Linearization and quadratization approaches for non-linear 0-1 optimization

Elisabeth Rodriguez-Heck and Yves Crama

QuantOM, HEC Management School, University of Liège
Partially supported by Belspo - IAP Project COMEX

June 2015, TU Dortmund

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

$$
f\left(x_{1}, x_{2}, x_{3}\right)=9 x_{1} x_{2} x_{3}+8 x_{1} x_{2}-6 x_{2} x_{3}+x_{1}-2 x_{2}+x_{3}
$$

Applications

Computer vision: image restoration

Supply Chain Design with Stochastic Inventory Management (joint model of F. You, I. E. Grossman) [6]

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
- Linearization: standard approach to solve non-linear optimization.
- Quadratization: Much progress has been done for the quadratic case (exact al gorithms, heuristics, polyhedral results...).

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

$$
\min _{x \in\{0,1\}^{n}} f(x)
$$

- Optimization is $\mathcal{N} \mathcal{P}$-hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
- Linearization: standard approach to solve non-linear optimization.
- Quadratization: Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Linearizations: reductions to the linear case

Standard linearization (SL)

$$
\min _{\{\mathbf{0}, \mathbf{1}\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}
$$

$\mathcal{S}=\{S \subseteq\{1, \ldots, n\} \mid$ as $\neq 0\}$ (non-constant monomials)

1. Substitute monomials

$$
\begin{array}{ll}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \quad \forall S \in \mathcal{S} \\
& z_{S} \in\{0,1\}, \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

Standard linearization (SL)

$$
\min _{\{0, \mathbf{1}\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{s} \neq 0\right\}$ (non-constant monomials)

1. Substitute monomials

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \quad \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

$z_{S} \in\{0,1\}$,
$x_{k} \in\{0,1\}$,

Standard linearization (SL)

$$
\min _{\{0, \mathbf{1}\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{s} \neq 0\right\}$ (non-constant monomials)

1. Substitute monomials

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \quad \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

2. Linearize constraints

$$
\min \sum_{S \in \mathcal{S}} a_{S} z_{S}
$$

$$
\text { s.t. } z_{S} \leq x_{k}, \quad \forall k \in S, \forall S \in \mathcal{S}
$$

$$
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
\begin{array}{lr}
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
x_{k} \in\{0,1\}, & \forall k=1, \ldots, n
\end{array}
$$

Standard linearization (SL)

$$
\min _{\{0, \mathbf{1}\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}
$$

$\mathcal{S}=\left\{S \subseteq\{1, \ldots, n\} \mid a_{s} \neq 0\right\}$ (non-constant monomials)

1. Substitute monomials

$$
\begin{array}{lr}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S}=\prod_{k \in S} x_{k}, \\
& \quad \forall S \in \mathcal{S} \\
z_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
& x_{k} \in\{0,1\}, \quad \forall k=1, \ldots, n
\end{array}
$$

3. Linear relaxation

$$
\begin{array}{ll}
\min & \sum_{S \in \mathcal{S}} a_{S} z_{S} \\
\text { s.t. } & z_{S} \leq x_{k}, \quad \forall k \in S, \forall S \in \mathcal{S} \\
& z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S} \\
& 0 \leq z_{S} \leq 1, \\
& 0 \leq x_{k} \leq 1, \quad \forall S \in \mathcal{S} \\
& \forall k=1, \ldots, n
\end{array}
$$

Intermediate substitutions (IS) (one monomial)

SL substitution

SL linearization

$$
z_{S}=\prod_{k \in S} x_{k}
$$

$$
\begin{array}{ll}
z_{S} \leq x_{k}, & \forall k \in S \\
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1) &
\end{array}
$$

IS substitution

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

Intermediate substitutions (IS) (one monomial)

SL substitution

SL linearization

$$
z_{S}=\prod_{k \in S} x_{k}
$$

$$
\begin{array}{ll}
z_{S} \leq x_{k}, & \forall k \in S \\
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1) &
\end{array}
$$

IS linearization

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

Intermediate substitutions (IS) (one monomial)

SL substitution

SL linearization

$$
z_{S}=\prod_{k \in S} x_{k}
$$

$$
\begin{aligned}
& z_{S} \leq x_{k}, \\
& z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1)
\end{aligned} \quad \forall k \in S
$$

