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De�nitions

De�nition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0, 1}n → R.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1 − 2x2 + x3
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Applications

Computer vision: image restoration

Supply Chain Design with Stochastic Inventory Management (joint model of F. You, I.
E. Grossman) [6]
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Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

min
x∈{0,1}n

f (x)

Optimization is NP-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f ).

Approaches:

Linearization: standard approach to solve non-linear optimization.
Quadratization: Much progress has been done for the quadratic case
(exact algorithms, heuristics, polyhedral results...).
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Linearizations:

reductions to the linear case
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Standard linearization (SL)

min
{0,1}n

∑
S∈S

aS
∏
k∈S

xk ,

S = {S ⊆ {1, . . . , n} | aS 6= 0} (non-constant monomials)

1. Substitute monomials

min
∑
S∈S

aSzS

s.t. zS =
∏
k∈S

xk , ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n

2. Linearize constraints

min
∑
S∈S

aSzS

s.t. zS ≤ xk , ∀k ∈ S ,∀S ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1), ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n
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Intermediate substitutions (IS) (one monomial)

SL substitution

zS =
∏
k∈S

xk

SL linearization

zS ≤ xk , ∀k ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1)

IS substitution

zS = zA
∏

k∈S\A
xk

zA =
∏
k∈A

xk

IS linearization

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA,

zS ≥ zA +
∑

k∈S\A
xk − |S\A|,

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).

5 / 32



Introduction
Linearizations

Quadratizations
Perspectives

Intermediate substitutions (IS) (one monomial)

SL substitution

zS =
∏
k∈S

xk

SL linearization

zS ≤ xk , ∀k ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1)

IS substitution

zS = zA
∏

k∈S\A
xk

zA =
∏
k∈A

xk

IS linearization

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA,

zS ≥ zA +
∑

k∈S\A
xk − |S\A|,

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).

5 / 32



Introduction
Linearizations

Quadratizations
Perspectives

Intermediate substitutions (IS) (one monomial)

SL substitution

zS =
∏
k∈S

xk

SL linearization

zS ≤ xk , ∀k ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1)

IS substitution

zS = zA
∏

k∈S\A
xk

zA =
∏
k∈A

xk

IS linearization

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA,

zS ≥ zA +
∑

k∈S\A
xk − |S\A|,

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).

5 / 32



Introduction
Linearizations

Quadratizations
Perspectives

Intermediate Substitutions (IS) (one monomial)

Polytope PSL,1 ⊆ Rn+1

zS ≤ xk , ∀k ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1)

0 ≤ xk ≤ 1, ∀k = 1, . . . , n

0 ≤ zS ≤ 1, ∀S ∈ S

Polytope PIS,1 ⊆ Rn+2

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA,

zS ≥ zA +
∑

k∈S\A

xk − |S\A|,

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).

0 ≤ xk ≤ 1, ∀k = 1, . . . , n

0 ≤ zS ≤ 1, ∀S ∈ S
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Calculating projections: Fourier-Motzkin Elimination

Notation

Pn,S : projection over the space of variables zS and xk , k = 1, . . . , n.

We calculate Pn,S(PIS,1) using the Fourier-Motzkin Elimination:

zS ≤ zA∑
k∈A

xk − (|A| − 1) ≤ zA

zA ≤ xk , ∀k ∈ A

zA ≤ zS −
∑

k∈S\A

xk + |S\A|.

We also take into account the inequalities of PIS,1 that do not involve zA

zS ≤ xk ,∀k ∈ S\A

7 / 32



Introduction
Linearizations

Quadratizations
Perspectives

Single monomials

Theorem

Pn,S(PIS ,1) = PSL,1

Theorem holds for disjoint several monomials:
zS =

∏
k∈S xk , zT =

∏
k∈T xk , take A ⊆ S , B ⊆ T .

zS = zSA
∏

k∈S\A

xk

zSA =
∏
k∈A

xk

zT = zTB
∏

k∈T\B

xk

zTB =
∏
k∈B

xk

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same
time zSA and zTB ).
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Several monomials with common intersection

