Linearization and quadratization approaches for non-linear 0-1 optimization

Elisabeth Rodriguez-Heck and Yves Crama

QuantOM, HEC Management School, University of Liège Partially supported by Belspo - IAP Project COMEX

June 2015, TU Dortmund

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f: \{0, 1\}^n \to \mathbb{R}$.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

$$f(x_1, x_2, x_3) = 9x_1x_2x_3 + 8x_1x_2 - 6x_2x_3 + x_1 - 2x_2 + x_3$$

Applications

Computer vision: image restoration

Supply Chain Design with Stochastic Inventory Management (joint model of F. You, I. E. Grossman) [6]

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

 $\min_{x\in\{0,1\}^n}f(x)$

- **Optimization is** \mathcal{NP} -hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
 - Linearization: standard approach to solve non-linear optimization.
 - **Quadratization**: Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

 $\min_{x\in\{0,1\}^n}f(x)$

- **Optimization is** \mathcal{NP} -hard, even if f is quadratic (MAX-2-SAT, MAX-CUT modelled by quadratic f).
- Approaches:
 - Linearization: standard approach to solve non-linear optimization.
 - **Quadratization**: Much progress has been done for the quadratic case (exact algorithms, heuristics, polyhedral results...).

Linearizations: reductions to the linear case

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} ~|~ a_S \neq 0 \}$ (non-constant monomials)

1. Substitute monomials $\min \sum_{S \in S} a_S z_S$ s.t. $z_S = \prod_{k \in S} x_k$, $\forall S \in S$ $z_S \in \{0,1\}, \quad \forall S \in S$ $x_k \in \{0,1\}, \quad \forall k = 1, \dots, n$

Standard linearization (SL)

 $\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k,$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} \mid a_S
eq 0 \}$ (non-constant monomials)

1. Substitute monomials		2. Linearize constraints	
$\min \sum_{S \in \mathcal{S}} a_S z_S$		$\min \sum_{S \in S} a_S z_S$	
s.t. $z_S = \prod_{k \in S} x_k$,	$\forall S \in S$	s.t. $z_S \ge x_k$, $z_S \ge \sum_{k \in S} x_k - (S)$	$ -1), \forall S \in S$
$z_{S} \in \{0,1\}, \ x_{k} \in \{0,1\},$	$orall S \in \mathcal{S}$ $orall k = 1, \dots, n$	$z_S \in \{0,1\}, \ x_k \in \{0,1\},$	$orall S \in \mathcal{S}$ $orall k = 1, \dots, n$

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} \mid a_S
eq 0 \}$ (non-constant monomials)

1. Substitute monomials	2. Linearize constraints
$\min \sum_{S \in S} a_S z_S$	$\min\sum_{S\in\mathcal{S}}a_Sz_S$
s.t. $z_S = \prod x_k, \forall S \in S$	s.t. $z_S \leq x_k$, $\forall k \in S, \forall S \in S$
k∈S	$z_{\mathcal{S}} \geq \sum_{k \in \mathcal{S}} x_k - (\mathcal{S} - 1), \;\; orall \mathcal{S} \in \mathcal{S}$
$z_{\mathcal{S}} \in \{0,1\}, \qquad \forall \mathcal{S} \in \mathcal{S}$	$z_{\mathcal{S}} \in \{0,1\}, \qquad \forall \mathcal{S} \in \mathcal{S}$
$x_k \in \{0,1\}, \forall k = 1, \dots, n$	$x_k \in \{0,1\}, \qquad \forall k=1,\ldots,n$

Standard linearization (SL)

$$\min_{\{0,1\}^n}\sum_{S\in\mathcal{S}}a_S\prod_{k\in S}x_k,$$

 $\mathcal{S} = \{ S \subseteq \{1, \dots, n\} \mid a_S
eq 0 \}$ (non-constant monomials)

1. Substitute monomials	3. Linear relaxation
$\min \sum_{S \in S} a_S z_S$	$\min\sum_{S\in\mathcal{S}}a_Sz_S$
s.t. $z_S = \prod x_k, \forall S \in S$	s.t. $z_S \leq x_k$, $\forall k \in S, \forall S \in S$
k∈S	$z_{\mathcal{S}} \geq \sum_{k \in \mathcal{S}} x_k - (\mathcal{S} - 1), \;\; orall \mathcal{S} \in \mathcal{S}$
$z_{\mathcal{S}} \in \{0,1\}, \qquad orall \mathcal{S} \in \mathcal{S}$	$0 \leq z_{\mathcal{S}} \leq 1, \qquad orall \mathcal{S} \in \mathcal{S}$
$x_k \in \{0,1\}, \forall k=1,\ldots,n$	$0 \leq x_k \leq 1, \qquad \forall k = 1, \dots, n$

Intermediate substitutions (IS) (one monomial)

