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Abstract

We present a general characterization theorem for parametric prob-
ability distributions in terms of a differential operator akin to the so-
called Stein operators from the literature on Stein’s method.

1 Introduction

Stein’s method is a collection of tools allowing to compute sharp rates of
convergence in stochastic approximation problems. In short, the method
consists of transforming the problem of bounding a suitable distance between
two probability measures (specifically distances which can be represented as
integral probability metrics) into that of bounding a suitable linear operator
over a well-chosen class of functions. The foundations of the method were
laid down in Charles Stein’s classic paper (Stein, 1972) and book (Stein,
1986). For a more modern overview of the method we refer the reader to
the monograph (Chen et al., 2011) or the review article (Ross, 2011).

Contributions to the literature on Stein’s method are generally of three
types :

• Applications of the method to new settings (e.g. in network analysis
(Franceschetti and Meester, 2006), random matrices (Mackey et al.,
2014) or even quantum physics (McKeague and Levin, 2015))

• Development of new versions of the method to tackle new specific
targets or dependency structures (e.g. Pearson statistics and χ2 ap-
proximation (Gaunt et al., 2015), spin glasses and distributions from
statistical physics (Chatterjee and Shao, 2011), Pólya urns and beta
distribution (Goldstein and Reinert, 2013))

• Extensions of various aspects of the method to more abstract and
general settings (e.g. for Pearson distributions (Afendras et al., 2011),
general densities (Ley and Swan, 2013), invariant measures of diffu-
sions (Kusuoka and Tudor, 2013)).
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The present paper falls within the last category.
Let P be some probability distribution with respect to which one aims

to perform Stein’s method (that is, P is the target distribution). A Stein
characterization for P is a result of the form

X ∼ P if and only if E [AP f(X)] = 0 for all f ∈ F(AP ) (1)

with AP a suitable (usually linear) operator (called Stein operator for P )
and F(AP ) a well chosen class of functions (called Stein class). There exist
many different ways of obtaining such operators, see (Ley et al., 2014) for a
general approach.

In (Ley and Swan, 2016) we propose a tool for deriving identities such
as (1), this time with the added advantage of also providing a statistical
interpretation to the resulting quantities. The main result of that paper,
however, is only valid in a one-parameter setting under the strong assump-
tion that the target has support which does not depend on the parameter of
interest. As will be shown in Section 2, such restrictions are not necessary
and the difficulties entailed by a general setting can, if handled with care, be
dealt with in a uniform and elegant manner. The main result of this paper,
Theorem 2.1, therefore contributes a new tool to the literature on Stein’s
method, in the form of a most general parametric Stein characterization.

2 Characterizations in terms of a parameter of in-
terest

2.1 Notations and definitions

Throughout, we let k, p ∈ N0 and consider two measure spaces (X ,BX ,mX )
and (Θ,BΘ,mΘ), where X is either Rk or Zk, where Θ is a subset of Rp
whose interior is non-empty, where mX is either the Lebesgue measure or
the counting measure, depending on the nature of X , where mΘ is the
Lebesgue measure, and where BX and BΘ are the corresponding σ-algebras.
In this setup we disregard the case of discrete parameter spaces (as in, e.g.,
the discrete uniform).

Consider a couple (X ,Θ) equipped with the corresponding σ-algebras
and measures. We say that the measurable function g : X ×Θ→ R+ forms
a family of θ-parametric densities, denoted by g(·; θ), if

∫
X g(x; θ)dx = 1 for

all θ ∈ Θ. In this case we call θ the parameter of interest for g. When
X = Rk, corresponding to the absolutely continuous case, the mapping
x 7→ g(x; θ) is, for all θ ∈ Θ, a probability density function evaluated at the
point x ∈ Rk. When X = Zk, corresponding to the discrete case, g(x; θ)
is the probability mass associated with x ∈ Zk and g(·; θ) therefore maps
Zk onto [0, 1]. This unified terminology will allow us to treat absolutely

2



continuous and discrete distributions in one common framework. For the
sake of simplicity, we rule out mixed distributions.

Throughout this paper, the densities we shall work with all belong to
the class G := G(X ,Θ) of θ-parametric densities for which the mapping
θ 7→ g(·; θ) is differentiable in the sense of distributions. We write ∇θ =(
∂θ1 , . . . , ∂θp

)
the gradient operator, with ∂θi , i = 1, . . . , p the derivative

in the sense of distributions with respect to θi. Such distributions have
support (bounded or unbounded) possibly depending on the parameter θ;
we will denote this support by Sθ := Sθ(g), be it dependent on θ or not. We
draw the attention of the reader to the fact that the notions we introduce
are local, in the sense that they only need be defined in a neighborhood of
some θ0 ∈ Θ (where it is understood that a set Θ0 ⊂ Θ is a neighborhood
of θ0 if Θ0 contains an open subset of Θ which itself contains θ0).