What happens with non-disjoint monomials? A ⊆ S ∩ T , (|A| ≥ 2).

zS = zA
∏

k∈S\A

xk

zT = zA
∏

k∈T\A

xk

zA =
∏
k∈A

xk ,

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA

zS ≥ zA +
∑

k∈S\A

xk − |S\A|

zT ≤ xk , ∀k ∈ T\A
zT ≤ zA

zT ≥ zA +
∑

k∈T\A

xk − |T\A|

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).
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Several monomials with common intersection

Theorem

Pn,S ,T (PIS) ⊂ PSL

Proof:

1 Fourier-Motzkin gives:

zS ≤ zT −
∑

k∈T\A

xk + |T\A|, (1)

zT ≤ zS −
∑
k∈S\A

xk + |S\A|, (2)

2 Pn,S,T (PIS) = PSL ∩ {(xk , zS , zT ) | (1), (2) are satis�ed}
3 Point xk = 1 for k /∈ A, xk = 1

2
for k ∈ A, zS = 0, zT = 1

2
, is in PSL but does not

satisfy (2).
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Larger subset substitutions are better

Consider B ⊂ A ⊆ S ∩ T , |B| ≥ 2.

1 Take the �rst cut for both subsets:
zS ≤ zT −

∑
k∈T\A xk + |T\A|,

zS ≤ zT −
∑

k∈T\B xk + |T\B|,
2

zS ≤ zT −
∑

k∈T\A

xk + |T\A| ≤

≤ zT −
∑

k∈T\A

xk + |T\A| −
∑

k∈A\B

xk + |A\B| =

= zT −
∑

k∈T\B

xk + |T\B|.
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Larger subset substitutions are better

Theorem

Pn,S ,T (P
A
IS) ⊂ Pn,S ,T (P

B
IS).

(Point xk = 1 for k /∈ A, xk = 1
2
for k ∈ A\B, k ∈ B, zT = 0, zS = 1

2
satis�es cut for B

but not for A.)

Corollary

Consider three monomials R , S , T , with intersections R ∩ S = A,
S ∩ T = B , R ∩ T = C , (|A|, |B|, |C | ≥ 2). Then it is better to do
intermediate substitutions of the two-by-two intersections, than a single
intermediate substitution of the common intersection A ∩ B ∩ C .
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Improving the SL formulation: 2-intersection-cuts

SL relaxation with 2-intersection-cuts

min
∑
S∈S

aSzS

s.t. zS ≤ xk , ∀k ∈ S ,∀S ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1), ∀S ∈ S

zS ≤ zT −
∑
k∈T\S

xk + |T\S| ∀S,T, |S ∩ T| ≥ 2

zT ≤ zS −
∑
k∈S\T

xk + |S\T| ∀S,T, |S ∩ T| ≥ 2

0 ≤ zS ≤ 1, ∀S ∈ S
0 ≤ xk ≤ 1 ∀k = 1, . . . , n

13 / 32
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How strong are the 2-intersection-cuts?

Consider the standard linearization polytope:

Pconv
SL = conv{(x , yS) ∈ {0, 1}n+|S| | yS =

∏
i∈S

xi ,∀S ∈ S}

= conv{(x , yS) ∈ {0, 1}n+|S| | yS ≤ xi , yS ≥
∑
i∈S

xi − (|S | − 1),∀S ∈ S},

and its linear relaxation

PSL = {(x , yS) ∈ [0, 1]n+|S| | yS ≤ xi , yS ≥
∑
i∈S

xi − (|S | − 1),∀S ∈ S}

Question 1: Are the 2-intersection-cuts facet-de�ning for Pconv
SL ?

Question 2: Is there some case for which we obtain the convex hull Pconv
SL

when adding the 2-intersection-cuts to PSL?

