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Abstract

Drowsiness is a major cause of accidents, in particu-
lar in road transportation. It is thus crucial to develop ro-
bust drowsiness monitoring systems. There is a widespread
agreement that the best way to monitor drowsiness is by
closely monitoring symptoms of drowsiness that are directly
linked to the physiology of an operator such as a driver. The
best systems are completely transparent to the operator un-
til the moment he/she must react. In transportation, cam-
eras placed in the passenger compartment and looking at
least at the face of the driver are most likely the best way
to sense physiology related symptoms such as facial expres-
sions and the fine behavior of the eyeballs and eyelids. We
present here the new database1 called DROZY that provides
multiple modalities of data to tackle the design of drowsi-
ness monitoring systems and related experiments. We also
present two novel systems developed using this database
that can make predictions about the speed of reaction of an
operator by using near-infrared intensity and range images
of his/her face.

1. Introduction
Drowsiness kills thousands of drivers each year [11, 18].

It is thus critical to develop real-time, automatic drowsiness
monitoring systems designed to issue timely warnings to
the driver and/or automatic driving system (when applica-
ble). In transportation, one generally distinguishes between
approaches based on vehicle behavior (e.g. line crossing),
operator behavior (e.g. steering wheel control), and opera-
tor physiology (e.g. brain signals and ocular parameters).
Systems based on lane crossings do not work in the ab-
sence of lines, in significant road curves, and/or in snow
conditions. Systems based on steering wheel control are not
readily transferable between different types of vehicles, and
certainly not to other domains such as the surveillance of
nuclear plants. Systems based on operator physiology have

1Available on http://www.drozy.ulg.ac.be

the significant advantage of being mostly application inde-
pendent. These latter systems can exploit a variety of sensor
modalities, and, depending on the modality, the system’s
sensor(s) can be either worn by the driver or positioned re-
motely in the vehicle’s passenger compartment, such as in
the dashboard. Clearly, the remote (“dashboard”) solution
with contactless sensors has the significant operational ad-
vantage of not requiring any action from the driver, except
reacting to warnings. The most natural sensing means for
the remote, contactless solution is one or more cameras (2D
and/or 3D). These have the advantage of being useful to
quantify, not only drowsiness, but also other operator con-
ditions, such as cognitive distraction.

The development, test, and performance evaluation of
drowsiness monitoring systems imply access to appropri-
ate data, and such data is not readily available today. We
thus introduce in this paper a new database intended to fa-
cilitate research and development on drowsiness monitoring
systems using a 2D or 3D camera. The generic, full name
of this database is “The ULg Multimodality Drowsiness
Database”, and the generic, short name “DROZY”. Many
different types of developments and experiments can be car-
ried out with this database (for drowsiness, cognitive dis-
traction, etc.). At this stage, the database does not provide
performance figures against which other systems can mea-
sure themselves up. To illustrate the use of our database,
we describe two innovative drowsiness monitoring systems
developed and tested with it.

Section 2 describes the motivation and goals, Section 3
the data collection, Section 4 the DROZY database, Section
5 the examples of use, and Section 6 the conclusions.

2. Motivation and goals

We have shown above that cameras placed remotely in
the control area of a vehicle are ideally suited for providing
data to automatic systems that monitor drowsiness, distrac-
tion, etc. Here, we focus on a single dashboard-mounted 3D
camera capturing intensity images (I-images) and range im-
ages (R-images) of the face of the driver. One of our current
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goals is to produce automatically, continuously, and in real-
time a level of drowsiness (LoD) based on these images.
Provided they have enough resolution, one can extract from
them a variety of parameters that are indicative of drowsi-
ness, such as ocular parameters [16] - e.g. the PERCLOS
[3] - and yawning parameters. The literature provides ar-
ticles showing how to obtain an LoD from ocular parame-
ters [5, 9]. Besides the LoD, one can produce a variety of
other parameter signals from the images, such as degrees of
anger, surprise, etc.

