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Abstract 

 

Protein quality control systems (PQC), i.e. UPS and aggresome-autophagy pathway, 

have been suggested to be a promising target in cancer therapy. Simultaneous 

pharmacological inhibition of both pathways have shown increase efficacy in various 

tumors, such as ovarian and colon carcinoma. Here, we investigate the effect of 

concomitant inhibition of 26S proteasome by FDA-approved inhibitor Bortezomib, and 

HDAC6, as key mediator of the aggresome-autophagy system, by the highly specific 

inhibitor ST80 in rhabdomyosarcoma (RMS) cell lines. We demonstrated that 

simultaneous inhibition of 26S proteasome and selective aggresome-autophagy pathway 

significantly increases apoptosis in all tested RMS cell lines. Interestingly, we observed 

that a subpopulation of RMS cells was able to survive the co-treatment and, upon drug 

removal, to recover similarly to untreated cells. In this study, we identified co-

chaperone BAG3 as the key mediator of this recovery: BAG3 is transcriptionally up-

regulated specifically in the ST80/Bortezomib surviving cells and mediates clearance of 

cytotoxic protein aggregates by selective autophagy. Impairment of the autophagic 

pathway during the recovery phase, both by conditional knock-down of ATG7 or by 

inhibition of lysosomal degradation by BafylomicinA1, triggers accumulation of 

insoluble protein aggregates, loss of cell recovery and cell death similarly to stable short 

harpin RNA (shRNA) BAG3 knock-down. 

Our results are the first demonstration that BAG3 mediated selective autophagy is 

engaged to cope with proteotoxicity induced by simultaneous inhibition of constitutive 

PQC systems in cancer cell lines during cell recovery. Moreover, our data give new 

insights in the regulation of constitutive and on demand PQC mechanisms pointing to 

BAG3 as a promising target in RMS therapy.  
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1. Introduction 

 

1.1. The Protein Quality Control Systems. 

Cellular homeostasis is achieved by a complex and tightly regulated serial of 

constitutive and inducible pathways which control the correct execution of cell cycling 

by mitigating potentially toxic events, such as DNA and organelle damaging and 

protein misfolding [1-3]. In order to maintain cellular homeostasis, the correct 

translation, folding and degradation of proteins is crucial (Figure 1): to this end, 

eukaryotic cells have developed a network of constitutive and inducible pathways 

which are in charge to control protein homeostasis in order to avoid proteotoxic stress 

which can eventually trigger apoptosis and/or insurgence of disease [4]. The ER 

(Endoplasmatic Reticulum) is the main sensor of protein misfolding in eukaryotic cells 

[5]. Linear newly translated proteins are folded in the ER by chaperones and co-

chaperones complexes in order to decrease the exposure of hydrophobic residues. 

Hydrophobic residues are prone to unspecific binding towards proteins leading to the 

impairment of their correct functions. When accumulation of misfolded proteins occurs, 

sensors present in the ER, such as Grp78, recognize and bind the exposed hydrophobic 

residues and induce a pro-survival response known as unfolded protein response (UPR) 

[5]. UPR mediates the decrease of CAP-dependent mRNA translation and the induction 

of chaperones and co-chaperones in order to increase the correct protein folding. 

Moreover, UPR increases protein degradation via proteasome and autophagy by the 

induction of key components of those degradative processes [6]. When misfolded 

proteins accumulation is prolonged or acute, the UPR response switches from a pro-

survival to a pro-death pathway, mainly by the induction of apoptosis [7, 8]. In this 

scenario, the degradation of unfolded and misfolded proteins plays a key role in protein 

quality control (PQC) in order to avoid induction of cell death.  

Constitutive PQC is manly taken on by two system: the ubiquitin proteasome system 

(UPS) and the autophagy-lysosomal pathway [9]. Linearized misfolded proteins are 

generally degrade by the UPS; larger structures, such as aggresomes, protein aggregates 

or p62-bodies, are cleared via the selective autophagic machinery. The interplay 

between these two systems enables cells to adapt to acute and chronic proteotoxicity by 

increasing the activity of one or both pathways: this crosstalk plays a crucial role not 
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only in the maintenance of healthy cells and tissues, but also it increases tumor cell 

survival and drug-induce resistance [10, 11].  

 

Figure 1: The PQC systems [12].  

Unfolded proteins are recognized by chaperones which mediate the correct folding process; when folding is incorrect, misfolded 

proteins can either be linearized, ubiquitin-tagged and degraded by the UPS, or form larger structures (protein aggregates) which are 
cleared by the autophagy-lysosome system 

 

1.1.1. The UPS. 

In eukaryotic cells, the UPS is in charge of the ubiquitylation, degradation and turnover 

of many regulatory and structural proteins. UPS is divided in two major steps: 1) 

protein ubiquitylation which target the tagged protein to degradation, 

compartmentalization or signaling; and 2) protein degradation mediated by the 

proteasome [13].  

 

1.1.1.1. Protein ubiquitylation. 

In order to target unfolded, regulatory or damaged proteins towards degradation and 

signaling, a tightly regulated ATP-dependent series of events need to be performed: 

final goal of these events is to tag the protein of interest with mono- or poly-ubiquitin 

chains which will serve as a regulatory signal for proteins fate [14]. The identification 

of ubiquitin as the covalently attached degradation signal of proteins was delineated in 

the early 1990s; in the last twenty years a great amount of work has been done to 
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understand in detail the regulation and biological relevance of this process with 

particular emphasis on its implication on pathology [15]. In a simplify model, ubiquitin 

needs to be activated by a two step ATP-dependent reaction mediated by a family of 

enzymes known as E1 ubiquitin-activating enzymes. Final product of the reaction is a 

thioester linkage between the ubiquitin and the E1 enzyme [16]. Second, ubiquitin is 

transferred to the active cysteine site of an ubiquitin-conjugating enzyme E2: a single 

E1 can selectively transfer ubiquitin to dozen of E2 amplifying, in this way, the 

reaction. The specificity of the substrate which has to be ubiquitinated is mediated by 

the third step of the protein ubiquitylation pathway: one of the hundreds of E3 

ubiquitin-protein ligases codified in the human genome will act as a substrate-

recognition enzyme leading to the formation of a covalent bond between a lysine 

residue of the target protein and the C-terminal glycine of the ubiquitin [16]. Recently, a 

fourth class of ubiquitin ligases has been discovered: the E4-ligase family seems to be 

responsible for the elongation of the ubiquitin chains while, the E3-ligase family mainly 

mediates mono- or multi-ubiquitylation of the substrate [17]. A growing amount of 

evidences [14] demonstrate that proteins fate depend on the lysine residue involved in 

ubiquitylation and on the presence of a polyubiquitin chain versus multiple 

monoubiquitin chains. As a general concept, polyubiquitination on Lys11, Lys29, and 

Lys48 residues is considered to target substrate to degradation, while 

monoubiquitylation on Lys63 generally leads the tagged protein towards the lysosomal 

pathway [18].  

 

1.1.1.2. The Proteasome. 

When proteins are specifically ubiquitin-tagged to degradation, the cytosolic 

multisubunit complex, known as proteasome, is engaged to mediate proteolysis of the 

substrate in an ATP-dependent manner. Proteasome is composed of three main 

subunits: a catalytic core particle (CP) and two regulatory particles (RPs) [19]. The CP, 

also known as 20S proteasome, is a barrel made of two outer -rings and two inner -

rings: the inner -rings contain the catalytically active threonine residues which are 

associated to caspase-like, trypsin-like and chymotrypsin-like activity and are therefore 

responsible for proteins proteolysis [19]. Crystallography structural studies of the CP 

demonstrate that the active cavity of the 20S proteasome is generally closed in cells, in 

order to prevent unregulated degradation of proteins: the RPs, which assemble 
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symmetrically on the two ends of the CP, are necessary for selective protein 

degradation by recognition of the ubiquitin chains attached to the substrate. Moreover, 

RPs promote substrate unfolding and translocation into the CP [20]. The assembly of 

the active proteasome complex, composed by one CP with two RPs and also known as 

26S proteasome, is of crucial importance for the maintenance of protein homeostasis: it 

has been reported that 0.5% of all genes on the human genome codify for proteasome-

interacting proteins (PIPs) needed for the correct regulation and assembly of the 26S 

proteasome [19]. Although the synthesis of proteasome components is constitutively 

ongoing, induction of proteotoxicity, by pro-oxidant stress or pharmaceutical 

proteasomal inhibition, leads to induction of proteasomal genes transcription [21]. Nrf1 

(Erythroid-derived 2-related factor 1) has been proposed as the key mediator of this 

induced transcription: upon normal condition Nrf1 is target towards the ER preventing 

its nuclear translocation; when proteotoxicity is enhanced, Nrf1 is post-translational 

modified and translocate to the nucleus where it stimulates proteasomal gene 

transcription, increasing protein degradation in order to cope with the induced 

proteotoxicity [21].  

 

1.1.2. The Autophagy-Lysosome System. 

The autophagy-lysosome system is an evolutionary conserved catabolic pathway 

constitutively active in cells: its dynamic characteristics and its tight regulation makes 

this system an extremely adaptable mechanism of degradation of large protein 

aggregates, organelles and virus upon normal and stress conditions [22]. The 

autophagy-lysosome system is divided into three different sub-types which share the 

dependency on lysosomes for the final degradation of the substrate: microautophagy, 

where cytoplasmic material is directly engulfed by lysosomes [23]; chaperone-mediated 

autophagy, which is a very selective process where proteins are recognized by 

chaperone HSP70 (Heat shock protein 70) and delivered to lysosomes [24] and 

macroautophagy. Here, we will specifically talk of macroautophagy (from now on 

called autophagy) as the main type of autophagic-lysosomal system involved in PQC. 

Autophagy is a flux, dynamic process which can be divided in three steps: initiation; 

elongation and maturation; and fusion (Figure 2). All three steps of the autophagy 

pathway are tightly regulated by a class of genes known as AuTophaGy-related genes 

(ATGs) which have been primarily discovered in yeast and are conserved in mammals 

with high sequences homology [25]. In normal conditions, autophagy is maintained at 
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basal level by the key metabolic and growth sensor mTOR (mammalian target of 

rapamycin) [26]. mTOR stimulates cell proliferation and inhibits autophagy in presence 

of nutrients; upon stress conditions, such as starvation, mTOR is inhibited enabling the 

autophagy initiator ULK1(Unc-51 like autophagy activating kinase 1)-complex to 

trigger autophagy induction to finally degrade cellular macromolecules into their basal 

components, such as amino acids and lipids, and cope with stress. Furthermore, 

depletion of nutrients activates the PI3K III (Class III phosphatidylinositol 3-kinase)-

complex which is needed to increase the amount of phosphatidylinositol-3-phosphate 

inducing membrane nucleation and thereby induction of autophagy [27] (Figure 2). 

 

 

Figure 2: The autophagy-lysosome system.  

Nutrient deprivation and/or other cellular stress inhibit the negative regulator of autophagy mTOR triggering ULK1 and PI3K III 

complexes activity and induction of the isolation membrane nucleation. The E3-like conjugating systems enrich the isolation 

membrane with specific autophagy related proteins (e.g. LC3-II) and trigger membrane elongation and closure after the engulfment 

of the cytoplasmic cargo forming the autophagosome. Finally, autophagosomes fuse with lysosomes leading to autophagolysosome 

formation and digestion of the cargo. (See text for details). 

 

The origin of nucleation of the forming double membrane vesicle, known as isolation 

membrane or phagofore, is still matter of debate: some evidences support the ER or the 

mitochondria as the primary site of phagofore nucleation, other support the de novo 

synthesis of the membrane as the main mechanism engaged for phagophore formation 

[28]. When formed, the isolation membrane is then enriched with specific autophagic 



6 
 

markers derived from protein post-translational maturation mediated by two ubiquitin-

like conjugating systems: the ATG12 and the LC3 (microtubule-associated protein 

1A/1B-light chain 3) systems [29]. ATG7 plays a major role in both ubiquitin-like 

conjugation systems: in the ATG12 system, ATG7 conjugates and activates ATG12 in 

an ATP-dependent manner; then ATG7 mediates, through an ATG10 intermediate, the 

formation of a stable isopeptide bond between ATG12-ATG5 which will integrate in 

the phagofore membranes. In the LC3 system, ATG4 cuts and activates LC3 (LC3 I 

isoform); then, ATG7 recognizes LC3 I and mediates its lipidation with 

phosphatidylethanolamine (LC3 II) through an ATG3 intermediate passage [30]. LC3 II 

integrates in the inner and outer membrane of the phagofore, remaining stably attached 

to the membrane until the complete degradation of the cargo: for this reason LC3 I/II 

conversion is nowadays the most important and used marker for detection of autophagy 

[31]. Moreover, LC3 plays a crucial role in the selection of the cytoplasmic material 

which is brought to degradation [32].  

During membrane enrichment, the phagofore elongates, engulf the cytoplasmic cargo 

and close forming a mature double membrane vesicle known as autophagosome (Figure 

2). Finally, the autophagosome eventually fuses with lysosomes, forming the 

degradative compartment known as autophagolysosome, in which the engulfed cargo 

will be digest [25]. Little is known on the exact mechanism of autophagosome-

lysosome fusion: among others, the monomeric G proteins Rab7 and Rab11 have been 

reported to be necessary for autophagolysosome formation [33, 34]. Acidification of 

lysosomes is of crucial importance for the correct degradation of cytoplasmic material: 

lysosomal enzymes need an acidic environment in order to be activated and degrade the 

cargo in the autophagolysosome, permitting the maintenance of the autophagic flux. For 

this reason, inhibitors of lysosomal acidification, such as BafilomycinA1, induce 

accumulation of autophagosomes and inhibition of the autophagic pathway due to 

impaired cargo digestion and consequent flux engulfment [35].  

 

1.1.2.1. Selective autophagy of protein aggregates and aggresomes. 

Autophagy have been described as a bulk catabolic process for many years due to its 

massive induction during starvation and consequent role in supporting cell metabolic 

stress by macromolecules recycling [36]. In the last years, a mounting amount of 

evidences suggested that autophagy can be an extremely selective pathway [37]: 

autophagy selectivity is present also in yeast where the selective delivery of hydrolase 
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aminopeptidase I from the cytoplasm to the vacuole (Cvt) has served as a model to 

study the much more complex selectivity of autophagy in mammals [38]. A big step 

towards the understanding of selective autophagy mechanisms has been the discover 

and characterization of protein adaptors necessary for the specific recognition of the 

cytosolic cargo and its targeting towards the autophagosomes [39]. Several autophagic 

receptors have been described: for example, Parkin1 and Nix (BCL2/adenovirus E1B 

19 kDa protein-interacting protein 3-like) have been reported to be specific adaptors for 

selective degradation of mitochondria [40] and NDP52 (nuclear dot protein 52 kDa) is 

necessary for the selective autophagic degradation of bacteria [41]. 

In order to selectively degrade protein aggregates, a selective autophagy adaptor protein 

must fulfilled three important functions: i) a direct or indirect interaction with the 

autophagosomal protein marker LC3; ii) the capability of polymerize or aggregate and 

iii) the ability to recognize the substrates [39]. To mediate these functions, proteins 

present specific domains of interaction: based on the presence or absence of one or 

more protein-interaction domains, protein aggregate selective adaptors have been 

divided in four groups (Figure 3).  
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Figure 3: Selective autophagy adaptors for degradation of protein aggregates [42]. 

