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Krishna DAS, graduated in 1996 in Zoology and in
1997 in Oceanology (University of Liége, Belgium)
has undertaken a Ph.D. on heavy metal
contamination and detoxification processes of
stranded marine mammals from European coasts.

Virginie DEBACKER, graduarted in 1993 from
University of Liége, Belgium with a degree in
Zoology after presenting a studv dedicated to the
contamination and speciation of heavy metals of
wintering common guillemots (Uria aalge) at the
Belgian coast. She further continued her
toxicological studies on seabirds and marine
mammals stranded at the Belgian coast, in view to

present her PhD thesis at Liége University.

Jean-Marie BOUQUEGNEAU, is full Professor at
the University of Liége (Belgium) and Head of
Oceanology Laboratory. He is teaching biological
oceanography, chemical oceanography and marine
ecotoxicology. His research experience concerns
heavy metal ecotoxicology including
metallothioneins  and  other  detoxification
mechanisms, as well as Posidonia seagrass beds
ecology in the Mediterranean Sea (Corsica).

Abstract - Metallothioneins (MTs) have been detected in livers and kidneys of 10 marine mammals species
(Pinnipeds and Odontocetes). Characterization of renal MTs of striped dolphin has shown that the protein has two
isoforms (MT-1 and MT-2) with a molecular weight estimated around 6800. MT concentrations also vary widely in
marine mammals tissues (from 58 to 1200 pg.g”' ww) underlying the numerous parameters involved: physiological
status, pregnancy, age, diet. The participation of this protein in metal detoxification has been investigated since high
levels of cadmium (Cd) and mercury (Hg) have been measured in livers and kidneys of marine mammals. It has
been suggested that those animals can mitigate at least in part, the toxic effects of Cd and Hg through binding to
MTs. The percentage of the cytosolic Cd bound to MTs can reach almost 100%. On the contrary, the percentage of
hepatic and renal Hg bound to MT is very low (generally less than 10%) and this metal is mainly associated with
selenium (HgSe) under a detoxified form in the insoluble fraction of the tissues. MTs appear to play a minor role in
the binding and detoxification of Hg by marine mammals. On the contrary, close and dynamic interactions occur
between Cd and MTs. Cytosolic MTs appear as a potential short term way of detoxification of Cd accumulated from
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diet. Long-term detoxification would imply a sequestration of the metal under a precipitated form (e.g. in

lysosomes).

Key words: Metallothioneins, marine mammals, cadmium, mercury

INTRODUCTION

Many areas have emerged in metallothionein (MT)
researches since their first discovery (Margoshes and
Vallee, 1957), but metallothionein natural function
remains elusive (Palmiter, 1998). Previous studies
on structure, function and molecular regulation have
established a central role for these molecules in the
homeostatic regulation of essential metals as zinc
(Z1n) and copper (Cu). Thus, it is not surprising that
MTs have been detected in both prokaryotes and
eukaryotes including marine mammals (reviewed by
Roesijadi, 1992, 1996). Indeed, the use of metals as
cofactors in biochemical reactions and their toxicity
associated with their affinity for S, N and O (the
predominant ligands in biomolecular structures),
represent dual aspects of metal-biological
interactions. Therefore, mechanisms that regulate the
intracellular availability of essential metals and
protect against inappropriate and potentially
deleterious intracellular interactions, are primordial
for efficient biochemical function. MTs work as Zn
or Cu donors to other metalloproteins. They are
induced by and bind excesses of these metals.
Another function postulated for MTs is the
detoxification of non-essential metals like cadmium
(Cd) and mercury (Hg). As a result of its capacity to
bind cations, MTs are able to bind non-essential
metals as Cd?* Ag*, Hg?* and Pb?* and, in this way,
reduce the bioavailability of these toxics (reviewed
by Webb, 1987; Roesijadi, 1992).

It has been suggested that Cd toxicity occurs when
available MTs are insufficient to bind all the Cd.
Recent experiments with mice genetically deprived
of MTs due to the loss of functional MT-1 and MT-2
genes (coding for the 2 main isoforms of MTs
involved in the detoxification process) confirm the
protective role of these proteins against cellular
damages from metals such as Cd or inorganic Hg

(Satoh et al., 1997; Klaassen and Liu, 1998). This
leads to consider that these proteins prevent
organisms from toxic hazards that could occur
following the high exposure to Cd and Hg. Recently,
Klaassen et al. (1999) reviewed the protective action
of MTs against Cd toxicity.