If one develops a new drowsiness monitoring system
from images of the (driver’s) face, it is paramount to val-
idate the results produced by the system, and to evaluate its
performance. Polysomnography (PSG) is regarded as the
“Gold Standard” to study sleep and, in particular, to score
sleep stages [14]. By extension, PSG is generally - but ar-
guably - viewed as the “Gold Standard” to assess drowsi-
ness [1]. It is thus important that the database contain all
PSG signals of interest, along with the images of the face,
and perfectly time-synchronized with them. The literature
provides articles showing how to obtain an LoD from PSG
signals [1, 7, 13].

In experimental settings, one can also ask a subject to
(self-)evaluate his/her LoD on the Karolinska Sleepiness
Scale (KSS) [1, 6, 10]. Of course, this would be impracti-
cal in real-life driving, and would call upon the intervention
of the driver, which we wish to avoid. Moreover, one must
keep in mind that self-reported LoDs are generally more
accurately perceived at high levels than at medium levels
[8, 17].

PSG and the KSS lead to measures of drowsiness (objec-
tive and subjective, respectively). However, there is another
test that allows one to measure the level of vigilance of a
subject, i.e. his/her ability to perform a task: the psychomo-
tor vigilance test (PVT). The PVT produces an objective
measure of vigilance and, indirectly, of drowsiness.

The above discussion indicates that it would be very use-
ful to have a database containing the following main ingre-
dients, all perfectly synchronized in time: images of the
face, PSG signals, KSS data, and PVT data. Below, we
present how we obtained these raw ingredients, as well as
other ingredients derived from them.

3. Data collection

3.1. Overview

Here, we describe how we collected the data used to
build our database. Fourteen healthy subjects/participants
(3 males, 11 females), aged 22.7 ± 2.3 (mean ± SD), took
part in the data collection. The experimental protocol (ap-
proved by the Ethics Committee of our university) called for
each subject to take three PVTs over two consecutive days,
under conditions of increasing sleep deprivation induced by

acute, prolonged waking.
The protocol required subjects without any alcohol de-

pendency, drug addition, or sleep disorder. Each was asked
to maintain a normal sleep pattern for the week prior to tak-
ing the first PVT and to have a full night sleep (of 7 to 8
hours at least) just before this PVT. Each was also asked to
maintain a sleep diary during that week, to allow us to ver-
ify that the sleep requirements were met. Once a participant
took the first PVT, he/she was not allowed to sleep until af-
ter the third PVT, resulting in a total sleep deprivation of 28
to 30 hours. We organized several sessions of three PVTs,
each with a few subjects successively taking each PVT.

Details of the tests follow. Day 1 (starting just after mid-
night). At 8:30 (in 24 hour time), the scheduled participants
arrived at the laboratory, and were equipped with the PSG
electrodes. Between 10:00 and 11:00, they (successively)
carried out the first PVT, called PVT1. Then, they were
equipped with wrist actigraphs (to verify that they would
not sleep) and were allowed to leave the laboratory. From
12:00 on, they were not allowed to consume any coffee,
tea, energy drinks, or other stimulants. At 20:30, they re-
turned and were equipped with the PSG electrodes. They
stayed overnight in the laboratory, and until the end of the
tests. During the night, they were allowed to use multime-
dia devices, to play card and board games, and to interact
with the laboratory staff. Day 2. Between 3:30 and 4:00,
they carried out the second PVT, called PVT2. At 8:30,
we provided breakfast. Between 12:00 and 12:30, they car-
ried out the third PVT, called PVT3. This concluded the
tests. We strongly advised the participants not to drive home
by themselves, and we offered alternate transportation solu-
tions when necessary. Figure 1 summarizes the data collec-
tion schedule.