Selective autophagic adaptors for protein aggregates are classified by the presence or absence of the LC3-interacting domain (LIR) 
and the ubiquitin-recognizing domains (UBA and/or BUZ). 

 

p62 is the most studied selective autophagic adaptor for protein aggregates selective 

autophagy. p62 plays a crucial role in selective degradation of ubiquitin-positive protein 

aggregates although a role of p62 in ubiquitin-independent degradation of mutant SOD1 

(superoxide dismutase 1) in an ALS (amyotrophic lateral sclerosis) model has been 

reported [43]. The human p62 is a 440 amino acid protein with several structural 

domains: among these domains, the UBA (ubiquitin-interacting) domain, the PB1 

(Phox and Bem 1) domain and the LIR (LC3-interacting region) domain play an 

important role in autophagy [44]. The LIR domain is a conserved 11 amino acid 

sequence which allows p62, and other receptors such as NBR1 (Neighbor of BRCA1 

gene 1 protein), to directly interact with LC3 II on the nascent and maturating 

autophagosome membrane. Through the LIR domain, p62 is constantly degraded by the 

autophagic pathway, becoming one of autophagy´s main substrates: when autophagy is 

impaired, p62 protein levels rapidly accumulate and generally associate with undigested 

autophagosomes and/or ubiquitin-positive protein aggregates [45]. Concerning selective 
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degradation of aggregates, p62 plays a double role: first, thanks to its UBA domain, p62 

recognizes ubiquitin-tagged proteins and triggers protein aggregation via self 

oligomerization through its PB1 domain; second, p62 targets protein aggregates 

towards the autophagosome [46]. Protein ubiquitylation has been shown to be the 

recognition signal for autophagic degradation of protein aggregates: although protein 

aggregation per se its sufficient to trigger autophagy [47], protein ubiquitylation 

enhance aggregates formation and cargo recognition [48]. p62 preferentially binds to 

Lys63 mono-ubiquitinated chains in vitro, concordantly with proteasome preference 

towards Lys48 poly-ubiquitinated proteins [49, 50]. Phosphorylation of p62 on Ser403 

has been demonstrated to increase p62 selectivity toward ubiquitinated proteins, in 

order to clear them through autophagy [51]. This evidence points to an important role of 

p62 post-translational modifications in the aggresome-autophagy pathway in order to 

increase substrate recognition. Moreover, p62 levels are also regulated at a 

transcriptional level upon proteotoxic stress [52]. Proteasome inhibition triggers p62 

transcriptional induction by Nrf1: p62 binds Nrf1 inhibitor Keap1 (kelch-like ECH-

associated protein 1) possibly mediating its degradation through autophagy and 

stimulating a positive feedback loop by freeing Nrf1 which translocate to the nucleus 

and increases the transcription of its target genes such as p62 [53]. p62 up-regulation is 

needed by cells to stimulate protein aggregation and autophagy induction in order to 

cope with the increased proteotoxicity.  

Together with p62 and Nbr1, other protein adaptors are needed to carry out protein 

aggregates autophagic degradation (Figure 3): for example, ALFY (autophagy-linked 

FYVE protein), does not posses any ubiquitin recognition domain or LIR domain but 

can interact with p62 and mediate protein aggregates selective targeting to 

autophagosomes by stimulating protein aggregation as a scaffold protein [54]. 

Importantly, ALFY deficient Drosophila’s showed diminished life span, ubiquitin 

protein aggregates accumulation and neurodegeneration, pointing to a crucial role of 

ALFY in PQC maintenance through autophagy [55].  

 

1.1.2.2. HDAC6: a key player of selective autophagy of protein aggregates.  

Histone deacetylases (HDACs) are an important class of enzymes which regulate the 

level of protein acetylation in cells: manly these enzymes target histones in the nucleus 

modulating chromatin structure and gene transcription [56]. Also, some HDACs are 

able to modulate acetylation of non-histone proteins in the cytosol:  acetylation, 
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together with other post-translational modifications such as phosphorylation or 

ubiquitylation, cooperates to precisely regulate proteins functions and fate in order to 

maintain cellular homeostasis [57]. HDACs are divided in three classes based on their 

sequence homology with Saccaromyces cerrevisiae: HDACs class I, II and IV [58]; a 

fourth class, Sirtuins, is present only in mammals (class III) but their sequence and 

catalytic functions differ from the other HDACs classes [59]. HDACs class I, II and IV 

share the same conserved catalytic domain which consists of a 390 amino acid tube-like 

structure with two adjacent histidine residues, two aspartic residues and one threonine 

residue needed to remove an acetylic group from the specific protein substrate [60]. 

Moreover, all three HDACs classes need Zn
2+

 as cofactor. The main difference among 

HDACs classes is their cellular localization and tissue-related expression: class I 

HDACs (HDAC1, HDAC2, HDAC3, and HDAC8) are ubiquitously expressed and 

prevalently present in the nucleus, their main function is to regulate transcription acting 

as repressors [61]. Class II HDACs are tissue-specific and are divided in two 

subgroups: class IIa (HDAC4, HDAC5, and HDAC7) has both nuclear and cytosolic 

localization; moreover, the HDACs of this class share a conserved N-terminal domain 

which regulates DNA-binding and nuclear-cytoplasmic shuttling through 14-3-3 protein 

binding and phosphorylation [62]. Class IIb (HDAC6 and HDAC10) are cytosolic 

proteins: they possess two functional catalytic domains and are involved in 

deacetylation of cytosolic proteins regulating a huge range of cellular processes such as 

migration, cell proliferation and apoptosis [63]. Class IV HDACs (HDAC11) is located 

in the cytoplasm and is the less studied HDAC´s class: recent reports suggest its 

involvement in the regulation of the immune system [64]. 

HDAC6 is a unique HDAC protein due to the presence of an ubiquitin-binding domain 

(BUZ) in its sequence (Figure 3) which plays a crucial role in PQC. In contrast with 

p62 UBA domain, the BUZ domain needs Zn
2+

 as cofactor: both, UBA and BUZ 

domains, are able to bind to mono-ubiquitin as well as poly-ubiquitin chains in vitro, 

although specific ubiquitin recognition and interaction are different between the two 

domains [65]. HDAC6 is a key regulator of several cellular processes [63]; in PQC, 

HDAC6 is involved in two crucial steps of the selective degradation of protein 

aggregates and aggresomes by autophagy (Figure 4).  
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Figure 4: HDAC6 is a key player of protein aggregates selective autophagy.  

HDAC6 is needed in the aggresome-autophagy system in two different steps: 1) HDAC6 mediates aggresome formation by dynein 

transport on microtubules; 2) HDAC6 recruits a cortactin network to mediate autophagosome-lysosome fusion. 

 

HDAC6 is able to recognize misfolded and unfolded ubiquitin tagged proteins through 

its BUZ domain; then, HDAC6 triggers proteins agglomeration and dynein transport 

along the microtubules towards the MTOC (microtubule organizing center) by 

deacetylation of -tubulin in order to form aggresomes [66]. Upon proteotoxic stress, 

protein aggregate formation is stimulated in cells as a cytoprotective mechanism [66]: 

protein aggregates are less reactive compared to unfolded and misfolded proteins 

towards unspecific binding to other proteins and are more prone towards degradation by 

autophagy. In fact, protein aggregation stimulates autophagy per se: p62 interacts with 

protein aggregates and aggresomes leading to specific cargo recognition by the 

autophagosome [44, 51]. Moreover, protein aggregates and aggresomes are restrict in 

proximity of the MTOC, near the nuclear membrane, in order to decrease casual 

protein-protein interaction and, by this, toxicity. HDAC6 deficiency triggers increase 

formation of non-perinuclear protein aggregates and increase cell death upon 

proteotoxic stimuli, such as MPP(+) (1-methyl-4-phenylpyridinium), compared to 

control cells due to HDAC6-deficient cells incapability in forming complete 

cytoprotective aggresomes [67, 68]. Also, HDAC6 is needed to mediate lysosome-

autophagosome fusion by recruitment of a cortactin network which is specifically 

needed for selective degradation of protein aggregates by autophagy but dispensable for 
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bulk autophagy triggered by starvation [69]. The catalytic activity of HDAC6 is needed 

for both autophagy-related functions: protein aggregates/aggresomes formation and 

autophagosome-lysosome fusion.  

In conclusion, HDAC6 plays a crucial role in the aggresome-autophagy system by 

supporting the formation of the specific autophagic cargo – protein aggregates, 

aggresomes- and by mediating autophagosome-lysosome fusion and cargo degradation 

via remodelation of the cytoskeleton – through the recruitment of the cortactin network.     

 

1.1.3. The on demand PQC system: the role of BAG3 mediated autophagy.  

Basal protein degradation homeostasis is controlled by the constitutive PQC systems, 

UPS and HDAC6 mediated selective aggresome-autophagy system; upon increase 

proteotoxicity, such as pharmaceutics inhibition of proteasome or aging, on demand 

PCQ pathways are activated in order to guarantee an adequate level of protein 

aggregates clearance in order to decrease cytotoxicity [70]. Co-chaperone BAG3 plays 

a key role in mediating the induction and accomplishment of on demand selective 

autophagy of protein aggregates upon acute and chronic proteotoxic conditions [71]. 

BAG3 is part of the BCL2-associated athanogene (BAG) protein family (BAG1-6) 

which share the conserved 110-124 amino acid BAG domain responsible for the ATP-

dependent interaction of these proteins with HSP70 [72]. In addition to the BAG 

domain, BAG3 possess a WW domain and a proline-rich domain (Figure 3) which 

mediate the interaction with other proteins, apart from HSP70 [73]. As a selective 

adaptor for the aggresome-autophagic pathway, BAG3 doesn´t possess neither a LIR 

nor a ubiquitin-interacting domain: BAG3 mediates selective autophagy by forming a 

complex with the molecular chaperone HSPB8 (heat shock protein beta-8) which is 

essential for autophagy induction upon proteotoxic stress [74, 75]. Moreover, BAG3 

stimulates substrate transfer from HSP70 to the dynein motor complex, acting as a 

nucleotide-exchange factor, thereby facilitating the dynein-mediated retrograde 

transport of misfolded proteins towards the MTOC to form aggresomes [76]. Finally, 

BAG3 is able to interact with p62: through this interaction, BAG3 controls the 

sequestration of aggresomes and protein aggregates into the forming autophagosome 

[77]. Recently, BAG3 has been found to control protein folding by interaction with the 

cytosolic chaperonin CCT (chaperonin containing TCP-1) [78] underlining the 

importance of BAG3 in PQC from the folding step to the degradation step of misfolded 

and unfolded proteins.  
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BAG3 is poorly express in the majority of healthy young tissues [77], upon stress such 

as oxidants, serum deprivation or proteasome inhibition, BAG3 is transcriptionally up-

regulated through HSF1(heat shock transcription factor 1) [79]. Apart from its key role 

in selective degradation of protein aggregates through autophagy, BAG3 is engaged to 

regulate several others cellular process such as the development of the central nervous 

system [80], cell migration [81] and apoptosis [82].   

 

1.1.4. Crosstalk between PQC systems. 

PQC systems interplay is a key regulatory mechanism necessary for the correct protein 

degradation and homeostasis. Several transcription factors are responsible for the 

induction of the key mediators of the UPS and of the aggresome-autophagy system in 

order to increase their activity upon proteotoxic stress (Figure 5).  

 

Figure 5: PQC systems interplay. 

Misfolded proteins are direct to proteasomal degradation by BAG1/HSP70 complex and to the autophagy system by HDAC6. When 

proteotoxic stress occurs, the induction of several transcription factors and genes (red arrows) leads to increase activity of 
constitutive and on demand PQC systems. (See text for details). 

 

Upon normal condition, the proteasome is able to functionally degrade misfolded 

proteins; when proteotoxic stress occurs, as consequence of stimuli such as xenobiotics 

or pro-oxidant compounds, the level of misfolded proteins rapidly increases leading to 

proteasome overloading [83]. To prevent the accumulation of toxic misfolded and 

unfolded proteins, the transcription factor Nrf1 is target from the ER to the nucleus in 
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order to induce the transcription of the PIP genes which mediate the increase assembly 

of new functional proteasomes [21]. Proteasome inhibition has been largely described 

to induce the up-regulation of the autophagic pathway: proteasome inhibitors, such as 

Bortezomib or MG132, have been shown to increase the autophagic pathways in 

several tumor cell lines [10]. On demand PQC systems are mainly engaged during 

chronic and acute proteotoxic stress: it is not surprising that the key mediator of the on 

demand selective aggresome-autophagy pathway, BAG3, is transcriptionally induced 

upon proteasome inhibition [84]. Gamerdinger and colleagues have elegantly showed in 

a model of aged cell line (I90) that BAG3 induction is tightly related to the decrease of 

another BAG family member, BAG1, which is mainly engaged in delivering misfolded 

proteins towards proteasomal degradation [77]. In young cells, BAG1 mediates protein 

degradation through its binding to HSP70; when cells are aging, proteasome activity 

decreases triggering transcriptional inhibition of BAG1 and increase transcription of 

BAG3 (mechanism known as: BAG1/BAG3 switch) leading to increase protein 

degradation through selective autophagy [77].  Accumulation of misfolded proteins 

triggers BAG3 up-regulation also via HDAC6 [85]: in non-stress conditions, HDAC6 is 

sequestered by the ER ATPase VCP/p97 (97-kDa valosin-containing protein) to form a 

complex with HSP90 and HSF1 preventing the latter to translocate to the nucleus and 

induce the transcription of its target genes, for example BAG3. When misfolded 

proteins are accumulated, HDAC6 binds them and dissociates from the complex, 

freeing HSF1 and consequentially leading to BAG3 induction (Figure 5).  

Another important sensor and modulator of UPS and selective autophagy interplay is 

p62 [86]. p62 gene transcription is mediated by the transcriptional factor Nrf2: upon 

proteasomal inhibition Nrf2 translocation to the nucleus is enhanced, promoting p62 

transcription and translation. As a consequence, p62 accumulates in the cytosol 

mediating protein aggregation and recognition by the autophagic pathway [87]. On the 

contrary, upon autophagy inhibition, cytosolic p62 protein levels increase as a 

consequence of its impaired degradation: elevated cytosolic p62 protein levels lead to 

proteasomal inhibition and trigger the induction of PQC systems by enhancing the 

transcription of proteasomal genes, such as PIPs, and regulators of selective and bulk 

autophagy [53, 86]. 
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1.2. Cancer.  

