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Introduction

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping 7 : {0,1}" — R.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

f(x1,x2,x3) = Ix1x2x3 + 8x1x0 — 6x2X3 + X1 — 2X2 + X3
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Introduction

Applications

Suppliers Distribution Centers Retailers

Supply Chain Design with Stochastic Inventory Management (joint model of F. You, I.
E. Grossman) [6]
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Introduction

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

i f
i f(x)

e Optimization is AN'P-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f).
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Introduction

Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

in f
oy )

e Optimization is AN'P-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f).
@ Approaches:

o Linearization: standard approach to solve non-linear optimization.
o Quadratization: Much progress has been done for the quadratic case
(exact algorithms, heuristics, polyhedral results...).
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Linearizations

Linearizations:
reductions to the linear case



Linearizations

Standard linearization (SL)

wip 2o 1
Ses  kes
S={SC{1,...,n} | as # 0} (non-constant monomials)
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Linearizations

Standard linearization (SL)

wip 2o 1
Ses  kes
S={SC{1,...,n} | as # 0} (non-constant monomials)

1. Substitute monomials
min Z aszs

ses
sit. zg = ka, vSesS
kesS
zs € {0,1}, vSesS

x €{0,1}, Vk=1,....n
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Linearizations

Standard linearization (SL)

min as ka,

{o.1yn SeS  kes
S={SC{1,...,n} | as # 0} (non-constant monomials)

1. Substitute monomials 2. Linearize constraints
minE aszs ming aszs

Ses ses
s.t. zg = ka’ VS e S s.t. zg < X, Vke S, VSesS
kes 75> x—(S|—1), VSeS
keS
zs € {0,1}, vSeS zs € {0,1}, vSeS
xc €{0,1}, Vk=1,...,n x € {0,1}, Vk=1,....n
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Linearizations

Standard linearization (SL)

min as ka,

0,1}
{’}Ses kes

S={SC{1,...,n} | as # 0} (non-constant monomials)

1. Substitute monomials 3. Linear relaxation

min Z aszs

Ses
vSesS s.it. zs < X, VkeS,VSeS
75> Y x—(S|—1), VSeS
kes
vSeS 0<z<1, vSeS
Vk=1,...,n 0<x <1, Vk=1,...,n
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Linearizations

Intermediate substitutions (IS) (one monomial)

SL substitution SL linearization

ZS:HXk zs < X, Vk € S
kes 25> (S| - 1)
keS
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Linearizations

Intermediate substitutions (IS) (one monomial)

SL substitution SL linearization

ZS:ka zs < X, Vk € S
kes 25> (S| - 1)
keS

IS substitution
Zs = ZA H Xk

kES\A

20 =[] %

keA
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Linearizations

Intermediate substitutions (IS) (one monomial)

SL substitution SL linearization

zs =[] x 25 < X, VkeS
kes
© 25> x— (S| - 1)
kes
zs=za [ x 25 < Xk, Vk € S\A
LESWA zs < zp,
za= ] zs>za+ > x—|S\A]
keA keS\A
zp < X, VkeA
za> > x—(|Al—1).
keA
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Linearizations

Intermediate Substitutions (IS) (one monomial)

Polytope Ps;; C R™? Polytope Pjs;; C R™t?

zs < X, VkeS  zs < x, Vk € S\A
ZSZZXk—(|S|—1) zs < za,
kes Zs > za + Z xk — |S\A,

0 <xk <1, Vk=1,...,n kES\A

0<2zs <1, vSeS za < Xk, Vke A
Za EZXk*UA‘ —-1).

kEA

0<x <1, Vk=1,...,n
0<z <1, vSeS
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Linearizations

Calculating projections: Fourier-Motzkin Elimination

P, s: projection over the space of variables zs and x,, k = 1,...,n.