SL substitution	SL linearization	
$z_S = \prod_{k \in S} x_k$	$egin{aligned} &z_S \leq x_k, \ &z_S \geq \sum_{k \in S} x_k - (S -1) \end{aligned}$	$\forall k \in S$

IS substitution

$$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$$
$$z_{A} = \prod_{k \in A} x_{k}$$

Intermediate substitutions (IS) (one monomial)

SL substitution	SL linearization	
$z_S = \prod_{k \in S} x_k$	$egin{aligned} &z_{\mathcal{S}} \leq x_k, \ &z_{\mathcal{S}} \geq \sum_{k \in \mathcal{S}} x_k - (\mathcal{S} - 1) \end{aligned}$	$orall k \in S$
IS substitution	IS linearization	
$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$ $z_{k} = \prod x_{k}$	$z_{S} \leq x_{k},$ $z_{S} \leq z_{A},$	$\forall k \in S ackslash A$
$z_A - \prod_{k \in A} x_k$	$egin{aligned} & z_S \geq z_A + \sum\limits_{k \in S ackslash A} x_k - S ackslash A , \ & z_A \leq x_k, \ & z_A \geq \sum\limits_{k \in A} x_k - (A - 1). \end{aligned}$	$\forall k \in A$

Intermediate substitutions (IS) (one monomial)

SL substitution	SL linearization	
$z_S = \prod_{k \in S} x_k$	$egin{aligned} &z_{\mathcal{S}} \leq x_k, \ &z_{\mathcal{S}} \geq \sum_{k \in \mathcal{S}} x_k - (\mathcal{S} - 1) \end{aligned}$	$\forall k \in S$
IS substitution		
$z_S = z_A \prod_{k \in S \setminus A} x_k$	$z_{S} \leq x_{k},$ $z_{S} \leq z_{A},$	$\forall k \in S ackslash A$
$z_A = \prod_{k \in A} x_k$	$z_{S} \geq z_{A} + \sum_{k \in S \setminus A} x_{k} - S \setminus A ,$ $z_{A} \leq x_{k},$	$orall k \in A$
	$z_{\mathcal{A}} \geq \sum_{k \in \mathcal{A}} x_k - (\mathcal{A} - 1).$	

Intermediate Substitutions (IS) (one monomial)

Polytope $P_{SL,1}\subseteq \mathbb{R}^{n+1}$		Polytope $P_{IS,1}\subseteq \mathbb{R}^{n+2}$	
$z_{S} \leq x_{k},$ $z_{S} \geq \sum x_{k} - (S - 1)$	$\forall k \in S$	$z_{S} \leq x_{k},$ $z_{S} \leq z_{A},$	$\forall k \in S ackslash A$
$ \overline{\substack{k \in S}} $ $ 0 \le x_k \le 1, $ $ 0 \le z_5 \le 1, $	$orall k = 1, \dots, n$ $orall S \in \mathcal{S}$	$z_{S} \ge z_{A} + \sum_{k \in S \setminus A} x_{k} - S \setminus A ,$ $z_{A} \le x_{k},$ $z_{k} \ge \sum x_{k} - (A - 1)$	$\forall k \in A$
		$2A \leq \sum_{k \in A} x_k (A = 1).$ $0 \leq x_k \leq 1,$ $0 \leq z_s \leq 1,$	$orall k = 1, \dots, n$ $orall S \in S$

Calculating projections: Fourier-Motzkin Elimination

Notation

 $\mathbb{P}_{n,S}$: projection over the space of variables z_S and $x_k, k = 1, \ldots, n$.

We calculate $\mathbb{P}_{n,S}(P_{IS,1})$ using the Fourier-Motzkin Elimination:

$$z_{S} \leq z_{A}$$
 $z_{A} \leq x_{k},$ $orall k \in A$
 $\sum_{k \in A} x_{k} - (|A| - 1) \leq z_{A}$ $z_{A} \leq z_{S} - \sum_{k \in S \setminus A} x_{k} + |S \setminus A|.$

We also take into account the inequalities of $P_{IS,1}$ that do not involve z_A

 $z_{S} \leq x_{k}, \forall k \in S \setminus A$

Single monomials

Theorem

$$\mathbb{P}_{n,S}(P_{IS,1}) = P_{SL,1}$$

Theorem holds for *disjoint* several monomials: $z_S = \prod_{k \in S} x_k, \ z_T = \prod_{k \in T} x_k$, take $A \subseteq S, B \subseteq T$.

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same time z_A^S and z_B^T).

Single monomials

Theorem

$$\mathbb{P}_{n,S}(P_{IS,1}) = P_{SL,1}$$

Theorem holds for *disjoint* several monomials: $z_{S} = \prod_{k \in S} x_{k}, \ z_{T} = \prod_{k \in T} x_{k}, \ take \ A \subseteq S, \ B \subseteq T.$ $z_{S} = z_{A}^{S} \prod_{k \in S \setminus A} x_{k}$ $z_{A}^{S} = \prod_{k \in A} x_{k}$ $z_{B}^{T} = \prod_{k \in B} x_{k}$

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same time z_A^S and z_B^T).

