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Abstract

Supervised learning introduces genericity in the field of image classification, thus enabling
fast progress in the domain. Genericity does not imply ease-of-use, however, and the best
methods in term of accuracy, namely convolutional neural networks, suffer from its lack. In
this master thesis, we propose an alternative approach relying on extremely randomized trees
and random subwindow extraction combine with elements of the convolutional networks. We
explore two modes of utilization of the forest : primarily a direct approach where the forest
is the final classifier (ET-DIC) and to a lesser extent, a preprocessing step where the forest
is used to build a visual dictionary but where the actual classification is undertaken by a
support vector machine (ET-FL).

We show that, in both modes, our scheme performs better than without using the con-
volutional network elements but we are not quite yet reaching their performances. The
ET-DIC variant keeps more in the line of classification forest advantages but performs less
well as far as accuracy is concerned. This is further highlighted by the remarkable stability
of the ET-DIC mode. This stability accounts for the ease-of-use of the method but also
prevents elaborated optimization. We were able to score an accuracy of 0.613 whereas the
record for this mode without the convolutional network elements was of 0.5367.

The ET-FL produces better results at the cost of a greater variability of accuracy due to
the loss of the ability to favor the interesting filters and a greater overfitting, consequence
of the loss of the ensemble smoothing effect. The accuracies range from 0.55 to 0.7431
depending on the choice of hyper-parameters. The computational cost of both methods is
much greater than with a traditional forest, however.
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Chapter

Introduction

Since their dawn, the number of digital images has not stopped growing. They are now
so much anchored in our everyday life that we barely even acknowledge their presence.
From smartphone cameras to meteorological satellites passing by digital raster drawings,
the acquisition and production sources are so numerous that it would be a shame if it were
otherwise. Numerous are also the application domains of digital images, be they industrial
or not. The advent of social networks couple with faster transfer network rates, notably
in wireless networks, and global ease-of-sharing have encouraged the production of tons of
images. On the other hand, industrial and scientific sectors have been developed around or
have started to rely more and more on digital images. Teledetection, weather forecasting,
quality control, television and so forth endlessly. The medical domain has not been left
over. Image-based system have evolved towards the digital worlds, propelling this sector as
a major producer of digital images.

The first challenge this general growth posed was to organize efficiently the images so as
to be able to get a hand on them later. Adapting traditional solutions, such as databases, to
the image world had met some shortcomings, however, as query could not incorporate the
image semantic. Unless tagged with the keywords from the lexical field of water, traditional
search engines could not retrieve images containing a pool, for instance. This has led to the
focus on the computer vision area from the scientific community.

The development of the computer vision field was even more important when images are
not destined to be stored and retrieved, a situation which implies immediate analysis. In
quality control, for instance, images are processed so as to find whether or not a particular
production is flawed. In the biomedical field, cell images can be analyzed in order to detect
whether they portray some specific characteristics. In those cases, an automated process
allows for scalability, greater productivity and even sometimes more reliability.

In any case, surprisingly many computer vision tasks can be cast into classification
problems. Classification consists in assigning the correct label from a predefined set to an
image. Labels are also called classes or categories. Defect detection is basically a binary
classification. The same can be said about weather forecasting, at least to some extent.
Other examples include reading plate numbers, recognizing people and the whole domain of
pattern recognition in general. Image retrieval can also somewhat profit from classification.
Often, classification can bring insight into a problem underlying mechanisms.

At the ULg, Marée et al. have developed Pixit, a method which is based on the extraction
of random patches from images and can work in two modes. The first one relies on extremely
randomized trees for the classification (ET-DIC). The second one uses totally randomized
trees to build a visual dictionary while the actual classification is delegated to a support
vector machine (ET-FL). This method has several interesting characteristics, among which
we can find ease-of-use, computational speed, scalability, good accuracy performances and
spatial invariances. Another popular image classification method is convolutional networks,
so far the most accurate classifiers but very difficult to use.



The present master thesis aims at developing a generic classification method etched in
the supervised learning framework and which tries to combine the best of both worlds. To
achieve this goal, we propose a method called RandConv based on randomization, linear
spatial invariant filtering and spatial poolings, thus extending the Pixit with ideas borrowed
from the convolutional networks. The method was tested on the CIFAR-10 benchmark
database, which has proved itself to be difficult for Pixit. We get the following results. In
both mode, we outperform the classical Pixit in terms of accuracy. We were not quite able
to reach the convolutional networks performances yet but the ET-FL mode can still benefit
from further studies. The ET-DIC retains all the advantages of Pixit and has revealed itself
remarkably stable. This is also its shortcoming as we rapidly reach its limits. Even the
two optimizations we devised to counter specific shortcomings were not able to push the
limit much further. Nevertheless, we were able to score an accuracy of 0.613 for this mode,
whereas the corresponding Pixit record was of 0.537. In ET-FL, the accuracies are much
more variable but also higher. They range from 0.55 to 0.743. The variability is due to a
combination of losses : the smoothing effect of the ensemble and the ability to choose the
right filters. Consequently, the choice of appropriate hyper-parameters is more crucial but
optimizations works much better. Those raises of accuracy are somewhat counterbalanced
by the high computational cost that RandConv requires.

This manuscript is structured in six chapters. After the current introduction, we will
anchored this work into the scientific literature landscape in Chapter 2. In Chapter 3 we
define more precisely our objectives and methodology. The following Chapter is dedicated
to an in-depth description of our classification method. In Chapter 5, we report the results
of our analyses before concluding in Chapter 6.

[\
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Chapter

State of the art

The early days of computer vision have seen the development of myriads of domain specific
methods, notably in the field of image classification. The main drawback of the domain
specificity is that solutions are not necessarily transposable to other domains. The supervised
machine learning framework sidestep this limitation by making no assumptions about the
particular domain of application. Rather, it proposes a representation general enough for
most problem to fit in, albeit with some preprocessing. Overcoming the domain specificity
is achieved by letting the computer learn the discrimination scheme instead of supplying it.

This chapter is divided in two sections. In the first one, we review the supervised
learning framework in general. In the second part, we focus on supervised learning image
classification.

2.1 Supervised learning.

At the framework core are objects, also called individuals. The objects differ from each other
by their features, also called variables. Among them is one which holds a special status: the
output variable. The ultimate goal of a supervised learning algorithm is to produce a model
mapping a previously unseen object’s regular features to the output variable. Thus, the
learning algorithm needs a space of candidate models. In order to provide the most adequate
model out of the candidates, the algorithm needs two additional elements: a quality measure
(or inversely a loss function) and an optimization strategy. We talk about inductive learning
because the algorithm optimizes the quality measure using a set of objects; the learning set.

More formally, the learning set LS = {(x;,y;)|i = 1,..., N} is composed of N objects.
Each object i is described by a tuple of features: x; € X are the regular features and y; € Y
is the output variable. We represent the learning algorithm’s hypothesis space by H and
its quality measure by ¢ : Y x ) — R. The learning algorithm maps the learning set to a
function f € H : X — Y so as to try to minimize some expectation over the loss function.
Depending on the structure of ), the model either performs a regression or a classification.

The most usual loss functions are the square error /(y,§) = (y — 9)? for regression
problems and the classification error

12(5,5) = lify#49

WY = 0 otherwise
for classification problems. Based on those loss functions, we can define the expected error by
Ex {¢(f(x),y)}. If wedispose of a testing set T'S = {(x;, y;)|¢ = 1,..., M } with a sufficiently
large M, we can estimate the expected error by ﬁ Zm’yeTS L f(x),y). TS = LS, we call
this estimate the resubstitution error. However, we are generally interested in the case
where both sets are different while coming from the same distribution. We then talk about
generalization error. It is the error we are trying to minimize.



2.1. SUPERVISED LEARNING.

The example of decision trees.

Decision tree (Breiman et al. (1984)) is a good example of classification algorithm.
More accurately, the decision tree is the model produced and the learning algorithm
is the growing procedure. The decision tree is a binary tree where each interior node
represents a dichotomic choice regarding one regular feature and each leaf is labeled by
a class. Classifying an object consists in moving from one node to another according to
the nodes’ tests. Once the image reaches a leaf, it is labeled by its class.

Growing a good tree, in the sense of the quality measure, is done in a top-down fashion
by a greedy heuristic. We first need to define an impurity measure which indicates how
much diversity there is in a sample for the output variable y. We start at the root
and pick up the dichotomic choice, also called splitting criterion, which accomplishes the
maximum empirical reduction of impurity.

More formally, let N be the set of tree nodes, LS, C LS with n € N be the learning
sample available at node n (before the split), H : 2/ — C C R be the impurity
measure, where 2% denotes the power set of the original learning set LS and V =
{v1,va,...,v;} be the set of variables (regular features) whose domains are respectively
Dy, ..., Dy. Furthermore, let us denote by v;(0) the value of the ith variable for the object
o € LS. Then, the splitting criterion of a node n is the pair

(v#,dx) = argmax AH({o € LS,|v;(0) =d,;})
UiEV,djEDi

with

AH({o € LS,|vi(0) = d;}) = H(LS,)
o € LSyvi(o) = d;}|
ILS,,|
[{o € LSy |vi(0) # d;}|

_ TN H({o € LSy|vi(0) # d;})

H({o € LS,|vi(0) =d;})

where |A| denotes the cardinality of the set A. If some domains have an ordering of
their elements, the (in)equality tests can be replaced by threshold partitioning: LS =
{o € LS|v;(0) < d;}U{o € LS|v;(0) > d;}. This leads to more balanced splits, especially
when dealing with continuous variables. In a mix environment, the splitting criterion is
thus a triplet (v, op, dx).

Once the splitting criterion has been established, the learning sample is split into a
left and a right branch according to the test result. We can now develop both nodes
recursively up till there is only objects of the same class in a node, making it a leaf. With
this mechanism, the resubstition error is null, thus proving that the method minimizes
the loss function. However, the generalization error can be quite large. That is why other
mechanism, such as other stopping criteria, have been designed.

The most popular impurity measure is Shannon entropy. In that case, the construction
algorithm has a nice interpretation. The reduction of impurity is the information gain. At
each node, we choose the test which brings the most information about the classification
variable.

A nice feature of the decision trees is that it is possible to compute the contribution
of the individual features to the classification task by summing their total impurity re-
duction, weighted by the local sample size. For this, we only need to remember which
nodes were split by each variable, information denoted by N; (U1, .. jv|N; = N) and the
corresponding splitting criterion: {d™|n = 1,...,|N|}. In this setting, the importance of
the ith feature can be computed as:

vi(o) = d™})

Imp(v;) = Y |LSy,|AH({o € LS,,
nENi

Generic image classification - The RandConv framework 4



2.1. SUPERVISED LEARNING.

Bias/variance illustration

Bayes model

Low bias High bias
Low variance Low variance
Low bias High bias
High variance High variance

Figure 2.1: Bias/variance schematic illustration

If we resorted to thresholding, we must, of course, use the exact same test and replace
the equality operator by the appropriate one. By itself, the importance value for a given
variable is not useful, only the comparison with the rest is informative. Therefore, the
importance score is usually normalize so the importances sum up to one.

The learning algorithm’s dependence on the learning set is clearer in the regression case,
where we have the following bias-variance decomposition:

Ers{Bay{(y = f(2)*}} = Eoy{y — Eyuiy})’}
+ Eo{(Byja{y} — Ers{f(x)})*}
+ Eu{(f(z) — Brs{f(2)})*}

The first term characterizes the intrinsic difficulty of the regression task. It quantifies the
average deviation of the best possible model Ey,, the Bayes model, from the ground truth.
The second term is the expected square bias. It quantifies the average error between the
Bayes model and the average model, Ers{f(x)}.
The third term is the average variance of the model. It quantifies how much the produced
model varies from one learning set to another. These concepts are illustrated in Figure 2.1.
Although there is no such analytical decomposition for classification, the concepts of
Bayes model, bias and model variance still abide as conceptual tools.

The space of candidate model H is composed of elements of varying complexity. For
instance, a decision tree complexity is assessed by its number of nodes. A more complex
model will fit the learning set better, thus reducing the resubstitution error. However,
fitting this set too well will cause overfitting: the algorithm incorporates set-specific details.
For instance, in the case of decision trees, overfitting happens when the empirical impurity
measure behaves differently than from the true, unknown value. A situation which gets
worse as we go down in trees because the samples becomes smaller and smaller. This is
reflected by the model variance term of the learning algorithm’s error decomposition: slight
changes in the learning set will produce very different models. The bias decrease will, at first,
overcompensate that increase, yielding a better generalization error. The compensation will
work up to the point where the average is of the same order of complexity as the Bayes

v
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2.2. IMAGE CLASSIFICATION

model. From that point on, the bias decrease will slow down while the model variability
continues to increase. Therefore, the generalization error starts to increase as well.

The ability to control the complexity is an important characteristic of a learning algo-
rithm. Another way around this problem is to resort to ensemble techniques. Among such
are methods which combine several models by averaging their predictions. The models are
usually drawn from the same candidate space by either using different learning set or intro-
ducing some randomization in the learning algorithm, sometimes both. Ensemble methods
rely on the averaging to reduce variability and thus can benefit from more complex models.
Ensemble of decision trees form classification forests.

A learning algorithm is usually dependent of some parameters, which influence the op-
timization strategy. They are called hyper-parameters so as not to confuse them with the
other parameters on which the optimization is performed.

2.2 Image classification

Traditional learning algorithms are not able to work with “structured data” such as texts,
images and graphs. Indeed, they expect the individual features to be scalar. Image classifi-
cation is therefore much more about bridging the two realities than about developing brand
new learning algorithm. We will now review the main such techniques.

A first way of approaching image classification would be to define descriptors and build a
set of rules, in one form or another, so as to discriminate accordingly the images on basis of
those descriptors. A first step toward supervised learning is to delegate the construction of
the set of rules to a learning algorithm. This had already been successfully attempted back
in the 80s (Shepherd (1983), for instance). Since these first incursions of supervised learning
in the domain, the interest for them and their achievements has not stopped growing.

A major concern of the field is dedicated to the image descriptors. Be they structure,
spatial, spectral, color or texture descriptors, they actually are the part which bridges the
image classification with the supervised learning framework. Moreover, the classification
task is only as good as the descriptors allow. The extent to which defining the descriptors
must be included in the learning process is still an open debate today.

On the one hand, learning the descriptors allows for a fully generic approach. In this case,
the descriptors and rules are usually learned together by the learning algorithm. This can be
done by supplying the image in the coarsest acceptable form to the learning algorithm. This
is usually done by vectorizing the image in some fashion, in row prime order for instance,
so that feature vectors are composed of the raw pixels. This representation is not lossless,
however, as some of the spatial structure is lost in the process. Even resorting to better
spatial indexation scheme, such as Hilbert or Peano curves, does not help; the problem
lies in the learning algorithms which have not been designed to incorporate directly spatial
relationships. Not all this information is lost, though, but rather presents itself in the form
of correlations instead of spatial autocorrelations. Whether or not this can be exploited is
algorithm-dependent. From now on, we will designate this approach by “raw-pixels”.