The PVTs were all performed in a quiet, isolated labo-
ratory environment without any temporal cues (e.g. watch
or smartphone). The room lights were turned off for PVT2
and PVT3. For a 15-minute period before each PVT, we
instructed the subjects to part with their phones, comput-
ers, and any other screen devices. At the beginning of each
PVT, we asked the participant to estimate his/her level of
drowsiness (LoD) in terms of the Karolinska Sleepiness
Scale (KSS), which is a popular, subjective means to es-
timate one’s LoD [1, 6, 10]. During each PVT, we also
recorded the PSG signals and the images of the camera
looking at the face of the subject.

We now describe in more detail the various types of col-
lected raw data, and some additional, useful data obtained
from the images.

3.2. PVT data

The psychomotor vigilance test (PVT) has become one
of the most widely used tools to measure performance im-
pairments due to drowsiness. The PVT gives the reaction
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Figure 1. Pictorial summary of data collection schedule.

times (RTs) to visual or auditory stimuli that occur at ran-
dom inter-stimulus interval.

Multiple studies have shown that the PVT is valid, re-
liable, and extremely sensitive to sleep deprivation [2, 4].
Compared to other tests, the PVT has the advantage of being
independent of aptitude (inter-subject variability) and learn-
ing (intra-subject variability) [4]. Moreover, the PVT can be
considered to be an indicator of “real world” performance
since it requires sustained attention and quick response to
sudden events [4].

We implemented our own version of the 10-minute PVT
proposed by Basner and Dinges [2]. The subjects were in-
structed to monitor a red rectangular box over a black back-
ground on a computer screen, and to press a response button
as soon as they noticed the appearance within the box of a
yellow stimulus counter (expressed in milliseconds). When
the button was pressed, the counter stopped and the RT re-
mained displayed for 1 second. RTs below 100 milliseconds
were discarded as false starts (errors of commission). After
30 seconds without any response, the counter timed out and
displayed a yellow “overrun” message inside the box for
a few seconds. The inter-stimulus interval, defined as the
time interval between the last response and the appearance
of the next stimulus, was varied randomly between 2 and 10
seconds.

Among the several PVT outcome metrics that can be
computed from RTs, the following are the most frequently
found in the literature: number of lapses (generally defined
as RTs ≥ 500 ms), mean RT, and mean 1/RT [2].

3.3. PSG signals

Polysomnography (PSG) uses a number of physiology-
related signals to study sleep [14], i.e. the electroencephalo-
gram (EEG), electrooculogram (EOG), electrocardiogram
(ECG), and electromyogram (EMG). Such PSG signals are
also useful to assess drowsiness since activity in the alpha
(8-12 Hz) and theta (4-8 Hz) bands and/or slow eye move-
ments during a task are strong, reliable indicators of drowsi-
ness [1, 7]. We used the portable, laboratory Embla Tita-
nium system to record the Fz, Pz, Cz, C3, and C4 EEG

Figure 2. Examples of cropped near-infrared (NIR) intensity im-
ages obtained with the Kinect v2 sensor.

channels (referenced to A1, in the international 10-20 sys-
tem), the horizontal and vertical EOG channels, the EMG,
and the ECG, all sampled at 512 Hz.

3.4. Camera images

To explore the benefit of using 3D data, we directly used
a 3D range camera, i.e. the Microsoft Kinect v2 sensor,
which provides - for each “video” frame - a pair of near
infrared (NIR) intensity and range images (I-image and R-
image), and a color image. Since drowsiness monitoring
systems must generally operate in all lighting conditions,
including in total darkness, we only retained the I- & R-
images (corresponding to active NIR illumination). The
NIR images are of size 512×424 pixels, have 16-bit values,
and are recorded at 30 fps. The camera was positioned just
below the computer screen used for the PVTs, at a distance
of about 0.7 m from the subject. Figure 2 shows examples
of NIR intensity images.