We calculate P, s(Pis,1) using the Fourier-Motzkin Elimination:

zs < za za < X, Vke A
> k= (1Al -1) < za z<zs— > x+IS\Al
keA kES\A
We also take into account the inequalities of Pjs ;1 that do not involve z4

zs < Xk,Vk c S\A

7/32



Linearizations

Single monomials

P s(Pis1) = Pst 1
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Linearizations

Single monomials

P s(Pis1) = Pst 1

Theorem holds for disjoint several monomials:
zs = [Iyes Xk 27 = [e7 X take AC S, BC T.

S T
Zs = Zp Xk ZT — Zp Xk
keS\A keT\B
S T
=]~ & =TI~
keA keB

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same
time z; and z3).
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Linearizations

Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|A| > 2).
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Linearizations

Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|A| > 2).

kES\A
ZT = ZA ]TI Xk
kET\A
o= T s
keA
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Linearizations

Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|A| > 2).

zs < X, Vk € S\A
zs < za
zs > za + xx — |S\A
ZSIZAHXk k%A |\|
kES\A
ZTSX;(, Vk € T\A
T =2 I]: Xk zr < z,
KET\A T =<
ZA:HXk ZT22A+ Z Xk_‘T\A|
e KET\A
zA < Xk, Vke A
Zp 2> §£:>% = (|A[—1).
keA
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Linearizations

Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|A| > 2).

zs < X, Vk € S\A
zs < za
Zs = ZA II Xk
kES\A
zr < Xk o Vk € T\A
ZT = ZA H Xk
KET\A
ZA:HXk ZT22A+ZXk_‘T\A|
A kET\A
zA < Xk, Vke A
Zp 2 §£:>% = (JAl = 1).
keA
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Linearizations

Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|A| > 2).

zs < Xk, Vk € S\A
zs< za
Zs = ZA H Xk
kES\A
zr < Xk o Vk € T\A
ZT = Za H Xk
kET\A
ZA:HXk ZT22A+ Z Xk_|T\A|
keA kET\A
za < Xk, Vke A

Zp 2 Zxk = (Al =1).

keA
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Linearizations

Several monomials with common intersection

Theorem

Pns 1(Pis) C Pst

Proof:
@ Fourier-Motzkin gives:
zs < z1 — Z Xk + |T\A|, (1)
kET\A
z1 < z5 — Z Xk + |S\A|7 (2)
kES\A

Q Pus,7(Pis) = Ps. N {(xk,zs,27) | (1), (2) are satisfied}

© Point xk =1for k ¢ A, xi = 2 for k€ A, zs =0, zr = 3, is in Ps; but does not
satisfy (2).
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Linearizations

Larger subset substitutions are better

Considler BCACSNT, |B| >2.
© Take the first cut for both subsets:
Zs S zT — ZkET\A Xk + |T\A|,
zs <21 = Yyemp Xk T I T\BI,

2]
zs < zT — Z Xk—|—|T\A|§
keT\A
Szr— D x+|T\Al= D x+|A\B| =
kET\A kEA\B
=zr — Z xk + | T\B].
kET\B

11/32



Linearizations

Larger subset substitutions are better

P,s 7(Pi) C Pns 7(PR).

(Point xx =1 for k ¢ A, xx =
but not for A.)

1 for k€ A\B,k € B, zr =0, zs = % satisfies cut for B
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Linearizations

Larger subset substitutions are better

P,s 7(Pi) C Pns 7(PR).

(Point xc = 1 for k ¢ A, xx = 3 for k € A\B,k € B, zr =0, zs = 1 satisfies cut for B
but not for A.)