On the other hand, we find custom descriptors, which are derived from the images. Such
descriptors have two advantages compare to the previous ones. Firstly, they are usually
less numerous, meaning that the problem is cast to a lesser dimensional space. These are
usually easier and more efficiently solved. The second advantage is that they can focus
on relevant information regarding the classification task. This last characteristic hides the
main drawback of this scheme: information fed to the learning is biased and can miss
some important information. So as to limit these side effects and keep some generality,
the descriptor can stay at a reasonable level of abstraction. Example of this is using an
histogram as descriptor (Barla et al. (2003)). Concerning the spatial structure, it is de
facto lost but can be purposefully reintegrated in the form of dedicated descriptors (see for
example Chica-Olmo and Abarca-Hernandez (2000)). From now on, we will designate this
approach by “custom descriptors” or representation learning.

Generic image classification - The RandConv framework 6



2.2. IMAGE CLASSIFICATION

In decades of investigation, the scientific community has been prolific on the topic. There-
fore, we will focus on several interesting techniques instead of making a detailed tour of the
subject. Three such methods, relating to the present work, will be inspected: Pixit, bag of
visual words and convolutional neural network.

2.2.1 Pixit

This raw-pixels classification scheme was introduced in Marée et al. (2003). Pixit consists in
extracting patches from the original images to build a second database with more objects.
The subwindows can either have a predefined, fixed size or can be drawn randomly, possibly
within a range of predefined sizes. In the latter case, the patches must be rescaled to a
fix size before being described by their raw pixel values so as to form a coherent learning
matrix. It is possible to apply other transformation to the subwindows so as to introduce
invariances in the learning set, for example towards rotations (Marée et al. (2013)). In case
of multicolor images, the method offers to work either in the RGB or HVS color space. Once
computed, the learning matrix can be fed to any classifier, yielding one class per subwindow.
Attributing the final class to the original images is done by voting over their subwindows.

Depending on the patches’ size and the number of colors, the feature vectors can be long.
Such high dimensionality is not easy to cope with for all the learning algorithms. That is why
they envision a tight coupling between the subwindow extraction and a tree-based classifier.
On the one hand, enlarging the data in this fashion allows to build more complex models
require to cope with the high dimensionality imposed by the raw pixel representation. On
the other hand, decision tree and classification forest do not suffer as much from long feature
vectors as other might. This is especially true regarding the computational learning cost of
their choice of classification forest, namely extremely randomized trees.

Ensemble of extremely randomized trees (ExtraTrees)

They were introduced in Geurts et al. (2006) and resemble random forest (Breiman
(2001)). In both kind of forests, only a subset of the features are examined at each node
to determine the splitting criterion. This approach is called local random subspace and
was introduced in Ho (1998).

They differ in the following way: while random forests use bagging as an extra mech-
anism to introduce randomness, the ExtraTrees determine the splitting thresholds ran-
domly. Bagging, for bootstrap aggregating, is the fact of drawing with replacement
several learning samples from the original one (boostrap) and combining the predictions
of models trained from these sets (aggregating).

The advantage of ExtraTrees over random forests is threefold. Firstly, the bagging
introduces an effective reduction of the learning size of 36% for each tree. This is not
the case of the ExtraTrees, where all trees can learn from the whole learning sample.
Secondly, they are much faster to build since we do not need to pick the optimal splitting
thresholds of all the variables examined in a node. Lastly, they tend to perform better
than their counterpart (Geurts et al. (2006)).

If classification forests render interpretability more difficult, the feature can still be
ranked by their importances. The contribution of a given variable is computed as the
average over its contribution in each tree of the forest. This actually stabilizes the mea-
sure.

The method has been extensively studied in the domain of image classification (Marée
et al. (2014a)). It can go beyond this field, though. In Marée et al. (2007), they venture in
the field of image retrieval by developing a similarity measure thanks to both the subwindows
and the ExtraTrees. In Dumont et al. (2009), they turned to image annotation, i.e. pixel-
wise labeling. By examining the correctly classified subwindows, it is possible to visualize
region of interests and thus get insight about the classification task. In essence, generating
many subwindows is akin to producing local descriptors, although it is unlikely that they

Generic image classification - The RandConv framework 7



2.2. IMAGE CLASSIFICATION

will all have the same usefulness. This shortcoming can be overcome by supplying control
information, so as to automatically discard irrelevant subwindows.

2.2.2 Bag of visual words

Bag of words stems from text classification. As texts are structured objects, like images,
they need descriptors. A common practice is to represent them by an histogram over the
words they contain; a bag-of-word descriptor. Formally, a bag, or multiset, is a pair (S, n),
where S is a set and n : S — N is a numbering function. Representing several texts is done
by establishing a reference dictionary S, specifying an ordering of the words and counting
how many times each one appears in a given text. Common words are usually discarded so
as to focus on specific vocabulary. As we can see, no spatial information is kept.

The same principle can be applied in image classification, leading to custom descriptors.
The main difficulty lies in the fact that the set of so-called “visual words”, i.e. the dictionary,
is not known in advance, or well defined, for that matter. Consequently some preprocessing
is required to come up with the dictionary. The most popular solution relies on interest
point detection followed by vector quantization (Yang et al. (2007)).

Interest point detection is usually carried out by the Scale Invariant Feature Transform
(SIFT) method (Lowe (1999), Lowe (2004)) or its PCA variant: PCA-SIFT (Ng and Henikoff
(2003)). They work by locating “keypoints™ points of interest stable with respect to scale
and orientation shifts. The keypoints are then described by a normalized histogram of
orientation gradient in the form of a 128 element feature vectors, for the traditional SIFT
and in a more compact way for the PCA-SIFT.

Processing the images will lead to sets of different keypoints and cardinalities, just as
texts were of varying length and composed with different words. We thus have to fix a
dictionary, and by extension an ordering of the words. The situation is slightly different than
in the text situation because minor variation of a given keypoint descriptors are possible,
whereas, spelling mistakes aside, this is not the case with texts. This is where vector
quantization comes into play. During the learning phase, a given number of prototypes are
constructed by way of the K-means clustering algorithm. The prototypes are the visual
words and form the dictionary. The ordering is arbitrary but must be fix once and for all
by assigning an index number, or position, to each prototype. Once this dictionary has
been established, each learning keypoint is associated to the closest visual word. Then
an histogram is built for each image by counting all its visual words. These histograms
constitute the learning matrix, which can be fed to any learning algorithm. Classifying a
new image is done symmetrically : the keypoints are detected, they are assigned to the
closest visual word and an histogram is computed for each image so as to form the feature
vector, which can then be fed to the classifier.

An important bridge between this and the Pixit method was raised by Moosmann et al.
(2008), in the form of extremely randomized clustering forests (ERC-forests). Although
anchored in the bag of visual words framework, they switch the SIFT keypoints detection for
an iterative mechanism involving random subwindows. As for the dictionary construction,
it does not rely on K-means any longer but rather on extremely randomized trees. The
dictionary words are composed of T parts of different sizes, where T is the number of trees.
Each part encodes the index of the leaves where a given object ends up in a one-hot fashion.
Thus, the part corresponding to a tree with L leaves will be a binary word with L — 1 zeros
and 1 one. An analogy would be that each tree corresponds to an alphabet of symbols
and the forest maps the input into words composed of those symbols. Once again, the
final features vector of a given image is the histogram computed over all the subwindows
belonging to that image. It was later incorporated in the Pixit framework, although without
the iterative loop regarding the extraction of patches in order to fit better in the framework.
This mechanism is sketched at Figure 2.2.

In this context, it is known as ET-FL (ExtraTrees for feature learning) by opposition to
ET-DIC (ExtraTrees for direct image classification). This variant was thoroughly studied in

Generic image classification - The RandConv framework 8



2.2. IMAGE CLASSIFICATION

ET-FL : construction of the histogram of visual words :
Forest part ET-FL : construction of the histogram of visual words :
Histogram part

] — =

subwindows Images

Tree #1

Image 1
Tree #2 .
Final
word

Image2 | |

Leaf#5

Image3 | Sw.2

Figure 2.2: Creation of the histogram words

Marée et al. (2014a). They show that, in most cases, the ET-FL approach performs slightly
better (3-4% in average). Nevertheless, ET-FL is more difficult to tune and is significantly
more expensive from a computational point of view.

In both ET-FL and ERC-forests cases, the actual classifier is a support vector machine
(SVM).

Support Vector Machines(SVM)

Support vector machines take their roots in the work of Vapnik (1963) and were orig-
inally designed as linear classifier for linearly separable tasks. A dataset with binary
classes is said to be linearly separable if it is possible to draw an hyperplane in the space
of regular features which “separates” the two subsets of data. More formally, the hy-
perplane H,, = {z € R"|wlz = b} with w € R" and b € R separates two points z7,
xo € R™ if and only if

(wlzy —b)(wlzy —b) <0

Let us note that, with this definition, if two sets are separable, there is an infinity of
separation hyperplanes. The goal of the SVM is to choose the one which produces the
largest margin: to maximize the minimum distance from any point of the dataset to the
hyperplane.

So far, the SVM suffers from three limitations. Firstly, it can only tackle linear
problems. Secondly, it is restricted to the class of separable problems. Lastly, it is
further confined to binary classifications.

The first problem can be overcome either by deriving new features through functions
of the original ones or via what is known as the “kernel trick”. All the computations
involving the data are actually inner products. Therefore, one can use any such product
instead of the standard scalar one.

Overcoming the linear separability is done by introducing slack variables that allow for
points to be inside or even cross the margin, behavior which is penalized in the objective
function. This soft margin formulation was proposed by Cortes and Vapnik (1995).

As for the last limitation, several ways around have been proposed and discussed in
the literature (see Duan and Keerthi (2005), for example). A common scheme is the
one-versus-all.

2.2.3 Convolutional neural network

Convolutional neural networks (convnets or CNNs) were first introduced in the context of
zip code recognition LeCun et al. (1989). This raw-pixels technique is a special case of neural
network.
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Neural networks

The perceptron model was introduced by Rosenblatt (1958). It is based on a two
layer network of “neurons”. A neuron’s goal is to come up with a separating hyperplane.
Unlike SVM, the hyperplane might not maximize the margin. Indeed, the hyperplane
optimization is carried out by (stochastic) gradient descent, implying that the learning
can be done online. Online learning, by opposition to batch learning, does not require to
have the whole dataset in memory. A sigmoid-like so-called activation function is usually
applied to the output so as to introduce non-linearities in the model.

The design of the backpropagation algorithm (Werbos (1974)) allowed for the creation
of more complex networks called multi-layer perceptron (MLP). The backpropagation
allows for each neuron to learn its local model with the only need of its neighbors’
information. It is a two-phase algorithm. During the forward pass, the hyperplane
coefficients are known and a global output can be computed by propagating the input
through the network. The error can then be computed and a correction is applied to the
last layer. Then a compensation can be applied to the previous layer and so on up till
the first layer.

Convnets hold the accuracy records on a variety of image classification benchmarks and
contests (Krizhevsky et al. (2012), Ciresan et al. (2012) and Lin et al. (2013), for instances).
Figure 2.3 shows a typical convnet architecture. They differ from regular neural networks
in two ways.

Firstly, their numerous layers are partitioned into two categories. The lower layers are
not fully connected while the uppers, if any, are. The partial connectivity is not made
at random but rather enforces that the neurons work on spatially local information. The
neurons of a given low layer are partitioned into subsets, also called feature maps. Each
element of a subset shares the same spatial weights and together cover the whole input image
with a great amount of overlapping, hence the network name: taken together, all elements of
a given map realize a convolutional product of the original image. The kernel in this product
is determined by the feature map spatial weights. As with traditional neural network an
activation function is applied to the neurons’ output. This is equivalent to applying the
function pixel-wise. The input of layer k is the output of layer £ — 1. In other words, the
input is composed of several images (one per feature map), ultimately derived from the
original image. Some networks incorporate a normalization between layers such as constrast
normalization. Since the different layers are designed to work at different spatial scales, the
level of detail of the previous layer is usually not required. Therefore, the image is usually
undersampled rather than working with bigger feature maps.

Secondly, a function of spatial pooling is introduced between the layers. It aggregates
the results of spatially close feature maps. It serves two purposes. The first one is to
introduce translation invariance and other spatial robustnesses in the model. Indeed, the
exact position of a given characteristic is usually much less important than knowing whether
or not it appears. The second goal of the spatial pooling is linked to the undersampling
between layer: it prevents that mechanism to miss an important characteristic by a poor
choice of pixels. Usual spatial pooling functions are the average and maximum. The latter
usually serves as presence/absence detector and introduces more non-linearity in the model.
In any case, the undersampling and the spatial pooling can be conducted at the same time by
defining a neighborhood window: neurons relating to the same feature map, which fall into
the neighborhood window, aggregate their results together and produce a common output.
Depending on how the neighborhood windows overlap, the change in resolution might be
important or not.

As we can see, the network complexity is substantial. For example, in the case of the
zip code problem (LeCun et al. (1989)), there are already 2592 parameters to optimize even
though there are only 12 feature maps and three layers. Nowadays problems account for
much greater complexity. Consequently, running time of convnets are usually important.

Generic image classification - The RandConv framework 10
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Figure 2.3: A typical convnet achritecture (from Pinto et al. (2009))

Fast and efficient GPU implementations are now available (Ciresan et al. (2011)) but one
has also to take into account the time necessary to optimize the network structure and other
hyper-parameters, a much more complex task. As far as accuracy is concerned, convenets
are the best. However, they are not really practical solutions, as yet. Numerous works in
the field of optimization are currently helping with these issues, with remarkable successes.
Nevertheless, we are not yet in a situation where convnets are turnkey solutions, situation
which may well never happen.

In the meantime, at the least, it would be nice to dispose of a solution which combines
convnets accuracy with ease-of-use of, say, the Pixit method. Such a method would also
allow to bridge to the bag of visual words framework through the ET-FL mode. Producing
this missing link is the central objective of the present work. How we propose to proceed
will be made clearer in the next chapter.
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Chapter

Objectives and methodology

In this brief chapter, we lay down our objectives, methodology and contributions.

3.1 Objectives

Pixit has interesting properties and usually performs well enough. However, on some specific
problems, Pixit accuracies are below those of the convnets. In this master thesis, we would
like to try to thin the accuracy gap by introducing some elements of the convnets into the
Pixit framework. We could state our hypothesis as follows:

It is possible to combine the advantages of the classification forests and more
precisely of the Pizit method, namely computational cost, feature importance
evaluation and ease-of-use, with those of convolutional networks, primarily the
accuracy.

The feature importance evaluation capability is one of the nicest features of the classifi-
cation forests. The most notable use of this measure is for feature selection. Focusing on a
smaller set of features is computationally more tractable, can provide better accuracy when
the other features are irrelevant and can bring more insight to the classification problem.

