AT

22� �A21P1
�AT
21 �

m

4
�A22E

T
1 J

−1E1
�AT
22�

−1

× � �b2 − �A21P1a1 − �A22a2 − �A21A
T
11�A11A

T
11�−1b1� (C3)

where the fact �A22u � 02×1 is used from Eq. (A3) because the
attitude constraints are satisfied. The physically applied torque Γ�t�,
which is a three vector, is given by Eq. (32) and is obtained as

ΓC�t� � m
2
E1

�AT
22� �A21P1

�AT
21 �

m

4
�A22E

T
1 J

−1E1
�AT
22�

−1

× � �b2 − �A21P1a1 − �A22a2 − �A21A
T
11�A11A

T
11�−1b1� (C4)

Next, the following are defined:

αO�X; _X; t� � AT
11�A11A

T
11�−1�b1 −A11a1� (C5)

�D�X;Xt;u; _X; t� � � �A21P1
�AT
21 �

m

4
�A22E

T
1 J

−1E1
�AT
22�

−1
(C6)

and

�αO;A�X;Xt;u; _X; _Xt; _u; �Xt; t�
� �D� �b2 − �A21a1 − �A22a2 − �A21αO� (C7)

Using these definitions, Eqs. (C2) and (C4) can nowbe represented in
matrix form as

�
FC�t�
ΓC�t�

�
� m

�
I3×3 P1

�AT
21

0 1
2
E1

�AT
22

��
αO

�αO;A

�
(C8)

It must be noted that Eq. (C8) has been derived on the assumption that
the attitude constraints and the unit-norm constraint are satisfied. If
the initial conditions, for example, do notmeet the attitude constraints
(i.e., the z axis of the body frame does not point to a desired target at
the initial time), a more general control force and torque [Eq. (63)]
should be used.
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