Corollary

Consider three monomials R, S, T, with intersections RNS = A,
SNT=B,RNT=C, (JA|,|B|,|C| > 2). Then it is better to do
intermediate substitutions of the two-by-two intersections, than a single
intermediate substitution of the common intersection AN BN C.
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Linearizations

Improving the SL formulation: 2-intersection-cuts

SL relaxation with 2-intersection-cuts

min E aszs

ses
s.t. zg < xg,
252 S x— (1S - 1),
keS
zs<zr— Y x+[T\S|
keT\S
z1 < zg — Z xx + [S\T]|
keS\T
0<2zs <1,
0 1

Vke S,VSeS
VS esS

VS, T,|SNT|>2
VS, T,|SNT|>2

VSeS
Vk=1,...,n
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Linearizations

How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:

P§™ = conv{(x,ys) € {0,131 | ys = [ x:, VS € S}
ieS

= conv{(x,ys) € {0, 1}"18] | ys < xi,ys > Y " x — (|S] —1),VS € S},
ieS

and its linear relaxation

Ps. = {(x,y5) € [0, 11" | ys < xi,y5 > > x — (|S| - 1),vS € S}
i€S
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Linearizations

How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:

P§™ = conv{(x,ys) € {0,131 | ys = [ x:, VS € S}
ieS

= conv{(x,ys) € {0, 1}"18] | ys < xi,ys > Y " x — (|S] —1),VS € S},
ieS

and its linear relaxation

Psp = {(x,ys) € [0, 11" [ ys < xi,ys > > " xi = (IS| = 1),VS € S}
i€S

@ Question 1: Are the 2-intersection-cuts facet-defining for P§"?
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Linearizations

How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:
P& = conv{(x, ys) € {0,135 | ys = ], VS € S}
ics

= conv{(x,ys) € {0, 1}"18] | ys < xi,ys > Y " x — (|S] —1),VS € S},
ieS

and its linear relaxation

Ps. = {(x,y5) € [0,1]""15 | ys < xi,y5 > > x — (IS| - 1),VS € 8}
i€s
@ Question 1: Are the 2-intersection-cuts facet-defining for P§"?

@ Question 2: Is there some case for which we obtain the convex hull P&"™
when adding the 2-intersection-cuts to Ps;?
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Linearizations

Facet-defining cuts (2 monomials)

Theorem: 2-term objective function

The 2-intersection-cuts are facet-defining for P

zs<zr— Y x+|T\S
keT\S

zr<zs— Y xc+|S\T|
keS\T
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Linearizations

Facet-defining cuts (2 monomials)

Special forms of the cuts in some cases:

QIfSCT,

zs<zr— > x+|T\S|
keT\S

zr < zs
@ If T =0 (and setting by definition z5 = 1),

zs <1

1§25—Zx,-+]5]
i€S

16 /32



Linearizations

Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard

linearization polytope P&") and its linear relaxation Ps; ». Then,

Psisy = PsiaN{(x,ys,y1) € [0, 1]"t2 | 2-intersection-cuts are satisfied}.
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Linearizations

Facet-defining cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function f(x) = > ,c; aso [[icsm xi, such that
s c @) c... c SULD and its standard linearization polytope Pg‘L’f’,;’est.
The 2-intersection-cuts

2o S zgmn — Y, x4+ [SUT\SY)]
keSIF1\S0)

Zg(r1) < Zg(),

are facet-defining for P& . for two consecutive monomials in the nest

(and cuts are redundant for non-consecutive monomials).
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Linearizations

Conjectures for m monomials

Conjecture: facet-defining

The 2-intersection-cuts are facet-defining for the case of m monomials.

19/32



Linearizations

Conjectures for m monomials

Conjecture: facet-defining

The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are not
enough to define the convex hull P& (otherwise we could solve an
NP-hard problem efficiently...).
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Linearizations

Conjectures for m monomials

Conjecture: facet-defining

The 2-intersection-cuts are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are not
enough to define the convex hull P& (otherwise we could solve an
NP-hard problem efficiently...).