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

$$
\begin{array}{lr}
z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \leq z_{A}, & \\
z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A|, & \\
z_{A} \leq x_{k}, & \forall k \in A \\
z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . &
\end{array}
$$

Intermediate Substitutions (IS) (one monomial)

Polytope $P_{S L, 1} \subseteq \mathbb{R}^{n+1}$
Polytope $P_{I S, 1} \subseteq \mathbb{R}^{n+2}$

$$
\begin{array}{llll}
z_{S} \leq x_{k}, & \forall k \in S & z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1) & & z_{S} \leq z_{A}, & \\
0 \leq x_{k} \leq 1, & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A|, & \\
0 \leq z_{S} \leq 1, & \forall k=1, \ldots, n & & \\
& \forall S \in \mathcal{S} & z_{A} \leq x_{k}, & \\
& z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & \\
& 0 \leq x_{k} \leq 1, & \forall k=1, \ldots, n \\
& 0 \leq z_{S} \leq 1, & \forall S \in \mathcal{S}
\end{array}
$$

Calculating projections: Fourier-Motzkin Elimination

Notation

$\mathbb{P}_{n, s}$: projection over the space of variables z_{s} and $x_{k}, k=1, \ldots, n$.

We calculate $\mathbb{P}_{n, S}\left(P_{I S, 1}\right)$ using the Fourier-Motzkin Elimination:

$$
\begin{aligned}
z_{S} & \leq z_{A} & & z_{A}
\end{aligned} \leq x_{k}, ~ ت z_{A} \quad \forall k \in A
$$

We also take into account the inequalities of $P_{I S, 1}$ that do not involve z_{A}

$$
z_{S} \leq x_{k}, \forall k \in S \backslash A
$$

Single monomials

Theorem

$$
\mathbb{P}_{n, S}\left(P_{I S, 1}\right)=P_{S L, 1}
$$

Theorem holds for disjoint several monomials:
$z_{S}=\prod_{k \in S} x_{k}, z_{T}=\prod_{k \in T} x_{k}$, take $A \subseteq S, B \subseteq T$.

$$
\begin{aligned}
& z_{S}=z_{A}^{S} \prod_{k \in S \backslash A} x_{k} \\
& z_{A}^{S}=\prod_{k \in A} x_{k}
\end{aligned}
$$

$$
\begin{aligned}
& z_{T}=z_{B}^{T} \prod_{k \in T \backslash B} x_{k} \\
& z_{B}^{T}=\prod_{k \in B} x_{k}
\end{aligned}
$$

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same time z_{A}^{S} and z_{B}^{T}).

Single monomials

Theorem

$$
\mathbb{P}_{n, S}\left(P_{I S, 1}\right)=P_{S L, 1}
$$

Theorem holds for disjoint several monomials:
$z_{S}=\prod_{k \in S} x_{k}, z_{T}=\prod_{k \in T} x_{k}$, take $A \subseteq S, B \subseteq T$.

$$
\begin{array}{ll}
z_{S}=z_{A}^{S} \prod_{k \in S \backslash A} x_{k} & z_{T}=z_{B}^{T} \prod_{k \in T \backslash B} x_{k} \\
z_{A}^{S}=\prod_{k \in A} x_{k} & z_{B}^{T}=\prod_{k \in B} x_{k}
\end{array}
$$

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same time z_{A}^{S} and z_{B}^{T}).

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{aligned}
& z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} \\
& z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} \\
& z_{A}=\prod_{k \in A} x_{k}
\end{aligned}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lll}
& z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} & \leq z_{A} & \\
z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| & \\
z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} & z_{T} \leq x_{k}, & \\
z_{T} \leq z_{A} & \\
z_{A}=\prod_{k \in A} x_{k}, & z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| & \\
& z_{A} \leq x_{k}, & \\
& z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & \forall k \in A
\end{array}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lll}
& z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \leq z_{A} \\
z_{S}=z_{A} \prod_{k \in S \backslash A} x_{k} & z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| \\
z_{T}=z_{A} \prod_{k \in T \backslash A} x_{k} & z_{T} \leq x_{k}, & \\
z_{A}=\prod_{k \in A} x_{k}, & z_{T} \leq z_{A} & \\
z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| \\
& z_{A} \leq x_{k}, \\
& z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & \forall k \in A
\end{array}
$$