So far, there are few data on MTs in marine
mammals. Nevertheless, in the framework of heavy
metal ecotoxicology, marine mammals appear as a
choice material, since high levels of Hg and Cd can
be naturally encountered in these animals. While
plankton-eating Mysticetes are generally weakly
contaminated by heavy metals, fish-eating and
squid-eating Odontocetes and Pinnipeds are heavily
contaminated by Hg and Cd, respectively
(Bouquegneau and Joiris, 1992). Heavy metals in
marine mammals have been recently reviewed by
Das et al. (1999a).

A maximal Hg concentration of about 13 mg.g™ dry
weight has been reported in the liver of one
bottlenose dolphin stranded on the Italian coast
(Leonzio et al, 1992). Such high levels of Hg
without overt evidence of deleterious effects may
only occur if Hg is detoxified. Koeman ez al. (1973,
1975) have first reported a strong correlation
between Hg and selenium in livers of marine
mammals. A molar ratio Hg: Se of approximately 1
has been observed suggesting Hg detoxification
mechanisms in presence of selenium. The fate of Hg
has been mainly elucidated by histological studies
carried out in livers from different marine mammals
species as Cuvier’s beaked whale Ziphius cavirostris
and bottlenose dolphins Tursiops truncatus (Martoja
and Viale, 1977; Martoja and Berry, 1980; Nigro and
Leonzio, 1996). These authors have observed
mercuric selenide granules (HgSe) located mainly in
the liver macrophages, the Kupffer cells, and in the
proximal tubules of the kidney. The transformation
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of assimilated Hg in tiemmanite (HgSe) appears to
be the last step of detoxification leading to formation
of inert et non-toxic Hg compounds.

In the same way, the Cd renal concentrations can
reach levels as high as 2 mg.g”' dry weight in some
Arctic ringed seals without any pathological effects
(Dietz et al., 1998). This is much higher than the
critical concentrations of approximately 800 pg/g
dry weight (200 pg/g wet weight) associated with
kidney damage in mammals (WHO, 1992).
Moreover, following Elinder and Jdrup (1996), this
critical concentration has been largely overestimated
as Cd-induced renal dysfunctions have been
observed at kidney cortex concentrations of 200 pg/g
dry weight (50 pug/g wet weight). For comparison, in
human adults, the renal Cd concentrations amongst
non-smokers is about 1 pg.g”! wet weight (Pesch ez
al., 1989). These investigations indicate that marine
mammals are able to maintain considerable
concentrations of Cd without showing renal
damages. It has been postulated that marine
mammals mitigate the toxic effects of Cd through
binding to MTs. So far, MTs and metallothionein-like
proteins (MT-LP) have been described in 10 marine
mammal species (Table 1) with concentrations
ranging from 58 to 710 pug.g”! and 140 to 1200 pg.g
fw in the liver and kidneys respectively.

CADMIUM BINDING

As quoted above, the renal concentrations of
cadmium in marine mammals can reach levels much
higher than the critical concentrations associated
with kidney damage in terrestrial mammals. The
question has therefore been raised about animals so
heavily contaminated with Cd. Dietz et al. (1998)
have compared low and high concentrations of
cadmium in the kidney of ringed seals (Phoca
hispida) from Northwest Greenland in an attempt to
do macroscopic and light microscopic examinations.
No differences in renal morphology could be
observed between experimental groups. These
investigations indicate that marine mammals
appeared able to maintain considerable

concentrations of Cd without showing renal damage.
Dietz et al. (1998) have therefore postulated that
ringed seals were adapted to the naturally high Cd
levels of the Greenland Arctic regions.

The role of MTs in binding Cd present in the tissues
may vary widely between different species as well as
between different individuals from the same species
(Table 2). This leads to more or less important
spillage of Cd to other metalloproteins. It is
interesting to note that the low values of 5, 17 and
18% have been measured in the liver of three highly
debilitated sperm whales found stranded on the
Belgian coast (Bouquegneau et al., 1997; Holsbeek
et al., 1999). Moreover, a spillage of Cd from MTs
to other soluble components has been observed: 34
to 38% of the total Cd is bound to soluble proteins
other than MTs (calculated from Holsbeek et al.,
1999). This suggests that Cd was not in a detoxified
form, either on MT or in lysosomes. These animals
were seriously debilitated as indicated by their
reduced blubber thickness and body weight
(Jauniaux et al., 1998). Cd which is known to induce
debilitation in mammals can be considered as one of
the factors responsible for the condition of these
animals, which in addition to stress and starvation,
could have resulted in their stranding (Bouquegneau
etal, 1997).