Definition 2.1. Let θ0 be an interior point of Θ ⊂ Rp and let g ∈ G. We
define the class F(g; θ0) as the collection of test functions f : X × Θ → R
such that the following three conditions are satisfied in some neighborhood
Θ0 ⊂ Θ of θ0:

Condition (i) : there exists cf ∈ R such that
∫
X f(x; θ)g(x; θ)dmX (x) = cf

for all θ ∈ Θ0.

Condition (ii) : the mapping θ 7→ f(·; θ)g(·; θ) is differentiable in the sense
of distributions over Θ0.

Condition (iii) : there exist p mX -integrable functions hi : X → R+, i =
1, . . . , p, such that |∂θi(f(x; θ)g(x; θ))| ≤ hi(x) over X for all i = 1, . . . , p
and for all θ ∈ Θ0.

Definition 2.2. Let θ0 be an interior point of Θ. Also let g and F(g; θ0) be
as above. We define the Stein operator Tθ0,g : F(g; θ0)→ X ∗ as

Tθ0,g(f)(x) =

{
∇θ(f(x;θ)g(x;θ))|θ=θ0

g(x;θ0) if x ∈ Sθ0
0 otherwise.

(2)

If the gradients ∇θ(f(x; θ))|θ=θ0 and ∇θ(g(x; θ))|θ=θ0 are well-defined
(we stress that this is not necessarily the case) on X then

Tθ0,g(f)(x) =

(
∇θ(f(x; θ))|θ=θ0 + f(x; θ0)

∇θ(g(x; θ))|θ=θ0
g(x; θ0)

)
ISθ0 (x).

It should be noted that, for any test function f , the support of Tθ0,g(f)(x)
is included in Sθ0 .

Among densities g ∈ G, those which satisfy the following (local) regular-
ity assumption at a given interior point θ0 ∈ Θ will play a particular role.

Assumption A : there exists a rectangular bounded neighborhood Θ0 ⊂ Θ
of θ0 = (θ1

0, . . . , θ
p
0) such that
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A1. there exists a mX -integrable function h : X → R+ such that g(x; θ) ≤
h(x) over X for all θ ∈ Θ0;

A2. there exists ε > 0 such that
∫
Sθ
g(x;u)dmX (x) ≥ ε for all u, θ ∈ Θ0.

Assumption A1 is satisfied by densities which are bounded both as a function
of x ∈ X and of θ ∈ Θ0, in which case one can take h(x) = supθ∈Θ0

g(x; θ)
which is necessarily integrable. Assumption A2 is satisfied as soon as the
support of g(·; θ) does not depend on θ. Let Xu ∼ g(·;u) for some u ∈ Θ.
Assumption A2 implies P (Xu ∈ Sθ) ≥ ε for all u and all θ ∈ Θ0.

Example 2.1.

• The Arcsine distribution with θ ∈ R a location parameter

g(x; θ) =
(
π
√

(x− θ)(1− x+ θ)
)−1

I(θ ≤ x ≤ θ + 1)

does not satisfy Assumption A1.

• The Student distribution tν with θ ∈ R a location parameter

g(x; θ) ∝
(

1 +
(x− θ)2

ν

)− ν+1
2

satisfies Assumption A at θ0 = 0.

• The exponential distribution with θ ∈ R a location parameter

g(x; θ) = e−(x−θ)I(x ≥ θ)

satisfies Assumption A1 at θ0 = 0. To see why it also satisfies As-
sumption A2 at θ0 = 0 we note that∫

Sθ

g(x;u)dmX (x) =

∫ +∞

θ
e−(x−u)I(x ≥ u)dmX (x) = e−(θ−u)+ ≥ ε

with ε = infθ,u∈Θ0 e
−(θ−u)+

(which is necessarily positive).

Theorem 2.1. Let g ∈ G, let Zθ be distributed according to g(·; θ), and let
X be a random vector taking values on X . Fix an interior point θ0 ∈ Θ.
Then the following two assertions hold:

(1) If X
L
= Zθ0, then E[Tθ0,g(f)(X)] = 0 for all f ∈ F(g; θ0).