Several monomials with common intersection

What happens with *non-disjoint* monomials? $A \subseteq S \cap T$, $(|A| \ge 2)$.

$$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$$
$$z_{T} = z_{A} \prod_{k \in T \setminus A} x_{k}$$
$$z_{A} = \prod_{k \in A} x_{k},$$

Several monomials with common intersection

What happens with *non-disjoint* monomials? $A \subseteq S \cap T$, $(|A| \ge 2)$.

$$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$$
$$z_{T} = z_{A} \prod_{k \in T \setminus A} x_{k}$$
$$z_{A} = \prod_{k \in A} x_{k},$$

$$z_{S} \leq x_{k}, \qquad \forall k \in S \setminus A$$

$$z_{S} \leq z_{A}$$

$$z_{S} \geq z_{A} + \sum_{k \in S \setminus A} x_{k} - |S \setminus A|$$

$$z_{T} \leq x_{k}, \qquad \forall k \in T \setminus A$$

$$z_{T} \geq z_{A} + \sum_{k \in T \setminus A} x_{k} - |T \setminus A|$$

$$z_{A} \leq x_{k}, \qquad \forall k \in A$$

$$z_{A} \geq \sum_{k \in A} x_{k} - (|A| - 1).$$

Several monomials with common intersection

What happens with *non-disjoint* monomials? $A \subseteq S \cap T$, $(|A| \ge 2)$.

$$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$$
$$z_{T} = z_{A} \prod_{k \in T \setminus A} x_{k}$$
$$z_{A} = \prod_{k \in A} x_{k},$$

$$\begin{split} & z_{S} \leq x_{k}, & \forall k \in S \setminus A \\ & z_{S} \leq z_{A} \\ & z_{S} \geq z_{A} + \sum_{k \in S \setminus A} x_{k} - |S \setminus A| \\ & z_{T} \leq x_{k}, & \forall k \in T \setminus A \\ & z_{T} \leq z_{A} \\ & z_{T} \geq z_{A} + \sum_{k \in T \setminus A} x_{k} - |T \setminus A| \\ & z_{A} \leq x_{k}, & \forall k \in A \\ & z_{A} \geq \sum_{k \in A} x_{k} - (|A| - 1). \end{split}$$

9/32

Several monomials with common intersection

What happens with *non-disjoint* monomials? $A \subseteq S \cap T$, $(|A| \ge 2)$.

$$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$$
$$z_{T} = z_{A} \prod_{k \in T \setminus A} x_{k}$$
$$z_{A} = \prod_{k \in A} x_{k},$$

$$\begin{aligned} z_{5} &\leq x_{k}, & \forall k \in S \setminus A \\ z_{5} &\leq z_{A} \\ z_{5} &\geq z_{A} + \sum_{k \in S \setminus A} x_{k} - |S \setminus A| \\ z_{T} &\leq x_{k}, & \forall k \in T \setminus A \\ z_{T} &\leq z_{A} \\ z_{T} &\geq z_{A} + \sum_{k \in T \setminus A} x_{k} - |T \setminus A| \\ z_{A} &\leq x_{k}, & \forall k \in A \\ z_{A} &\geq \sum_{k \in A} x_{k} - (|A| - 1). \end{aligned}$$

9/32

Several monomials with common intersection

What happens with *non-disjoint* monomials? $A \subseteq S \cap T$, $(|A| \ge 2)$.

$$z_{S} = z_{A} \prod_{k \in S \setminus A} x_{k}$$
$$z_{T} = z_{A} \prod_{k \in T \setminus A} x_{k}$$
$$z_{A} = \prod_{k \in A} x_{k},$$

 $\forall k \in S \setminus A$ $z_S < x_k$ $z_S \leq z_A$ $z_S \ge z_A + \sum x_k - |S \setminus A|$ $k \in S \setminus A$ $z_T < x_k$ $\forall k \in T \setminus A$ $z_T < z_A$ $z_T \ge z_A + \sum x_k - |T \setminus A|$ $k \in T \setminus A$ $\forall k \in A$ $z_A \leq x_k$ $z_A \geq \sum_{k=A} x_k - (|A| - 1).$

Several monomials with common intersection

Theorem

 $\mathbb{P}_{n,S,T}(P_{IS}) \subset P_{SL}$

Proof:

In Fourier-Motzkin gives:

$$z_{S} \leq z_{T} - \sum_{k \in T \setminus A} x_{k} + |T \setminus A|, \tag{1}$$

$$z_T \le z_S - \sum_{k \in S \setminus A} x_k + |S \setminus A|,$$
 (2)

2 $\mathbb{P}_{n.S.T}(P_{IS}) = P_{SL} \cap \{(x_k, z_S, z_T) \mid (1), (2) \text{ are satisfied} \}$

O Point $x_k = 1$ for $k \notin A$, $x_k = \frac{1}{2}$ for $k \in A$, $z_S = 0$, $z_T = \frac{1}{2}$, is in P_{SL} but does not satisfy (2).