Cancer, also known as tumor or malignant neoplasm, is one of the first cause of death 

worldwide: in 2008, 12.7 millions of people were diagnosed with cancer and, of these, 

more than 50% died [88]. Cancer is a wide and very different set of diseases which can 

potentially occur in every cell type of an organism; this wide heterogeneity makes this 

malignancy very difficult to diagnose and treat. In general, cancer can be described as a 

deregulated growth of single or multiple cells which acquire specific characteristics, 

such as motility or angiogenesis, which lead to impairment of the normal homeostasis 

of the tissue, eventually causing death of the organism. It is largely accepted that all 

tumor types develop as consequence of mutations in the DNA. Two different kinds of 

mutations can occur in the genes: i) the “gain of function” mutations, where the lesion 

in the gene hyper-activates the transcription or the activity of the related protein [89]; 

and ii) “loss of function” mutations, where the gene involved is silenced, or the protein 

encoded by the specific gene is not anymore functional [89]. Genes involved is cell 

cycling regulation, DNA damage and in the induction of apoptosis are generally targets 

of “loss of function” mutations: as an example, p53, one of the key sensors of DNA 

damage, is found mutated in 50% of diagnosed cancers [90]. Mutated p53 is unable to 

inhibit cell proliferation upon DNA damage and, in case the damage is too pronounce, 

to induce cell death. In neuroblastoma cell lines, “loss of function” mutations of the 

effectors of apoptosis, the caspase family, have been reported [91]. 

“Gain of function” mutations occur in genes which regulate the response to cell growth 

stimuli: growth factors receptors, such as EGF (epidermal growth factor) receptors, 

have been reported to be mutated in lung cancer, promoting cell proliferation [92]. The 

tyrosine-kinase RAS (Rat sarcoma associated protein), which plays a key role in 

modulating cell growth, has been reported mutated in different tumors, such as 

melanoma, triggering enhanced survival and resistance toward treatments [93].  

Due to their intense proliferation and high mutation rates, cancer cells are generally 

more incline to accumulate mutated and truncated proteins as a result of enhance 

uncontrolled DNA synthesis, nutrient starvation or oxidative stress which generate 

increase levels of unfolded and misfolded proteins in the cytosol, triggering constitutive 

activation of the UPR [94]. Enhancement of pro-survival pathways is a key feature of 

many tumor types: among others, the NF-B (nuclear factor kappa-light-chain-enhancer 

of activated B cells) pathway plays a master role in cell proliferation and survival of 
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many tumors [95]. Briefly, the NF-B pathway is activated in response to exogenous 

stimuli, e.g. TNFtumor necrosis factor ), or endogenous cellular stress, i.e. ROS 

(reactive oxygen species). The canonical activation of the pathway (Figure 6) involves 

the phosphorylation of IB (inhibitor of NF‐B), an inhibitor subunit which prevents 

the nuclear translocation of the transcriptional factors RelA (transcription factor p65) 

and p50 and consequent IB proteasomal degradation. After IB degradation, RelA 

and p50 can translocate to the nucleus, bind the DNA and enhance transcription of 

several pro-survival genes which sustain tumor growth [96].   

 

Figure 6: The canonical NF-B pathway.  

Inactive IB-p50-RelA cytosolic complex is activated by phosphorylation of IB and its further ubiquitylation and proteasomal 

degradation. RelA and p50 are able to translocate to the nucleus and induce NF-B target genes. 

 

Although, NF-B pathway is mostly involved in tumor survival, some recent reports 

suggest that the activation of NF-B is enhancing cell death in glioblastoma cell lines 

upon TRAIL treatment [97] 

 

1.2.1. Rhabdomyosarcoma. 

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. This 

tumor likely originates from an imbalanced differentiation process of the precursor cells 

of the skeletal muscle [98]: RMS cells are unable to reach terminal differentiation 
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exhibiting sustained proliferation, and muscle-specific markers of fetal muscle 

development such as MyoD (Myogenic regulatory factor D) and Vimentin [99].   

RMS tumors are divided in three histological subgroups: the embryonal subgroup 

(ERMS), which is the most common kind of pediatric RMS; the alveolar subgroup 

(ARMS), which is more aggressive and less common than the ERMS subgroup; and the 

rare adult variant of RMS known  as pleomorphic variant rhabdomyosarcoma (PRMS) 

[100]. Little is known of the genetic aberrations which drive the insurgences of the 

different pediatric RMS: ERMS has no specific gain or loss function mutations 

associated with the insurgence of the tumor; in contrast, 85% of ARMS diagnosted 

tumors are associated with the translocation of genes encoding the transcriptional factor 

FOXO1A (forkhead box protein O1) with PAX-3 or PAX-7 (paired box proteins -3 and 

-7) resulting in FOXO1A uncontrolled transcriptional activity with consequent 

induction of proliferating genes such as MDM2 (Mouse double minute 2 homolog), 

MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived) and 

GLI (Glioma-associated oncogene family zinc finger) [101]. Moreover RMS is 

associated with mutation of growth pathways, such as RAS (mainly NRAS or KRAS 

mutations), which in the last years have been associated with increased basal autophagy 

in different tumor types [102]. Immortal RMS cell lines differing for chromosomal 

background and histological subgroups are now available: for example, the RMS RD 

embryonal cell line possess a NRAS mutation [103], while the alveolar RMS RMS13 

cell line is wild type for RAS but shows FOXO1-PAX3 fusion gene overexpression 

[104] 

Currently, the therapy used for RMS patients involves surgery, and usually radiotherapy 

followed by chemotherapy- commonly a combinatory treatment of vincristine and 

dactinomycin together with alkylating agents, either cyclophosphamide or ifosfamide 

[105]. Despite the therapeutic efforts, RMS prognosis remains poor: for this reason, the 

study of novel targets and therapeutic agents which can improve RMS patients’ 

outcome is of crucial importance. In the last years, the development of animal models 

for RMS has improved research on this topic [106]. Recently, inhibitors of the Hedgeog 

pathway have been described to sensitize RMS cell lines toward cell death [107]; 

moreover, co-treatment with PI3K/Akt/mTOR inhibitors and RAS/MEK/ERK 

inhibitors have been reported to increase cell death in different RMS cell lines [108].    
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1.3. PQC in cancer. 

PQC systems have been proposed to be an interesting target in cancer therapy [109]. 

Drugs which selectively target 26S proteasome or key components of the aggresome-

autophagy system, such as HDAC6, have been tested in vitro and in vivo and showed 

encouraging results in different types of tumors [110, 111]. Bortezomib is the first 

selective 26S proteasomal inhibitor which has been approved for clinical use by the 

FDA (Food and Drug Administration) for multiple myeloma treatment. Bortezomib is a 

N-protected dipeptide (Pyz-Phe-boroLeu) with a boron atom at the C-terminus [112]: 

boron interacts specifically with the catalytic subunit of the 26S proteasome and 

reversibly inhibits it triggering accumulation of short living proteins, pro-apoptotic 

regulators and misfolded and unfolded proteins [112]. Single treatment with 

Bortezomib triggers apoptosis in many cancer models; nevertheless, inhibition of 

proteasome causes induction of the autophagic branch of PQC leading to the selection 

of tumor cells which are resistant towards Bortezomib treatment [113]. 

HDACs have been reported to play a key role in cancer promotion and maintenance 

[114]: particular interest has been given to the synthesis of selective HDAC6 inhibitors 

due to its key role in modulation of many cellular pathways, mostly the aggresome-

autophagy system. Several kind of specific HDAC6 inhibitors have been synthetized 

[115] and tested, showing induction of apoptosis in different cancer models, such as 

ovarian carcinoma [116]. ST80 is a newly synthetized HDAC6 inhibitor: this 

hydroxamate shows 31-fold more selectivity towards HDAC6 inhibition compared to 

HDAC1 inhibition [117].  

As a consequence of the strong interplay between PQC systems (Figure 5), single 

treatment towards one of the constitutive PQC pathways determines a poor tumor 

apoptosis outcome due to increase activation of the other PQC system and consequent 

induced-resistance towards the treatment [10]. To overcome this acquired resistance, 

co-treatment strategies have been proposed: apoptosis induction by Bortezomib is 

significantly enhanced when the drug is used concomitantly with autophagic interfering 

drugs, such as chloroquine [118], or HDACs inhibitors [119]. Also, co-treatment 

strategies allow to decrease the concentration of drugs used, possibly diminishing off-

target effects on healthy cells, and toxic side effects of the therapy on patients.  

Little is known on the role of on demand BAG3 mediated autophagy in response to 

treatments in tumors. BAG3 protein expression has been found enhanced in different 

tumors, such as leukemia [120] and glioblastoma [121] and BAG3 knock-down has 
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been reported to increase cell death upon drug treatment [122]. It is still not clear if co-

treatments which affect the constitutive PQC systems can induce resistance mechanisms 

based on BAG3 similarly to single treatments which increase the efficiency of 

proteasome or autophagy when the other PQC system is impaired.  

Rhabdomyosarcoma has been found to be sensitive towards Bortezomib single agent 

treatment [112]: Bortezomib triggers apoptosis and induces accumulation of misfolded 

ubiquitin tagged proteins in the cytosol. According to these data, rhabdomyosarcoma 

cell lines are a suitable model to study the effects of simultaneous inhibition of 

proteasome and HDAC6-mediated aggresome-autophagy system.           
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2. Aim of the Study 

 

Increasing the efficiency of cancer treatments is one of the primary goals of 

translational cancer research. On one hand, efforts have been made in order to find a set 

of specific druggable targets which can be selectively exploited to kill tumor cells; on 

the other hand, the high rate of mutations occurring in tumors leads to high level of 

acquired resistance towards drugs. Constitutive protein quality control systems (PQC), 

i.e. proteasome and the selective aggresome-autophagy pathway, have recently been 

described as interesting targets to selectively induce apoptosis in various tumor entities 

[111]: for example, inhibitors of proteasome, such as Bortezomib, showed encouraging 

results in trial studies of myeloma patients [123]; and inhibitors of HDAC6, a key 

component of the aggresome-autophagy system, show toxicity toward tumors in 

preclinical studies [124]. Single agent treatment against one of the two main branches 

of PQC often triggers the compensatory induction of the other PQC branch, leading to 

acquired tumor resistance toward the treatment [10]. Combinatory treatment strategies 

have been proposed to overcome this resistance, showing synergism in a various 

number of tumor types [125, 126]. 

Here we aimed to investigate the effect on cell death of concomitant pharmacological 

inhibition of constitutive PQC (proteasome and aggresome-autophagy system) by 

Bortezomib and HDAC6 catalytic inhibitor ST80 in rhabdomyosarcoma cell lines. 

Moreover, we focused our attention on the insurgence of inducible resistance 

mechanisms triggered by the co-treatment which would allow ST80/Bortezomib 

surviving cells to overcome the induced proteotoxicity and recover upon drug removal.     
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3. Materials and Methods 

 

3.1. Materials 

 

3.1.1. Cell lines 

 

3.1.1.1. Rhabdomyosarcoma and fibroblast cell lines 

Cell line Provider 

BJ American Type Culture Collection 

RD American Type Culture Collection 

RMS13 American Type Culture Collection 

TE671 American Type Culture Collection 

 

3.1.1.2. Virus packaging cell lines 

Cell line Provider 

HEK293T American Type Culture Collection 

RetroPack™ PT67 Cell line Clontech Laboratories/ BD Biosciences 

 

3.1.2. Cell culture reagent 

Reagent Provider 

Doxycyclin Santa Crutz Biotechnology 

Dulbecco's modified eagle medium 

(DMEM) 

Gibco 

Fetal Calf Serum (FCS) Invitrogen 

HEPES Gibco 

MEMα, GlutaMAX™, no Nucleosides Invirtogen 

PBS (Dulbecco’s phosphate buffered 

saline) (1x) 

PAA Laboratories 

Penicillin/ Streptomycin (100x) PAA Laboratories 

Puromycin PAA Laboratories 

RPMI Medium 1640(1x) - GlutaMAX™-I Invitrogen 

Sodium pyruvate (100x) Gibco 
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Trypan blue Invitrogen 

Trypsin/EDTA solution Gibco 

Zeocin InvivoGen 

 

3.1.3. Apoptosis inducing agents, inhibitors 

Reagent Provider 

ABT-737 Kindly provided by Abbott Laboratories 

Bafilomycin A1 Sigma 

Bortezomib Purchased by Jansen-Cilag 

Lexatumumab Kindly provided by R. Humphreys 

ST80 Kindly provided by M. Jung 

TNF  Biochrom 

 

3.1.4. Protein electrophoresis and western blot reagents 

Reagent Provider 

Albumin fraction V (BSA) Carl Roth 

Ammonium persulfate Carl Roth 

Dithiothreitol (DTT) Calbiochem 

Gel blot paper  Carl Roth 

Hybond ECL 0.45 µm Amersham Bioscience 

Hyperfilm ECL Amersham Bioscience 

Milk powder Carl Roth 

N,N,N',N'-Tetramethyl-ethylenediamine 

(TEMED)  

Carl Roth 

Nitrocellulose Membrane Amersham Bioscience 

PageRuler Plus Prestained Protein Ladder Fermentas 

Pierce® ECL Western Blotting Detection 

Reagents 

Thermo Scientific 

Protease inhibitor cocktail  Carl Roth 

PVDF Membrane Millipore 

Roentoroll HC x-ray developer TETENAL 

Rotiphorese® Gel 30 Carl Roth 
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Sodium Dodecyl sulfate (SDS) Carl Roth 

Starter for x-ray developer TETENAL 

Superfix MRP x-ray fixing solution TETENAL 

Triton X-100 Carl Roth 

Tween® 20  Carl Roth 

 

3.1.5. Antibodies 

 

3.1.5.1. Primary western blot antibodies  

(diluted in 2% BSA/PBS, 0.02% sodium azide) 

Antibody Dilution Provider 

mouse anti-GAPDH 1:5000 HyTest 

mouse anti-polyubiquitin 1:1000 Millipore 

mouse anti-α-tubulin (DM1A) 1:3000 Calbiochem 

mouse anti-β-actin 1:10000 Sigma 

rabbit anti-ATG7 1:500 AbCam 

rabbit anti-BAG3 1:1000 AbCam 

rabbit anti-Histone 3 1:1000 AbCam 

rabbit anti-IκBα 1:500 Cell Signaling 

rabbit anti-LC3 1:2000 Thermo Scientific 

rabbit anti-p62/SQSTM1 1:1000 MBL 

 

3.1.5.2. Secondary western blot antibodies  

(diluted in 5% milk/PBS-T) 

Antibody Dilution Provider 

anti-mouse infrared dye-labeled 

green 

1:10000 Li-COR Bioscience 

anti-mouse infrared dye-labeled 

red 

1:20000 Li-COR Bioscience 

anti-rabbit infrared dye-labeled 

green 

1:10000 Li-COR Bioscience 

anti-rabbit infrared dye-labeled 

red 

1:20000 Li-COR Bioscience 
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goat anti-mouse IgG conjugated 

to HRP 

1:5000 Santa Cruz 

goat anti-rabbit IgG conjugated to 

HRP 

1:5000 Santa Cruz 

 

3.1.6. Plasmids 

Plasmid Provider 

pCFG5-IEGZ  kindly provided by B.Baumann 

pCFG5-IEGZ IκBα-S(32,36)A kindly provided by B.Baumann 

pCMV-dR8.91 Thermo Fisher Scientific 

pGIPZ-shRNAmir Thermo Fisher Scientific 

pMD2.G Thermo Fisher Scientific 

pTRIPZ-shRNAmir Thermo Fisher Scientific 

 

