

Figure 1. Induction of MCF in calves. (a) Body temperature recorded daily after intravenous inoculation of two groups of four calves with mock-infected BT cells (mock, solid symbols) or cells infected with the AlHV-1 WT C500 strain (AlHV-1, open symbols). Calves were euthanized at 14 (AlHV-1) and 16 (mock) days pi. (b) Inguinal and mediastinal LN mass at time of death. (c) Percentages of CD4⁺ and CD8⁺ cells in the gated CD3⁺ T cell population in inguinal LN at time of euthanasia. (d) Multicolour flow cytometry analysis of CD4⁺ and CD8⁺ T cells in PBMC before and after propagation in culture with rhIL-2 (10ng/ml). Gate was placed on CD3⁺ T cells. LCLs propagated from all calves showed >90% CD3⁺ T cells. Error bars in (b) and (c) indicate SE.

Organism	Target	Percentage of reads
Bos taurus	microRNA	28.8%
	genome	22.5%
	rRNA	19.1%
	tRNA	6.9%
	mRNA	5.3%
	ncRNA	2.6%
	snoRNA	1.7%
	MtRNA	0.9%
	snRNA	0.8%
	Mt_tRNA	0.2%
	Repeats	<0.1%
	Ψgene	<0.1%
	Retrotransposed	<0.001%
	teloRNA	<0.0001%
	scRNA	<0.00001%
AlHV-1	LUR	1.5%
	prDNA	<0.001%
Ambiguously mapped reads		3.8%
Unmapped reads		5.8%

Table 1. Distribution of the mapped reads against the cellular and viral databases