Larger subset substitutions are better

Consider $B \subset A \subseteq S \cap T$, $|B| \ge 2$.

2

1 Take the first cut for both subsets: $z_{S} \leq z_{T} - \sum_{k \in T \setminus A} x_{k} + |T \setminus A|,$ $z_{S} \leq z_{T} - \sum_{k \in T \setminus B} x_{k} + |T \setminus B|,$

$$z_{S} \leq z_{T} - \sum_{k \in T \setminus A} x_{k} + |T \setminus A| \leq$$

$$\leq z_{T} - \sum_{k \in T \setminus A} x_{k} + |T \setminus A| - \sum_{k \in A \setminus B} x_{k} + |A \setminus B| =$$

$$= z_{T} - \sum_{k \in T \setminus B} x_{k} + |T \setminus B|.$$

Larger subset substitutions are better

Theorem

$$\mathbb{P}_{n,S,T}(P^A_{IS}) \subset \mathbb{P}_{n,S,T}(P^B_{IS}).$$

(Point $x_k = 1$ for $k \notin A$, $x_k = \frac{1}{2}$ for $k \in A \setminus B$, $k \in B$, $z_T = 0$, $z_S = \frac{1}{2}$ satisfies cut for B but not for A.)

Corollary

Consider three monomials R, S, T, with intersections $R \cap S = A$, $S \cap T = B$, $R \cap T = C$, $(|A|, |B|, |C| \ge 2)$. Then it is better to do intermediate substitutions of the two-by-two intersections, than a single intermediate substitution of the common intersection $A \cap B \cap C$.

Larger subset substitutions are better

Theorem

$$\mathbb{P}_{n,S,T}(P^A_{IS}) \subset \mathbb{P}_{n,S,T}(P^B_{IS}).$$

(Point $x_k = 1$ for $k \notin A$, $x_k = \frac{1}{2}$ for $k \in A \setminus B$, $k \in B$, $z_T = 0$, $z_S = \frac{1}{2}$ satisfies cut for B but not for A.)

Corollary

Consider three monomials R, S, T, with intersections $R \cap S = A$, $S \cap T = B$, $R \cap T = C$, $(|A|, |B|, |C| \ge 2)$. Then it is better to do intermediate substitutions of the two-by-two intersections, than a single intermediate substitution of the common intersection $A \cap B \cap C$.

Improving the SL formulation: 2-intersection-cuts

SL relaxation with 2-intersection-cuts

$$\begin{split} \min \sum_{S \in S} a_S z_S \\ \text{s.t. } z_S &\leq x_k, & \forall k \in S, \forall S \in S \\ z_S &\geq \sum_{k \in S} x_k - (|S| - 1), & \forall S \in S \\ \mathbf{z}_S &\leq \mathbf{z}_T - \sum_{k \in T \setminus S} \mathbf{x}_k + |\mathbf{T} \setminus \mathbf{S}| & \forall \mathbf{S}, \mathbf{T}, |\mathbf{S} \cap \mathbf{T}| \geq 2 \\ \mathbf{z}_T &\leq \mathbf{z}_S - \sum_{k \in S \setminus T} \mathbf{x}_k + |\mathbf{S} \setminus \mathbf{T}| & \forall \mathbf{S}, \mathbf{T}, |\mathbf{S} \cap \mathbf{T}| \geq 2 \\ \mathbf{0} &\leq z_S \leq 1, & \forall S \in S \\ \mathbf{0} &\leq x_k \leq 1 & \forall k = 1, \dots, n \end{split}$$

How strong are the 2-intersection-cuts?

Consider the *standard linearization polytope*:

$$\begin{aligned} \mathcal{P}_{SL}^{conv} &= \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S = \prod_{i \in S} x_i, \forall S \in \mathcal{S}\} \\ &= \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S \le x_i, y_S \ge \sum_{i \in S} x_i - (|S| - 1), \forall S \in \mathcal{S}\}, \end{aligned}$$

and its linear relaxation

$$P_{SL} = \{(x, y_S) \in [0, 1]^{n+|S|} \mid y_S \le x_i, y_S \ge \sum_{i \in S} x_i - (|S| - 1), \forall S \in S\}$$

• Question 1: Are the 2-intersection-cuts facet-defining for P^{conv}?

How strong are the 2-intersection-cuts?