Several monomials with common intersection

What happens with non-disjoint monomials? $A \subseteq S \cap T,(|A| \geq 2)$.

$$
\begin{array}{lrl}
z_{S} \leq x_{k}, & \forall k \in S \backslash A \\
z_{S} \leq z_{A} & & \\
z_{S} \geq z_{A}+\sum_{k \in S \backslash A} x_{k}-|S \backslash A| & & \\
z_{T} \leq x_{k}, & \forall k \in T \backslash A \\
z_{T} \leq z_{A} & & \\
z_{T} \geq z_{A}+\sum_{k \in T \backslash A} x_{k}-|T \backslash A| & & \\
z_{A} \leq x_{k}, & & \\
z_{A} \geq \sum_{k \in A} x_{k}-(|A|-1) . & &
\end{array}
$$

Several monomials with common intersection

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}\right) \subset P_{S L}
$$

Proof:
(1) Fourier-Motzkin gives:

$$
\begin{align*}
& \mathbf{z s}_{\mathbf{S}} \leq \mathbf{z}_{\mathbf{T}}-\sum_{\mathbf{k} \in \mathbf{T} \backslash \mathbf{A}} \mathbf{x}_{\mathbf{k}}+|\mathbf{T} \backslash \mathbf{A}|, \tag{1}\\
& \mathbf{z}_{\mathbf{T}} \leq \mathbf{z}_{\mathbf{S}}-\sum_{\mathbf{k} \in \mathbf{S} \backslash \mathbf{A}} \mathbf{x}_{\mathbf{k}}+|\mathbf{S} \backslash \mathbf{A}|, \tag{2}
\end{align*}
$$

(2) $\mathbb{P}_{n, S, T}\left(P_{I S}\right)=P_{S L} \cap\left\{\left(x_{k}, z_{S}, z_{T}\right) \mid(1),(2)\right.$ are satisfied $\}$
(3) Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A, z_{S}=0, z_{T}=\frac{1}{2}$, is in $P_{S L}$ but does not satisfy (2).

Larger subset substitutions are better

Consider $B \subset A \subseteq S \cap T,|B| \geq 2$.
(1) Take the first cut for both subsets:

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A|, \\
& z_{S} \leq z_{T}-\sum_{k \in T \backslash B} x_{k}+|T \backslash B|,
\end{aligned}
$$

(2)

$$
\begin{aligned}
z_{S} & \leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A| \leq \\
& \leq z_{T}-\sum_{k \in T \backslash A} x_{k}+|T \backslash A|-\sum_{k \in A \backslash B} x_{k}+|A \backslash B|= \\
& =z_{T}-\sum_{k \in T \backslash B} x_{k}+|T \backslash B|
\end{aligned}
$$

Larger subset substitutions are better

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}^{A}\right) \subset \mathbb{P}_{n, S, T}\left(P_{I S}^{B}\right)
$$

(Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A \backslash B, k \in B, z_{T}=0, z_{S}=\frac{1}{2}$ satisfies cut for B but not for A.)

Corollary

Consider three monomials R, S, T, with intersections $R \cap S=A$, $S \cap T=B, R \cap T=C,(|A|,|B|,|C| \geq 2)$. Then it is better to do intermediate substitutions of the two-by-two intersections, than a single intermediate substitution of the common intersection $A \cap B \cap C$.

Larger subset substitutions are better

Theorem

$$
\mathbb{P}_{n, S, T}\left(P_{I S}^{A}\right) \subset \mathbb{P}_{n, S, T}\left(P_{I S}^{B}\right)
$$

(Point $x_{k}=1$ for $k \notin A, x_{k}=\frac{1}{2}$ for $k \in A \backslash B, k \in B, z_{T}=0, z_{S}=\frac{1}{2}$ satisfies cut for B but not for A.)

Corollary

Consider three monomials R, S, T, with intersections $R \cap S=A$, $S \cap T=B, R \cap T=C,(|A|,|B|,|C| \geq 2)$. Then it is better to do intermediate substitutions of the two-by-two intersections, than a single intermediate substitution of the common intersection $A \cap B \cap C$.