However, high levels of Cd with low binding to MTs
have been reported in healthy animals. Amiard-
Triquet and Caurant (1997) have reported that 51%
of total Cd were bound to MTs in the livers of pilot
whales caught in July 1986 whereas individuals
caught in November from the same year displayed
only 6%. Moreover, individuals caught in winter
have low plasma Cd levels. According to these
authors, Cd in the plasma resulted from a recent Cd
contamination. These results are in agreement with
the seasonal availability of preys: squids which are
known to concentrate Cd in their tissues, are more
abundant in summer. So it seems that only recently
assimilated Cd is bound to MTs, the others being
stored in the insoluble fraction (Amiard-Triquet and
Caurant, 1997). In contrast to pilot whales, in the
narwhal, more than 70% of the cytosolic Cd is
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Table 1 Metallothionein and metallothionein-like protein detection and quantification (metal-free protein) in marine
mammals
Species Geographic Tissue Concentration Isoforms Method References
Location (ug/g ww) detected
Pinnipeds
Zalophus californianus Oregon (USA) liver nd MT-1 Sephadex G-75 or Lee eral, 1977
californianus kidney 140 MT-2 Sephadex G-200
(California sea lion) (n=1) Whatman DE 32-column
Histriophoca fasciata Japan liver nd MT-1 Sephadex G-75 Mochizuki er al., 1985
(ribbon seal) MT-2 HPLC-AAS
DEAE-3SW column
Phoca vitulina Japan liver nd MT-1 Sephadex G-75 Mochizuki er al., 1985
(harbour seal) MT-2 HPLC-AAS
DEAE-35W column
Japan liver 240+ 139 nd Radioimmunoassay Tohyama er al., 1986
(n=15)
kidney 343+219 nd
(n=15)
Halichoerus grypus Canada liver 70 nd Sephadex G-75 Olafson and Thompson, 1974
(grey seal) (n=1) followed by G-50
Callovhinum urisnum Canada liver 90 nd G-75 followed Olafson and Thompson, 1974
(Pacific fur seal) (n=1) by G-50
Odontocetes
Globicephala melas Faroe Islands liver 167 36 nd Polarography Caurant er al., 1996
(pilot whale) (n=7; july 1986) Amiard Triquet and Caurant, 1997
592 =200
(n=T; november 1986) nd
kidney 751+213
Stenella coeruleoalba NorthWestern kidney 314! MT-1 Sephadex G-75 Kwohn er al., 1986, 1988
(striped dolphin) Pacific (n=1) MT-2 Sephadex G25
DEAE Sephadex- A25
HPLC on GS-320 column
Amino acid characterization
and primary structure
Monodon monoceros Arctic liver 710! MT-1 Sephadex G-75 Wagemann ef al., 1984
(narwhal) (n=1) MT-2 Sephadex G-50 Wagemann and Hobden, 1986
kidney 1200 MT-1 Polyacrylamide gel
(n=1) electrophoresis
DEAE Sephadex A25
Phocoena phocoena North Sea liver nd nd AcA-54 Antoine et al., 1992
(harbour porpoise)
Physeter macrocephalus Oregon (USA) liver nd nd Sephadex G-75 and Ridlington er al.. 1981
(sperm whale) DEAE Sephadex gel
North Sea liver 58! nd AcA-54 Bouquegneau et al,, 1997
(n=3) Holsbeek et al., 1999
kidney 468-951! nd
(n=2)

Data about MT concentrations are either single value or in range, or mean =+ standard deviation) 'Metallothionein concentrations
are estimated assuming 7 gram-atoms (Cu, Zn, Cd, Hg) per mole and a molecular weight of 7 kDa. nd: not determined
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located in the MT fraction of the liver, indicating low
spillage of Cd to other metalloproteins (Wagemann
et al., 1984; Wagemann and Hobden, 1986). This
could be an adaptation of this Arctic species to the
high Cd concentrations present in its environment.
However, more data on Cd speciation in marine
mammals are needed to get a better comprehension
of the precise role of MTs in detoxification
processes.