(2) If g also satisfies Assumption A at θ0 and if P (X ∈ Sθ0) > 0 then

X |X ∈ Sθ0
L
= Zθ0

if E[Tθ0,g(f)(X)] = 0 for all f ∈ F(g; θ0).

4



Proof. (1) Since Condition (iii) allows for differentiating w.r.t. θ under the
integral in Condition (i) and since differentiating w.r.t. θ is allowed thanks
to Condition (ii), the claim follows immediately.

(2) First suppose that p = 1, and fix Θ0 ⊂ Θ, a bounded (rectangular)
neighborhood of θ0 on which g satisfies Assumption A at θ0. Define, for
A ∈ BX , the mapping

fA : X ×Θ0 → R : (x, θ) 7→ 1

g(x; θ)

∫ θ

θ0

lA(x;u, θ)g(x;u)dmΘ(u) (3)

with
lA(x;u, θ) := (IA(x)− P(Zu ∈ A |Zu ∈ Sθ)) ISθ(x),

where

P(Zu ∈ B) =

∫
X
IB(x)g(x;u)dmX (x)

for B ∈ BX . Note that Assumption A2 guarantees that the event [Zu ∈ Sθ]
has a non-zero probability. To see that fA belongs to F(g; θ0), first note
that∫

X
fA(x; θ)g(x; θ)dmX (x) =

∫
X

∫ θ

θ0

lA(x;u, θ)g(x;u)dmΘ(u)dmX (x)

=

∫ θ

θ0

∫
X
lA(x;u, θ)g(x;u)dmX (x)dmΘ(u),

where the last equality follows from Fubini’s theorem, which can be applied
for all θ ∈ Θ0, since in this case there exists a constant M such that∫ θ

θ0

∫
X
|lA(x;u, θ)|g(x;u)dmX (x)dmΘ(u) ≤ 2|θ − θ0| ≤M

for all θ ∈ Θ0. We also have, by definition of lA,∫
X
lA(x;u, θ)g(x;u)dmX (x)

= P(Zu ∈ A ∩ Sθ)− P (Zu ∈ A |Zu ∈ Sθ) P(Zu ∈ Sθ)
= 0.

Hence fA satisfies Condition (i). Condition (ii) is easily checked. Regarding
Condition (iii), one sees that

∂t (fA(x; t)g(x; t))|t=θ = lA(x; θ, θ)g(x; θ) +H(x; θ), (4)

with H(x; θ) given in (5). As shown there, it is easy to bound H(x; θ)
uniformly in θ over Θ0 by a mX -integrable function. Moreover, Assumption
A guarantees that the same holds for lA(x; θ, θ)g(x; θ). Hence fA satisfies
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Condition (iii). We have thus proved that fA ∈ F(g; θ0). Using H(x; θ0) = 0
for all x ∈ X (see Section 3) along with the fact that

E[Tθ0,g(fA)(X)] = E[IA∩Sθ0 (X)− P(Zθ0 ∈ A)ISθ0 (X)] = 0

the conclusion follows for p = 1.
Next suppose that p > 1. Let θ0 := (θ1

0, . . . , θ
p
0) and fix Θ0 := Θ1

0 ×
. . . × Θp

0 a bounded (rectangular) neighborhood of θ0 on which g satisfies
Assumption A at θ0. Define, for all j = 1, . . . , p and for all A ∈ BX , the
mappings

θ̄j0 : Θj
0 → Θ0 : u 7→ (θ1

0, . . . , θ
j−1
0 , u, θj+1

0 , . . . , θp0)

and

f jA : X ×Θ0 → R : (x, θ) 7→ 1

g(x; θ)

∫ θj

θj0

ljA(x;u, θj)g(x; θ̄j0(u))dmΘ(u),

with

ljA(x;u, θj) :=
(
IA(x)− P

(
Zju ∈ A |Zju ∈ Sθ̄j0(θj)

))
IS
θ̄
j
0(θj)

(x),

where

P(Zju ∈ B) :=

∫
X
IB(x)g(x; θ̄j0(u))dmX (x)

for B ∈ BX . The p-variate equivalent of the function fA in (3) is given

by f
(p)
A (x; θ) :=

∑p
j=1 f

j
A(x; θ). Along the same lines as for the special case

p = 1, Conditions (i)-(iii) are now easily seen to be satisfied by f
(p)
A (we

draw the reader’s attention to the fact that the rectangular nature of the
neighborhood Θ0 is important in order to ensure Condition (iii)). The result
readily follows.