Improving the SL formulation: 2-intersection-cuts

SL relaxation with 2-intersection-cuts

$$
\begin{array}{lr}
\min \sum_{S \in \mathcal{S}} a_{S} z_{S} & \\
\text { s.t. } z_{S} \leq x_{k}, & \forall k \in S, \forall S \in \mathcal{S} \\
z_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), & \forall S \in \mathcal{S} \\
\mathbf{z}_{\mathbf{S}} \leq \mathbf{z}_{\mathbf{T}}-\sum_{\mathbf{k} \in \mathbf{T} \backslash \mathbf{S}} \mathbf{x}_{\mathbf{k}}+|\mathbf{T} \backslash \mathbf{S}| & \forall \mathbf{S}, \mathbf{T},|\mathbf{S} \cap \mathbf{T}| \geq \mathbf{2} \\
\mathbf{z}_{\mathbf{T}} \leq \mathbf{z}_{\mathbf{S}}-\sum_{\mathbf{k} \in \mathbf{S} \backslash \mathbf{T}} \mathbf{x}_{\mathbf{k}}+|\mathbf{S} \backslash \mathbf{T}| & \forall \mathbf{S}, \mathbf{T},|\mathbf{S} \cap \mathbf{T}| \geq \mathbf{2} \\
0 \leq z_{S} \leq 1, & \forall S \in \mathcal{S} \\
0 \leq x_{k} \leq \mathbf{1} & \forall k=1, \ldots, n
\end{array}
$$

How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:

$$
\begin{aligned}
P_{S L}^{\text {conv }} & =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\} \\
& =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\},
\end{aligned}
$$

and its linear relaxation

$$
P_{S L}=\left\{\left(x, y_{S}\right) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
$$

- Question 1: Are the 2-intersection-cuts facet-defining for $P_{S L}^{\text {conv }}$?

How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:

$$
\begin{aligned}
P_{S L}^{c o n v} & =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\} \\
& =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\},
\end{aligned}
$$

and its linear relaxation

$$
P_{S L}=\left\{\left(x, y_{S}\right) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
$$

- Question 1: Are the 2-intersection-cuts facet-defining for $P_{S L}^{\text {conv? }}$?
- Question 2: Is there some case for which we obtain the convex hull $P_{S L}^{\text {conv }}$ when adding the 2 -intersection-cuts to $P_{S L}$?

How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:

$$
\begin{aligned}
P_{S L}^{\text {conv }} & =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\} \\
& =\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\},
\end{aligned}
$$

and its linear relaxation

$$
P_{S L}=\left\{\left(x, y_{S}\right) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{i}, y_{S} \geq \sum_{i \in S} x_{i}-(|S|-1), \forall S \in \mathcal{S}\right\}
$$

- Question 1: Are the 2-intersection-cuts facet-defining for $P_{S L}^{\text {conv? }}$?
- Question 2: Is there some case for which we obtain the convex hull $P_{S L}^{\text {conv }}$ when adding the 2-intersection-cuts to $P_{S L}$?

Facet-defining cuts (2 monomials)

Theorem: 2-term objective function
The 2-intersection-cuts are facet-defining for $P_{S L, 2}^{c o n v}$:

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}-\sum_{k \in S \backslash T} x_{k}+|S \backslash T|
\end{aligned}
$$

Facet-defining cuts (2 monomials)

Special forms of the cuts in some cases:
(1) If $S \subseteq T$,

$$
\begin{aligned}
& z_{S} \leq z_{T}-\sum_{k \in T \backslash S} x_{k}+|T \backslash S| \\
& z_{T} \leq z_{S}
\end{aligned}
$$

(2) If $T=\emptyset$ (and setting by definition $z_{\emptyset}=1$),

$$
\begin{aligned}
z_{S} & \leq 1 \\
1 & \leq z_{S}-\sum_{i \in S} x_{i}+|S|
\end{aligned}
$$

Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard linearization polytope $P_{S L, 2}^{c o n v}$ and its linear relaxation $P_{S L, 2}$. Then, $P_{S L, 2}^{c o n v}=P_{S L, 2} \cap\left\{\left(x, y_{S}, y_{T}\right) \in[0,1]^{n+2} \mid\right.$ 2-intersection-cuts are satisfied $\}$.