The ease of use of the forests is particularly obvious in comparison with the convnets.
With the former, the number of hyper-parameters is quite small and well understood. There-
fore, tuning the method is easy and can, usually, be undertaken manually with good results.
Besides, the default parameters usually perform well enough. On the other hand, convnets
tuning is much more complex, as even the structure has to be adapted for each problem.
Further evidence of this complexity is the amount of work dedicated to this subject in the
literature.

3.2 Methodology

3.2.1 The RandConv algorithm

Validating the hypothesis constitutes our main objective. To achieve this, we decided to
extend the Pixit framework with ideas from the convolutional networks. There are obviously
several possible ways to to so. The method we propose is named RandConv and proceeds as
follows: random linear filters are applied to the image database, followed by one or several
spatial pooling(s). Then, several random subwindows are extracted from each processed
image. Each subwindow is described by the raw pixel values. The method is thus divided
into the following parts:

1. Generating the N linear filters

12
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2. Applying the N filters to the M images of the databases
3. Applying the P spatial poolings to the N x M filtered images

4. Extracting S subwindows from each of the N x M x P pooled and filtered images and
resizing them

5. Describing each of the N x M x P x S pieces by a set of F' learning features each

6. Reorganizing the data to create a (M x S) x (F x (N x P)) learning matrix

The pseudo code is presented by Algorithm 1. The algorithm can be parallelized easily
by subdividing the image dataset in several pieces and reassembling the learning submatrices
accordingly. It is also intended to be able to use the original image as if the first filter was
the identity filter. The poolings, however, are still applied to it.

Algorithm 1 RandConv extraction algorithm

1: procedure PROCESS(RandConvInstance, images)
2 rci < RandConvInstance

3 N « rci.nbFilters

4: P < rci.nbPoolings

5: S <+ rei.nbSubwindows

6 F < rci.nbFeaturesPerSubwindows

7 M <« images.length

8 learningMatriz]M x S][F x (N x P)]

9

: row < 0
10: colMin : colMax < 0: F
11: for vmage € images do
12: cropboxes + rci.generateSubwindow Locations()
13: for filter € rci.filters do
14: for pooling € rci.poolings do
15: filtered « rci.applyFilter( filter, image)
16: pooled < rci.applyPooling(pooling, filtered)
17: for cropbox € cropboxes do
18: subwindow + rci.extractSubwindow(cropbox, pooled)
19: learning M atriz|row][col Min : colM azx] = rci.describe(subwindow)
20: colMin : colMax < colMax : colMax + F

return learningM atriz

The in-depth description of this method is the main subject of Chapter 4. We can already
point out one major difference with the convnets: there is no network structure. It is as if
we fed the output of the first layer of a convnet to the ExtraTrees method.

We will use two classification schemes. The first one consists on using ExtraTrees as
final classifier (ET-DIC). This will be our main focus point. To a lesser extent we will also
study the ET-FL bag of visual words variant.

3.2.2 Dataset and environment

We will be working with the CIFAR-10 database (Krizhevsky and Hinton (2009)). This
dataset is composed of a learning set of 50,000 images and a testing set of 10,000 images.
They are grouped into 10 mutually exclusive classes: airplane, automobile, bird, cat, deer,
dog, frog, horse, ship and truck. Both subsets contain an equal number of images from
each class. Consequently, the error of a purely random classifier would be around 10%. The
images are of size 32x32 and are RGB.

This database has been chosen because it was the same one on which the precursory
method from Marée et al. (2014a) was tested. In turn, they chose this dataset because their
traditional solution, Pixit, had difficulties with it.
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The best result on this database is an accuracy of 91.2% and is hold by a convolutional
network (Lin et al. (2013)). The top ten best results are above 80%. Most are neural network
solutions and none are based on classification forests. This constitutes another good reason
to test RandConv with this database. We will be able to situate its performances with
respect to those of convnets.

The learning and testing will be carried out on a 64-bits 30-core 2.1 GHz computer with
288 GB of RAM from the Cytomine project (Marée et al. (2014b)) and GIGA bioinformatic
platform.

3.3 Contribution

This method builds on previous works besides the general Pixit framework. The idea of ap-
plying predefined convolutional filters followed by several spatial poolings before extracting
subwindows has already been done in Marée et al. (2014a). The contribution of the current
thesis is twofold.

Firstly, the RandConv framework proposes several extensions of the precursory method,
the most noticeable of which being the ability to generate the filters randomly. This approach
resembles more the convolution networks, where the filters are actually learned.

Secondly, whereas the aforementioned work was a proof of concept, the present study
aims at analyzing more deeply this method. Indeed, proving the hypothesis is not our
only goal. We also want to study closely the behavior of our classification method so as to
understand its strengths and limitations. This is the focus of Chapter 5.

The present work differs from Mayo (2007) in three ways. Firstly, the randomly gener-
ated filters are not used in the same fashion. Whereas they use them as a randomization
mechanism to introduce variability in the trees, we incorporate them all for each trees of
the forest so that the individual trees will choose which filter to emphasis. Secondly, we are
using a layer of spatial pooling missing in the aforementioned paper and extracts several
subwindows instead of working with the whole image directly. Finally, we work at a much
bigger scale, providing at least several tens of filters to the forest.
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Chapter

The RandConv framework

This chapter is divided into three sections. The first one aims at fully describing our classi-
fication method. The second section highlights implementation details and technical issues.
The last one summarizes the hyper-parameters and fixes their default values.

4.1 RandConv components

This section is dedicated to an in-depth description of our classification method: RandConv.
It stands for “Random and convolutional”. The “random” part refers to both the filter
generation and subwindow extraction. While the “convolutional” adjective refers to the
application of the linear filters and the poolings.

So as to bridge between classification forests and convolutional networks, we started from
the former and added characteristics of the latter. Those characteristics are the convolutional
filtering followed by spatial pooling. Although, the method has been designed with the use
of classification forest in mind as in the Pixit framework, the RandConv method, per se, is
actually a (randomized) feature extraction method. Its goal is to transform a set of images
into a set of corresponding feature vectors, the descriptors. The actual classification could
be carried out by any traditional learning algorithm. Nevertheless, regarding our primary
objective and some other attractive properties of the trees, which will be developed shortly,
we will stick with classification forests in one way or another.

4.1.1 Filter Generation and application

An image can be seen as a 2D discrete signal with finite support [0, height —1] x [0, width—1].
We will denote the set of all images by Z. In this context, a filter F' is a function which
takes as input an image and outputs another: F' : 7 — Z. A filter F' is linear if for any two
images u1,us € Z, F(auy + Pug) = aF(u1) + BF (ug), with «, 5 € R. A filter F' is spatially
invariant if for any image u and any Ar,Ac € Z, it is true that F(u)(r + Ar,c+ Ac) =
F(u(r + Ar,c+ Ac)), with r,c € Z.

In the case of linear, spatially invariant filters the function assumes a simple form :

“+ o0 “+o0

y(a,b) = F(u)(a,b) = Z Z u(r,c)h(a —r,b—c)

r=—00 C=—00

where h is the impulse response kernel intrinsic to the filter. This last equation is known
as the convolutional product and is usually abbreviated by y = w % h. An example of
convolutional product is given in Figure 4.1. As we can see, outside of the image’s bounds,
the value is assumed to be zero. Other policies exist to handle this border effect. Let us note
that in practice, the final image is usually truncated so as to have the same size as the original
one. The identity kernel is trivially such that h(0,0) =1 and h(r,c) =0 V(r,¢) # (0,0).
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Convolutional product
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Figure 4.1: Example of convolutional product

This class of filters also portrays interesting properties in the frequency domain. Denoting

the Fourier transform by =, we have that:
u=rU
h —F H
y=uxh=rY with Y(v,w) = U(v,w) x H(v,w)

In the frequency space, a linear, spatial invariant filtering amounts to a frequency-wise

product by the transfer function H.

Mimicking the convolutional filtering is carried out by generating such random linear,
spatially invariant filters. More precisely, we generate the 2D finite impulse response kernels.
First, the filter dimensions and then the filter coefficients are randomly drawn. This means
that, contrary to the convnets, the coefficients are not directly learned. The coefficient
learning is simulated by generating a vast number of filters and letting the learning algorithm

choose the ones to emphasize.
This calls for an important remark: decision-tree-based solutions are ideal classifier can-
didates. Firstly, their construction technique allows them to emphasize easily the interesting
16
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filters. Secondly, they deal well enough with numerous, possibly irrelevant, features. Indeed,
the major impact is a reduction of the model effective complexity. The resulting accuracy
drop is much less tremendous than with some other classifiers. Besides, this reduction of
complexity can be balanced by the number of subwindows extracted from each image. Aug-
menting the dataset produces deeper trees; more complex model. Lastly, they scale well
enough due to their relatively low computational cost, especially the extremely randomized
tree variant.

4.1.1.1 Drawing mechanism

How to draw the filters is one of the RandConv framework cornerstone. The drawing mech-
anism should meet two requirements. Firstly, it should be able to produce unlimited, or at
the least, a great number of different filters. Secondly, the filters should be of some value by
themselves but also together. Intuitively, a valuable filter should highlight “information” not
directly accessible from the original image by the learning algorithm. We will call this char-
acteristic the individual usefulness or simply usefulness. As for having value together, two
different filters should not uncover the exact same “information”. For instance, producing
twice the same filter is useless. We will call this the group usefulness or co-usefulness.

Several drawing mechanisms have been developed with different motivations in mind:

Custom filters

Discrete law generator
Zero-perturbation generator
Identity-perturbation generator

G
G
G
G
% Maximum-distance-from-identity generator
G

Stratified perturbed generator

The first one is a special case. It consists of a set of 38 well known filters, among which the
Sobel and Prewitt filters, several Laplacian filters of different sizes, the compass gradient
filters, some low and high pass filters and other line detection filters. Being a small set,
it violates the first prerequisite. However, this pseudo filter generator will be useful as a
comparison basis: the filters are the same ones as in Marée et al. (2014a). Besides, these
filters have practical application cases which random filters might not share. It is thus a
reference point to see whether the generated filters highlight interesting “information”.

The other mechanisms draw the filters randomly. Before generating the coefficients of
a filter, its dimensions must first be determined. The widths and heights of the impulse
response matrices are drawn from a bounded set of odd, positive integers. Although we
limited our tests to square matrices, this is not a strict requirement.

We mainly worked with a uniform distribution of sizes, playing somewhat with the set
bounds. Once again, this is not a limitation as other distribution can easily be used. For
example, it is possible to create a distribution biasing towards small sizes.

As for the bounds, the minimum was fixed to 3. The maximum size needs probably not
be greater than half the image size. Indeed, too large filters might incorporate mostly global
information and provide too much redundancy.

Conceptually, for a given maximum size, say n = h X w, it is easy to build a bijection
between the filter matrices space and R™. This representation will help us visualize the
drawing mechanisms.
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Discrete law generator. Once the size is fixed, every coefficient is drawn for a predefined
discrete law. Even though the number of such filters is bounded for a given maximum
size, this filter space is still vast enough so as to meet the first generator prerequisite.
We tested the following law: -1 with a probability of .3, 0 with a probability of .4 and 1
with a probability of .3. This generator was motivated by the spatial interpretation of the
convolution. It accounts to summing and subtracting neighboring pixel together.

Zero-perturbation generator. Once the size is fixed, every coefficients are drawn from
the same continuous probability law. Although there is no restriction on the probability
law, we expect it to be symmetrical and zero-centered, hence the generator name. We used
two such laws. The first one is the uniform law over reals bounded with -1 and 1. In this
respect, the generator space is mappable to a hypercube centered on the origin. The second
law was a Gaussian so that the probability of being outside the range [-1, 1] is equal to a
given threshold. The isoprobabilities thus form hyperspheres. The points lying outside of the
range can be forced to the boundary so that the generator space becomes the same hypercube
as with the uniform law. The mean filter, the filter obtain by averaging component-wise a
great number of filters of this class, would be the zero filter. Zero-centered generator were
motivated by the examination of common filters which portray the same characteristic.

Identity-perturbation generator. Identity-perturbation generators work in the same
fashion as their zero-perturbation counterparts. The only difference is that the hyper-
structures are centered around the identity filter instead of the origin. The mean filter
is therefore the identity filter. The motivation behind this generator was to produce filtered
images resembling the original while being different enough so as to be of value.

Maximum-distance-from-identity generator. This kind of generators fulfills the same
purpose as the previous one. The generator space is also centered on the identity fil-
ter but its shape is different. We decided to work with the Manhattan distance. Con-
cretely, the generator is parametrized by a maximum distance, independent of the filter
sizes. The coefficients are processed in a random order. A random perturbation from the
range [—maxDist, maxDist] is applied to the first coefficient. Before processing the next
coefficient, the maximum distance is updated by subtracting the absolute value of the pertur-
bation. The process is either stopped when the sum of the absolute values of the coefficients
exceeds the maximum distance, in which case the remaining components are equal to zero,
or if all have been assigned. Once again, the mean filter is the identity.

Stratified perturbed generator This last class of generators is parametrized by a min-
imum value m, a maximum value M and a subdivision number n. For each coefficient, a
value v from the set {m + & x (Mn;m)ﬂf € Z,k < n} is chosen randomly. This value is
then randomly perturbed before being assigned to the coefficient. The perturbation is not
mandatory and should stay in the range [— (MQ;m)7 (MQZLm)]. Expected perturbation law are
Gaussian and uniform. This is illustrated in Figure 4.2. The mean filter is the zero filter.

This generator class was motivated by the idea to produce as dissimilar filters as possible
so as to meet our second requirement about co-usefulness. Disregarding the perturbation,
the filter space is finite but still huge. For instance, the space for a subdivision number of
10 with only the smallest filters (3x3) would still mean 10° filters. Whereas 2° filters, i.e. a
subdivision number of 2, is manageable, the other generators are able to produce filters as
dissimilar. Furthermore, the following non-monotonicity property suggests that a dissimilar
approach in the filter space might not be the best way to produce sets of co-useful filters.
Indeed, one way of assessing co-usefulness is to use a distance measure: if two filtered images
are close, they probably highlight the same “information”.

Non-monotonicity property. We will show that closeness in the filter space does not
necessarily imply closeness of the filtering results. Closeness is to be understood as distance
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2D subspace of the stratified perturbed generator
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Figure 4.2: 2D cut in the stratified generator space (10 subdivision between -1 and 1, no
perturbation)

from a reference. Let I be an image and F', F;, F5 be three linear, spatially invariant filters
of possibly different sizes. Let also

J=IxF
J1:I*F1
JQZI*FQ

We will show by counterexample that | F — Fy ||>|| F - F |=~ || J—J1 ||=]| J — J2 ||
First let us name e; = F — I and e; = F' — F5. By linearity of the convolution, we have:

Jh=I«F=Ix(F—e))={I*xF)—(Ixe1)=J—(Ixe1) < J—J  =Ixe;

In these terms, we have to show that || e; ||>] ez || =& || I *e1 ||>|| I xex ||. Let us take
e1 such that the coefficients sum up to zero but with a great dispersion (a Sobel filter, for
example) and e such that the sum of the coefficients is strictly greater than zero but with a
smaller dispersion than e; (the 3x3 average filter, for instance). Thus, we have || e1 || >]] ez ||.
Moreover, let us consider the case of an image I with constant value ¢ > 0. In this setting,
| Ixep||=0while || Txes ||[=cxk>| IT*xeq|.