3.5. Annotations of face landmarks

Some users of the database will likely want to use the
I- & R-images of the face, e.g. to characterize the eyelids
movements and/or facial expressions. Therefore, for each
frame taken, the database provides, not only the correspond-
ing I- & R-images, but also the positions of 68 (predefined)
landmarks of the face, e.g. the left corner of the left eye. We



Figure 3. Example of manual annotations for one frame in 2D (left)
and in 3D (right).

now describe how we located (or “annotated”) these land-
marks in all frames. We proceeded in two successive steps.
The first - manual - resulted in the annotation of 720 man-
ually selected frames, and the second - automatic - in the
annotation of all frames.

Manual annotation: We manually selected 720 frames
spread across all 14 subjects - with about 51 per subject -
and judged to represent rather completely the various ap-
pearances of the face of each. For each of these frames,
we built (automatically) a 3D surface of the face from the
(corresponding) R-image, and we draped over it the (co-
registered) I-image. By looking jointly at the I-image and
the rotatable, textured 3D surface, we pinpointed the loca-
tion of each visible landmark in the frame, in terms of pixel
coordinates. Since the I and R-images are co-registered,
the location of each such landmark was also immediately
known in the three camera axes, thus in terms of three co-
ordinates expressed in millimeters. Figure 3 shows manual
annotation results.

Automatic annotation: The annotation of all frames can
- reasonably - only be done in an automated way. We chose
the following automatic approach. For each sequence of
frames for a given PVT, we first detect the face region in
the first frame by applying the method of Viola and Jones
[19] to its I-image. We then fit a statistical, deformable
shape model - a point density model (PDM) - to the suc-
cessive frames in the sequence using subject-specific con-
strained local models (CLMs), i.e. one specific CLM per
subject, with the regularized landmark mean-shift (RLMS)
fitting strategy introduced by Saragih et al. [15]. The fit-
ting leads to some optimal positioning of the 68 landmarks
in all successive frames in both 2D and 3D. If the frame-
to-frame tracking of the landmarks fails, we reinitialize the
process with the detection step. Figure 4 shows automatic
annotation results.

To be more precise, in the subject-specific CLM learn-
ing stage, we learn a 68-landmarks PDM and the corre-

sponding 68 independent, local appearance experts from the
manually landmark-annotated frames of the corresponding
subject. These local experts are discriminative regressors
giving the probability that their corresponding landmark is
correctly located based on a small appearance patch around
it [15].

In the RLMS fitting stage, we start from coarse land-
mark positions (e.g. their positions obtained at the previous
frame) and independently extract one response map around
each landmark using the local experts. Then, to refine the
landmark positions, the RLMS fitting strategy implements
the EM algorithm on the response maps. The E-step applies
one iteration of the mean-shift algorithm independently on
each of the 68 response maps. The M-step applies one iter-
ation of the Gauss-Newton method where the PDM is used
to apply a global regularization to the 68 mean-shift vectors
obtained at the E-step.

4. The DROZY database

4.1. Content

The DROZY database contains the following perfectly
time-synchronized data for each of the 14 subjects, and for
each of the three PVTs they each took:

• KSS: the self-reported LoD, as a score on this scale,
just before taking the PVT;
• PVT: stimulus times and corresponding RTs;
• PSG: 5 EEG channels, 2 EOG channels, ECG, and

EMG;
• Kinect v2 sensor: NIR intensity and range images;
• Face landmarks (68): 2D coordinates in the image

axes expressed in real pixels, and 3D coordinates in
the camera axes expressed in millimeters, all obtained
manually for 720 selected, key images, and automati-
cally for all frames.

The database contains about 500,000 frames, and has a total
size of about 283 Gigaoctets.

4.2. Usage

Based on the many different types of data provided by
the (multimodality) database, one can conduct various ex-
periments, and develop and validate various systems. Ex-
amples of systems follow: (1) obtain LoD from PSG sig-
nals; (2) characterize facial expressions and predict RTs; (3)
characterize facial expressions and predict LoDs (obtained
from PSG or KSS).

The examples of use below concern the analysis of the
behavior of the eyes to predict RTs.



Figure 4. Examples of automatic annotations for five frames.