3.1.7. shRNA plasmids  

(provided by Thermo Fisher Scientific) 

Gene  Library reference number 

ATG7  RHS4430 

BAG3 (#1) RHS4430 

BAG3 (#3) RHS4430 

BAG3 (#4) RHS4430 

Control (Ctrl) RHS4346 

 

3.1.8. Cloning related material 

Reagent Provider 

Agarose Invitrogen 

Generuler
TM

 1 kb DNA ladder Fermentas 

MluI enzime Fermentas 

One Shot Top 10 E.coli competent cells Invitrogen 

Restriction enzyme buffer R Fermentas 

T4 DNA Buffer Ligase Fermentas 

T4 DNA ligase Fermentas 

XhoI enzime Fermentas 
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3.1.9. Oligonucleotides for qRT-PCR 

Name Sequence 

18S  forward (for) CGCAAATTACCCACTCCCG 

18S  reverse (rew) TTCCAATTACAGGGCCTCGAA 

BAG1 forward (for) TCACCCACAGCAATGAGAAG 

BAG1 reverse (rew) ATTAACATGACCCGGCAACC 

BAG3 forward (for) CTCCATTCCGGTGATACACGA 

BAG3 reverse (rew) TGGTGGGTCTGGTACTCCC 

TNF forward (for) ACAACCCTCAGACGCCACAT 

TNF reverse (rew) TCCTTTCCAGGGGAGAGAGG 

 

3.1.10. Kits 

Kit Provider 

7900HT fast real-time PCR system Applied Biosystems 

GeneJET
TM

 Gel extraction Kit Fermentas 

peqGOLD Total RNA kit Peqlab Biotechnologie GmbH 

Pierce® BCA Protein Assay Kit Thermo Scientific 

Pure Link HiPure Plasmid Filter 

Maxiprep Kit 

Invirtogen 

RevertAid H Minus First Strand cDNA 

Synthesis Kit 

MBI Fermentas GmbH 

 

3.1.11. General chemicals 

Reagent Provider 

Bromphenolblue Carl Roth 

Crystal violet Carl Roth 

Dimethyl sulfoxide (DMSO)  Sigma 

di-Natriumhydrogenphosfat-Dihydrat 

(Na2HPO4) 

Carl Roth 

Ethanol Carl Roth 

Glycerol Carl Roth 

Glycin  Carl Roth 
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Kaliumdihydrogenphosphat (KH2PO4) Carl Roth 

Lipofectamine 2000 Invitrogen 

LysoTracker® Red CMXRos Molecular Probes 

Methanol Carl Roth 

Phenylmethylsulfonyl fluoride (PMSF) Carl Roth 

Polybrene (Hexadimethrine bromide) Sigma 

Potassium Chloride (KCl) Riedel-de Haen 

Propidium iodide Sigma 

Sodium chloride Carl Roth 

Tris  Carl Roth 

-Mercaptoethanol Merck 

 

3.1.12. Plastic material 

Material Provider 

Cell culture flasks (25 cm², 75 cm², 175 

cm²) 

Greiner Bio-One 

Collagen type 1 coated plates (24, 96-

well) 

Greiner Bio-One 

Combitips (0.5 ml, 1 ml, 2.5 ml, 5 ml, 10 

ml) 

Eppendorf 

Conical polystyrene tubes (15 ml, 50 ml) Greiner Bio-One 

Cryotubes Starlab 

Micro Amp
TM

 optical 96-well reaction 

plate 

Applied Biosystems 

Pasteur pipettes  Carl Roth 

Pipette tips (10 μl, 200 μl, 1000 μl) Starlab 

Reaction tubes (0.5 ml, 1.5 ml, 2 ml)  Starlab 

Round bottom tubes (FACS tubes)  BD Biosciences 

Sterile pipettes (2 ml, 5 ml, 10 ml, 25 ml) Greiner Bio-One 

Syringe B.Braun 

Tissue culture dishes (6, 10 cm) Greiner Bio-One 

Tissue culture plates (24-well) Starlab 

Tissue culture plates (6-, 12-, 96-well) Greiner Bio-One 
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3.1.13. Equipment 

Equipment Provider 

7900HT fast real-time PCR system Applied Biosystems 

Analytical balance 770 KERN 

Autoclave Systec V150 Systec 

Balance 440-47N KERN 

Blotting chamber BioRad 

Cell culture incubator, MCO-20AIC Sanyo 

Centrifuge 50RS Hettich 

Centrifuge Avanti J26-XP Beckman Coulter 

Centrifuge Micro 200R Hettich 

Counting chamber (Neubauer) Marienfeld GmbH 

DNA-electrophoresis system BioRad 

Electrophoresis power supply BioRad 

FACSCanto II with FACSDIVA Software BD Biosciences 

Gel dryer (model 583) BioRad 

Heating block Eppendorf 

Infinite®M200 TECAN 

Infrared Odyssey
®

 imaging system Li-COR 

Microscope IX71 (light) Olympus 

Multipette® plus Eppendorf 

Nanodrop 1000 spectrometer   Peqlab 

PCR Thermocycler Eppendorf 

Pipetboy acu  Eppendorf 

Pipettes Eppendorf 

Rocking shaker CAT 

Roller mixer Ratek 

Rotator Stuart 

Sonicator H2070 Bandelin Sonplus 

Table centrifuge Carl Roth 

Thermo mixer comfort Eppendorf 

Vortex mixer Velp Scientifica 
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Water bath Medingen 

WTW-pH-meter Norfab 

 

 

3.2. Methods 

 

3.2.1. Cell culture 

Rhabdomyosarcoma cell lines and human fibroblast cell line (BJ) were kept in culture 

in RPMI 1640 (RMS13, TE671) or DMEM medium (RD, BJ) supplemented with 10 % 

fetal calf serum (FCS), 1 mM glutamine, 1 % penicillin/streptomycin and 25 mM 

HEPES. 

 

3.2.2. Generation of stable genetic modified cell lines 

 

3.2.2.1. Retroviral transduction 

Production of RMS NFB super-repressor cell lines (IB-SR) were obtained by 

transfecting pCFG5-IEGZ vector or pCFG5-IEGZ vector containing IB-S(32, 36)A 

into PT67 gamma-retroviral producer cells as previously described [127]. PT67 were 

seeded in 6-well plates (2x10
5
 cells/cm

2
) in penicillin/streptomycin free medium to then 

be transfected with a solution of 4 µl Lipofectamine 2000 and 4 µg plasmid DNA for 

each well. After 6 hours incubation, medium was changed and cells were grown in 

DMEM complete medium for 48 hours. PT67 virus-containing supernatant was 

collected the day of infection. RMS cells were seeded in 6-well plates (0.15x10
5
 

cells/cm
2
) 24 hours previous infection and then spin-transduced with 3 ml supernatant 

containing 8 µg/ml polybrene at 1300 rpm for 90 min at 25°C. After 6 hours incubation, 

virus containing medium was removed and cells were selected for 2 weeks with 1 

µg/ml zeomycin. Infection efficiency was determined by western blot analysis.   

 

3.2.2.2. Lentiviral transduction (shRNA)   

For stable or inducible gene knockdown, HEK293T producer cells were transfected 

with pGIPZ-shRNAmir or pTRIPZ-shRNAmir vector using calcium phosphate 

transfection as previously described [128]. Shortly, HEK293T cells were seeded in 10 

cm dishes (5x10
6
 cells/cm

2
) 24 hours prior transfection. DNA mix solution of 7.5µg 
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pGIPZ-shRNAmir or pTRIPZ-shRNAmir vector, 12.5µg pCMV-dR8.91 and 1µg 

pMD2.G in ddH2O containing 50µl of 2M CaCl2 was add to 2x HEPES buffered 

solution (HBS) for 20 minutes (transfection solution). Meanwhile, HEK293T DMEM-

complete medium was changed with fresh media containing 25µM chloroquine. 

Transfection solution was drop wise added. Medium was exchanged after 10-12 hours 

and cells were grown in fresh medium for 48 hours. Virus containing supernatant was 

filtered using a 45µm filter and then add to target RMS cells together with 8 µg/ml 

polybrene. Spin-transduction of target cells was carried on at 1300 rpm for 90 min at 

25°C. Cells were selected for 1 week with 1 ng/ml puromycin. Knock down efficiency 

was evaluated by qRT-PCR and/or western blot analysis. 

 

3.2.3. Fluorescence-activated cell-sorting (FACS) analysis 

 

3.2.3.1. Determination of apoptosis 

Apoptosis was measured by fluorescence-activated cell-sorting (FACS) analysis of 

DNA fragmentation of propidium iodide-stained nuclei as previously described [129]. 

Cells were seeded in 24-well plates (0.15x10
5
 cells/cm

2
) 24 hours previous treatment. 

At indicated time points, cells were trypsinized and washed in cold 1xPBS for 5 

minutes at 1800rpm at 4°C. After supernatant was discharged, pellets were resuspend in 

a hypotonic fluorochrome solution containing 50 µg/ml propidium iodide, 0.1% sodium 

citrate and 0.4% Triton-X 100 for at least 1 hour at 4°C. The content of hypodiploid 

DNA (sub-G1 peak) was quantified by FACS as indicator of apoptotic cell death. 

 

3.2.3.2. Determination of lysosomal acidification 

Acidification of lysosome was measured by fluorescence-activated cell-sorting (FACS) 

analysis of Lysotracker Red stained lysosomes according to manufacture instructions. 

Cells were seeded in 24-well plates (0.15x10
5
 cells/cm

2
) 24 hours previous treatment. 

At indicated time points 0.05 nM Lysotraker Red was add to the medium directly in the 

well for 10 minutes. Medium was then eliminated and cells were recovered by 

trypsinization and washed with 1xPBS for 5 minutes at 1800rpm at room temperature. 

Pellets were resuspended in 100 µl 1xPBS and fluorescence was directly measured by 

FACS. 
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3.2.4. Determination of cell viability and colony formation 

Cell viability was assessed by crystal violet staining of living cells. RMS cell lines were 

seeded in 6-well plates (0.15x10
5
  cells/cm

2
) and treated after 24 hours. At indicated 

time points, medium was discharged and cells were stained directly on plate with 

crystal violet solution containing 0.75 % crystal violet, 50 % ethanol, 0.25 % NaCl, 

1.57 % formaldehyde for 10 minutes. Crystal violet solution was then removed and 

stained cells were resuspended in 1% SDS. Absorbance at 550nM was measured by 

microplate reader. 

For colony formation assay, RMS treated cells were reseeded in 6-well plates as single 

cells (200 cells/well) and grown in drug free medium for 14 days. After removal of the 

medium, colonies were stained with crystal violet solution. The number of colonies was 

assessed by counting under the microscope.  

 

3.2.5. Molecular biology methods 

 

3.2.5.1. Protein extraction and quantification 

Cells were lysate in lytic buffer (30 mM Tris HCl, 150 mM NaCl, 1% Triton-X 100, 

10% Glycerol 0.5 mM, PMSF, 2mM DTT and protease inhibitor cocktail) 

supplemented with 100mM PMSF  and phosfatase inhibitors (1 mM Sodium-

orthovanadate, 1 mM -glycerophosphate, 5mM Sodium Fluoride) for 30 minutes on 

ice. After hypercentrifugation (14000 rpm, 30 minutes, 4°C), supernatant was collected. 

Protein determination of the supernatant was assessed by Pierce® BCA Protein Assay 

Kit according to manufacture instructions. 

 

3.2.5.2. Western blot analysis 

Western blot analysis was performed as described previously [129]. Briefly, equal 

amounts of proteins were diluted in 1xSDS loading buffer (TrisBase (1M; pH 6.8), 5% 

Glycerol, 1% SDS, 2mM DTT; 0.01 mg/ml Bromphenolblue) and denatureted for 5 

minutes at 96°C. Proteins were then loaded into home made polyacrylamide gels 

(resolving gel: 10% 12% 13.5% Acrylamide, 0.1% SDS, 250 mM Tris HCl pH 8.8, 

0.1% APS, 0.04% TEMED; stacking gel: 5% Acrylamide, 0.1% SDS, 125 mM Tris 

HCl pH 6.8, 0.1% APS, 0.1% TEMED). Proteins were run on the gel at constant 

voltage (100-150 V) until they reached the end of the gel. Blotting on hybond 
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nitrocellulose or polyvinylidene difluoride (PVDF) membrane was performed by 

semidry blotting system. Gel paper, gel and membranes were equilibrated in blotting 

buffer (125 mM Tris Base, 1.25 mM Glycine, 0.1% SDS, 20% Methanol) and piled on 

the anode plate. Blotting was performed with constant ampere (1 mA/cm
2
) for 1 hour or 

1 hour 40 minutes depending on the thickness of the gel. Membranes were then blocked 

in a 5% milk/PBS-T solution for 1 hour to prevent unspecific binding. Primary 

antibodies (see paragraph 3.1.5.1) were diluted in blocking solution or 2% BSA, 0.05% 

Sodium azide containing PBS-T solution and were incubated over night at 4°C. To 

avoid unspecific binding of secondary antibody, membranes were washed three times 

with 1XPBS-T and incubated 1 hour with alternatively secondary antibody conjugated 

to horseradish peroxidase (HRP) or infrared dye-labeled secondary antibodies diluted in 

5% milk/PBS-T. Specific protein signal was detected after three wash in 1xPBS-T by 

enhanced chemiluminescence (ECL) or infrared Odyssey
®

 imaging system, 

respectively. Representative images of at least two independent experiments are shown. 

 

3.2.5.3. Detection of protein aggregates: Triton-X fractionation 

Protein aggregates were detected by fractionation in Triton-X as previously described 

[130]. Cells were lysate in 2% Triton-X/1% PBS solution supplemented with proteases 

and phosphatases (100mM PMSF, 1 mM Sodium-orthovanadate, 1 mM -

glycerophosphate, 5mM Sodium Fluoride) for 30 minutes on ice. Lysate were 

centrifuged (13000 rpm, 30 minutes, 4 °C); supernatant was collected as soluble 

fraction. Pellets were resuspended in 1% SDS supplemented with proteases and 

phosphatases and sonicated for 20 second (45% intensity). Expression of ubiquitin-

positive protein aggregates was determined by western blot analysis. 

 

3.2.5.4. Detection of protein aggregates: Filter Trap assay 

Determination of protein aggregates by filter trap assay was performed as previously 

described [131]. Shortly, cells were recovered by scraping in 1XPBS and centrifuge 

1800 rpm 5 minutes at 4 °C. Pellets were resuspended in 1XPBS supplemented with 

proteases and phosphatases and sonicated twice for 20 seconds (45% intensity). After 

protein determination, equal amount of proteins were resuspended in 1% SDS and 

directly vacuum-blotted on a nitrocellulose membrane. Ubiquitin-positive aggregates 

were detected by western blot. 



32 
 

3.2.6. Generation of pTRIPZ-shRNA plasmids. 

Sub-clonation of shRNA control sequence and shATG7 sequence (see paragraph 3.1.7) 

from the pGIPZ plasmid to the doxocyclin inducible pTRIPZ plasmid was obtained by 

digestion of 8 µg pGIPZ-shRNA containing plasmid and 5 µg pTRPZ empty plasmid 

with 1 µl of XhoI and MluI restriction enzymes for 3 hours. Digestion products were 

respectively run in a homemade 0.8% and 1% agarose gel supplemented with ethidium 

bromide. Gel extraction of the correspondent DNA band from the agarose gel was 

performed with GeneJET
TM

 GEL extraction Kit according to manufacture instructions. 