Therefore, playing with closeness or dissimilarities in the filter space yields no warranty
about the same metrics with the filtered images. However, using the distance as measure
of co-usefulness is arguably a poor choice, since close filtered images might still highlight
different aspects of the original image. Considering this remark, the main shortcoming of
the stratified generator is probably that, with respect to the number of generated filters we
will use, it does not produce any significant advantage over other generators.

4.1.1.2 Normalization

All the generators we discussed in the previous section are able to perform a post-processing
normalization of the filter. There are four normalizations:

% No normalization: the post-processing normalization is skipped.
% Zero mean: the coefficient values are normalized so that their mean value is null.

% Unit variance: the coefficient values are normalized so as to have a unit variance.
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9 Zero mean and unit variance: both the previous. First the zero mean then the unit
variance.

% Unit sum: the coefficients are normalized to sum to one.

The introduction of the zero mean and unit variance normalizations was primarily moti-
vated by supplying support for learning algorithms other than classification forests. Indeed,
their effect is to impose a common dynamic to all the filters. While trees are invariant with
respect to a normalization of the features, some classification schemes are not applicable
with features of different dynamics or suffer greatly from it.

As for the unit sum normalization, applied in conjunction with a generator producing
positive coefficients, it produces “convex combination filters” in the following sense: for each
step of the convolution, the output pixel value is bounded by the minimum and maximum
of the neighboring original pixels (where the neighborhood is defined by the filter size).

We will now look at the implication of the normalizations on the generator space. We
will reuse the filter representation in R™ and will denote by 1 the vector whose coefficients
are all 1.

Zero mean normalization. In R", the zero mean filters form the hyperplane {z €
R"|1Tx = 0}. The normalization is a projection onto that hyperplane. The resulting
filter y is computed as y = x — %lTxl. This operation can produce a filter which is outside
of the original filter space. Since this operation is linear, the impact of the filtering are
straightforwardly identifiable. Denoting I a given image, x5 a given filter, whose mean m
form the constant filter my, y¢ the normalization y; = 2y — my and 1; the constant filter
with only ones as coefficients, we have:

Ixyp={Txxp)— [T sxmy)=Txxy)—mx (Ix1y)

The (I % 15) correction part is independent of the filter and proportional to the mean
coefficient value. The practical impact is clearer in the frequency space:

I=5rU
Ty —=F H,
my =5 Hy,,
yr=r Hy=H, — H,,

Ivyy=W=UxHy,=Ux(Hy—Hy,)=UxH;)—(UxH,)=Y—(Ux Hy)

Since my is a constant signal, the transfer function H,, is null everywhere except at the
origin. Thus, the overall frequency response is only marginally modified and both filter
achieve the same results. Therefore, the normalization does not restrict the class of filters.

Unit variance normalization. In R™, the unit variance filters form the hypersphere
{z € R"|z2Tz = 1}. However, in practice, the normalization works with the current filter
size and not the maximum filter size. Thus, there are several hyperspheres to consider, one
per possible sizes. In the filter space, the normalization equals to scaling the filter so as to
meet the appropriate hypersphere. The impact on filtering is immediate:

1 1
1 =1x(— =—(
sy =D () = —(Txzy)
The whole result is scaled by the same factor. Therefor, the normalization does not restrict
the class of filters.

Unit sum normalization The reasoning is identical to the zero mean normalization
except for the hyperplane: {z € R"|172 = 1}. This normalization does not restrict the
class of filters either.
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4.1.1.3 Filter application

In this subsection, we cover two topics about the filter application. The first one concerns
working with colors. The second one is about how the filters are actually applied.

Handling colors can be done in three ways. The first one is to realize a 3D convolution.
This results in a single output value per original pixel. However, there are two drawbacks
to this approach. Firstly, in the spatial space, it means combining values of different colors
together. This would work but lacks of physical interpretation. Indeed, the RGB space
is only a convention. The second drawback has to do with the frequency space. It feels
awkward to put on a same level spatial frequencies and color frequency, whatever it might
mean.

The second method to handle colors is to use separate 2D filters on each channel. This
produces three values per original pixels. The main drawback of this scheme is that post
interpretations of the filters will be difficult.

As for the last and simplest method, is to use the same 2D filters on each color. This
also produces three values per original pixels. Because the last approach seems more natural
than the first one and is simpler to interpret than the second, it is the one we adopted.

Now that we know how to handle colors, let us investigate the filter application. The
convolution is carried out in the frequency space by multiplying the Fourier transform of
the original image by the transfer function of the filter. The output is of the same size as
the original image. The borders are handled by padding the original image with zeros.

4.1.2 Pooling strategies

Now that we have fully covered the filter generation and application mechanisms, we can
move on to the next part concerning the spatial pooling strategies. We developed two such
strategies, which primarily differ on their overlapping policy. In both cases, we need two
elements: a window/neighborhood size and the function to apply on those windows.
Contrary to the convnets, the pooling does not serve the undersampling as there is
virtually only one layer. Therefore, undersampling is not needed. The ability to work at
different spatial scales is provided through the use of filter of different sizes. However, the
pooling still fulfills the other two goals: introducing spatial invariances and possibly adding
some non-linearities in the model. The former is also tackled by the subwindow extraction.

Moving windows. In the case of spatial pooling by moving windows, they are supposed
to have odd width and height. The center of the window moves to match every pixel of
image. The pooling function is computed on the overlapping part of the window and the
image. The resulting image has the same size as the original image. This is illustrated in
Figure 4.3.

Aggregations. In the case of spatial pooling by aggregation, the neighborhood windows
do not overlap. The image is divided into several non overlapping neighborhood such that
each neighborhood has the appropriate size. The pooling function is then applied on each
cell of this neighborhood grid. Thus, contrary to moving windows, the resulting image is
smaller and corresponds to the neighborhood grid layout. This is illustrated in Figure 4.4.

Pooling functions. The pooling function box is comprise of the minimum, maximum and
average functions. In the case of the average function with moving window, we are close to
defining a composition of two linear filters. The difference comes from the way the border
are handled. In the case of the application of the linear filter, the outside elements are
replaced by zero while they are ignored in the pooling case. Thus the normalizing factor is
not the same in both cases.
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4.1.3 Subwindows extraction

Once the generated filters and the spatial poolings have been applied, it is time to extract
subwindows from the images. The advantages of using subwindows have already been ex-
posed in Subsection 2.2.1 describing the Pixit method. While expanding the number of
learning objects, we also need to expand the class label accordingly. Consequently, each
subwindows will be described by the label of its original image.

The number of possible subwindows is quite large. First, let us notice that the number
of subwindows of size a x b, denoted by N(a,b), factorizes into the product of the number
of subwindows along each axis: N,(a) x Np(b). These can be computed easily as N,(a) =
H—a+1, where H represents the height of the image and similarly for Ny, (b), which depends
on the width W. Indeed, for a column of size H, there is H origins of 1 pixel subwindows.
If we take subwindows of size 2, we can take all the same origins as previously except the
last one. Subwindows of size 3 cannot take the last two compare to 1 pixel subwindows, and
so on. Therefore, the total number of subwindows IV is:

H W H W
1
N = N(a,b) = H - 1 —b+1)=—(H>W? + H? HW? +H
;; (a,b) ;;( a+1)(W—=b+1) 4( W? 4+ H*W + HW? + HW)

For 32x32 images, this yields 278,784 subwindows !

As we can see, there are numerous subwindows. Nevertheless, not all are of interests. The
small size subwindows do not bring much information. For instance, taking only one pixel
subwindows is not interesting. Delimiting a good threshold on the size is problem dependent,
however. Even if we focus on big enough subwindows, there may still be too many of them.
For instance, on 32x32 images, there are still 2025 subwindows of sizes ranging from 24x24
to 32x32. This entails a redundancy level which is not needed. Since it would be difficult to
establish a general heuristic to choose good candidates, we resort to drawing them randomly.

At this point we have to be careful. Conceptually, RandConv should extract the sub-
windows first so as to broaden the image database and then apply the filters and poolings
so as to better describe each subwindow. For computational reasons and so as to limit the
border effects, images are actually first processed and then patches are extracted from them.
This entails that we must extract the same patches from all the filtered and pooled images
belonging to a given original one. However, for two different original images, we may choose
two different sets of subwindows. The chance of drawing twice the same subwindow for
a given original image is small. We start by drawing the size uniformly in the affordable
range. Then the upper left position of the subwindow is drawn from the possible position
considering the subwindow size.

Since the subwindows are chosen uniformly, we can compute the probability of a given
pixel belonging to a subwindow by counting the number of subwindows containing that pixel
and dividing it by the total number of subwindows. Once again, we will use the fact that
we can factorize the numbering for each axis and will proceed by recurrence.

Let us take a column of height H and index the element starting at 1 for the top element
and ending at H for the bottom one. We will denote by T'(¢) the number of subwindows
encompassing the ith element. It is immediate that T'(1) = H: only one subwindow of each
length can contain the first element. By symmetry this is also the case for the last element:
T(H)=H.

The second element is encompassed by all the subwindows of the first one but for the
one-pixel subwindow. Besides this, we have to add the H — 1 subwindows starting at this
element. Therefore, T'(2) =T(1) — 1+ (H — 1).

The reasoning is similar for the next one, the only difference being that now we have
to subtract two previous windows from 7'(2): the monopixel one starting at element 2 and
the bipixel one starting at element 1 (its monopixel has already been removed). Thus,
T3)=T(2) -2+ (H —2).
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Probability per pixel of being included in a subwindow
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Figure 4.5: Probability associated to each pixel of being picked up

Expanding the reasoning we get the general formula T'(n) = T'(n—1)—(n—1)+H — (n—
1) =T(n—1)+ H —2(n—1). Resolving the recurrence yields T'(n) = nH —n(n+1)+2n =
nH — n? + n, which satisfies T(1) = T(H) = H. We just need to pay attention to the fact
that we have started numbering at 1, which is not the convention.

Coming back to the 2D case, we have that the number of subwindows encompassing a
pixel (r+1,c¢+1)is T(r,c) = (rH —r?+7r) x (cW —¢® +c¢). Figure 4.5 shows the probability
associated to each pixel of being picked up. As we can see, this scheme of extraction tends
to favor the center of the image. This is an additional reason to process the images before
extracting the subwindows: overlapping patches are likely. Therefore, it is more efficient to
process the whole image first only once than to filter each subwindow separately and risk
recomputing the same thing several times. This is even more true if we focus on larger
subwindows and/or extract many of them.

Although the subwindows can have different sizes, the feature vector describing a par-
ticular one cannot. More specifically, a column of the learning matrix must correspond to
a well identified variable. Thus, we need to rescale all the subwindows to a common size.
Ideally, the size should be chosen so as to minimize the re-interpolation deformation. The
interpolation algorithms provided are nearest neighbor, bilinear and bicubic. We will focus
on the nearest neighbor because it is faster and it was found to be comparable in terms of
classification accuracy to the others in most cases (Marée et al. (2014a)).

4.1.4 Feature descriptions

Each filtered and spatially pooled image will be described by its raw pixels in a last-
dimension-first fashion. Therefore, we start by the color dimension and group the three
color values of the top left pixel together. Then we append the second pixel (top row, sec-
ond pixel from the left) and so on for all pixels of the first row. After that, we append the
second line in the same fashion and so on for all the image. This is resumed in Figure 4.6,
which also shows that the feature vectors belonging to the same subwindows are concate-
nated. Thus, there are 3(h x w) X (N x P) features per subwindows. For instance, 100 filters
with 1 pooling on 16x16 subwindows yields feature vectors of 3(16 x 16) x 100 = 76,800
variables.

Once all the subwindows have been described in this fashion, we need to assemble each
piece to form the actual learning matrix. Starting from the original database of M images,
a set of N filters and P spatial poolings, we produced N x P images for each original ones.
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Subwindow description by raw pixels

Subwindow X of image Y Subwindow X of image Y
after a given filter and pooling after the next filter and pooling

Corresponding feature vector

Figure 4.6: Filtered and spatially pooled image description

From each of those M sets, we extracted S subwindows on each of the N x P filtered and
pooled images. We now have M x S learning objects described by N x P feature vectors.
As we mentioned earlier, we will concatenate all the feature vectors corresponding to the
same subwindow. This is depicted in Figure 4.7.

4.1.5 Compression layer

An additional so-called compression layer was envisioned for two reasons. It works by
reducing the number of features required to describe a subwindow. The first reason was
to limit memory usage and the second one was to reduce the relative number of features
associated to a given filter compare to the original image so as to put more emphasis on
it. Two mechanisms were implemented. The first one is an additional layer in the feature
descriptions part and only works on subsets of the feature vectors. The second compression
layer is situated after the traditional RandConv and works on the whole learning matrix.

Feature subvector compression. In this variant, we treat all the feature subvectors
separately. A subvector corresponds to the contiguous part of a subwindow feature vector
related to one filter and pooling. The idea was to reduce the number of variables of such
subvectors while losing as little information as possible. In order to accomplish that, we
reduce the number of variables by selecting only one or two colors by pixel. The variables
are chosen so that neighbor pixels of the same row do not have the same color missing. In
that way, we rely on spatial redundancy to limit the loss of information. This is illustrated
in Figure 4.8. The compression rate is of % for a low compression keeping two colors by pixel
or % for a high compression keeping only one color by pixel. Let us note that this variant
does not allow for a separate treatment of the original image.

Learning matrix compression. In this variant, we work on the whole learning matrix
by reducing the number of variables associated to each combination of filter and pooling
with the knowledge of all the learning objects. The method can treat the original image
independently and the processing of the other group of features can be parallelized. Using
the whole learning matrix allows for more sophisticated compression techniques, which can
look for structure in the submatrices. This component works like a learning algorithm as well
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Learning matrix layout
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Figure 4.7: Layout of the final learning matrix
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Figure 4.8: Feature subvector compression
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in the sense that it must fit itself on the learning matrix and then remember its choices for
the prediction part. The layer is generic meaning that the processing can be parametrized.

We implemented two such processings. The first one was simply to draw randomly a
subset of different features for each filter. The second one is a bit more elaborated and
complex. It computes the principal component analysis (PCA) on all the features of a given
filter and selects the first components. Therefore, the new features are linear combination
of the original ones. In both cases, the compression rate can be tuned.

Although both mechanisms are unsupervised, it is possible to exploit the labels as well.

4.1.6 Classification schemes

The previous subsections cover the preprocessing steps to go from a database of images to
an actual learning matrix. Now is the time to delve into the actual classification mechanism.
We will use two approaches described in the following.