Consider the *standard linearization polytope*:

$$\begin{aligned} \mathcal{P}_{SL}^{conv} &= \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S = \prod_{i \in S} x_i, \forall S \in \mathcal{S}\} \\ &= \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S \le x_i, y_S \ge \sum_{i \in S} x_i - (|S| - 1), \forall S \in \mathcal{S}\}, \end{aligned}$$

and its linear relaxation

$$P_{SL} = \{(x, y_S) \in [0, 1]^{n+|S|} \mid y_S \le x_i, y_S \ge \sum_{i \in S} x_i - (|S| - 1), \forall S \in S\}$$

• Question 1: Are the 2-intersection-cuts facet-defining for P_{SL}^{conv}?

• **Question 2**: Is there some case for which we obtain the *convex hull P*^{conv}_{SL} when adding the 2-intersection-cuts to P_{SL}?

How strong are the 2-intersection-cuts?

Consider the *standard linearization polytope*:

$$\begin{aligned} \mathcal{P}_{SL}^{conv} &= \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S = \prod_{i \in S} x_i, \forall S \in \mathcal{S}\} \\ &= \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S \le x_i, y_S \ge \sum_{i \in S} x_i - (|S| - 1), \forall S \in \mathcal{S}\}, \end{aligned}$$

and its linear relaxation

$$P_{SL} = \{(x, y_S) \in [0, 1]^{n+|S|} \mid y_S \le x_i, y_S \ge \sum_{i \in S} x_i - (|S| - 1), \forall S \in S\}$$

- **Question 1**: Are the 2-intersection-cuts *facet-defining* for *P*^{conv}?
- **Question 2**: Is there some case for which we obtain the *convex hull* P_{SL}^{conv} when adding the 2-intersection-cuts to P_{SL} ?

Facet-defining cuts (2 monomials)

Theorem: 2-term objective function

The 2-intersection-cuts are facet-defining for $P_{SL,2}^{conv}$:

$$z_{S} \leq z_{T} - \sum_{k \in T \setminus S} x_{k} + |T \setminus S|$$
$$z_{T} \leq z_{S} - \sum_{k \in S \setminus T} x_{k} + |S \setminus T|$$

Facet-defining cuts (2 monomials)

Special forms of the cuts in some cases:

• If $S \subseteq T$,

$$z_{S} \leq z_{T} - \sum_{k \in T \setminus S} x_{k} + |T \setminus S|$$

 $z_{T} \leq z_{S}$

2 If $T = \emptyset$ (and setting by definition $z_{\emptyset} = 1$),

$$z_{S} \leq 1$$

$$1 \leq z_{S} - \sum_{i \in S} x_{i} + |S|$$

Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard linearization polytope $P_{SL,2}^{conv}$ and its linear relaxation $P_{SL,2}$. Then,

 $P^{conv}_{SL,2} = P_{SL,2} \cap \{(x, y_S, y_T) \in [0, 1]^{n+2} \mid 2 \text{-intersection-cuts are satisfied} \}.$

Facet-defining cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function $f(x) = \sum_{l \in L} a_{S^{(l)}} \prod_{i \in S^{(l)}} x_i$, such that $S^{(1)} \subseteq S^{(2)} \subseteq \cdots \subseteq S^{(|L|)}$, and its standard linearization polytope $P_{SL,nest}^{conv}$. The 2-intersection-cuts

$$z_{S^{(l)}} \leq z_{S^{(l+1)}} - \sum_{k \in S^{(l+1)} \setminus S^{(l)}} x_k + |S^{(l+1)} \setminus S^{(l)}|$$

$$z_{\mathcal{S}^{(l+1)}} \leq z_{\mathcal{S}^{(l)}},$$

are facet-defining for $P_{SL,nest}^{conv}$ for two consecutive monomials in the nest (and cuts are redundant for non-consecutive monomials).

Conjectures for *m* monomials

Conjecture: facet-defining

The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are **not** enough to define the convex hull P_{SL}^{conv} (otherwise we could solve an \mathcal{NP} -hard problem efficiently...).

Conjectures for *m* monomials

Conjecture: facet-defining

The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are **not** enough to define the convex hull P_{SL}^{conv} (otherwise we could solve an \mathcal{NP} -hard problem efficiently...).

• m = 3, set of 3 monomials for which there exists an objective function which has a fractional optimal solution on $P_{SL} \cap \{2\text{-intersection-cuts}\}$: $\{x_1x_2x_4, x_1x_3x_4, x_1x_2x_3\}$
Conjectures for *m* monomials

Conjecture: facet-defining

The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are **not** enough to define the convex hull P_{SL}^{conv} (otherwise we could solve an \mathcal{NP} -hard problem efficiently...).