Facet-defining cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function $f(x)=\sum_{I \in L} a_{S^{(l)}} \prod_{i \in S^{(1)}} x_{i}$, such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(|L|)}$, and its standard linearization polytope $P_{S L, \text { nest }}^{c o n v}$. The 2-intersection-cuts

$$
\begin{aligned}
& z_{S^{(I)}} \leq z_{S^{(l+1)}}-\sum_{k \in S^{(1+1)} \backslash S^{(l)}} x_{k}+\left|S^{(I+1)} \backslash S^{(I)}\right| \\
& z_{S^{(l+1)}} \leq z_{S^{(I)}},
\end{aligned}
$$

are facet-defining for $P_{S L, n e s t}^{c o n v}$ for two consecutive monomials in the nest (and cuts are redundant for non-consecutive monomials).

Conjectures for m monomials

Conjecture: facet-defining
The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are not enough to define the convex hull $P_{S L}^{\text {conv }}$ (otherwise we could solve an $\mathcal{N} \mathcal{P}$-hard problem efficiently...).

Conjectures for m monomials

Conjecture: facet-defining
The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are not enough to define the convex hull $P_{S L}^{\text {conv }}$ (otherwise we could solve an $\mathcal{N} \mathcal{P}$-hard problem efficiently...).

- $m=3$, set of 3 monomials for which there exists an objective function which has a fractional optimal solution on $P_{S L} \cap\{2$-intersection-cuts $\}$: $\left\{x_{1} x_{2} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{3}\right\}$

Conjectures for m monomials

Conjecture: facet-defining
The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are not enough to define the convex hull $P_{S L}^{\text {conv }}$ (otherwise we could solve an $\mathcal{N} \mathcal{P}$-hard problem efficiently...).

- $m=3$, set of 3 monomials for which there exists an objective function which has a fractional optimal solution on $P_{S L} \cap\{2$-intersection-cuts $\}$: $\left\{x_{1} x_{2} x_{4}, x_{1} x_{3} x_{4}, x_{1} x_{2} x_{3}\right\}$

A (vague) idea of the convex hull for the general case

Idea of the convex hull

$$
\min \sum_{S \in \mathcal{S}} a_{S} z_{S}
$$

s.t. SL-constraints: linking a term with its variables 2-intersection inequalities: linking terms 2 by 2 3-intersection inequalities: linking terms 3 by 3

$$
\begin{array}{lr}
0 \leq z_{S} \leq 1, & \forall S \in \mathcal{S} \\
0 \leq x_{k} \leq 1
\end{array} \quad \forall k=1, \ldots, n
$$

One way of viewing the difficulty of the convex hull
For 3 monomials we already have many different possible ways for them to intersect:

A short summary of the linearizations part and some ideas

- We have obtained interesting cuts for $P_{S L}$ by applying intermediate substitutions for subsets of size ≥ 2.
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

$$
\begin{aligned}
& z_{i j}=x_{i} x_{j}, \\
& z_{i j}=x_{i} z_{j}, \\
& z_{I J}=z_{i} z_{J},
\end{aligned}
$$

x : original variables, z : variables that are already substitutions of other subsets.

A short summary of the linearizations part and some ideas

- We have obtained interesting cuts for $P_{S L}$ by applying intermediate substitutions for subsets of size ≥ 2.
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

$$
\begin{aligned}
z_{i j} & =x_{i} x_{j}, \\
z_{i J} & =x_{i} z_{J}, \\
z_{I J} & =z_{I} z_{J},
\end{aligned}
$$

x : original variables, z : variables that are already substitutions of other subsets.

- Open questions:
- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

A short summary of the linearizations part and some ideas

- We have obtained interesting cuts for $P_{S L}$ by applying intermediate substitutions for subsets of size ≥ 2.
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

$$
\begin{aligned}
z_{i j} & =x_{i} x_{j}, \\
z_{i J} & =x_{i} z_{J}, \\
z_{I J} & =z_{I} z_{J},
\end{aligned}
$$

x : original variables, z : variables that are already substitutions of other subsets.

- Open questions:
- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

Quadratizations: reductions to the quadratic case

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$
f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$
f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

Linearizations
Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$
f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

- Quadratic binary optimization is $\mathcal{N} \mathcal{P}$-hard.

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$
f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

- Quadratic binary optimization is $\mathcal{N} \mathcal{P}$-hard.
- Many techniques known for the quadratic case (exact algorithms, heuristics, cuts...).