4.1.6.1 Direct classification

In this ET-DIC (ExtraTrees for direct image classification) variant, the classification of
subwindows is undertaken by the ExtraTrees directly. Let us note that this scheme allows
not only for individual feature importance evaluation but also for filter relevance evaluation
by aggregating the importance of all the features corresponding to a given filter. This metric
is surely a good candidate for filter co-usefulness evaluation.

The best results of the ET-DIC strategy in Pixit mode on the CIFAR-10 database was
an accuracy rate of 53.67% (Marée et al. (2014a)). The corresponding hyper-parameters
were the following: 10 fully grown trees, 20 subwindows of 75-100% of the original size
reshaped by nearest neighbor interpolation to 16x16 image described by raw pixel values
and inspecting all the features on each node.

4.1.6.2 Feature learning scheme

In this ET-FL (ExtraTrees for feature learning) variant, the ExtraTrees are not used as
classifier any longer but rather form a preprocessing step whose output will constitute the
learning matrix of the actual classifier. It has been described in Subsection 2.2.2 about
bag of visual words. The slight novelty is that ExtraTrees are used in an unsupervised
way by selecting randomly the splitting criterion (including the splitting variable) of each
node, a variant called totally randomized trees. Totally randomized trees as classifier usually
perform less well than ExtraTrees (Geurts et al. (2006)). However, in the current context,
the actual classification is delegated to a SVM. The gain of using totally randomized trees
is computational.

Since we are in the presence of more than two classes, we will resort to the one-versus-all
scheme. Tt consists in training a SVM for each class. The ith model is learned by considering
two classes: the ith original class on the one hand and all the other classes on the other
hand. The prediction is carried out by assigning the class furthest from its margin. This is
illustrated in Figure 4.9

Two remarks are in order. Firstly, we have lost the ability the assess the features im-
portances in the actual classification process, which is carried out by the SVM. Secondly,
the learning sample size, and consequently the number of subwindows, is now crucially
important. Indeed, it is a parameter of paramount importance to the trees’ depth, and
consequently the number of leaves. A second first-class parameter is the one relating to
pruning. Pruning is the mechanism of stopping the tree creation before its completion. It
can be applied either while developing the tree (pre-pruning) or artificially after the tree
creation by cutting off some branches. It obviously also impacts dearly the number of
leaves. The main goal of pruning is to reduce the model complexity and consequently the
overfitting. In the ET-DIC variant, pruning is not necessary because the voting takes care
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Figure 4.9: One-versus-all multiclass scheme

of reducing the overfitting. However, on the data fed to the SVM, there is no automatic
overfitting control mechanism and the SVM will suffer from it. Therefore, pruning is also
very important for this variant. Last but obviously not least, the number of trees multiplies
the number of leaves. Therefore, this hyper-parameter is even more sensitive than in the
ET-DIC approach.

The best results of the ET-FL strategy in Pixit mode on the CIFAR-10 database was
an accuracy of 50.07% with 10 almost fully grown trees, 20 subwindows of 75-100% of the
original size reshaped in 16x16 by nearest interpolation and using k = v/M of inspecting
features at each node, where M is the total number of features: 16x16x3. The trees are not
totally grown: the minimum number of samples to split a node is fix to 10. Contrary to the
majority of cases, the best ET-DIC is better than the best ET-FL for this problem.

Using the precursory method (equivalent to the custom filter generator) with 9 spatial
poolings (3x3 to 7x7 moving windows computing the minimum, maximum and mean) they
were able to obtain a significant raise of accuracy, attaining a new record of 74.31% with
750 trees totally randomized trees, 20 subwindows and a minimum number of samples to
split of 750 (Marée et al. (2014a)).

4.2 Implementation

In this section, we dive into implementation details. We will not go over all the elements in
depth again but rather see how the discussions of the previous sections translate into code.
In a second subsection we will also develop technical limitations.

4.2.1 Software architecture

A major concern of the design was to allow as much room as possible for flexibility, so as to
be able to develop extensions and variants of the method rapidly. Consequently, the code
was split into many classes. A drawback of this is that assembling all the pieces together
might be difficult. Factory methods are provided to help with this issue but care must be
taken to build up a coherent classifier. We will go back on this in a short while.

The code is written in Python 2.7 and relies and the 0.13.3 version of Scipy (Jones
et al. (2001)), including Numpy 1.8.0. Not all the code is brand new. The ExtraTrees
implementation comes from the scikit-learn library (Pedregosa et al. (2011)), version 0.15.
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Figure 4.10: UML representation of the Classifier class and its major components

We also use scikit-learn for SVM classification, although it actually consists of a wrapper
to the liblinear library (Fan et al. (2008)). The SVM computes the optimal linear soft
margin and manages multiclass by one-versus-all. As for the subwindow extraction, it is
a reorganization of the Pixit implementation (Marée et al. (2014b)). We will examine the
code in a top-down manner and focus on the important classes.

At the top, we find the Classifier class. Its aim is to supervise all the parts. The
base class correspond to the ET-DIC variant. The RandConvCoordinator is responsible for
all the preprocessing: filtering, pooling, subwindow extraction, feature description. After
this step, the Classifier instance delegates the actual classification to a BaseEstimator
instance from scikit-learn. In this case, the actual classifier is supposed to be an instance of
ExtraTreesClassifier. The UnsupervisedVisualBagClassifier corresponds to ET-FL
mode. Between the preprocessing and the classification, we use the RandomTreesEmbedding,
a scikit-learn totally randomized trees implementation, to build the histogram which we will
then feed to the BaseEstimator, supposed to be a LinearSVC instance. This is summarized
in Figure 4.10.

We now go back to the RandConvCoordinator. Its responsibility is to transform the image
database into the learning matrix. It proceeds by subdividing the dataset to parallelize the
transformation. Then, the ConvolutionalExtractor processes each image. This entails
filtering the image by each element of the FiniteFilter thanks to the Convolver, then
applying all the spatial poolings contained in the MultiPooler and finally extracting several
subwindows via the MultiSWExtractor. Once all this is done, each filtered and pooled
subwindow is passed through the Extractor and reassembled to form a coherent learning
submatrix.

The FiniteFilter objects are containers for filters. They pre-generate a finite number of
filters thanks to the FilterGenerator. We will come back to those shortly. If we are working
with RGB images, we need to use either a Finite3Filter or a Finite3SameFilter. The
former produces a different filter per color component while the latter uses the same filter
on each color. Also, we need to use an appropriate Convolver, namely the RGBConvolver.

The subwindow extraction is carried out by the MultiSWExtractor whose sole purpose is
to keep track of the subwindows to extract for the set of filtered and pooled images belonging
to the same original image. The actual subwindow generation and extraction are delegated
to the SubWindowExtractor.

The transformation from subwindows to feature vector is the responsibility of the Extractor
instance. In this case, a ImageLinearizationExtractor object. However, other mechanism
could be implemented, such as extracting descriptive statistics. All this is summarized in
Figure 4.11. Let us note that the images are only loaded at the time they are processed so
as not to drain useless memory. Python’s garbage collector is responsible for freeing them
as soon as needed after they were treated.
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Figure 4.11: UML representation of the RandConvCoordinator and its major components

We now explore the FilterGenerator. They need two random number generators. One
for drawing the values, either directly or not, and one for drawing the size. The base class is
used for two of the generation methods: the discrete law generator and the zero-perturbation
generator. The former is made by using a CustomDiscreteNumberGenerator while the later
uses the base class of NumberGenerator. As Figure 4.12 displays, there is a class dedicated
to each of the other generators.

The GaussianNumberGenerator works by specifying a lower bound, an upper bound and
the probability of being outside of that range. The ClippedGaussianRNG works similarly
but in addition forces the values outside of the range to the appropriate bound.

The MultiPooler class involved in the RandConvCoordinator is a container of spatial
poolings. As shown in Figure 4.13, our two groups of spatial poolings are presents.
Other classes are also present to take care of lesser chores, such as loading the data to
the right format, logging the progress and so on.

4.2.2 Technical issues

The main limitation we will face is memory. The ExtraTrees implementation requires 32-bits
floats and the SVM, 64-bits floats. However, in the case of the ET-FL, the matrix is mostly
sparse and therefore the 64-bits floats requirement of the SVM will not be troublesome.
Thus, the space cost bottleneck is the input of the ExtraTrees, which require to hold all the
data in memory. Considering 100 filters, 1 spatial pooling, subwindows resized in 16x16, 3
colors, 10 subwindows and the whole learning set (50,000 images), the RandConv method
will produce 153.6 GB of data. For 39 filters (the custom filters plus the original image) and
20 subwindows with 9 spatial poolings (the configuration of the best results of Marée et al.
(2014a)), 1,1 TB would be required. Since we are limited to 288 GB, we will not be able to
reproduce such a configuration.

One way of sidestepping this limitation is to build several forests with a different subset
of the features, a variant which might be called “global random subset” (GRS) of features.
In the case of the RandConv this can easily be done by choosing a subset of filters for each
forest.
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To a lesser extent, the time complexity will be an hindrance. It will not actually prevent
any computation but we will have to plan carefully the experiment to carry out. For instance,
our first example, which produces 153.6 GB of data, takes between 5h and 12h depending
on the machine load.

4.3 Hyper-parameters summary

Before elaborating on the results, we will rapidly summarize all the hyper-parameters in-
volved with the RandConv framework.

9 Filter generation

Size range

Whether or not to produce squared filters
Value range

Filter generator

Random law

R R R K R R

Other filter generator specific parameters (maximum distance, number of subdi-
visions,...)

Filter normalization

R

o whether or not to include the original image
% Spatial poolings

o Number and type of poolings

x Aggregation or moving window
x Pooling function: identity, minimum, average or maximum

o Size of the neighborhood
% Subwindow extraction

o Number of subwindows
o« Subwindows cropping size
o Subwindows rescaling size

o Subwindows rescaling interpolation
3 ExtraTrees

o« Number of trees (default: 10)

o Number of features of the local random subspace: & (default: square root of the
total number of features)

Maximum depth (default: no maximum depth)
Minimum sample to split: 1., (default: 2)
Minimum sample per leaf (default: 1)

Whether or not to use bootstrap (default: no bootstrap)

As we can see, the number of hyper-parameters is already large. We can divide them
in two categories. On the one hand, we have structural parameters and on the other,
traditional hyper-parameters. Structural parameters have a more profound impact than
traditional ones. The filter generator and its random law with the number and type of
spatial poolings form the structural parameters. Conceptually at least, changing one of
them is closer to changing the classification method than only one of its hyper-parameters.

Generic image classification - The RandConv framework 32



4.3, HYPER-PARAMETERS SUMMARY

Hyper-parameter

default value

Filter sizes

Square sizes

Filter value range

Filter generator

Random law

Filter normalization
Include original image
Number of spatial poolings
Type of spatial poolings
Size of the neighborhood
Number of subwindows
Cropping size

Rescaling size
Interpolation

Number of trees

k

Maximum depth
Minimum sample to split
Minimum sample per leaf
Bootstrap

3 to 9, both included
True
[']-a ]-]

FilterGenerator (Zero-perturbed generator)

Real uniform

None

True

1

Average moving window

3x3 (moving window), 2x2 (aggregation)
10

24x24 to 32x32

16x16

Nearest neighbor

30 (ET-DIC), 750 (ET-FL)

Square root of the total number of features
None

2 (ET-DIC), 500 (ET-FL)

1

False

Table 4.1: Default values for hyper-parameters

Three of the ExtraTrees hyper-parameters are used to control the pruning: the maximum
depth, the minimum sample split and the minimum sample per leaf. The difference between
the last two is that the first one does not attempt to split a node whose number of samples
are under the given threshold, while the second does the split but rollback if any of the
children are under the threshold.

Several of the parameters can be fixed. The value range of the filters will be set as in the
filter generator descriptions. Considering the size of the images, we will mostly focus on 3x3
to 9x9 filters. Since we are working with trees, we will use no normalization of the filters.
Concerning the spatial poolings, we will also restrict ourselves to small neighborhoods. For
comparative purposes, we will resize subwindows to have sizes of 16x16 with nearest neighbor
interpolation, as in Marée et al. (2014a). Moreover, we will extract subwindows of 24x24 to
32x32 pixels. For the ET-DIC variant, we will use the default tree parameters, which means
no pruning. We will also use 30 trees (one per core). However, in the ET-FL approach, we
will have to prune the trees and use more of them. The n,,;, parameter will be set to 500
with 750 trees. Table 4.1 displays the fix or default values of the hyper-parameters. Unless
stated otherwise, these values are to be assumed in the next chapter.
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Chapter

Result analysis

In this chapter, we describe the experiments conducted with our new classification method
and analyze their results. The chapter is divided into two sections. The first one tackles
the direct classification scheme (ET-DIC), where the forest of extremely randomized trees
serves as classifier. This will be our main focus. The second section describes the other
variant where the totally randomized trees are used to create a visual dictionary (ET-FL),
while the actual classification is undergone by a support vector machine.

When the hyper-parameters value are not explicit, the default values are to be assumed
(Table 4.1 of page 33).

5.1 Direct classification scheme

5.1.1 Accuracy as a function of the learning set size

Our first experiment will be to measure how the accuracies of the different methods evolve
as a function of the learning set size. We will test the RandConv method with both types
of pooling mechanisms (aggregation and moving window). The aggregation pooling uses
a neighborhood of 2x2 while the moving windows are of size 3x3. Both poolings uses an
averaging function. We will limit ourselves to the zero-perturbed filter generator for now.
In both cases, the same 100 filters are drawn. The 10 extracted subwindows are resized to
16x16. Consequently there are (16 x 16 x 100 filters x 1 pooling) x 3 colors = 76, 800 features.
The accuracy is measured on the whole testing set composed of 10,000 images. The Pixit
method will serve as reference. The RandConv method will sometimes be abbreviated by
rci, which stands for RandConv with original image.

We measured the accuracy for learning set of sizes 500, 5,000, 10,000, 20,000, 30,000,
40,000 and 50,000. The result of this experiment is depicted in Figure 5.1. The conclusion
is clear: the aggregation pooling mechanism is not working (maximum of 0.38 of accuracy).
Although being of the smallest interesting size, the non-overlapping neighborhood windows
already lose too much of the information. One might argue that using 3x3 moving subwin-
dows allow for that variant to capture more of the spatial structure than 2x2 neighborhood.
However, this does not seem to be the case as using 3x3 neighborhoods yields a lower accu-
racy of 0.35 for the whole learning set. Therefore, the bad performances of the aggregation
mechanism must indeed comes from its abusive spatial compression. This is unfortunate
because those poolings suffered less from the rescaling of the extracted subwindows. Con-
sidering the gap of accuracy between both methods, the following experiments will focus on
the moving window poolings.

Other observations are worth mentioning. Firstly, the “good” RandConv method per-
forms well. It is consistently better than the Pixit, although the difference might not be
worth the trouble. The RandConv methods takes several hours whereas Pixit requires a
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Accuracy as a function of the learning set size
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Figure 5.1: Accuracy as a function of the learning set size (30 trees, k = 277)

couple of minutes at most. Secondly, the graph shows the impact of using only a subset
of the data. This information is important in case of hyper-parameter optimization, for
instance, where some of the data must be set aside as validation set.