@ m = 3, set of 3 monomials for which there exists an objective function
which has a fractional optimal solution on Ps; N {2-intersection-cuts}:
{xixaxa, x1x3%4, x1X2%3 }
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Linearizations

A (vague) idea of the convex hull for the general case

Idea of the convex hull

min Z aszs
SeSs
s.t. SL-constraints: linking a term with its variables

2-intersection inequalities: linking terms 2 by 2
3-intersection inequalities: linking terms 3 by 3

< vSesS
0<x <1 Vk=1,...,n

20/32



Linearizations

One way of viewing the difficulty of the convex hull

For 3 monomials we already have many different possible ways for them to
intersect:
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Linearizations

A short summary of the linearizations part and some ideas

@ We have obtained interesting cuts for Ps; by applying intermediate
substitutions for subsets of size > 2.
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Linearizations

A short summary of the linearizations part and some ideas

@ We have obtained interesting cuts for Ps; by applying intermediate
substitutions for subsets of size > 2.

@ We could apply iteratively these intermediate substitutions, the last
substitution step has only quadratic constraints

Zij = XiXj,
Zjj = XiZJ,
Z)y = 212y,

x: original variables, z: variables that are already substitutions of other subsets.
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Linearizations

A short summary of the linearizations part and some ideas

@ We have obtained interesting cuts for Ps; by applying intermediate
substitutions for subsets of size > 2.

@ We could apply iteratively these intermediate substitutions, the last
substitution step has only quadratic constraints

Zij = XiXj,
Zjj = XiZJ,
Z)y = 212y,

x: original variables, z: variables that are already substitutions of other subsets.

e Open questions:

e How many intermediate substitutions provide practical improvements?
o Relationship of this quadratically constrained program with
quadratizations.

22/32



Quadratizations

Quadratizations:
reductions to the quadratic case



Quadratizations

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

Fx)=> as][x

Ses i€eS
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Quadratizations

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

Fx)=> as][x

Ses i€eS

Linearizations

Introduce new variables to obtain an equivalent linear problem.
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Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

Fx)=> as][x

Ses i€eS

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.
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Quadratizations

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

Fx)=> as][x

Ses i€eS

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

@ Quadratic binary optimization is N'P-hard.
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Quadratizations

Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

Fx)=> as][x

Ses i€eS

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

@ Quadratic binary optimization is N'P-hard.

@ Many techniques known for the quadratic case (exact algorithms,
heuristics, cuts...).
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Quadratizations

Quadratization methods: Rosenberg (Example)

min . 3x1X2X3Xa + 2x1X2X5 — Bx1x2 + 6x3x4 — X1 + X2 — X3 + Xa
x€{0,1}
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Quadratizations

Quadratization methods: Rosenberg (Example)

min . 3x1X2X3Xa + 2x1X2X5 — Bx1x2 + 6x3x4 — X1 + X2 — X3 + Xa
x€{0,1}

Rosenberg (penalties): Iteration 1

min 3y12x3Xa + 2y12x5 — Sy12 +6x3xa — x1 + X2 — X3 + Xa
x€{0,1}4,y12€{0,1}

+Mi(x1x2 — 2x1y12 — 2X2y12 + 3y12)
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Quadratizations

Quadratization methods: Rosenberg (Example)

min . 3x1X2X3Xa + 2x1X2X5 — Bx1x2 + 6x3x4 — X1 + X2 — X3 + Xa
x€{0,1}

Rosenberg (penalties): Iteration 1

min 3y12x3Xa + 2y12x5 — Sy12 +6x3xa — x1 + X2 — X3 + Xa
x€{0,1}4,y12€{0,1}

+Mi(x1x2 — 2x1y12 — 2X2y12 + 3y12)

The penalty vanishes if y1o = x1x2:
@ yi2 =0 and x; =0 (or x2 = 0): all terms vanish,
@ yp=1andbothx; =1, x =1: My —2M; —2M; +3M; = 0.
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Quadratizations