14 / 32
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Facet-de�ning cuts (2 monomials)

Theorem: 2-term objective function

The 2-intersection-cuts are facet-de�ning for Pconv
SL,2 :

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS −
∑

k∈S\T

xk + |S\T |
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Facet-de�ning cuts (2 monomials)

Special forms of the cuts in some cases:

1 If S ⊆ T ,

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS

2 If T = ∅ (and setting by de�nition z∅ = 1),

zS ≤ 1

1 ≤ zS −
∑
i∈S

xi + |S |
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Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard
linearization polytope Pconv

SL,2 and its linear relaxation PSL,2. Then,

Pconv
SL,2 = PSL,2 ∩ {(x , yS , yT ) ∈ [0, 1]n+2 | 2-intersection-cuts are satis�ed}.
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Facet-de�ning cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function f (x) =
∑

l∈L aS(l)

∏
i∈S(l) xi , such that

S (1) ⊆ S (2) ⊆ · · · ⊆ S (|L|), and its standard linearization polytope Pconv
SL,nest .

The 2-intersection-cuts

zS(l) ≤ zS(l+1) −
∑

k∈S(l+1)\S(l)

xk + |S (l+1)\S (l)|

zS(l+1) ≤ zS(l) ,

are facet-de�ning for Pconv
SL,nest for two consecutive monomials in the nest

(and cuts are redundant for non-consecutive monomials).
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Conjectures for m monomials

Conjecture: facet-de�ning

The 2-intersection-cuts are facet-de�ning for the case of m monomials.

Convex-hull for the general case

The 2-intersection-cuts and standard linearization inequalities are not
enough to de�ne the convex hull Pconv

SL (otherwise we could solve an
NP-hard problem e�ciently...).

m = 3, set of 3 monomials for which there exists an objective function
which has a fractional optimal solution on PSL ∩ {2-intersection-cuts}:
{x1x2x4, x1x3x4, x1x2x3}

19 / 32
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A (vague) idea of the convex hull for the general case

Idea of the convex hull

min
∑
S∈S

aSzS

s.t. SL-constraints: linking a term with its variables

2-intersection inequalities: linking terms 2 by 2

3-intersection inequalities: linking terms 3 by 3

. . .

0 ≤ zS ≤ 1, ∀S ∈ S
0 ≤ xk ≤ 1 ∀k = 1, . . . , n

20 / 32
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One way of viewing the di�culty of the convex hull

For 3 monomials we already have many di�erent possible ways for them to
intersect:

21 / 32
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A short summary of the linearizations part and some ideas

We have obtained interesting cuts for PSL by applying intermediate
substitutions for subsets of size ≥ 2.

We could apply iteratively these intermediate substitutions, the last
substitution step has only quadratic constraints

zij = xixj ,

ziJ = xizJ ,

zIJ = zI zJ ,

x : original variables, z : variables that are already substitutions of other subsets.

Open questions:

How many intermediate substitutions provide practical improvements?
Relationship of this quadratically constrained program with
quadratizations.
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Quadratizations:

reductions to the quadratic case
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Linearizations vs. quadratizations

Initial objective function (polynomial and binary):

f (x) =
∑
S∈S

aS
∏
i∈S

xi

Linearizations

Introduce new variables to obtain an equivalent linear problem.

Quadratizations

Introduce new variables to obtain an equivalent quadratic problem.

Quadratic binary optimization is NP-hard.
Many techniques known for the quadratic case (exact algorithms,
heuristics, cuts...).
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Quadratization methods: Rosenberg (Example)

min
x∈{0,1}4

3x1x2x3x4 + 2x1x2x5 − 5x1x2 + 6x3x4 − x1 + x2 − x3 + x4

Rosenberg (penalties): Iteration 1

min
x∈{0,1}4,y12∈{0,1}

3y12x3x4 + 2y12x5 − 5y12 + 6x3x4 − x1 + x2 − x3 + x4

+M1(x1x2 − 2x1y12 − 2x2y12 + 3y12)

The penalty vanishes if y12 = x1x2:

y12 = 0 and x1 = 0 (or x2 = 0): all terms vanish,

y12 = 1 and both x1 = 1, x2 = 1: M1 − 2M1 − 2M1 + 3M1 = 0.