Remark 2.1. Nowhere in the proof did we need to specify whether the ran-
dom vector X is univariate (for k = 1) or multivariate (for k > 1).

Remark 2.2. When p > 1, the (vectorial) operator Tθ0,g(f) contains, in
a sense, p different characterizations of the θ = (θ1, . . . , θp)-parametric
density g at θ0. The requirements (in this formulation of the result) on
the test functions f are, perhaps, unnecessarily stringent. Indeed, setting
θ(q) := (θi1 , . . . , θiq) for 1 ≤ i1 ≤ . . . ≤ iq ≤ p, we can obviously consider
g as a θ(q)-parametric density. The corresponding q-dimensional sub-vector
of Tθ0,g(f) also gives rise to a (vectorial) Stein operator for which the con-
clusions of Theorem 2.1 also hold at θ0, this time with a possibly larger
class of test functions f (thanks to the weakening of the requirements im-
posed by Condition (iii)). In particular, taking q = 1, we obtain p distinct
one-dimensional characterizations of g at θ0.
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Remark 2.3. Note that both implications in Theorem 2.1 are obtained at
fixed θ0 ∈ Θ. We attract the reader’s attention to the fact that all our
calculations and manipulations, as well as all the conditions on the functions
at play, are consequently local around θ0.

3 Proof of equality (4)

First note that

∂t (fA(x; t)g(x; t))|t=θ

= ∂t

(∫ t

θ0

lA(x;u, t)g(x;u)dmΘ(u)

)∣∣∣∣
t=θ

= lA(x; θ, θ)g(x; θ) +

∫ θ

θ0

∂t (lA(x;u, t))|t=θ g(x;u)dmΘ(u).

Now we have

∂t (lA(x;u, t))|t=θ = ∂t (ISt(x))|t=θ (IA(x)− P(Zu ∈ A |Zu ∈ Sθ))
− ∂t (P(Zu ∈ A |Zu ∈ St))|t=θ ISθ(x).

On the one hand, setting

H1(x; θ)

:= ∂t (ISt(x))|t=θ
∫ θ

θ0

(IA(x)− P(Zu ∈ A |Zu ∈ Sθ)) g(x;u)dmΘ(u)

we immediately get

|H1(x; θ)| ≤ 2h(x) |∂t (ISt(x))|t=θ|mΘ([θ0, θ])

and is thus bounded uniformly in θ over Θ0 by a mX -integrable function
and satisfies H1(x; θ0) = 0. On the other hand, we have (thanks to Assump-
tion A2)

|∂t (P(Zu ∈ A |Zu ∈ St))|t=θ|

=

∣∣∣∣ ∂t (P(Zu ∈ A ∩ St))|t=θ
P(Zu ∈ Sθ)

− ∂t (P(Zu ∈ St))|t=θ
P(Zu ∈ A ∩ Sθ)

P(Zu ∈ Sθ)2

∣∣∣∣
≤ 1

ε
(|∂t (P(Zu ∈ A ∩ St))|t=θ|+ |∂t (P(Zu ∈ St))|t=θ|)

with

|∂t (P(Zu ∈ A ∩ St))|t=θ|+ |∂t (P(Zu ∈ St))|t=θ|

=

∣∣∣∣∂t(∫
A∩St

g(x;u)dmX (x)

)∣∣∣∣
t=θ

∣∣∣∣+

∣∣∣∣∂t(∫
St

g(x;u)dmX (x)

)∣∣∣∣
t=θ

∣∣∣∣
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which is necessarily bounded by some finite constant, say C(u, θ), possibly
dependent on u and θ. Hence, setting

H2(x; θ) := ISθ(x)

∫ θ

θ0

∂t (P(Zu ∈ A |Zu ∈ St))|t=θ g(x;u)dmΘ(u)

we obtain

|H2(x; θ)| ≤ 1

ε
ISθ(x)h(x)

∫ θ

θ0

C(u, θ)dmΘ(u)

and H2 is thus also bounded uniformly in θ over Θ0 by a mX -integrable
function and satisfies H2(x; θ0) = 0. Defining

H(x; θ) := H1(x; θ)−H2(x; θ) (5)

we see that all the assertions in the proof of Theorem 2.1 hold, and, more-
over, that

∂t (fA(x; t)g(x; t))|t=θ0 = lA(x; θ0, θ0)g(x; θ0) +H(x; θ0)

= lA(x; θ0, θ0)g(x; θ0).

This completes the proof of Theorem 2.1.
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