250 ng of pTRIPZ and 7.5 ng of the insertion sequences were ligate with 0.5 µl of T4 

ligase enzyme for 1 hour. One Shot Top 10 E.coli competent cells were transformed 

with the ligation solution according to manufacture instructions and grown overnight. 

Plasmid extraction was performed by Pure Link HiPure Plasmid Filter Maxiprep Kit 

according to manufacture instructions.       

 

 

3.2.7. Quantitative Reverse Transcription PCR (qRT-PCR) 

Total RNA was extracted using peqGOLD Total RNA kit according to the 

manufacturere instructions. 3 µg of total RNA were used to synthetize the 

corresponding cDNA using RevertAid H Minus First Strand cDNA Synthesis Kit. 

Quantitative evaluation of selected genes (see paragraph 3.1.9) was determined by 

SYBR-Green based qRT-PCR performed by using the 7900HT fast real-time PCR 

system. Briefly, 500 ng cDNA was loaded in each well (96-well plate) with 2XSYBR-

Green solution and 10 pMol/µl of forward and reverse gene specific oligonucleotide 

primer and/or reference oligonucleotide primer 18S. qRT-PCR reaction was performed 

for 40 cycles (50 °C 2 min.; 95°C 10 min.; 95°C 15 sec.; 60°C 1 min.). Denaturation 

curves were plotted to verify the specificity of the amplified products. All 

determinations were performed in triplicate. The relative expression of the target gene 

transcript and reference gene transcript was calculated as ΔΔCt.  

 

3.2.8. Statistical analysis 

Statistical significance was assessed by Student's t-Test (two-tailed distribution, two-

sample, unequal variance).   
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4. Results 

 

4.1. A subpopulation of RMS cells is able to survive and recover upon ST80/ 

Bortezomib co-treatment.   

To investigate the potential role of concomitant inhibition of constitutive PQC systems, 

i.e. UPS and aggresome-autophagy system, we selected three different RMS cell lines 

(RD, TE671 and RMS13) and one non-transformed fibroblast cell line (BJ) and treated 

them with specific inhibitors of the two pathways. Bortezomib, commercially known as 

Valcade®, is an N-protected dipeptide which selectively and reversibly inhibits the 26S 

proteasome [132]. ST80 is a second generation inhibitor of the HDACs: this 

hydroxamates is designed in order to selectively inhibit the catalytic activity of HDAC6 

with a specificity 31.4 fold higher toward HDAC6 compared to HDAC1 [117]. We 

subject RMS cell lines to 48 hours of single or double treatment of 50 µM ST80 and/or 

three different concentration of Bortezomib; then, we measured apoptosis by 

quantification of DNA fragmentation (Figure 7). Importantly, addition of ST80 

significantly increased Bortezomib induced apoptosis in both embryonal (RD and 

TE671) and alveolar (RMS13) cell lines but showed no additional effect in non-

transformed fibroblast, pointing to some tumor selectivity. 

 

Figure 7: ST80 synergistically co-operates with Bortezomib to induce cell death in RMS.  

Cells were treated for 48 hours with 50 µM ST80 and/or Bortezomib as indicated. BJ cells were treated for 48 hours with 50µM 

ST80 and/or 20nM Bortezomib. Apoptosis was determined by FACS analysis of DNA fragmentation of propidium iodide stained 
nuclei. Three independent experiments in triplicate are shown. t-Student test was used to determine statistical significance: * 

p<0,05; **p<0,01; n.s.: non significant. 
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Although we could increase cell death in RMS cell lines by ST80/Bortezomib co-

treatment, we wondered if a subpopulation of cells was able to survive the treatment 

and, upon drug removal, was able to regrowth at similar rates as the untreated or single 

treated surviving cells. To address this question we monitored cell recovery over time 

after drug removal (Figure 8). 

 

Figure 8: Experimental design for recovery studies. 

Recovery experiments were done by treating the cells with single or double treatment (BS) for 48 hours before treatment  was 

removed and cells were able to regrowth in drug free medium up to 10 days 
 

We selected two representative RMS cell lines, the embryonal RD cell line and the 

alveolar RMS13 cell line, as models for further studies. After 48 hours nearly one third 

of cells were able to survive ST80/Bortezomib co-treatment (Figure 9.a). Interestingly, 

upon drug removal, surviving ST80/Bortezomib cells were able to regrow at similar 

rates compare with ST80 and Bortezomib single treated surviving cells (Figure 9.b). 

This set of data suggests that ST80/Bortezomib surviving cells can activate a defense 

mechanism which can overcome the toxicity induced by the treatment and support cell 

recovery. 
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Figure 9: ST80/Bortezomib surviving cells are able to regrowth upon drug removal. 

Cells were treated for 48 hours (day 0) with 20 nM (RD) or 50 nM (RMS13) Bortezomib +/- 50 µM ST80. (a) Cell viability was 

measured by crystal violet assay after 48 hours. Data are expressed as fold change vs. untreated. (b) Cell regrowth was measured at 

indicated time points of the recovery period by crystal violet assay. Data are expressed as fold change vs. day 0. Mean of three 
independent experiments in triplicate is shown. t-Student test was used to determine statistical significance: * p<0,05; **p<0,01.  
 

 

4.2. ST80/Bortezomib surviving cells accumulate protein aggregates upon co-

treatment. 

To understand if ST80/Bortezomib surviving cells show a similar extent of 

proteotoxicity compared to single treated surviving cells, we determined the amount of 

protein aggregates after 48 hours treatment (Figure 10). Protein aggregates are insoluble 

in Triton-X and, due to proteasome inhibition mediated by Bortezomib, are mostly 

ubiquitin-tagged. Surprisingly, ST80/Bortezomib surviving cells show higher amount of 

ubiquitin positive aggregates after fractionation in 2% Triton-X buffer compared both 

with ST80 and Bortezomib single treated surviving cells. Moreover, increase levels of 

p62 are detectable in the insoluble fraction of ST80/Bortezomib surviving cells (Figure 

10.a). p62 is a scaffold protein which posses a UBA and a LIR domain: these domains 

confer to the protein the capability to interact respectively with ubiquitin and LC3. Due 

to this, p62 acts as a “bridge” between aggregates and autophagosomes mediating 

recognition and clearance of cytotoxic aggregates through the aggresome-autophagy 

system.  
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To further confirm protein aggregates accumulation, filter trap assay showed increase 

ubiquitin staining in ST80/Bortezomib surviving cells (Figure 10.b). Aggregates can be 

detected by filter trap assay due to their high molecular weight: vacuum blotting of cell 

lysate performed in non-denaturant conditions will let small molecular weight protein 

pass through the membrane but not high weight multiprotein aggregates that can be 

then detected by western blot analysis (Figure 10.b). Taken together, these data point to 

increase accumulation of protein aggregates in ST80/Bortezomib surviving cells.  

 

 

Figure 10: ST80/Bortezomib surviving cells show accumulation of protein aggregates. 

Cells were treated for 48 hours with 20 nM (RD) or 50 nM (RMS13) Bortezomib +/- 50 µM ST80. (a) Ubiquitin-positive protein 

aggregates were assessed by western blot analysis after fractionation of total viable cells in Triton-X. GAPDH and Histone 3 were 
used as loading and purity controls for soluble and insoluble fractions, respectively. (b) Ubiquitin positive aggregates were detected 

by filter trap assay of viable cells. 

 

 

To exclude that protein aggregates accumulation was due to a general autophagy 

impairment mediated by the co-treatment; we measured LC3 conversion and lysosomal 

acidification in single and double treated surviving cells (Figure 11). During the 

autophagic flux, LC3 is processed into its lipid-conjugated isoform (LC3 II) which 

associates with autophagosome membranes: to monitor LC3 II accumulation by western 

blot analysis is, nowadays, the most used and described method in order to detect 
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autophagy in vitro [133]. As shown in Figure 11.a, ST80/Bortezomib surviving cells 

show similar or even more LC3 II compared with Bortezomib single treated cells, 

suggesting ongoing autophagy. Because accumulation of LC3 II can be caused both by 

induction of autophagy and by blockage of the autophagic flux, we quantified lysosome 

acidification by FACS measurement of Lysotracker Red (LTR) stained cells (Figure 

11.b and c). Lysosomal acidification is a crucial step to finalize the digestion of the 

autophagosome cargo: loss of lysosome acidification results in blockade of the 

autophagy flux. Due to this, the measure of the acidity of the lysosomal compartment is 

an indirect method to quantify autophagy [133]. ST80/Bortezomib surviving cells show 

similar amount of acidic lysosome compared with Bortezomib treated cells during all 

48 hours of drug treatment (Figure 11.c).  

 

Figure 11: ST80/Bortezomib surviving cells undergo bulk autophagy. 

Cells were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib +/- 50 µM ST80. (a) LC3 I/LC3 II conversion was monitored 

by western blot analysis of viable cells after 48 hours treatment. -Actin was used as loading control. (b-c) Lysosome acidification 

was measured by FACS analysis of Lysotracker Red staining of viable cells after 48 hours (in b) and over time (indicated time 

points, in c). Mean of three independent experiments in triplicate is shown.    
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Taken together, these data show that after 48 hours treatment ST80/Bortezomib 

surviving cells undergo high proteotoxic stress compared to Bortezomib treated cells 

due to the accumulation of ubiquitin-positive protein aggregates which can not be 

cleared by the ongoing bulk autophagy.     

 

4.3. ST80/Bortezomib surviving cells up-regulate co-chaperone BAG3 in a NFB-

dependent manner. 

ST80/Bortezomib co-treatment inhibits simultaneously the two main branches of 

constitutive PQC, i.e. UPS and HDAC6 mediated aggresome-autophagy system. Since 

ST80/Bortezomib surviving cells show enhance accumulation of protein aggregates 

although they are still competent towards bulk autophagy (Figure 10 and 11), we 

hypothesized that an inducible rescue mechanism would be activated in those cells by 

the co-treatment in order to mitigate proteotoxicity. Co-chaperone BAG3 has been 

described to be induced upon proteasome inhibition, i.e. aging process [77]: BAG3 can 

theoretically compensate HDAC6 loss of activity and restore protein aggregates 

recognition by the autophagic machinery triggering their clearance [76]. In order to 

understand if BAG3 plays a role in ST80/Bortezomib surviving cells observed cell 

recovery (Figure 9), we quantified BAG3 mRNA and protein levels in the living RMS 

and BJ population after 48 hours of single or double treatment (Figure 12).   
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Figure 12: RMS ST80/Bortezomib surviving cells up-regulate co-chaperone BAG3. 

Cells were treated with 20 nM (RD, BJ) or 50 nM (RMS13, TE671) +/- 50 µM ST80 for 48 hours. mRNA levels were assessed by 

qRT-PCR. Mean of three independent experiments in triplicate is shown.  Protein levels were assessed by western blot; -Actin was 
used as loading control.  

 

 

Interestingly, both BAG3 mRNA and protein levels are highly increased upon 

ST80/Bortezomib cotreatment in all RMS cell lines (Figure 12.a-c). Some increase in 

BAG3 mRNA and protein levels is also detectable upon Bortezomib single treatment, 

in line with previous publications [84]. Moreover, the BJ cell line, which shows no 

further sensitization toward ST80/Bortezomib co-treatment (Figure 7), have no 

transcriptional or translational induction of BAG3 in the ST80/Bortezomib surviving 

population (Figure 12.d). Previous data demonstrate that the co-chaperone BAG1 is 

implicated in proteasomal degradation of misfolded proteins [134]; to assure the 

specificity of BAG3 up-regulation we measured concomitantly BAG1 mRNA levels in 

the living population, showing no changes compared to untreated cells (Figure 12). 

Kinetic analysis of BAG3 mRNA levels underlined a late up-regulation starting 

between 30-42 hours after ST80/Bortezomib co-treatment, in line with the hypothesis 
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that BAG3 plays a major role during the recovery phase and not in the initial phase of 

the treatment (Figure 13). 

 

 

Figure 13: ST80/Bortezomib surviving cells show slow kinetic of BAG3 up-regulation. 

Cells were treated with 20 nM (RD) or 50 nM (RMS13) and 50 µM ST80 for indicated time points. mRNA levels were assessed by 

qRT-PCR. Mean of three independent experiments in triplicate is shown.     

 

To exclude that BAG3 transcriptional up-regulation is simply an unspecific effect of 

massive cell death, we treated the RD cell line with two prototypic apoptotic stimuli 

and measured BAG3 mRNA levels in the surviving population (Figure 14). The TRAIL 

receptor 2 agonistic antibody, Lexatumumab, triggers apoptosis in RMS cell lines via 

death receptor (extrinsic pathway) [135]; the BH3 mimetic ABT-737 leads to cell death 

via the mitochondrial pathway, also known as intrinsic apoptotic pathway [136]. As 

shown in figure 14.a, induction of apoptosis by Lexatumumab and ABT-737 is 

comparable with ST80/Bortezomib co-treatment. Interestingly, no induction of BAG3 

mRNA can be detected in Lexatumumab or ABT-737 surviving population, pointing to 

specificity of BAG3 transcriptional induction by ST80/Bortezomib co-treatment (Figure 

14.b). No changes were detected in BAG1 mRNA levels (Figure 14.b)  

 

Figure 14: BAG3 up-regulation is a specific feature of ST80/Bortezomib treatment. 

RD cell line was treated with 5 µg/ml Lexatumumab or 5 µM ABT-737 for 24 hours. (a) Apoptosis was determined by FACS 

analysis of DNA fragmentation of propidium iodide stained nuclei. (b) BAG1 and BAG3 mRNA levels were assessed with qRT-

PCR. Mean of three independent experiments in triplicate is shown.      
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Recent evidences demonstrate that in a HeLA cell line heat shock model, BAG3 up-

regulation was mediated by NFB [137]. To address the role of NF-B in our model, 

we create RMS cell lines with a phosphomutant IB (IB-SR) which can not be 

phosphorylated on Serine 32 and 36 and consecutively degraded (Figure 15.a). 

Impairing IBdegradation leads to incompetent NFB cell lines [138]; as shown in 

figure 15.b, TNF mRNA induction is completely abolished in IB-SR cells while is 

highly present in the empty vector (EV) cell line after TNF stimulation.  

 

 

Figure 15: IB-SR cells are insensitive to TNF stimulation. 

RMS cells stably expressing empty vector (EV) or IB super repressor vector (IB-SR) were treated with TNF 20 ng/mL for 

2h. (a) IB protein levels were determined by western blot analysis. Tubulin was used as loading control. (b) TNF mRNA levels 
were assessed by qRT-PCR. Mean of two different experiment performed in triplicate is shown.  

 

Interestingly, induction of BAG3 mRNA and protein levels is completely abolished in 

the IB-SR cells after ST80/Bortezomib co-treatment, while still present in the EV 

cell lines (Figure 16). Further studies need to be done to assess the exact role of NF-B 

in BAG3 up-regulation upon ST80/Bortezomib co-treatment. 
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Figure 16: NF-B mediates BAG3 up-regulation in ST80/Bortezomib surviving cells. 