5. Examples of use
5.1. Problem

We wish to design and evaluate a drowsiness monitoring
system that can, at each instant, predict how fast a subject
can react based on the behavior of his/her eyes at that in-
stant.

5.2. Solution and systems

It seems natural to quantify the subject reaction speed in
terms of the RTs and the behavior of his/her eyes in terms
of some ocular parameters. We decided to base all ocular
parameters (defined below) on the distance between the up-
per and lower eyelids for each eye, and more precisely on
the average of the left and right distances. The database
provides all necessary eyelid landmarks and related, time-
synchronized RTs.

The processing steps are as follows: (1) compute nor-
malized eye opening, (2) compute ocular parameters, (3)
perform regression or classification (leading to two distinct
systems). In a system confronted with new, unseen images,
the first step would be to locate the face and track the 68
face landmarks (or at least the eyelid landmarks), exactly as
described above. Details of the three steps follow.

5.3. Compute normalized eye opening

The eyelids of each eye are described by 6 landmarks:
2 at the corners, 2 on the upper eyelid, and 2 on the lower
one; the 4 eyelid landmarks are grouped into a left pair and
a right pair. The eye opening is defined as the average of
the distances between the landmarks in each of the 4 eyelid
pairs corresponding to both eyes. We denote this opening
by d[n], where n is the discrete time, or frame, index. We
treat quantities such as d[n] as discrete-time signals [12].

Since the maximum opening of the eye changes with
time, e.g. with the gaze direction, it proves useful to di-
vide d[n] by the maximum opening around time n, denoted
by b[n], which results in the normalized eye opening sig-
nal s[n]. The baseline signal b[n] is computed recursively
according to

b[n] =
(
1− α[n]

)
b[n− 1] + α[n]d[n], (1)

where α[n] is a smoothing factor defined as

α[n] = α0 ∗ exp{−αd

(
d [n]− d [n− 1]

)2}
∗ exp{−αa

[
d[n]− b[n− 1]

]
+
}

∗ exp{−αb

[
b[n− 1]− d[n]

]
+
}

∗H
(
d[n]− αmdmedian[n]

)
,

(2)

where [x]+ is x if x ≥ 0, and 0 otherwise, the Heaviside
step function H(x) is 1 if x ≥ 0, and 0 otherwise, and
dmedian[n] is the median value of {d[i] : ∀i ∈ [1, n]}. The
values of α0, αd, αa, αb, and αm are empirically set to 0.4,
15, 0.5, 2, and 0.7, respectively.

The smoothing factor α[n] is designed to favor eyelids
idleness (i.e. small values of derivative) but not in the case
of nearly closed eyelids (i.e. d[n] below its median). It is
also designed to be flexible enough to allow the baseline sig-
nal b[n] to quickly adapt when the gaze direction changes.

5.4. Compute ocular parameters

We consider here 15 ocular parameters, all computed
from the values of the normalized eye opening signal s[n] in
a contiguous window W ending at the present time index.
(The length of W is specified below.) Ten parameters are
related to a histogram of the values of s[n] in W , and five
are related to blinks.

The 10 histogram(-related) parameters are the 10 propor-
tions of elements in each the 10 successive bins of a 10-bins
histogram, which all values of s[n] in W are arranged in,
with all values above 1 placed in the last bin. (The 10 pro-
portions sum to 1.)

The 5 blink parameters are obtained as follows. The
blinks are extracted from the first derivative signal of s[n]
(computed from the time stamps) using fixed, experimen-
tally determined thresholds. The blink parameters are the
average blink duration, average eyelid closure duration, av-
erage closed eyelid duration, average eyelid reopening du-
ration, and number of microsleeps (defined as blinks with
durations ≥ 500 ms).