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$
f(x)=\sum_{S \in \mathcal{S}} a_{S} \prod_{i \in S} x_{i}
$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

- Quadratic binary optimization is $\mathcal{N} \mathcal{P}$-hard.
- Many techniques known for the quadratic case (exact algorithms, heuristics, cuts...).

Quadratization methods: Rosenberg (Example)

$$
\min _{\in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (penalties): Iteration 1

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12} \in\{0,1\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
+M_{1}\left(\mathbf{x}_{1} x_{2}-2 \mathbf{x}_{1} \mathbf{y}_{12}-\mathbf{2} \mathbf{x}_{2} \mathbf{y}_{12}+3 \mathbf{y}_{12}\right)
\end{gathered}
$$

Quadratization methods: Rosenberg (Example)

$$
\min _{x \in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (penalties): Iteration 1

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12} \in\{0, \mathbf{1}\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
+\mathbf{M}_{1}\left(\mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{2} \mathbf{x}_{1} \mathbf{y}_{12}-\mathbf{2} \mathbf{x}_{2} \mathbf{y}_{12}+\mathbf{3} \mathbf{y}_{12}\right)
\end{gathered}
$$

The penalty vanishes if $y_{12}=x_{1} x_{2}$:

- $y_{12}=0$ and $x_{1}=0\left(\right.$ or $\left.x_{2}=0\right)$: all terms vanish,
- $y_{12}=1$ and both $x_{1}=1, x_{2}=1: M_{1}-2 M_{1}-2 M_{1}+3 M_{1}=0$.

Quadratization methods: Rosenberg (Example)

$$
\min _{x \in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (penalties): Iteration 1

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12} \in\{0,1\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
+\mathbf{M}_{1}\left(\mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{2} \mathbf{x}_{1} \mathbf{y}_{12}-\mathbf{2} \mathbf{x}_{2} \mathbf{y}_{12}+\mathbf{3} \mathbf{y}_{12}\right)
\end{gathered}
$$

The penalty vanishes if $y_{12}=x_{1} x_{2}$:

- $y_{12}=0$ and $x_{1}=0$ (or $\left.x_{2}=0\right)$: all terms vanish,
- $y_{12}=1$ and both $x_{1}=1, x_{2}=1: M_{1}-2 M_{1}-2 M_{1}+3 M_{1}=0$.

A penalty M_{1} is incurred at least one time if $y_{12} \neq x_{1} x_{2}$:

- $y_{12}=1$ and $x_{1}=0:-2 M_{1}+3 M_{1}=M_{1}$ (idem if $x_{2}=0$),
- $y_{12}=0$ and both $x_{1}=1, x_{2}=1$: all terms vanish but the first one, M_{1} is incurred.

Quadratization methods: Rosenberg (Example)

$$
\min _{x \in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (penalties): Iteration 1

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12} \in\{0,1\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
+\mathbf{M}_{1}\left(\mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{2} \mathbf{x}_{1} \mathbf{y}_{12}-\mathbf{2} \mathbf{x}_{2} \mathbf{y}_{12}+\mathbf{3} \mathbf{y}_{12}\right)
\end{gathered}
$$

The penalty vanishes if $y_{12}=x_{1} x_{2}$:

- $y_{12}=0$ and $x_{1}=0$ (or $\left.x_{2}=0\right)$: all terms vanish,
- $y_{12}=1$ and both $x_{1}=1, x_{2}=1: M_{1}-2 M_{1}-2 M_{1}+3 M_{1}=0$.

A penalty M_{1} is incurred at least one time if $y_{12} \neq x_{1} x_{2}$:

- $y_{12}=1$ and $x_{1}=0:-2 M_{1}+3 M_{1}=M_{1}$ (idem if $x_{2}=0$),
- $y_{12}=0$ and both $x_{1}=1, x_{2}=1$: all terms vanish but the first one, M_{1} is incurred.