	· · · ·		<i>c</i> :			Wolz et al
AILIN 1 mcDNIA	Cloud companyor (major form)	Stuan d	Size	No of	Comonnia location	2010h
Chusten 1	Cloned sequence (major form)	Strand	(111)	Teads	Genomic location	20100
miR-4-5n	UCUGCUGCGCGCGCGCUUCUUU(CU)	-	21	1 878	122-142	pre-miR-1
miR-4-3p	GAGGAGCCUCGCACGGCAGAGA(A)	-	22	5.273	84-105	pre-mite-r
miR-3-5p	CAGAGACCGCACGGGUGUUUCU	-	22	407	486-507	pre-miR-3
miR-3-3p	UCACACCCAGGCGGUCUCUGCA(A)		22	7,779	433-460	1
miR-2-5p	UUAAGAAAUAUAGGCUCAAGGU(U)	-	22	3,994	996-1017	/
miR-2-3p	UCUUGUGCCUAGAUUUCUUAUA		22	4,929	963-984	
miR-1-5p	UACAAGGGCUAAGCAUGAGCU(GU)	-	21	4,086	1126-1146	/
Cluster 2						
miR-32-5p	UGCGGGGUUGUGGGAAGCAGACG	-	23	5,470	26392-26414	pre-miR-7
miR-32-3p	UCUGCUUCGCCAUCUCCGUAC		21	375	26358-26378	
miR-31-5p	AAAGUGCACCCCUGGUUGUUUG(UG)	-	22	11,043	26500-26522	pre-miR-8
miR-31-3p	UAAAACCUCGGGUGCACUUAU		21	7,139	26464-26484	
miR-30-5p	UGUUGGCACCUGGGUUAUUACAU	-	23	196	26610-26632	pre-miR-9
miR-30-3p	UGUAAUAGCACUGUGUGCUAC		21	26	26-572-26592	10.10
miR-29-5p		-	24	1,033	26760-26783	pre-miR-10
miR-29-3p	CUALLACCALICACCALLAACUCUU		21	206	26/22-26/42	D 11
miR-28-5p		-	22	6,528	26980-27001	pre-mik-11
miR-28-5p			21	4 794	20940-20900	nra miD 12
miR-27-3p		-	23	4,704	27090-27711	pre-mik-12
miR-26-5p	UAGCUUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGUGU	-	21	892	27034-27073	nre-miR-13
miR-25-5p	UAAGAGCUCUUGGCGAAGGCU(CU)	-	21	2 403	27234-27254	pre-miR-14
miR-25-3p	AUCUUUGCCAAGUACUCUGGU	_	21	1,196	27298-27318	pre-mite-14
miR-24-5p	CACGAUAGUUUAGAAAAAAUCUGU	-	24	216	27476-27499	pre-miR-15
miR-24-3p	UGAUUUUUACUAUGCUAUCAGA		22	801	27445-27466	pro mile ro
miR-23-5p	AGAUAGUUUGGGGGAGGCCUUU	-	22	654	27676-27697	pre-miR-16
miR-23-3p	UGGCUCAGCCAAACUAUCACG		21	941	27642-27662	
miR-22-5p	UGAUGAUCCUAAUGGAGGACU(UU)	-	21	3,724	27861-27881	pre-miR-17
miR-22-3p	AGGUGCUACAUUAAGAUCAUGA		22	1,445	27826-27847	
miR-21-5p	UGUCAGUUACAGCAGGAAUUGUU	-	23	1,792	27984-28006	pre-miR-18
miR-21-3p	CAUUCCGGGCUUUAACUGACAAGC		24	14,227	27947-27970	
miR-20-5p	GAUAGAUUGGGUUAGGAUCUGU	-	22	24,011	28122-28143	pre-miR-19
miR-20-3p	AGAUCCUUGCUCAAUCUGUCUU		22	2,320	28086-28107	
miR-19-5p	UGAUAGCUUAAGGUGCUCUCUG	-	22	60	28245-28266	pre-miR-20
miR-18-5p		-	22	666	28465-28486	pre-miR-21
miR-18-3p			22	253	28425-28446	
miR-17-5p	UAGOGGUCAGGCGAGUCUGAGU	-	22	904	280/2-28095	pre-mik-22
miR-17-5p			21	750	28034-28034	pre miP 22
miR-16-3p	AUUGGCGCAGUUAACUAUUGC	-	21	411	28838-28858	pre-mix-25
miR-15-5p	GAGCACCAUCAGUAGUUAUGUGU	-	23	972	20030-20030	pre-miR-24
miR-15-3n	AAUAACUGCUGACAGUGCAAGU		22	7 609	29035-29056	pre mite 21
miR-14-5p	AUCCAGUACACAAGCUUCCCCCGU	-	24	2.814	29218-29241	pre-miR-25
miR-14-3p	CGGGUGCGAGUGUACUGGCAU		21	6,575	29178-29198	
miR-13-5p	CAAGUACACUACGUAUCACGCGGU	-	24	493	29341-29364	pre-miR-26
miR-13-3p	UGCAGUGUUGCUUAGUGUGCUUAG		24	235	29302-29325	-
miR-12-5p	UAGUUACAUUGACUGGUAAUA	-	21	4,535	29481-29501	pre-miR-27
miR-12-3p	GUUACCAGUUUUUUGUACCAG		20	14	29448-29467	
miR-11-5p	GCGGUACUGGGGUUGUUAAAGA	-	22	1,022	29663-29684	pre-miR-28
miR-11-3p	GUUAACAUCCCCAAUAUCGGU(U)		21	14,878	29481-29501	
miR-10-5p	ACGGUGCAGUAACUGAUAUAGA	-	22	139	29790-29811	pre-miR-30
miR-10-3p	UAUAACGGAACACCUGCAUCGGCU		24	17,758	29751-29773	175 . 4.4
miR-9-5p	UGAAGCAGGCUAUCUCUCACCUG	-	23	708	29909-29930	pre-miR-31
miR-9-3p	CAAGUGCAAGUGGCCUGCCUCAA		22	45	29870-29892	'D 00
miR-8-5p	AAUCAGACGGCUUGUGCAUAAGCU	-	24	3,183	30068-30091	pre-miR-32
miR 7 5p	AGACAGACAGUGAGCGGGUGGG		21	2,670	20205 20226	nra miD 22
miR-7-3p		-	22	5,023	30205-30220	pre-mik-53
miR-6-3p	UAAUCUGCAAACUUCUGUCCCCU	-	23	10 632	30291-30312	pre-miR-34
miR-5-5p	AAUCGAGAAAGGCACUCCUCACCGG		25	8 866	30472-30496	pre-miR_35
miR-5-3n	UGUGGGUCUAGUGUCCUUCCGAGA	-	24	5 657	30431-30454	pre-mite-55
Isolated :			~ 1	0,001	50151 50151	
miR-33-5p	UGAGCAACACUCCCUGCCCCAG	+	22	64	32375-32395	pre-miR-36
"miR"-34-5p	AUCCCGGGGGCCGAGGG	+	16	210	38132-38147	/
pr-DNA:						
"miR"-35-5p	CCCCGCCCCCGCUCU	+	16	48	82-97	/
D 26 F.	LICCCCCCCCCCCCCCCCC		20	1.026	252 271	1