Quadratization methods: Rosenberg (Example)

min . 3x1X2X3Xa + 2x1X2X5 — Bx1x2 + 6x3x4 — X1 + X2 — X3 + Xa
x€{0,1}

Rosenberg (penalties): Iteration 1

min 3y12x3Xa + 2y12x5 — Sy12 +6x3xa — x1 + X2 — X3 + Xa
x€{0,1}4,y12€{0,1}

+Mi(x1x2 — 2x1y12 — 2X2y12 + 3y12)

The penalty vanishes if y1o = x1x2:
@ y12 =0 and x3 =0 (or x2 = 0): all terms vanish,
@ yip =1and both xy =1, o =1: My —2M; —2M; +3M,; = 0.
A penalty My is incurred at least one time if y12 # x1x2:
@ yip=1and xy =0: —2My + 3My = My (idem if x2 = 0),
@ y1> =0 and both x; = 1, x2 = 1: all terms vanish but the first one, My is incurred.
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Quadratizations

Quadratization methods: Rosenberg (Example)

r{nin}4 3x1x2X3X4 + 2x1X2X5 — Bxi1xa + 6x3xa4 — X1 + X2 — X3 + Xa
x€{0,1

Rosenberg (penalties): Iteration 1

min 3y12x3Xa + 2y12%5 — By12 + 6x3xa — x1 + x2 — X3 + xa
x€{0,1}4,y12€{0,1}

+Mi(x1x2 — 2x1y12 — 2X2y12 + 3y12)

Rosenberg (penalties): Iteration 2

min 3y12y3a + 2y12x5 — by12 + 6yza — x1 +x2 — x3 + X
x€{0,1}4,y12,y34€{0,1}

+ Mi(x1x2 — 2x1y12 — 2x2y12 + 3y12)
+Mp(xaxs — 2x3y3s — 2xay3as + 3y3a)
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Quadratizations

Quadratization methods: Rosenberg (Example)

r{nin}4 3x1x2X3X4 + 2x1X2X5 — Bxi1xa + 6x3xa4 — X1 + X2 — X3 + Xa
x€{0,1

Rosenberg (constraints): Iteration 1

min 3y12x3Xa + 2y12%5 — Byr2 + 6x3xa — x1 + x2 — X3 + xa
x€{0,1}4,y12€{0,1}

S.t. Y12 = X1X2

Rosenberg (penalties): Iteration 2

min 3y12y3a + 2y12x5 — by12 + 6yza — x1 +x2 — x3 + X
x€{0,1}4,y12,y34€{0,1}

+ Mi(x1x2 — 2x1y12 — 2x2y12 + 3y12)
+Mp(xaxs — 2x3y3s — 2xay3as + 3y3a)
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Quadratizations

Quadratization methods: Rosenberg (Example)

r{nin}4 3x1x2X3X4 + 2x1X2X5 — Bxi1xa + 6x3xa4 — X1 + X2 — X3 + Xa
x€{0,1

Rosenberg (constraints): Iteration 1

min 3y12x3Xa + 2y12X5 — By12 + 6x3xa — X1 + X2 — X3 + Xa
x€{0,1}#,y12€{0,1}

S.t. Y12 = X1X2

Rosenberg (constraints): Iteration 2

min 3y12y3a + 2y12x5 — By12 + 6yzs — x1 +x2 — x3 + X
x€{0,1}4,y12,y34€{0,1}

s.t. yi2 = x1X2

Y34 = X3Xa
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Quadratizations

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.
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Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

© Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable y;;.
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Quadratizations

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

© Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable y;;.

© Add a penalty term M(x;x; — 2x;yij — 2x;y;; + 3yij) (M large enough)
to the objective function to force y;; = x;x; at all optimal solutions.
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Rosenberg (1975) [5]: first quadratization method.

© Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable y;;.

© Add a penalty term M(x;x; — 2x;yij — 2x;y;; + 3yij) (M large enough)
to the objective function to force y;; = x;x; at all optimal solutions.