Our best result so far is an accuracy of 0.5151 due to the RandConv method with moving
windows for spatial pooling. The Pixit methods with the same parameters yields an accuracy
of 0.50, while its best result is 0.5367 for 20 subwindows, 10 trees and a minimum sample to
split of 10. We will now analyze the variability of the method and how the method reacts
to some its hyper-parameters variations.

5.1.2 Variability

We now inspect the variability of the accuracy and of the filter importances. We will first
look at the situation where the learning matrix is fixed and the variability can only come
from the ExtraTrees. It is important to differentiate both types of variability. The one from
the ExtraTrees would mainly be due to the high dimensionality of the problem. Indeed, the
size of the local random subspace (k = /76,800 ~ 277) is relatively small compare to the
total number of features: 762;?)0 ~ 3.6 x 1073, Therefore, different trees will end up making
different choices. This is, of course, exactly the behavior we are looking for. However, with
as few trees as 30, we may expect that different forests will have a high variability on the
filter importances and consequently on the accuracy.

We have run the ExtraTrees 12 times with the same hyper-parameters and the same
learning matrix. Table 5.1a holds the accuracies and Table 5.1b holds the first line of the
correlation matrix of the filter importances between the tests. Figure 5.2 depicts the filter
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Test number \ Accuracy Test number \ Correlation with test 0

0 0.5151 0 1

1 0.5119 1 0.998
2 0.5118 2 0.997
3 0.5136 3 0.999
4 0.5135 4 0.997
5 0.5141 5 0.998
6 0.5154 6 0.998
7 0.5114 7 0.998
8 0.5145 8 0.997
9 0.5156 9 0.998
10 0.5148 10 0.998
11 0.5118 11 0.997

Standard deviation | 1.48 x 1073

(b) Correlation vector of the filter importances

(a) Accuracy variability with test number 0

Table 5.1: Variability induced by the tree growing algorithm (same learning matrix)

RandConv with original image (feature 0) RandConv with original image (feature 0)
Test number 0 Test number 1
0.06 0.06
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(a) Test 0 (b) Test 1

Figure 5.2: Filter importances for two different forests with the same parameters
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Difference in the feature importances
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Figure 5.3

importances for the two firsts tests. The test number 0 corresponds to the results given
in the previous section. As we can see, the accuracy variability is very small. More tests
would be needed to establish a rigorous confidence interval but the conclusion seems clear
nonetheless: ExtraTrees variability has no impact on the accuracy.

This is also backed up by the evident stability of the filter importances. Such stability
is due to the smoothing effect of aggregating all the feature importances of a given filter.
The individual features composing the filters are not as stable, of course. In Figure 5.3,
we compare three of the tests by taking an index-wise difference. The mean values are
7&% ~ 1.3 x 10~® and the maximum feature importance is of the order of 7 x 10~* in all
three cases, the same order as the maximum differences. The correlation between the feature
importances is approximately 0.5 for all pairs of tests and the sum of absolute index-wise
differences is of approximately 0.27 for the three pairs. Such stability is not usually observed
with so few trees. Undoubtedly, the size of the learning sample (1,000,000 objects thanks to
the subwindows) helps stabilizing the profiles.

A look at the confusion matrices exposes more variability, notably on the diagonal.
Despite the accuracy stability, the models are not exactly equivalent. This suggests that
combining them or resorting to more trees will allow for some accuracy gain.

Let us digress on the filter importances. From Figure 5.2, we can see that several filters
have a high importance; of the same order of magnitude than the original image (filter 0).
On the other hand, some filters bring little to no information in the classification process.
Either these filters are not (co-)useful or the trees are too small to incorporate their useful-
ness. In regard to the correlations between tests, however, the co-usefulness and complexity
hypotheses are less likely. If it were one of these problems, the low-rated filters would have
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developed on different trees and therefore the filter importance profiles would be less similar.
Therefore, the most likely hypothesis is that those filters are simply not useful. Inspecting
them in parallel with the best ones might reveal information about the classification task.
This is a nice property which is not really present in the Pixit framework, where inspecting
the feature importances yields little information because of spatial invariances. In any case,
removing them to make room for more interesting filters can only improve accuracy. Sadly,
the gain might not be as substantial as we may hope. Indeed, the current accuracy gain com-
pare to the Pixit is marginal, even though we already have many filters whose importance
rivals the original image.

The overall conclusion is the following. For a given learning matrix, increasing the
number of trees should not impact the filter importances because they are already quite
stable. On the other hand, it should increase the accuracy because the models are not
equivalent. The same conclusions should hold for the local random subspace size k, at
least for the filter importances. Increasing the value of k£ reduces the randomization and
consequently leads to a better stability of the feature importances. In the case of the filter
importances, however, it would seem that the stability is already reached. In both cases
(number of trees and k), a decrease of the parameters may affect both the accuracy and
filter profile. This variability analysis bring less insight to the minimum number of samples
to split a node, n,,;». Finally, as far as the accuracy and filter importances are concerned,
the forest variability is negligible.

We now turn to the variability produced by the RandConv with the other parameters
fixed to their default values. There are three sources of variability:

% The filter generated
% The subwindows extracted

% The trees built

As we have just seen, the last source of variability is negligible, therefore, we will mainly
assess the first two ones. We ran 10 more tests whose accuracies are shown in Table 5.2. Test
0 corresponds to our previous test. Once again, more tests would be required to establish
a proper confidence interval but the variability, although more important than previously,
seems to be quite low. Tests number 0 and number 1 are particularly good. Nevertheless,
this has to be put in perspective: such low range of accuracies, although always welcome for
a practical application, is not really significant in our context.

Since we are using different filters, the importance profiles will be different from one
another. Figure 5.4 illustrates this for the tests number 1, 5, 6 and 10. We expect the ideal
situation to be when all the filters have the roughly same importances. Nevertheless, how
the filter importances influence the accuracy in other circumstances is unclear and cannot be
determined from the importance profile. This is made clearer by comparing the cumulative
importances of several tests. Figure 5.5 depicts the situation for tests number 0, 1 and 6.
For the 30 most influential filters, test 6 is between the other two curves. After that point,
test 6 depicts a greater cumulative filter importance. This situation also implies that there
are more lowly important filter in test 6 than test 0 or 1. We cannot deduce anything from
it because test 1 is also greater than test 0 in terms of both the cumulative filter importance
and accuracy. Besides, the cumulative profile of test 5 is nearly identical to the one of test
0. Therefore, it is impossible to assess finely the accuracy from the importance profile. This
conclusion is also backed up by the areas under the curves.

So far, we have learned that the RandConv method was surprisingly stable. Fortunately,
this will allow us to draw conclusions from few experiments, a welcome surprise considering
their running time. We will now inspect further the influence of hyper-parameters with a
same set of filters if not a same learning matrix. We will roughly proceed in a bottom-
up fashion: starting from tree-related hyper-parameters and going to purely RandConv
parameters.
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0.5151
0.5183
0.5117
0.5137
0.5095
0.5094
0.5093
0.5117
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0.5116
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Standard deviation

2.57 x 1073

Table 5.2: Accuracy of several tests
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Figure 5.4: Filter importances with global variability
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Cumulative importance histogram
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Figure 5.5: Cumulative filter importance (first 80 filters)

5.1.3 Influence of the number of trees

The accuracy is usually an increasing function of the number of trees. On the one hand,
voting the prediction reduces model variability due to overfitting the data. On the other
hand, each tree is unique and aggregating their prediction allow to encompass much more
tests than what would be possible with a smaller forest. In this subsection, we will see how
the improvement behaves for our method and we will look at the filter importances as well.
In Section 5.1.2 about the variability, we foresaw that increasing the number of trees would
have little influence on the filter importances. Now is the time to validate this thesis. Once
again, the other parameters will be set to the default values of Table 4.1 on page 33 and the
learning matrix is the same in all the tests. Consequently, the only source of variability is
due to the forest creation.

In this experiment, we measure the accuracy for the following number of trees: 10, 30,
50, 100, 300 and 500. The result of this experiment is depi cted in Figure 5.6. As expected,
we observe an increasing function of the number of trees. The increase slows down a bit
at 100 trees with an accuracy of 0.526. After that, the increase rate drops considerably.
Two remarks are in order. Firstly, we observe the classical increasing pattern, which means
that the number of trees can be chosen solely with respect to the allowable computational
budget. However, for a given learning matrix, the accuracy is upper bounded, as we can
see from the rate decrease. Secondly, the 30-trees accuracy is closer to the 500-trees’ than
to the 10-trees’. Adding our observation about variability, we may conclude that using 30
trees allow us a good assessment of the method characteristics.

We now turn to the filter importances in the classification process. Table 5.3 displays
the filter importance correlation between the test with 10 trees and the other tests. As we
had predicted, the number of trees does not impact the filter importances. Therefore, using
30 trees is well enough to assess filter usefulness as well.
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Figure 5.6: Accuracy as a function of the number of trees

Number of trees \ Correlation

10 1

30 0.996
50 0.998
100 0.998
300 0.998
500 0.998

Table 5.3: Filter importance correlation with 10 trees
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Value of k \ Accuracy

1 0.4467
50 0.4969
100 0.5057
277 0.5151
350 0.5172
500 0.5223
10,000 0.5276

Table 5.4: Influence of local random subspace size on the accuracy

5.1.4 Influence of local random subspace size

The parameter k affects the individual tree variability and performances. Too low a value and
trees are mostly random, ignoring the data at hand and consequently degrading accuracy.
On the other hand, a high value might lead to a large redundancy between the trees, even
though this is not the only randomization mechanism. Thus ending up with a lesser accuracy
improvement from the forest’s voting mechanism. We ran the experiment using the following
values of k: 1 (totally randomized trees), 50, 100, 277 (the default value), 350, 500, 10, 000.
The accuracies are presented in Table 5.4. As expected, the low values of k£ decrease the
accuracy. A value of 50 does already quite well (closer to 10,000 than 1 in term of accuracy).
It seems that going up to 10,000 (13% of the total number of features) does not yet reduces
the accuracy. However, the increase may not be worth the time required to get it (more
than twelve hours). Once again, the default value allows for capturing the essence of the
method.

The interesting part on the filter importances is that the profile correlation between the
totally randomized trees and the default forest is still very high: 0.977. Therefore, it really
means that the importances reflect the filter relative usefulnesses.

5.1.5 Influence of the minimum number of samples to split

This parameter control the model complexity. In the previous experiments, the trees were
fully grown (n,,:, = 2) and variability reduction was achieved through the smoothing effect
of the forests prediction aggregation. Still, the model might be too complex to begin with,
thus requiring either some pruning or more trees. Adding more trees did improve the model
accuracy but, considering this has several impacts, we do not yet know whether we produce
too complex models. So as to dissipate doubts, we tested the following values for this hyper-
parameter: 2, 10, 50, 500. The corresponding accuracies are: 0.515, 0.512, 0.498, 0.453.
Once again we see that the default value performs well. Besides, pruning too much the trees
is harmful: the models are not complex enough any longer.

The influence on the filter importances is more interesting. From Figure 5.7, we clearly
can identify two groups of filters. The first one is composed of the filters whose importance
increases. This increase implies a decrease of the filter importances in the second group. It
is thus possible to see where the filter is used in the trees. The first group holds the top
of the tree. This was already obvious for the filters whose importance was either large or
low. However, this approach sheds more light on the average filters, where we can observe
divergent behaviors. Average filters of the second group are purely co-useful filters: they
bring little information on their own but are helpful with the other filters. This characteristic
resembles the “V-structures” of the graphical probabilistic models. On a specific classification
task, these particular filters may be worth investigating. It might be difficult to identify the
filters on which they depend, however. A simpler approach is to investigate the variability of
the filter importances inside the forest. Stable filters, with respect to their importance, are
either very useful or not at all. Unstable ones are context dependent and therefore co-useful
filters.

[\
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Figure 5.7: Filter importances for different values of 7,
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Number of subwindows \ Accuracy

1 (whole image) 0.44
1 (subwindow) 0.40
5 0.48
10 0.515
14 0.514
18 0.521

Table 5.5: Accuracy as a function of the number of subwindows

Number of filters \ Accuracy

10 0.4831
38 0.5087
100 0.5151
120 0.5112
180 0.5150

Table 5.6: Influence of the number of filters on the accuracy

5.1.6 Influence of the number of subwindows

As a reminder, the number of subwindows enlarges the learning set and therefore allows for
more complex models. In this experiment, we tested how accuracy varied with the number
of extracted subwindows. We used 1, 5, 10, 14 and 18 subwindows. The memory limited us
to that threshold in order to keep the other parameters to their default values (Table 4.1,
page 33). We also tested the method where no subwindows are extracted but rather the
whole image is used directly (although resized in 16x16 as in all the other experiments. The
loss of resolution do not seem to impact the accuracy much). The results are reported at
Table 5.5. The filters were the same in all the tests.

As we might have suspected, using the whole image yields better accuracy than using
only one random subwindow. However, a few of them already accounts for a better accuracy.
Judging by the accuracy jump between 5 and 10 subwindows compared to the stagnation
between 10 and 14 subwindows, we may conclude that 10 subwindows allow for complex-
enough models.

Once again, the filter importances correlation is high. In particular, it is above 0.997
between 5 and 10 subwindows.

5.1.7 Influence of the number of filters

Our expectation regarding the number of filters is that, with few of them, the accuracy
might be better or worse than the Pixit’s depending on the filter usefulnesses. Too many
useless filters would hinder the process. With many filters, however, there should be enough
usefulness altogether to be able to beat the Pixit systematically. The accuracy should
increase accordingly with the number of filters as long as the learning set size allows for
complex-enough model. However, from the comment on the variability (Subsection 5.1.2),
we suspect that we will reach an upper bound quite fast.

From a more practical point of view, we will have to limit ourselves to 180 filters, which
should not be a problem if we were right about the upper bound. Table 5.6 presents the
accuracies for 10, 38 (the number of filters in the custom generator), 100, 120, 180 filters.
As we can see, from 100 filters on, there is no accuracy gain and the filter and subwindow
variabilities are responsible for the slight differences of accuracy. We would need a more
profound analysis to determine whether or not the accuracy obtained with 38 filters is
statically inferior to the 100 filter case’s. In any case, it is closer to the accuracy of the 100
filters than of the 10 filters.
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Figure 5.8: Filter importances for filter sizes ranging from 3x3 to 31x31

5.1.8 Influence of the filter sizes

So far, we restricted the filter sizes to the range 3x3-9x9, implicitly focusing on local char-
acteristics. The idea behind this was that larger filter would incorporate too global infor-
mation and thus produce more useless redundancy. Besides this, larger filters also means
more boundary problems. Nevertheless, random best sizes are problem and image sizes
dependent. We ran an experiment where we used sizes ranging from 3x3 to 31x31, while
other parameters are left to their default value. The accuracy was of 0.4996, slightly less
than for the standard case but not small enough to conclude much from it. Inspecting the
feature importances brought more insight to the situation. Figure 5.8 depicts the situation.
As we can see, the situation is more contrasted than usual. Linking the importances to the
sizes, we see that, in the top ten filter importance-wise, all 3x3 filters are present and the
remaining three are 5x5. Furthermore, the other five 5x5 filters are in the top twenty, with
7x7 and 9x9 filters, mostly.