Cells stably expressing empty vector (EV) or IB super repressor vector (IB-SR) were treated with 20 nM (RD) or 50 nM 

(RMS13) Bortezomib and 50 µM ST80 (BS). (a) BAG1 and BAG3 mRNA levels were determined by qRT-PCR. Mean of two 

independent experiment performed in triplicate is shown. (b) Protein levels were determined by western blot analysis. GAPDH was 
used as loading control.  

 

Taken together, these results demonstrate that ST80/Bortezomib surviving cells 

strongly and specifically induce BAG3 at transcriptional and translational level in a NF-

B dependent manner. 

 

4.4. BAG3 mediates protein aggregates clearance during cell recovery. 

Since BAG3 has been previously reported to mediate protein aggregates clearance via 

selective autophagy [139], we created stable RMS BAG3 knock-down cells by short-

hairpin RNA (shRNA) vectors in order to understand BAG3 role in modulating 

proteotoxicity upon ST80/Bortezomib treatment. As control we used a RNA sequence 

with no corresponding counterpart in the human genome (Figure 17). All three 

sequences against BAG3 mediate loss of basal and ST80/Bortezomib induced up-

regulation of BAG3, both at protein and mRNA levels, while control cells (shCtrl) 

remain able to trigger BAG3 up-regulation up to day 3 of the recovery period (Figure 

17.a and b). Constitutive BAG3 knock-down shows no effect on BAG1 mRNA level 

demonstrating no compensatory mechanism triggered by the loss of BAG3 in these 

cells (Figure 17.c). 
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Figure 17: shBAG3 cells are unable to up-regulate BAG3 after ST80/Bortezomib treatment. 

RD and RMS13 were stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). (a) Cells 

were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib and 50 µM ST80 (BS) for 48 hours (day 0) before treatment was 

removed and cells were grown in drug-free medium up to three days. BAG3 protein levels were assessed by western blot analysis at 
indicated time points. GAPDH was used as loading control. (b-c) Cells were treated with 20 nM (RD) or 50 nM (RMS13) 

Bortezomib and 50 µM ST80 (BS) for 48 hours. BAG1 and BAG3 mRNA levels were assessed by qRT-PCR. Mean of three 

independent experiment performed in triplicate is shown. 

 

 

In line with the late kinetic of BAG3 up-regulation (Figure 13), BAG3 knock down 

RMS cells show no difference in cell death compared with control vector supporting the 

hypothesis that BAG3 is mainly required during the recovery phase, upon drug 

removal, but is dispensable during the initial phase of ST80/Bortezomib treatment 

(Figure 18). 
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Figure 18: BAG3 is not involved in ST80/Bortezomib induced cell death. 

RD and RMS13 were stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). Cells 
were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib +/- 50 µM ST80 for 48 hours. Apoptosis was determined by FACS 

analysis of DNA fragmentation of propidium iodide stained nuclei. Mean of three independent experiments in triplicate is shown. 
 

In order to understand the impact of BAG3 on ubiquitin-positive protein aggregates 

accumulation, we measure Triton-X insoluble aggregates by fractionation of viable 

cells after 48 hours ST80/Bortezomib treatment (day 0; Figure 19.a), and at day 2 and 

day 3 of the recovery period (Figure 19.b). As expected, shBAG3 RMS cell lines show 

no differences compared with control cells in the amount of insoluble ubiquitin-positive 

aggregates and p62 protein levels after 48 hours of ST80/Bortezomib treatment  (day 0 

of recovery) in line with the dispensable role of BAG3 in the initial phase of treatment 

(Figure 19.a). By contrast, at day 2 and day 3 of recovery, loss of BAG3 up-regulation 

determines a striking accumulation of ubiquitin-positive aggregates and p62 protein 

levels in the insoluble fraction (Figure 19.b) compared with control cells. Moreover, 

control cells show decrease ubiquitin-positive aggregates at day 2 and day 3 of recovery 

period when compered to day 0, indicating that BAG3 plays a key role in mitigating 

proteotoxicity by clearing cytotoxic protein aggregates during the recovery phase. To 

further confirm this finding, we evaluate protein aggregates in BAG3 knock down cells 

by filter trap assay (Figure 20). Similarly to Triton-X fractionation, the filter trap assay 

shows increase accumulation of ubiquitin-positive protein aggregates at day 3 of the 

recovery period in shBAG3 cells while control cells show similar levels of protein 

aggregates as in the untreated condition (Figure 20). 

Taken together, these results show that BAG3 up-regulation in ST80/Bortezomib 

surviving cells is necessary to decrease protein aggregates upon drug removal.    
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Figure 19: BAG3 mediates clearance of protein aggregates during cell recovery. 

RD and RMS13 were stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). Cells 

were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib and 50 µM ST80 (BS) for 48 hours (day 0) before treatment was 

removed and cells were grown in drug-free medium up to three days. Ubiquitin-positive protein aggregates were assessed by 
western blot analysis after fractionation of total viable cells in Triton-X after 48 hours (a) and at day 2 and 3 of the recovery period 

(b). GAPDH and Histone 3 were used as loading and purity controls for soluble and insoluble fractions, respectively.   

 

 

Figure 20: BAG3 plays a key role in protein aggregates clearance upon ST80/Bortezomib removal. 

RD was stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). Cells were treated with 

20 nM Bortezomib and 50 µM ST80 (BS) for 48 hours (day 0) before treatment was removed and cells were grown in drug-free 

medium up to three days. Ubiquitin positive aggregates were detected by filter trap assay of viable cells at indicated time points. 
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4.5. BAG3 is necessary for cell regrowth after ST80/Bortezomib co-treatment. 

In order to investigate the importance of BAG3 up-regulation in mitigation of 

cytotoxicity during the recovery phase, we treated the shBAG3 and control cells for 48 

hours with Bortezomib and/or ST80 (day 0). Then, we removed the treatment allowing 

cells to regrow in drug-free medium up to three days (Figure 21). Untreated and single 

treated surviving cells show comparable ratio of cell regrowth despite the presence or 

absence of BAG3 (Figure 21.a-c), in line with the absence of BAG3 up-regulation 

detected in these conditions (Figure 12.a and c). Contrarily, ST80/Bortezomib shBAG3 

surviving cells completely lost the capability to regrow while shCtrl cells show cell 

regrowth up to three fold at day 3 of the recovery period (Figure 21.d). These data 

suggest that BAG3 up-regulation is necessary for ST80/Bortezomib surviving cells to 

cope with the elevate cytotoxicity induced by the treatment in order to recover upon 

drug removal. 

 

Figure 21: BAG3 up-regulation is necessary for cell regrowth in ST80/Bortezomib surviving cells.  

RD and RMS13 were stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). Cells 

were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib and/or 50 µM ST80 for 48 hours (day 0) before treatment was 

removed and cells were grown in drug-free medium up to three days. Cell proliferation was measured by crystal violet staining at 
indicated time points. Data are expressed as fold change vs. day 0. Mean of three independent experiments in triplicate is shown. t-

Student test was used to determine statistical significance between shBAG3 and control vector: * p<0,05; **p<0,01. 
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In order to understand if the loss of viability of shBAG3 cells during the recovery 

period, is due to increase cell death, we measured apoptosis by FACS analysis of 

fragmented DNA after 48 hours of ST80/Bortezomib treatment (day 0 of recovery) and 

at day 3 of the recovery period (Figure 22). BAG3 knock down cells show enhanced 

cell death at day 3 of the recovery period compared with control vector, indicating 

actual cell death of the ST80/Bortezomib surviving cells which are unable to up-

regulate BAG3. 

 

Figure 22: Loss of BAG3 up-regulation triggers cell death during cell recovery. 

RD and RMS13 were stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). Cells 

were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib and 50 µM ST80 for 48 hours (day 0) before treatment was removed 

and cells were grown in drug-free medium up to three days. Apoptosis was determined by FACS analysis of DNA fragmentation of 

propidium iodide stained nuclei.  Mean of three independent experiments in triplicate is shown. t-Student test was used to determine 

statistical significance between shBAG3 and control vector or between day 0 and day 3 of the recovery period: **p<0,01. 

 

To understand the long term effects of BAG3 up-regulation, we followed BAG3 knock-

down and control RMS cell lines up to ten days after drug removal (Figure 23.a). 

ST80/Bortezomib surviving cells which are still able to up-regulate BAG3 (shCtrl cell 

lines) show constant cell proliferation after drug removal; on the contrary, cells 

transfected with all three sequences against BAG3 are completely incapable of cell 

regrowth also in longer time periods (Figure 23.a). Then, we wanted to test the role of 

BAG3 in clonogenic survival. To this end, we seeded ST80/Bortezomib surviving cells 

as single cell in drug-free medium and counted the colony number after 14 days (Figure 

23.b-c). Interestingly, BAG3 knock-down cells show significant decrease in colony 

formation compared to control vector although no difference in colony number among 

shBAG3 and control cells was detected for untreated cells, indicating that basal levels 

of BAG3 are dispensable for clonogenic survival in normal condition (Figure 23.b).  
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Figure 23: BAG3 is necessary for long term and clonogenic survival after ST80/Bortezomib removal.  
RD and RMS13 were stably transfected with three different sequences against BAG3 (shBAG3) and one control (shCtrl). (a) Cells 
were treated with 20 nM (RD) or 50 nM (RMS13) Bortezomib and 50 µM ST80 for 48 hours (day 0) before treatment was removed 

and cells were grown in drug-free medium up to ten days. Cell viability was measured at indicated time points by crystal violet 

staining. Data are expressed as fold change vs. day 0.  (b-c) After 48 hours of ST80/Bortezomib treatment cells were seeded as 
single cell and grown in drug-free medium for 14 days. Colonies were visualized by crystal violet staining and counted under the 

microscope. Quantification of the number of colonies (b) and representative images (c) are shown. Mean of three (a) or two (b-c) 

independent experiments in triplicate is shown. t-Student test was used to determine statistical significance between shBAG3 and 
control vector: *p<0,05; **p<0,01. 

 

Taken together, this line of evidences supports the idea that BAG3 is necessary for cell 

regrowth and colony formation during the recovery phase, after ST80/Bortezomib 

removal. 

 

4.6. Impairment of autophagosome formation leads to loss of cell recovery and 

protein aggregates accumulation upon ST80/Bortezomib removal. 

Previous data associated BAG3 mediated clearance of protein aggregates with the 

selective autophagic pathway [71]. In order to understand if BAG3-dependent cell 

recovery upon ST80/Bortezomib removal is mediated by autophagy in our system, we 

created RD inducible ATG7 knock-down cell line (shATG7) (Figure 24.a). Starting 48 
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hours after treatment with doxycycline, ATG7 protein levels markedly decrease in 

shATG7 cells, while ATG7 is still present in the control vector (Figure 24.a). In order 

to exclude any interference of the inducible construct with the initial phase of 

ST80/Bortezomib treatment, we measured apoptosis and cell density after 48 hours of 

drug treatment (Figure 24.b-c). Importantly apoptotic levels and cell surviving ratios are 

comparable between shATG7 cells and control vector, in line with delayed down 

regulation of ATG7 starting 48 hours after doxycycline treatment (Figure 24.a).    

 

Figure 24: Inducible knock down of ATG7 does not interfere with ST80/Bortezomib-induced cell death. 

RD cell line was stably transfected with one sequences against ATG7 (shATG7) and one control (shCtrl). (a) Cells were treated 

with 1 ng/mL doxyciclin for indicated time points. ATG7 protein levels were assessed by western blot analysis. GAPDH was used 

as loading control. (b-c) Cells were treated for 48 hours with 20 nM Bortezomib and 50µM ST80. In (b), apoptosis was determined 
by FACS analysis of DNA fragmentation of propidium iodide stained nuclei. In (c), cell viability was measured by crystal violet 

assay. Data are expressed as fold change vs. untreated. Mean of three independent experiments in triplicate is shown.     

 

Down regulation of ATG7 is maintained up to 120 hours (day 3 of recovery period) and 

leads to impairment of autophagosome formation as shown by the loss of LC3 I/II 

conversion, while control vector maintain ATG7 levels and LC3 I/II conversion ratio 

constant at the same time points (Figure 25.a). In order to understand if the impairment 

of the autophagic pathway, mediated by conditional ATG7 knock-down during the 

recovery phase, leads to accumulation of protein aggregates upon ST80/Bortezomib 

removal, we quantified ubiquitin-positive insoluble aggregates by fractionation of living 

cells in Triton-X (Figure 25.b). Interestingly, impairment of autophagosome formation 

leads to enhance accumulation of ubiquitin-positive aggregates and p62 protein levels 

in the insoluble fraction at day 2 and 3 after drug removal. Control vector cells show 
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decreasing amount of ubiquitin and p62 in the insoluble fraction at day 2 and 3 of the 

recovery period when compared to day 0, while shATG7 cells maintain similar level of 

ubiquitin and p62 protein levels over time, suggesting impairment in protein aggregates 

clearance (Figure 25.b). Moreover, untreated shATG7 cells show higher amount of 

insoluble ubiquitin-positive protein aggregates compared to control vector, underlining 

the importance of the aggresome-autophagy system to maintain protein homeostasis 

also in basal condition (Figure 25.b line 1 and 5 of insoluble fraction).      

 

Figure 25: Impairment of autophagosome formation leads to accumulation of protein aggregates during recovery. 

RD cell line was stably transfected with one sequences against ATG7 (shATG7) and one control (shCtrl). (a) Cells were treated 

with 1 ng/mL doxycycline for indicated time points. LC3 I/II and ATG7 protein levels were assessed by western blot analysis. -
Actin was used as loading control. (b) Cells were treated for 48 hours (day 0) with 20 nM Bortezomib and 50µM ST80 (BS) before 

treatment was removed and cell were grown in drug-free medium up to three days. Ubiquitin-positive protein aggregates and p62 

protein levels were assessed by western blot analysis after fractionation of total viable cells in Triton-X at indicated time points. 
GAPDH and Histone 3 were used as loading and purity controls for soluble and insoluble fractions, respectively. 

 

Accumulation of protein aggregates generally increases cytotoxicity leading to loss of 

cell recovery. To investigate if impairment of autophagosome formation, and  

consequent protein aggregates accumulation upon ST80/Bortezomib removal, leads to 

loss of cell viability, we followed cell proliferation of shATG7 and shCtrl 

ST80/Bortezomib surviving cells up to three days (Figure 26.a). As expected, control 

cells were able to grow in drug-free medium after ST80/Bortezomib removal while 

ATG7 knock down cells proliferation was completely lost. Moreover, shATG7 cells 

show significant increase of fragmented DNA compared to control vector at day 3 of 

the recovering period, indicating cell death during the recovery phase when the 

autophagic pathway is impaired (Figure 26.b).     
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Figure 26: RD shATG7 cells show loss of cell proliferation and increase apoptosis during recovery.  
RD cell line was stably transfected with one sequences against ATG7 (shATG7) and one control (shCtrl). Cells were treated for 48 

hours (day 0) with 20 nM Bortezomib and 50µM ST80 before treatment was removed and cell were grown in drug-free medium up 

to three days. (a) Cell proliferation was measured by crystal violet staining at indicated time points. Data are expressed as fold 
change vs. day 0. (b) Apoptosis was determined by FACS analysis of DNA fragmentation of propidium iodide stained nuclei. Mean 

of three independent experiments in triplicate is shown. t-Student test was used to determine statistical significance between 

shATG7 and control vector: **p<0,01. 