• m = 3, set of 3 monomials for which there exists an objective function which has a fractional optimal solution on $P_{SL} \cap \{2\text{-intersection-cuts}\}$: $\{x_1x_2x_4, x_1x_3x_4, x_1x_2x_3\}$

A (vague) idea of the convex hull for the general case

Idea of the convex hull

 $\min\sum_{S\in\mathcal{S}}a_Sz_S$

s.t. SL-constraints: linking a term with its variables
2-intersection inequalities: linking terms 2 by 2
3-intersection inequalities: linking terms 3 by 3

$$0 \le z_5 \le 1,$$
 $\forall S \in S$
 $0 \le x_k \le 1$ $\forall k = 1, \dots, n$

One way of viewing the difficulty of the convex hull

For 3 monomials we already have many different possible ways for them to intersect:

A short summary of the linearizations part and some ideas

- We have obtained interesting cuts for P_{SL} by applying intermediate substitutions for subsets of size ≥ 2 .
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

 $z_{ij} = x_i x_j,$ $z_{iJ} = x_i z_J,$ $z_{IJ} = z_I z_J,$

x: original variables, z: variables that are already substitutions of other subsets.

A short summary of the linearizations part and some ideas

- We have obtained interesting cuts for P_{SL} by applying intermediate substitutions for subsets of size ≥ 2 .
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

 $z_{ij} = x_i x_j,$ $z_{iJ} = x_i z_J,$ $z_{IJ} = z_I z_J,$

x: original variables, *z*: variables that are already substitutions of other subsets.
Open questions:

- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

A short summary of the linearizations part and some ideas

- We have obtained interesting cuts for P_{SL} by applying intermediate substitutions for subsets of size ≥ 2 .
- We could apply iteratively these intermediate substitutions, the last substitution step has only quadratic constraints

 $z_{ij} = x_i x_j,$ $z_{iJ} = x_i z_J,$ $z_{IJ} = z_I z_J,$

x: original variables, z: variables that are already substitutions of other subsets.

• Open questions:

- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

Quadratizations: reductions to the quadratic case

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$f(x) = \sum_{S \in S} a_S \prod_{i \in S} x_i$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$f(x) = \sum_{S \in S} a_S \prod_{i \in S} x_i$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$f(x) = \sum_{S \in S} a_S \prod_{i \in S} x_i$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

 \bullet Quadratic binary optimization is $\mathcal{NP}\text{-hard}.$

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$f(x) = \sum_{S \in S} a_S \prod_{i \in S} x_i$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

- \bullet Quadratic binary optimization is $\mathcal{NP}\text{-hard}.$
- Many techniques known for the quadratic case (exact algorithms, heuristics, cuts...).

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

$$f(x) = \sum_{S \in S} a_S \prod_{i \in S} x_i$$

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

- Quadratic binary optimization is \mathcal{NP} -hard.
- Many techniques known for the quadratic case (exact algorithms, heuristics, cuts...).

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (penalties): Iteration 1

 $\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4 \\ + M_1(x_1x_2 - 2x_1y_{12} - 2x_2y_{12} + 3y_{12})$

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (penalties): Iteration 1

 $\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$ + M₁(x₁x₂ - 2x₁y₁₂ - 2x₂y₁₂ + 3y₁₂)

The penalty vanishes if $y_{12} = x_1 x_2$:

• $y_{12} = 0$ and $x_1 = 0$ (or $x_2 = 0$): all terms vanish,

• $y_{12} = 1$ and both $x_1 = 1$, $x_2 = 1$: $M_1 - 2M_1 - 2M_1 + 3M_1 = 0$.

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (penalties): Iteration 1

 $\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$ + M₁(x₁x₂ - 2x₁y₁₂ - 2x₂y₁₂ + 3y₁₂)

The penalty vanishes if $y_{12} = x_1 x_2$:

- $y_{12} = 0$ and $x_1 = 0$ (or $x_2 = 0$): all terms vanish,
- $y_{12} = 1$ and both $x_1 = 1$, $x_2 = 1$: $M_1 2M_1 2M_1 + 3M_1 = 0$.

A penalty M_1 is incurred at least one time if $y_{12} \neq x_1 x_2$:

• $y_{12} = 1$ and $x_1 = 0$: $-2M_1 + 3M_1 = M_1$ (idem if $x_2 = 0$),

• $y_{12} = 0$ and both $x_1 = 1$, $x_2 = 1$: all terms vanish but the first one, M_1 is incurred.

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (penalties): Iteration 1

 $\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$ + M₁(x₁x₂ - 2x₁y₁₂ - 2x₂y₁₂ + 3y₁₂)

The penalty vanishes if $y_{12} = x_1 x_2$:

• $y_{12} = 0$ and $x_1 = 0$ (or $x_2 = 0$): all terms vanish,

• $y_{12} = 1$ and both $x_1 = 1$, $x_2 = 1$: $M_1 - 2M_1 - 2M_1 + 3M_1 = 0$.