5.1.9 Influence of the filter generator

In this section, we analyze the influence of the filter generator. We ran our experiments
with the defaults values (Table 4.1, page 33), except for the parameters linked to the filter
generators. We made the following experiments (if we ran the tests twice both accuracies
are mentioned):

% Custom filters (accuracy: 0.5057)
o Only 38 filters + the original image
% Zero-perturbed generator with a discrete random law (accuracy: 0.509):

x -1 with a probability of 0.3
o 0 with a probability of 0.4
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Figure 5.9: Filter importances of the identity-distance generators

o 1 with a probability of 0.3

% Identity-perturbed generator with a real uniform law on [—1,1] (accuracies: 0.5085
and 0.5154)

% Identity-perturbed generator with a Gaussian law of 0 mean and 0.51 standard devi-
ation (accuracies: 0.5149 and 0.5135)

% Identity-perturbed generator with a Gaussian law of 0 mean and 0.36 standard devi-
ation (accuracies: 0.5151 and 0.5119)

% Identity-distance generator with a maximum distance of 5 and a real uniform law
(accuracies: 0.5068 and 0.5029)

% Identity-distance generator with a maximum distance of 10 and a real uniform law
(accuracy: 0.4999)

% Identity-distance generator with a maximum distance of 5 and a Gaussian law of 0
mean and a probability of being outside of the range [—maxDist, maxDist] of 0.005
(accuracies: 0.5032 and 0.5116)

9 Identity-distance generator with a maximum distance of 10 and a Gaussian law of 0
mean and a probability of being outside of the range [—maxDist, maxDist] of 0.005
(accuracies: 0.5049 and 0.5079)

% Stratified generator with a subdivision in 10 cells and a Gaussian law of 0 mean and
0.021 standard deviation (accuracies: 0.5088 and 0.5063)

% Stratified generator with a subdivision in 10 cells and a Gaussian law of 0 mean and
0.036 standard deviation (accuracy: 0.5109)

The standard deviation value of 0.51 (identity-perturbed generator) is chosen so that the
generated values have a probability of being outside the range [—1, 1] of 0.05. The value
of 0.36 (identity-perturbed generator) reduces this probability to 0.005. As for the value of
0.021 and 0.036 (stratified generators), they were chosen so that there is only a probability
of 0.001 or 0.05, respectively, to be outside the range [—0.07,0.07]. Let us remember that, in
the case of the identity-distance generator, the drawing interval is not constant but decreases
after each draw.
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Judging from those experiments, we can see that identity-distance generator do worse
than our usual generator. This is also visible from the filter profiles (Figure 5.9), where we
can see much more variability than what we were accustomed to. Considering the variability
we have observed previously, the situation is unclear for the other generators, although the
identity-perturbed suites tends to do well. In any case, the filter generator is not the most
influential parameter. This is an important, disturbing and revealing result. Our initial
expectation laid in the opposite direction: the filter generators were the cornerstone of
the method. A good choice (or combination) of generators producing many filters should
have helped unveil useful information for the classification. Sadly, this did not turn out
as expected. Our last hope to get significant accuracy improvements now resides in the
non-linear layer of spatial pooling. The bright side is that we do not have to worry much
about optimizing those parameters; the zero-perturbed or identity-perturb generators will
do just fine.

5.1.10 Influence of spatial poolings

In this subsection, we tackle the influence of the spatial poolings with a couple of experi-
ments. We will resort to the 39 custom filters so as to be able to use several poolings (the
original image and the actual 38 filters). The only meaningful source of randomness is the
drawing of subwindows. We tested the following scenarios:

% No pooling (accuracy: 0.4816)
1 pooling: 3x3 moving windows assigning the minimum (accuracy: 0.5151)
1 pooling: 3x3 moving windows assigning the mean (accuracy: 0.5057)

1 pooling: 3x3 moving windows assigning the maximum (accuracy: 0.5476)

T £ £ 7

3 poolings: 3x3 moving windows assigning the minimum, the mean and the maximum
respectively (accuracy: 0.5454)

% 3 poolings: 3x3, 5x5, 7x7 moving windows assigning the minimum (accuracy: 0.5294)
% 3 poolings: 3x3, 5x5, 7x7 moving windows assigning the mean (accuracy: 0.5173)
% 3 poolings: 3x3, 5x5, 7x7 moving windows assigning the maximum (accuracy: 0.5741)

% 1 pooling: 7x7 moving windows assigning the maximum (accuracy: 0.5675)

We can clearly see that the poolings have a beneficial effect on the accuracy, in particular
the maximum. Choosing the best pooling must either be done by cross-validation or not
done at all: using several poolings should not reduce the accuracy dramatically. The main
drawback of this last option is that the memory might be better used in another fashion.
Using the same pooling at different spatial scales may or may not be interesting.

We now turn to the filter importances. Figure 5.10 depicts the profiles for the single
pooling cases. Some filters always have a high or low importance. For other filters, however,
the importances vary. Concerning the profiles, if not the accuracies, the no pooling and
average strategies are close, with a correlation of 0.954 (see the correlation matrix on Table
5.7). The major difference comes from the number 20, which is a high pass filter. The
other pieces of information given by the correlation matrix are as one might expect. More
interesting, we can observe that the profiles can be importantly influenced by the pooling,
which means that it does bring information and increase some filter usefulnesses. In the
occasion of filter 28 (the west compass gradient mask), the maximum pooling even goes as
far as giving it more importance than other filters appreciated by the remaining poolings.
Interpreting the cumulative importance diagram (Figure 5.10) is, once more, complicated
and we will limit ourselves to the following observation. The maximum pooling is the closet
example to a straight line (the ideal situation where every filter has the same importance)
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Figure 5.10: Filter importances with different types of poolings

Il 3x3 maximum

Pooling H no pooling \ 3x3 minimum \ 3x3 average | 3x3 maximum
no pooling 1
3x3 minimum 0.762 1
3x3 average 0.954 0.826 1
3x3 maximum 0.723 0.226 0.661 1

Table 5.7: Correlation matrix of the filter importances between the poolings
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Figure 5.11: Cumulative filter importances with different types of poolings

we have seen so far and also scores the best accuracy for now. Despite the closeness, the no
pooling strategy does not score a high accuracy, however.

The observation of single pooling strategies bode well for their combine application. Yet,
it may happen that they shade each other in a co-utilization scenario. In turns out this
is a empty threat. The correlation between importances in single pooling strategies and
their corresponding importances in multipooling strategies are above 0.96 for all of them
(no pooling included). This is visually illustrated in Figure 5.12. Each group of four bars
belong to the same linear filter.

Figure 5.13 displays the filter profile for several poolings only differing by the moving
window size. Most filters seems to favor larger windows. This is also the case with the
minimum pooling. This (non-)locality preference should be problem dependent.

Using a more appropriate spatial pooling is what has brought us the best improvement
so far. Since poolings do not interfere with each other, an alternative to picking the best
one is simply to use several. In doubt, a combination of the minimum and maximum
pooling should do. If the best one is known, however, it might be worth investing the extra
free memory elsewhere. We basically have two choices: either increasing the number of
filters or the number of subwindows. The latter seems more promising from our previous
observations. We should not diminish the number of filters too greatly, though, as it is
indeed the combination of the linear filters and the pooling that brings such improvements.
Testimony of this is is the accuracy of the Pixit with only the 7x7 maximum spatial pooling
which scores only a 0.4471. This is logical as, in this case, the spatial pooling only serves to
blur the actual information, producing a piecewise constant image.

5.1.11 Influence of the compression

In this subsection, we tackle the subvector compression. We ran the RandConv method
with the default value except for the feature extraction which uses color compression. The
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accuracy results for keeping only one or two colors per pixel are respectively 0.5041 and
0.5112. In both cases the confusion matrix seems to be in accordance with those of the
previous experiments. Other experiments tends to produce the same kind of results: one
color per pixel is usually slightly inferior to two colors per pixel. In any case, the influence
of the compression is marginal. This can be exploited to reallocate the freed memory to
more interesting parameters.

The conclusion on filter importances is as usual: compression does not influence much
the filter profiles.

5.1.12 Empirical upper bound on the accuracy

We have now had a tour on the influence of the hyper-parameters. Clearly, the most im-
portant is the spatial pooling. Then comes the number of trees, the parameters k£ and the
number of subwindows. Sadly, the number of filters and the kind of filter generator play a
less important role in the process. Based on this observation we can now test an optimal
set of parameters. The accuracy we will obtain will be subject to some bias because we did
not determine this set of parameters on a independent database. However, the bias should
be small. Figure 5.1 about the influence of the database size on accuracy suggests that
a database of 40,000 images is representative enough. Furthermore, our observation were
either confirming our intuitions or too clear to be dependent on the learning samples only.
Finally, we will consider this result for what it is: an upper bound on the accuracy.

We chose to use the custom filters with two poolings, a 7x7 minimum and maximum.
We impose compression so as to have 2 colors per original pixel. We use the remaining
memory to extract 30 subwindows per images. We built 500 trees with a value of k of 500
as well. The final accuracy scores 0.613. Of course, this made for a long learning phase
(approximately 1 day).

5.1.13 Improvements

We thought of two improvements for the ET-DIC methods.

Useful filter selection. The first one was to use the trees to assess the filter usefulness,
keep only the best of them and proceed in an iterative manner to build a stock a “good”
filters. This selection can be conducted in an unsupervised way and therefore would not
suffer from selection bias. The good news brought by the previous section is that we do not
need much resources to assess the filter usefulness: the filter profiles are quite stable and can
be assessed with totally randomized trees using only 5 subwindows and compression so as to
quicken the process and/or allow for more filters. We need to use the same spatial poolings,
however. The very bad news is that the filter generation mechanism do not seem to matter
as much as we had originally hoped and consequently, the accuracy gain is expected to be
small.

We ran the following experiment: the default classification with a preprocessing for
choosing the 100 best filters out of 1000 random ones. The preprocessing is conducted as
proposed by totally randomized trees with only 5 subwindows per images and a compression
of 1 color per pixel. Figure 5.14 depicts the filter profile. As we can see, we have a very
regular profile, much more than what we ever have encountered before (see for example
Figure 5.2). Besides, there is no single useless filter, which is also a first. The accuracy
is, however a mild 0.5137; not even the best for the default classification. Once again, this
highlights the fact that the filters do not play a major role in the process.

Global random subspace. The second improvement consists in growing forests inde-
pendently with different sets of filters, as was mentioned in Subsection 4.2.2 about technical
issues. The results are aggregated by averaging the class probabilities of a given image. In
other words, we vote the class over the several forests. Considering the independence of the
filters of two different forests and our discussion about the number of filters, we foresee that
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Figure 5.14: Filter importances after optimization of the filter usefulness

the main accuracy gain will actually comes from the augmentation of the total number of
trees.

We made our experiment using the following filter generators (unmentioned parameters
are left to their default values):

% Identity-perturbed generator with a real uniform law on [—1, 1] (accuracy: 0.5128)

9 Identity-distance generator with a maximum distance of 10 and a real uniform law
(accuracy: 0.4999)

% Stratified generator with a subdivision in 10 cells and a Gaussian law of 0 mean and
0.021 standard deviation (accuracy: 0.5063)

The accuracy was of 0.5241, which is indeed more than the individual accuracies. The total
number of trees is of 90. From our previous study on the topic, we can say that the major
part of the accuracy gain comes indeed from the increase in the number of trees.

We can also add our best result of 0.613 with the custom filters and 500 trees of Subsection
5.1.12. However, we need to weight appropriately the model predictions, for example by the
number of trees. This yields a slight accuracy gain, rising to 0.6137, whereas we would
obtain 0.569 without weights.

5.2 Feature learning scheme

The previous section focused on the ET-DIC pros and cons. We now briefly turn to the
ET-FL mode. In this mode, we use totally randomized trees to build a visual dictionary
while the actual classification is carried out by a SVM.

This mode is less prone to a deep analysis of the hyper-parameters, especially those of
the forest. The parameter k is fixed to 1, and the number of subwindows, the number
of trees and the minimum number of samples to split all influence the number of leaves
in a well-understood fashion. An increase in the first two will produce an increase of the
number of leaves and ultimately of the discriminative power. The number of subwindows
will be severely limited by the memory capacity while the number of trees limitation will be
the computational time, although to a lesser extent. A good tradeoff must then be found
between the number of subwindows on the one hand and the number of filters and spatial

v
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poolings on the other. From the information we gathered in the last section, we suppose
that the number of subwindows will be much more important than the number of filters.
The compression can be reused in order to free some extra memory if need be. Since we are
not averaging the results any longer, we have lost the ability to reduce overfitting and must
resort to pruning in order to limit the model complexity. Usually, the optimal pruning should
be obtained by cross-validation. However, for our database, a good value of n,,;, = 500 has
already been established (Marée et al. (2014a)).

Before starting, let us remember those two results already established for the ET-FL
mode. In traditional Pixit, an accuracy of 0.5007 was achieved with 10 almost fully grown
trees and 20 subwindows. As for the use of filters and several poolings, the record was of
0.7431 with 750 totally randomized trees, 20 subwindows and 7,,;, = 500.

5.2.1 Accuracy

Our first tests consist, once more, in drawing the learning curve. We made the tests for the
Pixit and RandConv methods. Since the demand on subwindows was larger, we focused on
less filters. For comparative purpose, we chose to use the custom filters. Otherwise than
that, we used 750 totally randomized trees with n,,;,, = 500, 20 subwindows and a 3x3
averaging moving window for spatial pooling. On Figure 5.15, we also added the ET-DIC
curve for comparison. It was drawn with 100 zero-perturbed filters, though.

Our results concerning the Pixit are much higher than the aforementioned one. This is
normal; the parameters are different and we build a much more discriminative dictionary.
Once again, Pixit is systematically beaten by the RandConv of the same mode. However,
with our choice of parameters, Pixit in ET-FL mode easily surpasses the RandConv, and
consequently the Pixit, in ET-DIC mode. Let us note that using totally randomized trees
with such severe pruning reduces the learning time gap between the RandConv and the Pixit
since the major bottleneck is now the SVM optimization, which is dependent on the total
number of leaves. Total number of leaves which is usually higher in the Pixit case.

These first tests are promising since the RandConv performs better than the Pixit and
the difference in running time is reduced. With the whole database, the ET-FL Pixit scores
0.5879 of accuracy while the RandConv manages 0.6335. There is still a big gap between
the record of 0.7431 and our result of 0.6335. The two sources of difference are basically the
choice of subwindows and the spatial poolings. Based on the ET-DIC analysis, we expect
the difference to come from the latter source. We will first discard the former, however, with
a variability analysis.