 

As a side note, we noticed that impairment of autophagosome formation by ATG7 

knock down slightly but significantly decreased cell viability over time in untreated 

conditions compared to control vector (Figure 27).    Although  this basal loss of cell 

viability can not explain the great decrease in cell proliferation of shATG7 cells upon 

ST80/Bortezomib removal (Figure 26.a and 27), this observation points to a critical role 

of the autophagic pathway in RMS cells, in line with previous reports on the role of 

autophagy in tumor maintenance [102, 140]. 

 

Figure 27: Autophagy impairment leads to decrease in cell proliferation in untreated conditions.  

RD cell line was stably transfected with one sequences against ATG7 (shATG7) and one control (shCtrl). Cells were treated for 48 
hours (day 0) with 20 nM Bortezomib and 50µM ST80 (BS) before treatment was removed and cell were grown in drug-free 

medium up to three days. Cell proliferation was measured by crystal violet staining at indicated time points. Data are expressed as 

fold change vs. day 0. Mean of three independent experiments in triplicate is shown. t-Student test was used to determine statistical 
significance between shATG7 and control vector. 
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Taken together, this set of evidences demonstrates that the impairment of 

autophagosome formation after ST80/Bortezomib removal, leads to protein aggregates 

accumulation, loss of cell proliferation and increase apoptosis during the recovery 

period similarly to shBAG3 cell lines. 

 

4.7. Impairment of lysosome acidification leads to loss of cell proliferation and 

protein aggregates accumulation upon ST80/Bortezomib removal. 

To further confirm that BAG3 clearance of protein aggregates after ST80/Bortezomib 

removal is mediated by the autophagic pathway, we interfered with the fusion between 

autophagosome and lysosome compartment by impairing lysosomal acidification with 

BafilomycinA1 (BafA1). BafA1 is an inhibitor of lysosomal V-ATPase which is 

responsible for the acidification of the lysosomal compartment: inhibition of 

acidification leads to inactivation of lysosomal enzymes with consequent inhibition of 

autophagosomal-cargo degradation and, finally, autophagy inhibition [133]. We treated 

ST80/Bortezomib surviving RMS cells with or without BafA1 at nanomolar 

concentration up to three days in order to determine protein aggregates by fractionation 

of viable cells in Triton-X (Figure 28). Importantly, BafA1 treated cells show, in the 

insoluble fraction, increase ubiquitin-positive protein aggregates and enhanced p62 

protein levels at day 2 and 3 of the recovery period. 

 

Figure 28: Impairment of the autophagic cargo degradation leads to protein aggregates accumulation during recovery. 

Cells were treated for 48 hours with 20 nM (RD) or 50 nM (RMS13) Bortezomib and 50 µM ST80 (BS) before treatment was 
removed and cells were grown up to three days in fresh medium with or without 5 nM of BafA1. Ubiquitin-positive protein 

aggregates and p62 protein levels were assessed by western blot analysis after fractionation of total viable cells in Triton-X at 
indicated time points. GAPDH and Histone 3 were used as loading and purity controls for soluble and insoluble fractions, 

respectively. 
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RMS cells supplied with BafA1 after ST80/Bortezomib removal show significantly 

reduced cell growth (Figure 29.a) accompanied by increase apoptosis (Figure 29.b) 

while cells grown in drug-free medium show sustained proliferation and decreased cell 

death. 

Taken together, these results confirmed that inhibition of autophagy leads to 

accumulation of cytotoxic protein aggregates with consequent loss of cell growth and 

increased cell death upon ST80/Bortezomib removal, similarly to RMS cells which are 

not able to up-regulate BAG3 during recovery (Figure 19; 21 and 22). 

 

Figure 29: Impairment of lysosomal degradation results in loss of cell viability and increased cell death upon 

ST80/Bortezomib removal.  

Cells were treated for 48 hours with 20 nM (RD) or 50 nM (RMS13) Bortezomib and 50 µM ST80 before treatment was removed 

and cells were grown up to three days in fresh medium with or without 5 nM of BafA1. (a) Cell proliferation was measured by 
crystal violet staining at indicated time points. Data are expressed as fold change vs. day 0. (b) Apoptosis was determined by FACS 

analysis of DNA fragmentation of propidium iodide stained nuclei. Mean of three independent experiments in triplicate is shown. t-

Student test was used to determine statistical significance between BafA1 treated and untreated cells: **p<0,01. 
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5. Discussion 

 

Finding new strategies to enhance cell death in tumors is the main challenge of 

translational cancer research. Constitutive PQC systems – the UPS and the aggresome-

autophagic system- have recently been suggested to be a promising target in cancer 

therapy [110, 111]. Single drug treatments against proteasome have been demonstrated 

to be just partially effective in tumors, due to compensatory induction of autophagy 

which enhances resistance against proteotoxicity and, in this way, limits cell death [10, 

141, 142]. Thus, combinatory strategies have been proposed to overcome single 

proteasome agent induced resistance: addition of compounds which can inhibit bulk 

autophagy such as chloroquine or 3-MA (3-Methyladenine) have been widely tested in 

the last years in combination with proteasome inhibitors [143, 144].  

HDAC6 has been recently shown to play a key role in the aggresome-autophagic 

system both by recruiting misfolded proteins towards the MTOC, and by mediating 

autophagosome-lysosome fusion via recruitment of a cortactin network [66, 69, 145]. 

Due to its key role in protein aggregates selective autophagy, HDAC6 inhibitors and 

proteasome inhibitors have been tested in combination in various tumor entities, such as 

ovarian, breast or colon carcinoma, showing synergism in cell killing [125, 141, 146].  

Here, we combined a new specific catalytic inhibitor of HDAC6 -ST80- with the FDA-

approved proteasome inhibitor Bortezomib in order to enhance proteotoxicity and 

trigger synergistic cell death in RMS cell lines. We indeed observed increased apoptosis 

upon combination treatment in all tested RMS cell lines but, interestingly, we always 

detected subpopulation of cells which survived ST80/Bortezomib co-treatment and was 

then able to recover, upon drug removal, at the same extent compared to untreated or 

single agent surviving cells. Therefore, we focused our attention on the induced 

compensatory mechanism up-regulated in this subpopulation of cells: we demonstrate, 

for the first time, that co-chaperone BAG3 plays a key role in tumor cell recovery, upon 

drug removal, specifically as a response to acute proteotoxicity triggered by 

concomitant inhibition of constitutive PQC systems. Moreover, we demonstrate that 

BAG3 mediates cell regrowth during cell recovery via selective clearance of cytotoxic 

protein aggregates by autophagy, thus mitigating proteotoxicity (Figure 30). 
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Figure 30: Scheme of proposed mechanism.  

Inhibition of HDAC6 and proteasome triggers cell death and accumulation of insoluble protein aggregates (red). Surviving cells up-

regulate BAG3 via NFB in order to decrease proteotoxicity by autophagic clearance of protein aggregates therefore stimulating 

cell recovery (green). (See text for details). 

 

Several lines of evidences support this conclusion: first, RMS ST80/Bortezomib 

surviving cells up-regulate massively BAG3 at transcriptional and protein levels while 

Bortezomib surviving cells or surviving cells of well established apoptotic inducers 

show no increase of BAG3 mRNA and/or protein levels (Figures 12 and 14). Similarly, 

non- transformed fibroblast cell line BJ show no increase in BAG3 mRNA and protein 

levels after ST80/Bortezomib treatment pointing to BAG3 up-regulation as a specific 

feature of RMS cells upon acute proteotoxicity. BAG3 up-regulation is mediated by 

NF-B activation: in fact, impairment of NF-B pathway by generation of 

phosphomutant IB RMS cell lines results in complete loss of BAG3 transcriptional 

and translational up-regulation in ST80/Bortezomib surviving cells. Second, BAG3 

knock-down markedly impairs cell growth, clonogenic survival and clearance of 

cytotoxic protein aggregates leading to increased apoptosis upon ST80/Bortezomib 

removal (Figures 19-23). Finally, impairment of the aggresome-autophagy system 

during the recovery phase by inducible ATG7 knock-down or by BafA1 treatment, 
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leads to loss of cell proliferation, accumulation of insoluble protein aggregates and 

increase cell death, similarly to BAG3 knock down cells (Figures 25-26 and 28-29). 

These line of evidences strongly support a model in which BAG3 acts as an on demand 

PQC mechanism engaged by tumor cells upon simultaneous inhibition of constitutive 

PQC systems in order to selectively degrade accumulated protein aggregates and 

stimulate cell recovery upon drug removal.  

Drug-induced resistance is one of the main limitations of efficacy in cancer therapy: 

simultaneous drug targeting of several cell pathways have increased efficacy in tumor 

cell killing, although drug induced resistance still plays a key role in tumor relapse and, 

finally, in the poor prognosis of many tumor types [147-149]. BAG3 has been 

previously described to play an important role in cancer survival by counteracting 

apoptosis. Due to its binding to HSP70, BAG3 is able to retain the pro-apoptotic protein 

BAX in the cytosol thereby preventing BAX translocation to the mitochondria and 

inhibiting cisplatinum- or serum deprivation-induced apoptosis [121]. Moreover, BAG3 

has been described to interfere with HSP70-mediated delivery to proteasome of several 

antiapoptotic proteins such as IKK, BCL2, BCL-XL, mostly by competing with BAG1 

for HSP70 binding [82, 150]. In neuroblastoma cell lines with a defined dependency for 

specific BCL2 family members, BAG3 expression was shown to correlate with MCL-1 

dependency and ABT-737 resistance due to BAG3-mediated protection of MCL-1 

proteasomal degradation in this model [151]. In our study, data suggest that BAG3 does 

not play a key role in preventing apoptosis triggered by ST80/Bortezomib co-treatment 

but acts mainly as a pro-survival mechanism during cell recovery phase through 

modulation of autophagy. We demonstrate a new important function of BAG3 as a pro-

survival protein in cancer aside from its reported role related to modulation of pro- and 

anti-apoptotic proteins. In our model, BAG3 mediates cell recovery by directly 

decreasing the source of stress, i.e. protein aggregates, by selective degradation of 

cytotoxic protein aggregates via autophagy. 

BAG3’s role in selective autophagy has been intensively studied in healthy tissues 

[152]. As a co-chaperone, BAG3 is part of the HSPB8-HSP70-CHIP-BAG3 

multichaperone complex in which it recognizes and binds misfolded proteins in order to 

enhance protein degradation [74, 153]. Also, BAG3 can compensate for HDAC6 

functions in the aggresome-autophagy system by interacting with dynein motors 

promoting the retrograde transport of misfolded proteins along microtubules towards 
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the MTOC [76]. Moreover, BAG3 can interact with the selective autophagic receptor 

p62 linking, in this way, protein aggregates and aggresomes to the autophagic 

machinery via the p62-LC3 interaction on the autophagosomal membranes [77]. Here, 

we show that BAG3 acts as an on demand PQC mechanism engaged in RMS cell lines 

upon intense proteotoxic stress mainly to decrease toxicity during cell recovery through 

its key role in selective autophagy. Interestingly, our data clearly demonstrate that 

inhibition of proteasome by Bortezomib is not sufficient to trigger enhanced BAG3 

transcriptional up-regulation: previous reports showed that inhibition of proteasome-

mediated BAG3 mRNA up-regulation to some extent [154, 155]; however, concomitant 

inhibition of proteasome and of the catalytic activity of HDAC6 triggers, in RMS 

surviving population, a BAG3 mRNA increase of 40-80 fold (Figure 12) depending on 

the cell line, which is higher than the transcriptional up-regulation mediated by single 

Bortezomib treatment. We can speculate that BAG3 on demand activation is related to 

some kind of “proteotoxicity threshold”: the late kinetic of BAG3 up-regulation (30-42 

hours after treatment) in our experiments and the massive increase of BAG3 mRNA in 

ST80/Bortezomib co-treated surviving cells compared to Bortezomib single treated 

cells support this hypothesis.  

BAG3’s engagement in decreasing acute and chronic proteotoxic stress due to 

accumulation of misfolded or damaged proteins has been described previously in 

different models: Nivon and colleagues reported that BAG3 was up-regulated in HeLa 

cells after heat shock and helped coping with the induced proteotoxicity by clearing 

protein aggregates via autophagy [137]. Furthermore, BAG3-mediated selective 

autophagy has been related to modulation of misfolded proteins in neurodegenerative 

disease [153]: HSPB8-BAG3 complex was found up-regulated in astrocytes taken from 

post mortem brains of Alzheimer's, Parkinson's and Huntington's diseases patients, 

pointing to a role of the complex in clearing protein aggregates released from neurons 

and cellular debris. In healthy condition, chronic proteotoxic stress occurs during aging 

[77]: a BAG1/BAG3 switch has been described to occur in an aging cell line model 

correlating with decreased activity of BAG1-mediated proteasome degradation and 

enhanced dependency of PQC on the BAG3-mediated aggresome-autophagy system. 

Moreover, a recent study on the apoptotic transcriptome of mature MII oocyte of aged 

women compared to young women showed that BAG3 is up-regulated in the first group 

underlining the importance of this co-chaperone as a stress response element activated 

during prolonged proteotoxic stress occurring during aging [156].  Those data suggest 
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that the engagement of BAG3, mediated by its transcriptional induction, is needed when 

the level of misfolded or damaged proteins are abruptly increased or constantly 

elevated. Our work adds insights to this general concept: we discovered that 

pharmacological inhibition of PQC systems triggers proteotoxic stress which leads to 

BAG3 induction. In this context, BAG3 plays a key role in mediating tumor cell growth 

and clonogenic survival which can enhance the risk of tumor relapse. The present study 

strengthens the idea of a general context where BAG3 is an on demand mechanism 

engaged by cells when the “proteotoxicity threshold” is exceeded expanding the 

concept from a disease-related condition to a new side effect of proteotoxic cancer 

therapy. In line with our data, BAG3 up-regulation has been linked with NF-B 

activation [137, 157]: the implications of this finding must be further analyzed in order 

to understand which role NF-B precisely plays in the regulation of the on demand 

response towards proteotoxic stress in cancer. 

Enhanced expression of BAG3 has been reported in several tumors such as leukemia 

[120], neuroblastoma [158], pancreatic carcinoma [159], colon carcinoma [160] and 

melanoma [161]. Mainly, increased expression of BAG3 is correlated with poor 

prognosis due to enhanced resistances toward apoptosis: for example, a study on 346 

patients affected by pancreatic adenocarcinoma showed that tumors with enhanced 

BAG3 expression had significant higher aggressiveness compared to tumors that 

express lower levels of BAG3, resulting in poorer prognosis of the patients [162]. 