© lterate until obtaining a quadratic function.
o Advantages:

e Can be applied to any pseudo-Boolean function f.
o The transformation is polynomial in the size of the input.
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Quadratizations

Quadratization methods: Rosenberg

Rosenberg (1975) [5]: first quadratization method.

© Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable y;;.

© Add a penalty term M(x;x; — 2x;yij — 2x;y;; + 3yij) (M large enough)
to the objective function to force y;; = x;x; at all optimal solutions.

© lterate until obtaining a quadratic function.

o Advantages:

e Can be applied to any pseudo-Boolean function f.
o The transformation is polynomial in the size of the input.

o Drawbacks:
o The obtained quadratization is highly non-submodular.
e Big M.
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Quadratizations

Quadratization methods: Rosenberg with constraints

Rosenberg (1975) [5]: first quadratization method (Variant).

@ Take a product x;x; from a highest-degree monomial of f and
substitute it by a new variable y;;.

Q Add-a—penaltytermMbgx—2x—2xy+ 3y M- targe-enough)
to-the-objectivefunction— Add a constraint y;; = x;x;.

© lterate until obtaining a quadratic function.

o Advantages:

e Can be applied to any pseudo-Boolean function f.
o The transformation is polynomial in the size of the input.

o Drawbacks:

o T btai o ation_is_hick lar.
o BigM-
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Quadratizations

Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

min 3y12y34 + 2y12x5 — 5y12 + 6y3a — X1 + X2 — x3 + xa
x€{0,1}4,y12,y34 €{0,1}

S.t. yi2 = X1X2

Y34 = X3X4
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Quadratizations

Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

min 3y12Y34 + 2y12Xs — by12 + 0y34 — X1 +x2 — x3 + X4
x€{0,1}4,y12,y34 €{0,1}

S.t. yi2 = X1X2

Y34 = X3X4

Linearization of Rosenberg

min 3y1234 + 2y125 — by12 + 6y3s — x1 + X2 — X3 + X
x€{0,1}4,y12,y34,y1234,y125 €{0,1}

s.t. Y12 = X1X2
Y34 = X3Xa
Y1234 = Y12Y34
Y125 = Y12X5
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Quadratizations

Rosenberg and intermediate substitutions

Iterated intermediate substitutions

Zjj = XiXj,
Zij = XiZJ,
Zjy = z1Zy,

@ How many intermediate substitutions provide practical improvements?
@ Relationship of this quadratically constrained program with quadratizations.

Linearization of Rosenberg

min 3y123a + 2y125 — By12 + 6y3a — x1 + X2 — X3 + Xa
x€{0,1}*,y12,y34,y1234,y125 €{0,1}

S.t. yi2 = X1X2
Y34 = X3Xa
Y1234 = Y12Y34

Y125 = Y12Xs
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Quadratizations

Linearization of quadratic vs. polynomial functions

Buchheim and Rinaldi’s result [2]:

Consider linearization of a polynomial function:
PS™ = conv{(x,ys) € {0,1}""1°1 | ys = [ x:,¥S € S}
i€s
Define an extended quadratic formulation and linearize it:
P* = conv{ys,7} € {0,1} | ygs,73 = ysyr,V{S, T} where S, T,SUT € S}
If we know P* then we can construct P&™.

Questions: If instead of having P*, we have a relaxation,
@ what do we know about PS™?

@ for the standard linearization, 2-intersection, 3-intersection (up to m-intersection)
cuts help to obtain information about P&, what about other relaxations?
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Perspectives

@ Several conjectures concerning the strength of the intersection-cuts
that we generate with intermediate substitutions

e Case of 2 monomials: convex hull of standard linearization polytope
using intersection-cuts and linearization inequalities.

e Case of m monomials: intersection-cuts are facet-defining.

o |dea on the general form of the convex hull for m terms.

@ Run computational experiments to measure improvements of the
intersection-cuts.

@ Information of the quadratic case that can be used to improve
knowledge on linearizations of polynomials.
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