A penalty M1 is incurred at least one time if y12 6= x1x2:

y12 = 1 and x1 = 0: −2M1 + 3M1 = M1 (idem if x2 = 0),

y12 = 0 and both x1 = 1, x2 = 1: all terms vanish but the �rst one, M1 is incurred.
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Quadratization methods: Rosenberg

Rosenberg (1975) [5]: �rst quadratization method.

1 Take a product xixj from a highest-degree monomial of f and
substitute it by a new variable yij .

2 Add a penalty term M(xixj − 2xiyij − 2xjyij + 3yij) (M large enough)
to the objective function to force yij = xixj at all optimal solutions.

3 Iterate until obtaining a quadratic function.

Advantages:

Can be applied to any pseudo-Boolean function f .
The transformation is polynomial in the size of the input.

Drawbacks:

The obtained quadratization is highly non-submodular.
Big M.
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Quadratization methods: Rosenberg with constraints

Rosenberg (1975) [5]: �rst quadratization method (Variant).

1 Take a product xixj from a highest-degree monomial of f and
substitute it by a new variable yij .

2 Add a penalty term M(xixj − 2xiyij − 2xjyij + 3yij) (M large enough)
to the objective function... Add a constraint yij = xixj .

3 Iterate until obtaining a quadratic function.

Advantages:

Can be applied to any pseudo-Boolean function f .
The transformation is polynomial in the size of the input.

Drawbacks:

The obtained quadratization is highly non-submodular.
Big M.
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Rosenberg and intermediate substitutions

Rosenberg (constraints): Iteration 2

min
x∈{0,1}4,y12,y34∈{0,1}

3y12y34 + 2y12x5 − 5y12 + 6y34 − x1 + x2 − x3 + x4

s.t. y12 = x1x2

y34 = x3x4

Linearization of Rosenberg

min
x∈{0,1}4,y12,y34,y1234,y125∈{0,1}

3y1234 + 2y125 − 5y12 + 6y34 − x1 + x2 − x3 + x4

s.t. y12 = x1x2

y34 = x3x4

y1234 = y12y34

y125 = y12x5
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Rosenberg and intermediate substitutions

Iterated intermediate substitutions

zij = xixj ,

ziJ = xizJ ,

zIJ = zI zJ ,

How many intermediate substitutions provide practical improvements?

Relationship of this quadratically constrained program with quadratizations.

Linearization of Rosenberg

min
x∈{0,1}4,y12,y34,y1234,y125∈{0,1}

3y1234 + 2y125 − 5y12 + 6y34 − x1 + x2 − x3 + x4

s.t. y12 = x1x2

y34 = x3x4

y1234 = y12y34

y125 = y12x5
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Linearization of quadratic vs. polynomial functions

Buchheim and Rinaldi's result [2]:

Consider linearization of a polynomial function:

Pconv
SL = conv{(x , yS) ∈ {0, 1}n+|S| | yS =

∏
i∈S

xi ,∀S ∈ S}

De�ne an extended quadratic formulation and linearize it:

P∗ = conv{y{S,T} ∈ {0, 1} | y{S,T} = ySyT , ∀{S ,T} where S ,T ,S ∪ T ∈ S}

If we know P∗ then we can construct Pconv
SL .

Questions: If instead of having P∗, we have a relaxation,

what do we know about Pconv
SL ?

for the standard linearization, 2-intersection, 3-intersection (up to m-intersection)
cuts help to obtain information about Pconv

SL , what about other relaxations?
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Perspectives

Several conjectures concerning the strength of the intersection-cuts
that we generate with intermediate substitutions

Case of 2 monomials: convex hull of standard linearization polytope
using intersection-cuts and linearization inequalities.

Case of m monomials: intersection-cuts are facet-de�ning.
Idea on the general form of the convex hull for m terms.

Run computational experiments to measure improvements of the
intersection-cuts.

Information of the quadratic case that can be used to improve
knowledge on linearizations of polynomials.
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