Moreover, the same study showed that BAG3 mediates decreases sensitivity towards 

gemcitabine treatment in vitro [162]. In addition, BAG3 has been described to play a 

crucial role in cell adhesion and motility pointing to a role in metastasis [163]. PKC 

specific phosphorylation on Ser187 of BAG3 has been described to mediate epithelial-

mesenchymal transition (EMT) in a thyroid carcinoma cell line [81]. EMT is a crucial 

process needed by cancer cells to gain invasiveness and form metastasis: BAG3’s role 

in EMT suggests its involvement in promoting metastatic behavior thereby enhancing 

tumor invasiveness. In this context, our data on the role of BAG3 in clonogenic growth 

of ST80/Bortezomib surviving RMS cell lines gain new importance: our findings 

highlight that therapeutic strategies which enhance proteotoxicity as the main stress for 

apoptosis induction, trigger high BAG3 protein levels in the surviving population which 

might play a crucial role not only in cell regrowth but also in tumor invasiveness 

through BAG3 involvement in EMT promotion. More studies need to be done in order 
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to understand if cells which survive ST80/Bortezomib co-treatment are indeed able to 

migrate and/or invade more than untreated cells. 

Importantly, BAG3 has been reported to be expressed at low levels in young healthy 

cells and to increase during aging in normal conditions [71]. RMS is mainly a 

childhood disease with peak between one and five years [164]: we can speculate that 

BAG3 protein levels in RMS patients are relatively low in healthy cells enhancing the 

possibility of creating effective selective inhibitors towards BAG3 with low side effects 

on non-tumor tissues.  

Interestingly, we demonstrate that BAG3 up-regulation is mediated by NF-B 

activation: this finding opens new interesting question on the regulation of the NF-B 

pathway when proteasome is inhibited. Also, NF-B regulation of BAG3 highlights a 

new pro-survival role of this transcriptional factor in tumors: not only NF-B mediates 

tumor maintenance in stress condition [165] but plays an important role in recovery of 

surviving cells upon drug removal by the induction of pro-survival genes, such as 

BAG3, during the recovery phase. Our data suggest that NF-B plays a role in tumor 

recovery after drug treatment against constitutive PQC systems, but more detailed 

studies must be done to elucidate the detailed contribution of this transcription factor in 

this context. 

Finally, BAG3 has been reported to be present in the hematopoietic stem cell vascular 

niche: silencing of BAG3 in this compartment results in loss of the hematopoietic stem 

cells [166]. This finding suggests that BAG3 might play some role in the maintenance 

of the microenvironment needed for cancer stem cell survival enhancing the importance 

of this protein in cancer survival and propagation. The possibility that BAG3 up-

regulation in ST80/Bortezomib surviving cells could mediate an increase in cancer stem 

like population is intriguing: more studies need to be done to validate this possibility. 

In conclusion, our study provides solid data on a novel role of BAG3 as the key 

mediator of an on demand PQC mechanism which is activated in surviving RMS cells 

upon ST80/Bortezomib co-treatment: BAG3 decreases cytotoxic aggregates by 

selective degradation via the aggresome-autophagy system thereby increasing cell 

proliferation and clonogenic survival. Moreover, we showed that BAG3 can overcome 

the loss of HDAC6 activity in ST80/Bortezomib surviving cells by taking over 

HDAC6’s role in the aggresome-autophagy pathway. The present study also points out 

that combination strategies which simultaneously target the two main branches of 
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constitutive PQC, although enhancing induction of apoptosis, trigger an inducible 

rescue mechanism that, if not impaired, enable surviving cell to proliferate and possibly 

cause relapse. In this context, the evidences here reported suggest that more studies 

need to be done in vitro and in vivo in order to understand the inducible resistance 

mechanisms triggered by co-treatment approaches, specifically related to combination 

of drugs which intensively enhance proteotoxicity. Through the identification of the 

BAG3-mediated selective autophagy pathway as a novel mechanism of acquired 

resistance to compensate concomitant inhibition of the constitutive PQC systems, we 

add a new important piece of evidence on the biological compensatory regulation of 

PQC systems in cancer. We propose that the impairment of this inducible escape 

mechanism may potentiate the efficacy of co-treatment of inhibitors which target the 

protein degradations pathways: to this end, inhibition of both inducible and constitutive 

PQC pathways may open new perspectives for therapeutic exploitation in cancers. 
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Summary (Deutsche Zusammenfassung). 

BAG3 Induktion wird benötigt um proteotoxischen Stress nach der Inhibition von 

konstitutiver Proteindegradation durch selektive Autophagie zu vermindern. 

 

Proteinqualitätskontrollsysteme (PQK) sind ein interessanter Ansatzpunkt für die 

Weiterentwicklung von Krebstherapien [9]. In eukaryotischen Zellen sind zwei 

konstitutive Hauptkontrollsysteme bekannt, das unfolded protein response system 

(UPS) und das Aggresome/Autophagie System. Das UPS vermittelt die Ubiquitinierung 

und Degradierung linearer falsch-gefalteter Proteine durch das 26S Proteasom [132]. 

Das Aggresome/Autophagie System ist ein selektiver Autophagieprozess in welchem  

unlösliche und potentiell toxische Proteinaggregate degradiert werden. Hier wird die 

Autophagiemaschinerie zusammen mit spezifischen Proteinadaptoren, welche die 

Erkennung und die spezifische lysosomale Degradierung der Zielporteine vermitteln, 

verwendet [70]. 

Autophagie ist ein dynamischer katabolischer Prozess. Durch Bildung eines 

Doppelmembran ummantelten Vesikels, des Phagophores, welches mit spezifischen 

Autophagiemarkern angereichert ist, hier ist vor allem LC3 zu nennen, wird 

zytosolisches Cargo umschlossen und es bildet sich das Autophagosom. Letztendlich 

fusioniert das Autophagosom mit sauren Lysosomen, das Autophagolysosom, in 

welchem das Cargo in seine basalen Komponenten verdaut wird, welche, z.B. unter 

Stressbedingungen als Nährstoffquelle verwendet werden können  [25]. Obwohl 

Autopagie initial als unspezifischer Mechanismus beschrieben wurde, hat die 

Entdeckung von speziellen Proteinadaptoren gezeigt, dass Autophagie auch ein 

spezifischer Prozess sein kann [39]. p62 ist der erste beschriebene Rezeptor für 

selektive Autophagie ubiquitinierter Proteinaggregate. p62 hat eine 

Ubiquitinbindungsdomäne (UBA) und eine LC3 Interaktionsregion (LIR), welche ihm 

ermöglichen Ubiquitin-positive Proteinaggegrate und Autophagie Membranen 

miteinander zu verbinden [44].  

Histondeacetylase 6 (HDAC6) ist eine zytosolische Deacetylase welche die 

Deacetylierung von α-Tubulin vermittelt. Weiterhin spielt HDAC6 eine vorherrschende 

Rolle in PQK, da es verschiedene Funktionen innerhalb des Aggresome/Autophagie 

Systems innehat. Einerseits erkennt HDAC6 Ubiquitin-markierte Proteine durch seine 

BUZ Domäne (Ubiquitin-bindende Domäne), und ermöglicht deren Aggregation durch 

Dynein-vermittelten retrograden Transport entlang der Mikrotubuli in Richtung der 
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Mikrotubulus organisierenden Zentrums (MTOC) [66]. Andererseits rekrutiert HDAC6 

ein Cortactin Netzwerk, welches für die Autophagosom-Lysosom-Fusion während der 

Autophagie von Proteinaggregaten benötigt wird, aber für Nährstoffentzug-induzierte 

Autohagie erlässlich ist [69]. In beiden Fällen wird die katalytische deacetylierende 

Aktivität von HDAC6 benötigt.  

Proteasominhibitoren des 26S Proteasoms, wie z.B. Bortezomib, und katalytische 

Inhibitoren von HDAC6 können synergistisch Zelltod in Tumoren, wie z.B. 

Ovarialkarzinom [125] induzieren. Durch die simultane Inhibition von zwei 

Hauptsystemen der PQK entsteht erhöhter proteotoxischer Stress welcher letztendlich 

zur Induktion von Apoptose führt.  

Rhabdomyosarkome (RMS), die häufigsten Weichgewebe Tumore bei Kindern, sind 

sensitiv gegenüber Bortezomib Behandlung [112]. Diese Arbeit beruht auf der 

Hypothese, dass die Inhibition des Aggresome/Autophagie Systems, durch einen 

HDAC6 spezifischen katalytischen Inhibitor ST80 [117], zusammen mit Bortezomib 

Behandlung den Zelltod in RMS verstärken kann.  

Wie erwartet konnte durch die gleichzeitige Inhibtion beider Systeme die DNA 

Fragmentierung in allen getesteten RMS Zelllinien erhöht werden. Allerdings konnte 

eine resistente Subpopulation identifiziert werden, welche die Behandlung überlebte 

und sich vergleichbar zu unbehandelten Zellen erholte. 

Unser Ziel war es den molekularen Mechanismus, der dieser Resistenz zugrunde liegt, 

zu identifizieren. Hier konnten wir das Co-Chaperon BAG3 als Hauptmediator dieser 

Erholung nach der Bortezomib/ST80 Behandlung identifizieren. BAG3 vermittelt die 

Degradation von zytotoxischen Proteinaggregaten durch die Induktio von selektiver 

Autophagie.  

Dieser Effekt konnte auf verschiedenen Ebenen bewiesen werden. Einerseits zeigen 

überlebende Zellen erhöhte BAG3 Spiegel, sowohl auf transkriptioneller als auch 

translationeller Ebene, beginnend 30 Stunden nach der Behandlung. Dieser Effekt wird 

bis zu drei Tagen während der Erholungsphase aufrechterhalten. Zudem werden die 

innerhalb dieser drei Tage durch die Doppelbehandlung entstandenen Ubiquitin-

positiven zytotoxischen Aggregate nicht abgebaut falls BAG3 durch RNA-Interferenz 

depletiert wird. Weiterhin zeigen die BAG3-depletierten Zellen keine Anzeichen von 

Erholung nach der Entfernung der Behandlung, sondern sterben vermehrt apoptotisch 

und zeigen vermindertes klonogenes Überleben. BAG3 wurde bisher im 

Zusammenhang mit der Induktion von selektiver Autophagie durch verminderte 
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proteasomale Aktivität beschrieben [84]. BAG3 vermittelt die Erkennung und 

Aggregation falsch-gefalteter Proteine und ermöglicht deren autophagosomale 

Erkennung durch direkte Interaktion mit p62 [76]. Überlebende Zellen der 

Bortezomib/ST80 Behandlung zeigen erhöhte Spiegel an unlöslichen Proteinaggregaten 

welche mit p62 Spiegeln positiv korrelieren. Wir vermuteten, dass de BAG3-

vermitteltern Abbau der p62-Ubiquitin-positiven Proteinaggregate durch 

autophagosomale-lysosomale Degradierung vermittelt wird. Daher regulierten wir die 

Autophagieinduktion durch konditionelle RNAi-vermittelte Depletion des Autophagie-

Schlüsselproteins ATG7 oder durch die Inhibition der Autophagosom-Lysosom Fusion, 

durch den Lysosomeninhibitor BafilomycinA1, bis zu drei Tage während der 

Erholungsphase. Diese Inhibition resultierte in einem vergleichbaren Phänotyp wie die 

permantente BAG3 Depletion: Die überlebenden Zellen waren nicht mehr in der Lage 

weiter zu proliferieren, starben vermehrt apoptotisch ab und wiesen Defekte im Abbau 

von Proteinaggregaten auf. Unsere Daten unterstützen die Annahme, dass die Induktion 

proteotoxischen Stress, welcher durch die Interferenz mit den konstitutiven PQK 

Systemen entsteht, einen Überlebensmechanismus aktiviert der durch die 

transkriptionelle Regulation des Co-Chaperons BAG3 gekennzeichnet ist. BAG3 

reaktiviert die Erkennung Ubiquitin-positiver Proteinaggregate durch die Autophagie-

Maschinerie, gefolgt vom Abbau der Aggregate und anschließender Zellproliferation. 

Nivon und Kollegen zeigten [137], dass die BAG3 Hochregulation in einem HeLa 

Hitzeschock Modell NF-κB vermittelt stattfindet. Um diese Möglichkeit auch in 

unserem System zu überprüfen, generierten wir NF-κB defiziente Zellen, welche einen 

Defekt in BAG3 Regulation aufzeigten. NF-κB Inhibition verhinderte die BAG3 

Induktion vollständig in den ST80/Bortezomib Behandlung überlebenden Zellen. In 

zukünftigen Experimenten soll untersucht werden, wie NF-κB während der 

pharmakologischen Inhibition des Proteasoms aktiviert werden kann. Weiterhin soll die 

Rolle dieser Familie von Transkriptionsfaktoren in der Reaktion auf proteotoxischen 

Stress untersucht werden.   

Unsere Arbeit zeigt, dass nach der gleichzeitigen Inhibition des 26S Proteasoms und 

des HDAC6 vermittelten Aggresome/Autophagy Systems, die Induktion des Co-

Chaperons BAG3 unerlässlich für die Erholung von RMS Zellen nach der Behandlung 

ist. Diese Erkenntnisse tragen maßgeblich zu einem verbesserten Verständnis der PQK 

Regulation in Krebszellen bei: Bisher wurde gezeigt, dass die Inhibition einer der 

beiden konstitutiven PQK Signalwege zur vermehrten Aktivierung des anderen Systems 
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führt um besser mit Stresssituationen umgehen zu können [113]. Dieser Mechanismus 

vermittelt Resistenz von Krebszellen gegenüber einer Einzelbehandlung und liefert die 

Rationale für die synergistische Wirkung einer Kombinationsbehandlung wie z.B. 

Bortezomib/ST80. In dieser Arbeit identifizieren wir einen zusätzlichen 

Überlebensmechanimus, durch welchen Krebszellen, in denen die konsitutiven PQKs 

inhibitiert sind, über die Induktion von BAG3-vermitteltern Abbau von 

Proteinaggregaten nicht nur ihr Überleben sichern, sondern auch deren Proliferation 

angeregt wird. 

BAG3 wird in jungem gesundem [164] Gewebe sehr niedrig exprimiert. 

Rhabdomyosarkom ist ein pädiatrischer Tumor, der meistens zwischen dem 1 und 5 

Lebensjahr auftritt. Die Identifikation von BAG3 als wichtige Komponente des 

Erholungsmechanismus nach Inhibition von konstitutiven PQK Systemen, eröffnet die 

Möglichkeit der Entwicklung eines selektiven BAG3 Inhibitors, welcher im jungen 

Gewebe der Patienten, welche nur niedrige BAG3 Spiegel exprimieren,  weniger 

Toxizität aufweisen könnte.  

Die Identifizierung von BAG3-vermittelter selektiver Autophagie als neuen Resistenz 

Mechanismus um simultane Inihibition von konstitutiven Degradierungssignalwegen zu 

kompensieren, könnte maßgeblich zu der Weiterentwicklung aktueller 

Behandlungsstrategien beitragen: So könnte, dass die Inhibition von konstitutiven 

zusammen mit induzierbaren PQKs, die Zelltodinduktion verstärken, die Erholung 

verhindern und dadurch neue Perspektiven für deren therapeutische Anwendung 

ermöglichen.  
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