5.2.2 Variability

We have conducted three experiments to assess the method variability in ET-FL mode. The
first one consists in testing the variability with the same pre-dictionary matrix; the matrix
fed to the totally randomized trees. In that case, the only source of variability comes from
the trees. The second experiment was designed to assess the variability due to the random
subwindows. Again we used the custom filters. Finally, the last experiment’s goal was to
measure the variability due to the randomization of the filters. We used the zero-perturbed
generator with the same number of filters as for the other experiments.

We chose to present the results together with the number of words constituting the dic-
tionary (Figure 5.16). The comments are numerous. Firstly, let us notice the general linear
trend between the accuracy and the number of words. A correlation was expected: the
bigger the dictionary, the greater the discriminative power. This is subject to some limi-
tations, though, as a big but poor dictionary is useless. For example, developing the trees
fully would increase the number of words while overfitting the data, ultimately producing
a poorer dictionary for generalization tasks. Secondly, the variability due the random sub-
windows seems to be negligible: the real source is the randomization in the trees. Finally,
let us tackle the tickle: the zero-perturbed filters.
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Figure 5.15: Influence of the learning set size on the accuracy

Concerning the accuracy variability, we can see that it is now much higher: 1.57 x 1072
(half an order of magnitude higher than without varying the filters). Also, the mean accuracy
with this filter generator is clearly lower than with the custom filters. Judging by the figure,
this drop of accuracy is mainly due to the relatively low number of words in the visual
dictionary. A paradoxical situation since less leaves means better balanced trees, an ideal
situation in ET-DIC mode. This might be due to a greater correlation between the filters’
result. After all, the custom filters were chosen because they had a physical meaning and
did not produce the same outputs. A poorer dictionary also influence the ease of the SVM
to come up with the best hyperplane. Evidence of this is the running time of the SVM
optimization which consistently takes approximately three hours, one more than with the
custormn filters.

These observations raise two challenges while bringing some additional shred of hope
for the RandConv framework, replacing the filter generator at the center of the method.
Of paramount importance is the necessity of reducing the accuracy variability due to filter
randomization. As importantly, we need to design filter generators better able to produce
“good” dictionary. Hopefully, we can accomplish both tasks at the same time.

5.2.3 Accuracy-dictionary size relationship

In this subsection, we present a compendium of our experiments regarding the ET-FL mode
to deepen our knowledge about the relationship between the accuracy and the dictionary
size. Once again, all these experiments were conducted with the hyper-parameter default
values, except when mentioned otherwise.

As we can see from the overloaded Figure 5.17, the general trend tends to confirm itself.
Nevertheless, there are some outsider points. In particular, the case of the custom filters with
both minimum and maximum poolings of size 7x7 and the case of the 50 zero-perturbed
filters without pooling. In the former, we achieved a good discriminative power with a
small dictionary. However, we were able to score an accuracy of 0.7056 by exchanging the
minimum pooling for a layer without pooling, thus enlarging the dictionary. Surprisingly,
using only the 7x7 maximum pooling produced a larger dictionary than with the addition
of the minimum.

The latter outsider point, corresponding to 50 zero-perturbed filters without pooling,
depicts the opposite situation. It has the biggest dictionary so far but a proportionally low
accuracy. Increasing the number of features via the number of filters means less correlation
in the learning matrix and may consequently lead to less balanced trees. As for the accuracy
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Figure 5.16: Number of leaves versus accuracy scatter plot

drop, it may be due to an increase of overfitting. Indeed, except for the number of filters,
the other parameters have the same value than in the other experiments, in particular the
number of subwindows (20) and the 7, parameter (500). Thus, more leaves implies more
overfitting, as we do not have a model variability reduction mechanism. In any case, a closer
inspection of the influence of the number of filters on both the accuracy and the dictionary
size should shed some light on the matter.

A second observation we can make is that some of the ET-DIC conclusions are still
applicable, hopefully. In particular, the application of the 7x7 maximum pooling along with
the “good” filter generators (custom, zero- and identity-perturbed generators) yields better
results. Let us be cautious with this observation, though, since the variability can be high,
as we have seen.

5.2.4 Useful filter selection

At this stage, we might want to reuse a trick from the ET-DIC mode: adding an unsupervised
layer which chooses only a subset of the more useful filters from a bigger set. Indeed,
resorting to totally randomized trees deprive us of the ability to select interesting filters in
the growing process. As previously, this additional layer would compute an unsupervised
forest with many filters and then select the best ones to build the dictionary. We are
expecting a greater accuracy gain than in the other mode.

To prove the validity of the concept, we ran an experiment with 38 out of 500 filters
with 3x3 average moving windows; the same setting as in the variability experiment. The
situation is depicted in Figure 5.18. Although we have to be cautious with respect to the
variability, this first result is promising with an accuracy of 0.6211. This track would be
worth investigating more deeply, in particular concerning its stability. If it were to be found
that the variability is indeed reduced, we could conclude that, in the ET-FL mode, the filter
selection is a promising solution. The main drawback to this optimization is an additional
cost of ten hours, in this case.

We can also turn back to classical ExtraTrees but this would entails a bias from them,
whereas building the dictionary is usually approached as a unsupervised tasks.

5.2.5 Combining sets of filters

Incorporating results obtained with different sets of filters can be done in two ways in this
mode. The first one is to aggregate the predictions to form an ensemble method. In this
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case, the accuracy gain will come from the reduction of overfitting. This should also reduce
the accuracy variability. The second way of combining different sets of filters is to enlarge the
global dictionary by combining the individual ones. In essence, a image is not map to a visual
word any longer but rather to a visual sentence. In this case, the accuracy gain will come
from the increase in the number of trees but surely also from an independent improvement
in the discriminative power due to the reduction of redundancy. This is somewhat akin to
the global random subspace optimization: a dictionary based on different categories of filters
may contain less redundancies and consequently a better classification power.

To illustrate these and have a first idea of their performances, we ran three tests. All
of them are based on three experiments presented previously using different filter genera-
tors. They were the zero-perturbed filter generator with continuous uniform law (accuracy:
0.6389) and two identity-perturbed generators. One with the same uniform law (accuracy:
0.6369) and the other with a Gaussian one (accuracy: 0.6161). In all cases, we worked with
38 filters (plus the original image) and a 7x7 maximum moving window.

Ensemble method. In this variant, we derive the new outputs by voting over the predic-
tion of each individual model. We scored an accuracy of 0.671. This result suggests that the
EF-TL, deprived from the smoothing effect of the ensemble mechanic, are prone to overfit-
ting, even though n,,:;, = 500. Some effort should be devoted to reducing this overfitting
while preserving enough leaves to build sufficiently large dictionary. This observation about
overfitting should also be transposable to Pixit.

Global random subspace. We ran two experiments. In the first one, we used only a
third of each histogram so that the new dictionary would be on the same order of size as the
individuals’. The result is only of 0.6459. In the second test, we concatenated all histograms.
Consequently the final histogram is thrice larger than the individual ones (3,484,191 words).
This leads to an accuracy of 0.6899.

Comparing both results, we can see that the main component of the improvements comes
from the increase in the dictionary size. The component linked to the increase of discrimi-
native power is present and significant but lesser than expected. It would be interesting to
see how optimizing the filters base on their usefulness would interfere with global random
subspace approach for a fix number of words.

We conclude the ET-FL analysis here. Our little foray in this mode has not been wasted
but a more general and systematic study of this mode is required to grasp all its character-
istics and subtleties.

£
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Chapter

Conclusion and perspective

In this chapter, we come back to our objectives and confront our hypothesis to the results of
Chapter 5. Our goal was to produce a method based on Pixit which incorporated elements
of convnets so as to raise the accuracy, hopefully up to the point of emulating them, while
retaining the best aspects of the classification forests. More precisely, our hypothesis was:

It is possible to combine the advantages of the classification forests and more
precisely of the Pizit method, namely computational cost, feature importance
evaluation and ease-of-use, with those of convolutional networks, primarily the
accuracy.

To assess our RandConv method, we used a standard database which had proved difficult
for the traditional Pixit method. We tested both of the method’s modes: the ET-DIC and
the ET-FL.

ET-DIC mode. In the case of the ET-DIC, we have seen that the method was surprisingly
stable in terms of filter importance evaluation and accuracy. Concerning the latter, we saw
that the main accuracy gain came from introducing non-linearities in the form of spatial
pooling and not so much by extending the dimensionality with linear filters. The spatial
pooling without the filtering, however, led to an obvious drop of accuracy. Of the two
spatial pooling we tested, one proved to be totally inappropriate. It also seems that the
spatial pooling scale is an important parameter. As for the filter generators, most seemed
to rival, leaving only the distance-based generators behind. Since the memory limitation is
an important factor, we devised a color compression scheme based on spatial redundancy
which allows us to reinvestigate some memory budget on more critical elements such as using
several pooling schemes or using more subwindows. This allowed us to achieve a significant
increase in accuracy. We finally devised two improvements. The first one consisted of using
a totally randomized forest to choose more (co-)useful filters. If the result was interesting as
far as the filter importances were concerned, the accuracy gain was a disappointment. The
second improvement was to combine the prediction of several forests learned with different
sets of filters. If the accuracy gain was more pronounce than with the previous improvement,
it was mainly due to the increase in the total number of trees.

We can say that our ET-DIC mode partially meets the objective. The computational cost
is much higher than the traditional Pixit method. This is due in part to the convolutions and
poolings but also to forest growth, which has to work with a much higher dimensional input
space. Compare to convnets, however, the computation is still affordable. As we have seen,
the filter importance evaluation works well and is stable. On a practical problem, analyzing
closely both the useful and the useless filters may bring insight to the classification task.
We also pointed out that playing with the n,,;, parameter allows to discern the co-useful
filters. A task which might also be tackled by analyzing the inter-tree filter-wise variance
of the importances. Derived applications such as locating zone of interest was not pursued
but should still be applicable. Variant based on the RandConv can also be designed so as to
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offer a even finer localization method. Concerning the ease-of-use, we have seen that many
hyper-parameters can be left to their default values or have a predictable influence. Since
the filter generation mechanism is not as important as we had originally hoped, we can rely
on a simple one. All in all, the method is still fairly easy to use, the spatial pooling being the
only component in dire need of optimization. At the very least, the RandConv in this mode
is still much easier to use than the convnets where even the structure has to be optimized.
Although we achieved a significant accuracy gain of 7.63% compare to the traditional Pixit
method, we are not yet near close to the convnets’ performances. Undoubtedly, this is linked
to the method’s inability to take more advantage of the filters.

ET-FL mode. Our venture in the ET-FL mode was rich, though far from complete. Be-
sides the immediate accuracy jump, the most interesting result is that the filters play a more
important role than in the ET-DIC mode. We also saw that the accuracy variability was
more pronounced and observed a linear trend between the total number of leaves and the ac-
curacy. The conclusion about the spatial poolings seems to hold : the 7x7 maximum moving
windows still produces better results. Some caution is in order while reading these results,
though, because of the high variability. We went on to test several promising optimizations.
The first one consisted in adding a layer which selects the more informational filters for
the classification task. This is carried out by an unsupervised version of the RandConv in
ET-DIC mode and turned out to be more effective than in that mode. Indeed, the ET-FL
mode, by resorting to totally randomized trees, do no longer possess the ability to choose the
adequate filters. Consequently, we recorded a significant accuracy improvement. The second
class of optimizations focused on how to combine the filter generators. We tried to form an
small ensemble method which already proved efficient by reducing the overfitting. Our lasts
experiments were about global random subspaces. We highlighted that the accuracy gain
has two sources: an increase in the discriminative power due to the addition of new filters
and the enlargement of the dictionary. All the optimizations are promising and should be
tested together.

As we pointed out, our study of this mode was not thorough. Therefore coming back
to the objective will be more difficult. From what we have seen so far, this mode can beat
the other one in terms of accuracy. Whether it can rival with the convnets is still unclear.
So far, the best result is still of 0.7431. Result we were not able to reproduce directly for
lack of main memory. Our discussion about the optimization bodes well for further increase
in accuracy. As we mentioned in the method description, this mode does not offer an easy
way to assess filter importances. Concerning the computational cost, it is higher than in the
previous mode, although the relative expense of RandConv compare to Pixit is somewhat
lessened. As for the ease-of-use, we should first fix the variability before deciding formally
but it would be logical that this mode turns out be less easy to use than the ET-DIC but
still much more easy than convnets.

These two distinct situations offer us an interesting choice depending on the task require-
ments. If we want to retain the Pixit capabilities with a little raise of accuracy, the ET-DIC
mode seems perfect. However, if we want an easy-to-use method with much better accura-
cies while not needing the extra capabilities offered by Pixit, we are looking for the ET-FL
mode.

Perspectives. The study of the RandConv framework has only begun. Firstly, other
databases should confirm our conclusions, in particular those about the relatively low in-
fluence of the filter generators and the number of filters (ET-DIC). If these were to be
confirmed, the RandConv framework could be generalized (and renamed) so as to accom-
modate non-linear filtering. The first difficulty would be to design a way to build such filters
on the fly as we are currently doing with the linear ones. A first possibility would consist in
creating random combinations from a predefined set of filters. Depending on the number of
combinations per sequence, this can also lead to hierarchical structure more akin to what is
found in convnets. If we were to retain the linear filters, other generator, working directly
in the frequency space, could be designed.

Generic image classification - The RandConv framework 59



Concerning the spatial pooling, we focused on two extreme cases of neighborhood aggre-
gation. In the first one, all pixels are examined but the neighborhoods do not overlap, while
the overlapping is maximal in the second case. It might be worth investigating middle stage
overlapping scheme. The common parts should be large enough so that the undersampling
is not too important but still allows for some resolution reduction. This might help limit
the impact of the reinterpolation alterations due to resizing the subwindows. This last effect
does not seem to be the major cause of error, however.

We also need to deepen the analysis on the ET-FL mode. A more systematic study of the
hyper-parameters is needed, at least concerning the filter generators and spatial poolings.
A primordial matter is the reduction of the accuracy variability due to the filter randomiza-
tion. The optimization we developed can surely help but this would need to be confirmed
experimentally. Another interesting study could focus on the overfitting-dictionary size re-
lationship to discern under what circumstances having more words decreases the accuracy.

Fortunately, these can be easily developed by extending the current code base. Finally,
let us note two shortcomings of the RandConv framework. Firstly, the batch mode learn-
ing imposed by the tree growing algorithm is a severe constraint. This is even more true
considering that current benchmark databases keep growing. An obvious countermeasure
is to reimplement the algorithm so that the whole learning matrix needs not fit into the
main memory, at the expense of the already quite high running time. The second remark
is that we might, thanks to the ET-FL mode, get closer to the convnets’ performances but
we may well not reach them. In the convnets, the actual filters are learned, whereas they
are selected in the RandConv. In that respect, the convnets approach is more sensible and
should always keep the lead on the accuracy.
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