A penalty M_1 is incurred at least one time if $y_{12} \neq x_1x_2$:

• $y_{12} = 1$ and $x_1 = 0$: $-2M_1 + 3M_1 = M_1$ (idem if $x_2 = 0$),

• $y_{12} = 0$ and both $x_1 = 1$, $x_2 = 1$: all terms vanish but the first one, M_1 is incurred.

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (penalties): Iteration 1

$$\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$$

+ M₁(x₁x₂ - 2x₁y₁₂ - 2x₂y₁₂ + 3y₁₂)

Rosenberg (penalties): Iteration 2

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34} \in \{0,1\}} 3y_{12}y_{34} + 2y_{12}x_5 - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$ $+ M_1(x_1x_2 - 2x_1y_{12} - 2x_2y_{12} + 3y_{12})$ $+ M_2(x_3x_4 - 2x_3y_{34} - 2x_4y_{34} + 3y_{34})$

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (constraints): Iteration 1

 $\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$ s.t. $y_{12} = x_1x_2$

Rosenberg (penalties): Iteration 2

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34} \in \{0,1\}^3} 3y_{12}y_{34} + 2y_{12}x_5 - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$ $+ M_1(x_1x_2 - 2x_1y_{12} - 2x_2y_{12} + 3y_{12})$ $+ M_2(x_3x_4 - 2x_3y_{34} - 2x_4y_{34} + 3y_{34})$

Quadratization methods: Rosenberg (Example)

 $\min_{x \in \{0,1\}^4} 3x_1x_2x_3x_4 + 2x_1x_2x_5 - 5x_1x_2 + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$

Rosenberg (constraints): Iteration 1

 $\min_{x \in \{0,1\}^4, y_{12} \in \{0,1\}} 3y_{12}x_3x_4 + 2y_{12}x_5 - 5y_{12} + 6x_3x_4 - x_1 + x_2 - x_3 + x_4$ s.t. $y_{12} = x_1x_2$

Rosenberg (constraints): Iteration 2

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34} \in \{0,1\}} 3y_{12}y_{34} + 2y_{12}x_5 - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$ s.t. $y_{12} = x_1x_2$ $y_{34} = x_3x_4$

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

- Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.
- 2 Add a penalty term $M(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$ (*M* large enough) to the objective function to force $y_{ij} = x_ix_i$ at all optimal solutions.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

- Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.
- 3 Add a penalty term $M(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$ (*M* large enough) to the objective function to force $y_{ij} = x_ix_i$ at all optimal solutions.
- Iterate until obtaining a quadratic function.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

- Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.
- 3 Add a penalty term $M(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$ (*M* large enough) to the objective function to force $y_{ij} = x_ix_j$ at all optimal solutions.
- Iterate until obtaining a quadratic function.
 - Advantages:
 - Can be applied to any pseudo-Boolean function f.
 - The transformation is polynomial in the size of the input.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

- Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.
- 2 Add a penalty term $M(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$ (*M* large enough) to the objective function to force $y_{ij} = x_ix_j$ at all optimal solutions.
- Iterate until obtaining a quadratic function.

• Advantages:

- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks:
 - The obtained quadratization is highly non-submodular.
 - Big M.

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

- Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.
- 3 Add a penalty term $M(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$ (*M* large enough) to the objective function to force $y_{ij} = x_ix_j$ at all optimal solutions.
- Iterate until obtaining a quadratic function.

• Advantages:

- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.

Drawbacks:

- The obtained quadratization is highly non-submodular.
- Big M.

Quadratization methods: Rosenberg with constraints

Rosenberg (1975) [5]: first quadratization method (Variant).

- Take a product x_ix_j from a highest-degree monomial of f and substitute it by a new variable y_{ij}.
- **2** Add a penalty term $M(x_ix_j 2x_iy_{ij} 2x_jy_{ij} + 3y_{ij})$ (*M* large enough) to the objective function... Add a constraint $y_{ij} = x_ix_j$.
- Iterate until obtaining a quadratic function.

• Advantages:

- Can be applied to any pseudo-Boolean function f.
- The transformation is polynomial in the size of the input.
- Drawbacks:
 - The obtained quadratization is highly non-submodular.
 - Big M

Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34} \in \{0,1\}} 3y_{12}y_{34} + 2y_{12}x_5 - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$ s.t. $y_{12} = x_1x_2$ $y_{34} = x_3x_4$

Linearization of Rosenberg

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34}, y_{1234}, y_{125} \in \{0,1\}} 3y_{1234} + 2y_{125} - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$

s.t. $y_{12} = x_1 x_2$ $y_{34} = x_3 x_4$ $y_{1234} = y_{12} y_3$ $y_{125} = y_{12} x_5$

Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

$$\min_{x \in \{0,1\}^4, y_{12}, y_{34} \in \{0,1\}} 3y_{12}y_{34} + 2y_{12}x_5 - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$$

s.t. $y_{12} = x_1x_2$
 $y_{34} = x_3x_4$

Linearization of Rosenberg

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34}, y_{1234}, y_{125} \in \{0,1\}} 3y_{1234} + 2y_{125} - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$

s.t.
$$y_{12} = x_1 x_2$$

 $y_{34} = x_3 x_4$
 $y_{1234} = y_{12} y_3$
 $y_{125} = y_{12} x_5$

Rosenberg and intermediate substitutions

Iterated intermediate substitutions

 $z_{ij} = x_i x_j,$ $z_{iJ} = x_i z_J,$ $z_{IJ} = z_I z_J,$

- How many intermediate substitutions provide practical improvements?
- Relationship of this quadratically constrained program with quadratizations.

Linearization of Rosenberg

 $\min_{x \in \{0,1\}^4, y_{12}, y_{34}, y_{1234}, y_{125} \in \{0,1\}} 3y_{1234} + 2y_{125} - 5y_{12} + 6y_{34} - x_1 + x_2 - x_3 + x_4$ s.t. $y_{12} = x_1 x_2$ $y_{34} = x_3 x_4$ $y_{1234} = y_{12} y_{34}$

 $y_{125} = y_{12}x_5$

Linearization of quadratic vs. polynomial functions

Buchheim and Rinaldi's result [2]:

Consider linearization of a polynomial function:

$$P_{SL}^{conv} = \operatorname{conv}\{(x, y_S) \in \{0, 1\}^{n+|\mathcal{S}|} \mid y_S = \prod_{i \in S} x_i, \forall S \in \mathcal{S}\}$$

Define an extended quadratic formulation and linearize it:

$$\mathcal{P}^* = \mathsf{conv}\{y_{\{S,T\}} \in \{0,1\} \mid y_{\{S,T\}} = y_S y_T, orall \{S,T\} ext{ where } S,T,S \cup T \in \mathcal{S}\}$$

If we know P^* then we can construct P_{SL}^{conv} .

Questions: If instead of having P^* , we have a relaxation,

- what do we know about P_{SL}^{conv} ?
- for the standard linearization, 2-intersection, 3-intersection (up to *m*-intersection) cuts help to obtain information about P_{SL}^{conv} , what about other relaxations?

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
 - Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
 - Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
 - Case of *m* monomials: intersection-cuts are facet-defining.

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
 - Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
 - Case of *m* monomials: intersection-cuts are facet-defining.
 - Idea on the general form of the convex hull for *m* terms.

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
 - Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
 - Case of *m* monomials: intersection-cuts are facet-defining.
 - Idea on the general form of the convex hull for *m* terms.
- Run computational experiments to measure improvements of the intersection-cuts.

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
 - Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
 - Case of *m* monomials: intersection-cuts are facet-defining.
 - Idea on the general form of the convex hull for *m* terms.
- Run computational experiments to measure improvements of the intersection-cuts.
- Information of the quadratic case that can be used to improve knowledge on linearizations of polynomials.
Introduction Linearizations Quadratizations Perspectives

Perspectives

- Several conjectures concerning the strength of the intersection-cuts that we generate with intermediate substitutions
 - Case of 2 monomials: convex hull of standard linearization polytope using intersection-cuts and linearization inequalities.
 - Case of *m* monomials: intersection-cuts are facet-defining.
 - Idea on the general form of the convex hull for *m* terms.
- Run computational experiments to measure improvements of the intersection-cuts.
- Information of the quadratic case that can be used to improve knowledge on linearizations of polynomials.

Introduction linearizations Quadratizations Perspectives

Some references 1

M. Anthony, E. Boros, Y. Crama, and A. Gruber. Quadratic reformulations of nonlinear binary optimization problems. Working paper, 2014.

📎 C. Buchheim and G. Rinaldi. Efficient reduction of polynomial zero-one optimization to the guadratic case. SIAM Journal on Optimization, 18(4):1398-1413, 2007.

📎 C. De Simone. The cut polytope and the boolean quadric polytope. Discrete Mathematics, 79(1):71-75, 1990.

📎 P. L. Hammer, I. Rosenberg, and S. Rudeanu. On the determination of the minima of pseudo-boolean functions. Studii si Cercetari Matematice, 14:359-364, 1963. in Romanian

📎 I. G. Rosenberg. Reduction of bivalent maximization to the quadratic case. Cahiers du Centre d'Etudes de Recherche Opérationnelle, 17:71–74, 1975.

Introduction Linearizations Quadratizations Perspectives

Some references ||

Fengqi You, Ignacio E. Grossman, Mixed-Integer Nonlinear Programming Models and Algorithms for Large-Scale Supply Chain Design with Stochastic Inventory Management, **2008**, *Industrial & Engineering Chemistry Research*, 47 (20), pp 7802–7817.