5.5. Perform regression or classification

We consider two distinct systems, one using regression,
and the other classification. Regression produces, from the
pre-stimulus ocular parameters, the post-stimulus mean RT
(in milliseconds), where the mean is computed over the one-
minute period after the stimulus. Classification determines,
also from the pre-stimulus ocular parameters, whether the
actual post-stimulus mean RT is above some fixed thresh-
old, where the mean is computed as above. We set the
threshold to 500 ms since an RT above this value is con-
sidered as a lapse (error of omission). The “positive” class
corresponds to RT≥ 500 ms, and the “negative” class to RT
< 500 ms.

For regression, we use the Epsilon-Support Vector Re-
gression (epsilon-SVR) model, and for classification, the
Support Vector Machine (SVM) classifier. In both cases,
we tried two distinct kernels, and we evaluated the (gen-
eralization) performance with leave-one-subject-out cross-
validation.

5.6. Results

Both for regression and classification, we start from the
same feature matrix, consisting of 3064 examples (1 per
stimulus) of 105 features (for 15 ocular parameters ex-
tracted from 7 pre-stimulus windows). The 7 windows have
lengths of {30, 35, 40, 45, 50, 55, 60} seconds, respectively,
and they all end at the time of the related stimulus. All
105 features are linearly normalized to the [0, 1] range. For
the classification, out of the 3064 examples, 448 are labeled
“positive” and 2616 “negative”.

Regression: Using a linear kernel, we obtain an RMSE of
113.2973 ms, and a Pearson correlation coefficient (PCC)
of 0.6021, with C = 4 and ε = 90 as parameters. Using a
radial basis function (RBF) kernel, we obtain an RMSE of
105.8370 ms, and a PCC of 0.6681, with C = 50, ε = 45
and γ = 0.4 as parameters. Figure 5 illustrates the perfor-
mance of the regression via a scatter plot.

Classification: Using a linear kernel, we obtain a speci-
ficity (true negative rate) of 78.36%, a sensitivity (true pos-
itive rate) of 79.02%, and an accuracy of 78.46%, with
C = 0.34 as parameter. Using an RBF kernel, we obtain
a specificity of 86.24%, a sensitivity of 77.68%, and an ac-
curacy of 84.99%, with C = 1500 and γ = 0.15 as param-
eters.

6. Conclusions

We introduced the new, multimodality database DROZY
designed to allow researchers to develop innovative drowsi-
ness monitoring systems and related experiments by using
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Figure 5. Scatter plot where each point shows both the true re-
action time (RT) and the predicted RT for the use of regression,
an RBF kernel, and leave-one-subject-out cross-validation. The
straight line segment corresponds to the perfect regressor.

controlled data that is often difficult and expensive to ob-
tain. In addition, we presented a pair of related, innova-
tive drowsiness monitoring systems developed by using the
database, and thus serving also as prototypical examples of
its use.

The database was built using multimodality data col-
lected from 14 subjects who performed three successive
psychomotor vigilance tests (PVTs) in conditions of in-
creasing sleep deprivation. For each subject, and for each
PVT, the database contains the following perfectly time-
synchronized raw data: Karolinska Sleepiness Scale (KSS)
data, PVT data (including reaction times), polysomnogra-
phy (PSG) signals, and near-infrared (NIR) intensity and
range images of the face. In addition, it contains the 2D and
3D positions (i.e. annotations) of 68 face landmarks for all
frames.

The presented drowsiness monitoring systems draw con-
clusions about a subject’s speed of reaction based on 3D im-
ages of his/her face. More specifically, these systems can,
based on ocular parameters derived from the NIR images of
the face, either predict the reactions times (by regression)
or determine whether the true reaction time is above some
fixed threshold (by binary classification). These two sys-
tems have the following performances: an RMSE of 106
ms with a Pearson correlation coefficient of 0.67 for the re-
gression, and a probability of correct detection of 85% for
the classification.

These examples of use demonstrate the usefulness of the
database. We are looking forward to other researchers using
the database in some other innovative ways. Of course, the
ultimate goal is that research and development based on the



DROZY database contribute some day to save thousands of
human lives on the road!
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