Quadratization methods: Rosenberg (Example)

$$
\min _{x \in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (penalties): Iteration 1

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12} \in\{0, \mathbf{1}\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
+\mathbf{M}_{1}\left(\mathbf{x}_{1} \mathbf{x}_{2}-\mathbf{2} \mathbf{x}_{1} \mathbf{y}_{12}-\mathbf{2} \mathbf{x}_{2} \mathbf{y}_{12}+\mathbf{3} \mathbf{y}_{12}\right)
\end{gathered}
$$

Rosenberg (penalties): Iteration 2

$$
\begin{aligned}
\min _{x \in\{0,1\}^{4}, y_{12}, y_{34} \in\{0,1\}} & 3 y_{12} y_{34}+2 y_{12} x_{5}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
& +M_{1}\left(x_{1} x_{2}-2 x_{1} y_{12}-2 x_{2} y_{12}+3 y_{12}\right) \\
& +M_{2}\left(x_{3} x_{4}-2 x_{3} y_{34}-2 x_{4} y_{34}+3 y_{34}\right)
\end{aligned}
$$

Quadratization methods: Rosenberg (Example)

$$
\min _{x \in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (constraints): Iteration 1

$$
\begin{aligned}
& \min _{x \in\{0,1\}^{4}, y_{12} \in\{0,1\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
& \quad \text { s.t. } y_{12}=\mathbf{x}_{1} x_{2}
\end{aligned}
$$

Rosenberg (penalties): Iteration 2

$$
\begin{aligned}
\min _{x \in\{0,1\}^{4}, y_{12}, y_{34} \in\{0,1\}} & 3 y_{12} y_{34}+2 y_{12} x_{5}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
& +M_{1}\left(x_{1} x_{2}-2 x_{1} y_{12}-2 x_{2} y_{12}+3 y_{12}\right) \\
& +M_{2}\left(x_{3} x_{4}-2 x_{3} y_{34}-2 x_{4} y_{34}+3 y_{34}\right)
\end{aligned}
$$

Quadratization methods: Rosenberg (Example)

$$
\min _{x \in\{0,1\}^{4}} 3 x_{1} x_{2} x_{3} x_{4}+2 x_{1} x_{2} x_{5}-5 x_{1} x_{2}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4}
$$

Rosenberg (constraints): Iteration 1

$$
\begin{aligned}
& \min _{x \in\{0,1\}^{4}, y_{12} \in\{0,1\}} 3 y_{12} x_{3} x_{4}+2 y_{12} x_{5}-5 y_{12}+6 x_{3} x_{4}-x_{1}+x_{2}-x_{3}+x_{4} \\
& \quad \text { s.t. } y_{12}=\mathbf{x}_{1} x_{2}
\end{aligned}
$$

Rosenberg (constraints): Iteration 2

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12}, y_{34} \in\{0,1\}} 3 y_{12} y_{34}+2 y_{12} x_{5}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
\text { s.t. } y_{12}=x_{1} x_{2} \\
y_{34}=x_{3} x_{4}
\end{gathered}
$$

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.
(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.
(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.
(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.
(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks:
- The obtained quadratization is highly non-submodular.
- Big M.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function to force $y_{i j}=x_{i} x_{j}$ at all optimal solutions.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks:
- The obtained quadratization is highly non-submodular.
- Big M.

Quadratization methods: Rosenberg with constraints

Rosenberg (1975) [5]: first quadratization method (Variant).

(1) Take a product $x_{i} x_{j}$ from a highest-degree monomial of f and substitute it by a new variable $y_{i j}$.
(2) Add a penalty term $M\left(x_{i} x_{j}-2 x_{i} y_{i j}-2 x_{j} y_{i j}+3 y_{i j}\right)$ (M large enough) to the objective function... Add a constraint $y_{i j}=x_{i} x_{j}$.
(3) Iterate until obtaining a quadratic function.

- Advantages:
- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks:
- The obtained quadratization is highly non-submodular.
- Big M.

Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12}, y_{34} \in\{0,1\}} 3 y_{12} y_{34}+2 y_{12} x_{5}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
\text { s.t. } y_{12}=x_{1} x_{2} \\
y_{34}=x_{3} x_{4}
\end{gathered}
$$

Linearization of Rosenberg


```
s.t. y/12 = x }\mp@subsup{x}{1}{}\mp@subsup{x}{2}{
y34}=\mp@subsup{x}{3}{}\mp@subsup{x}{4}{
y/1234= y/12 y/34
y125}=\mp@subsup{y}{12}{\prime}\mp@subsup{x}{5}{
```


Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

$$
\begin{gathered}
\min _{x \in\{0,1\}^{4}, y_{12}, y_{34} \in\{0,1\}} 3 y_{12} y_{34}+2 y_{12} x_{5}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
\text { s.t. } y_{12}=x_{1} x_{2} \\
y_{34}=x_{3} x_{4}
\end{gathered}
$$