Table 2. AlHV-1 small RNA sequences, genomic locations, and distribution in the librarya

Figure 2. Genomic distribution of AlHV-1 small RNA sequences. (a) Small RNA cloning from total RNA of LCL propagated from a calf infected by the AlHV-1 C500 WT strain and developing MCF (LCL718). Predicted ORF are represented by the blue boxes and AlHV-1 specific ORFs are depicted in red. Small RNA reads are mapped on the genome relative to their position and abundance. **(b)** Inset zooms of identified small RNA cluster 1 and 2. Small RNA reads are mapped on the reverse strand of the genome relative to their position (from 5'- to 3'-end) and abundance. The grey boxes represent previously predicted pre-miRNA (Walz *et al.*, 2010). Negative values represent reads mapping on the reverse strand of the genome.

Figure 3. Detection of AlHV-1 miRNA candidates by quantitative RT-PCR. Total RNA (500 ng) was obtained from: (a) LCL718, (b) iLN of MCF-developing calves infected with the AlHV-1 WT C500 parental strain (n=4), open square symbols represent measurement for individual calves, (c) pLN cells of a MCF-developing rabbit infected with the AlHV-1 WT C500 BAC-excised strain, and (d) splenocytes of a MCF-developing rabbit infected with the AlHV-1 WT C500 BAC-excised strain, RNA was subjected to cDNA synthesis and miRNA-specific real-time PCR using a previously established protocol described in the Methods (Balcells *et al.*, 2011). Mock-infected calves (n=4) were used as controls for PCR specificity. Expression of viral miRNAs relative to host miR-21 are shown as $2^{-\Delta Ct}$ values.

U A UmiR-291b-3p: 5'- A**AAGUGC**A CC U UUGUUUGU -3' AIHV-miR-31-5p: 5'- A**AAGUGC**A CC U UUGUUUGU -3' C C GG

Figure 4. Sequence comparison of AlHV-1 miR-31-5p and miR-291b-3p. Seed sequences are shown in bold.

Figure 5. Deletion of cluster 2 miRNAs. (a) Recombineering methodology used to delete cluster 2 miRNAs flanking the BAC cassette and generation of the miR^{FRT} strain. (b) Southern blotting analysis of produced BAC plasmid DNA after *Eco*RI restriction and ethidium bromide staining (EtBr). The probes corresponding to region 246N and 247N were used (Ensser *et al.*, 1997). (c) Multi-step growth curves of WT and miR^{FRT} strains in BT fibroblasts. The data presented are means \pm SD of results from measurements in triplicate.

Figure 6. AlHV-1 cluster 2 miRNAs are not involved in MCF pathogenesis. (a) Body temperature of 3 groups of rabbits infected intravenously with mock-infected BT cells (mock, n=3), or BT cells infected with the WT eGFPNeoR⁻Amp^{R+} (WT, n=4) or miR^{FRT} (n=4) virus strains. (b) Cumulative incidence of survival. (c) Spleen and popliteal LN mass at time of euthanasia. Bars represent mean \pm SEM. *p<0.05, **p<0.01, ***p<0.001 (one-way ANOVA with Bonferroni's post test). (d) Percentages of CD8⁺ cells in the gated T cell population of PBMC, pLN and spleen analysed by flow cytometry at time of euthanasia. (e) Histopathological characterization of MCF lesions observed in liver and kidney of one rabbit representative of each group. White arrowheads indicate typical infiltrations of lymphoblastoid cells. A: arterioles; Bi: small bile ducts; Hp: hepatocytes; RC: renal corpuscules; T: uriniferous tubules; V: veins. (f) qPCR of viral genome copies in pLN at time of euthanasia of rabbits infected with the recombinant strains. Real-time PCR quantification was normalized on 10⁵ copies of beta-globin cellular genomic sequence. Data are plotted as means \pm SEM of triplicate measurements for each sample (n= 4). Unpaired Student *t* test.