Linearization of Rosenberg

$$
\begin{aligned}
\left.\min _{x \in\{0,1}\right\}^{4}, y_{12}, y_{34}, y_{1234}, y_{125} \in\{0,1\} & 3 y_{1234}+2 y_{125}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
\text { s.t. } & y_{12}=x_{1} x_{2} \\
& y_{34}=x_{3} x_{4} \\
& y_{1234}=y_{12} y_{34} \\
& y_{125}=y_{12} x_{5}
\end{aligned}
$$

Rosenberg and intermediate substitutions

Iterated intermediate substitutions

$$
\begin{aligned}
z_{i j} & =x_{i} x_{j}, \\
z_{i J} & =x_{i} z_{J}, \\
z_{I J} & =z_{l} z_{J},
\end{aligned}
$$

- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

Linearization of Rosenberg

$$
\begin{aligned}
\left.\min _{x \in\{0,1}\right\}^{4}, y_{12}, y_{34}, y_{1234}, y_{125} \in\{0,1\} & 3 y_{1234}+2 y_{125}-5 y_{12}+6 y_{34}-x_{1}+x_{2}-x_{3}+x_{4} \\
\text { s.t. } & y_{12}=x_{1} x_{2} \\
y_{34} & =x_{3} x_{4} \\
y_{1234} & =y_{12} y_{34} \\
y_{125} & =y_{12} x_{5}
\end{aligned}
$$

Linearization of quadratic vs. polynomial functions

Buchheim and Rinaldi's result [2]:

Consider linearization of a polynomial function:

$$
P_{S L}^{\text {conv }}=\operatorname{conv}\left\{\left(x, y_{S}\right) \in\{0,1\}^{n+|\mathcal{S}|} \mid y_{S}=\prod_{i \in S} x_{i}, \forall S \in \mathcal{S}\right\}
$$

Define an extended quadratic formulation and linearize it:

$$
P^{*}=\operatorname{conv}\left\{y_{\{S, T\}} \in\{0,1\} \mid y_{\{S, T\}}=y_{S} y_{T}, \forall\{S, T\} \text { where } S, T, S \cup T \in \mathcal{S}\right\}
$$

If we know P^{*} then we can construct $P_{S L}^{\text {conv }}$.
Questions: If instead of having P^{*}, we have a relaxation,

- what do we know about $P_{S L}^{\text {conv }}$?
- for the standard linearization, 2 -intersection, 3 -intersection (up to m-intersection) cuts help to obtain information about $P_{S L}^{\text {conv }}$, what about other relaxations?

Perspectives

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
- Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
- Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
- Case of m monomials: intersection-cuts are facet-defining.

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
- Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
- Case of m monomials: intersection-cuts are facet-defining.
- Idea on the general form of the convex hull for m terms.

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
- Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
- Case of m monomials: intersection-cuts are facet-defining.
- Idea on the general form of the convex hull for m terms.
- Run computational experiments to measure improvements of the intersection-cuts.

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
- Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
- Case of m monomials: intersection-cuts are facet-defining.
- Idea on the general form of the convex hull for m terms.
- Run computational experiments to measure improvements of the intersection-cuts.
- Information of the quadratic case that can be used to improve knowledge on linearizations of polynomials.

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
- Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
- Case of m monomials: intersection-cuts are facet-defining.
- Idea on the general form of the convex hull for m terms.
- Run computational experiments to measure improvements of the intersection-cuts.
- Information of the quadratic case that can be used to improve knowledge on linearizations of polynomials.

Some references I

M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems. Working paper, 2014.C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the quadratic case. SIAM Journal on Optimization, 18(4):1398-1413, 2007.
C. De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics, 79(1):71-75, 1990.
P. L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of pseudo-boolean functions. Studii si Cercetari Matematice, 14:359-364, 1963. in Romanian.
I. G. Rosenberg. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Opérationnelle, 17:71-74, 1975.

Some references II

Fengqi You, Ignacio E. Grossman, Mixed-Integer Nonlinear Programming Models and Algorithms for Large-Scale Supply Chain Design with Stochastic Inventory Management, 2008, Industrial \& Engineering Chemistry Research, 47 (20), pp 7802-7817.