MERCURY BINDING

Hg also has a strong affinity for MTs and high levels
of this metal can be associated with elevated levels
of Cd in marine mammal tissues (Caurant et al.,
1996). However, studies conducted on dolphins
(Kwohn et al., 1986), California sea lions (Lee et al.,
1977), pilot whales (Caurant et al., 1996), narwhals
(Wagemann et al., 1984) and sperm whales

287

(Bouquegneau et al., 1997; Holsbeek et al., 1999)
demonstrated that only a small part of the total Hg
was bound to MTs (Table 3). A significant amount of
Hg measured in the cytosol of a narwhal liver was
found to be associated with the high molecular
weight fractions (Wagemann er al, 1984).
According to these authors, such a spill over of Hg
to the high molecular weight components would be
a normal occurrence in marine mammals and is not
related to the saturation of MTs.

Even though there is a high affinity of Hg for MTs,
most of the metal is bound to components other than
MTs. These results are quite different from those
deriving from studies carried out on terrestrial
mammals, in which Hg is shown to be particularly
bound to MTs (Whanger and Deagen, 1983). This
striking difference between terrestrial and marine
mammals 1s mainly due to differences in Hg
speciation in the diet. In the marine environment,

Table 2 Cadmium speciation in the tissue, the cytosolic fraction and metallothioneins
Species Tissue N Total Cd % of Cd in % cytosolic Cd References
(ug.g' dw) cytosolic bound to
fraction metallothioneins
Stenella coeruleoalba kidney n=4 87 58 98 Kwohn et al., 1986
(striped dolphin)
Zalophus californianus kidney n=1 37 68 nd Lee eral., 1977
(California sea lion) n=5 65 +30 63 71 Ridlington er al., 1981
liver n=1 <dl <dl <dl
n=>5 11+7 60 35
Globicephala melas kidney gestating females 548 + 164 nd 54+6 Amiard-Triquet and Caurant, 1997
(pilot whale) n=7
foetus
n=5 1+08 nd 44 + 41
liver gestating females 312 + 124 nd 51+20
foetus 0.6+0.7 25+34
Physeter macrocephalus liver n=1 50 92 100 Ridlington et al., 1981
(sperm whale) n=1 64 53 18 Bouquegneau et al., 1997
n=1 71 55 17
n=1 103 39 d Holsbeek et al., 1999
kidney n=1 225 81 21
n=1 316 85 66
Monodon monoceros kidney n=1 332 92 72 Wagemann et al., 1984
(narwhal) Wagemann and Hobden, 1986
liver n=1 176 88 77

Cd concentrations are estimated in pg.g™! dry weight; nd: not determined, dl: detection limit
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Table 3 Distribution of mercury within cellular fractions
Species Tissue Total Hg % Hg in the insoluble % Hg associated Reference
(ug g fw) fraction with MTs
Globicephala melas kidney (n=7) 6 79 7 Caurant et al., 1996
Zalophus californianus kidney (n=5) 10 54 22 Lee et al., 1977
liver (n=5) 61 93 2.6
Monodon monoceros liver (n=1) 9 88 5 Wagemann et al., 1984
kidney (n=1) 2 73 10
Physeter macrocephalus liver (n=3) 2 85 <1 Bouquegneau et al., 1997
15 95 <03
15 84 <3 Holsbeek et al., 1999
kidney (n=2) 2 72 <2
5 70 <6
Stenella coeruleoalba kidney (n=4) 16 83 6 Kwohn et al., 1986

almost all the Hg present in fish is methylated
(Svensson et al, 1992). Methylmercury, whose
affinity for MTs is low, cannot be detoxified by this
process. In marine mammals, it has been shown that
the relative MeHg levels decreased from 100% (of
the total Hg level) in juveniles to only 2 or 3% in the
liver of adults (Joiris et al., 1991). This reflects the
existence of a slow mineralisation process without
formation of free Hg** ions which can bind to MTs.

The observed high percentage of Hg bound to the
insoluble fraction of the liver results from the
formation of tiemannite (HgSe) These dense
intracellular granules have been observed in the liver
macrophages and Kuppfer cells, the proximal tubules
of the kidney, the lung and hilar lymph nodes (Martoja
and Viale, 1977; Martoja and Berry, 1980; Augier et
al, 1993; Rawson et al., 1995; Nigro and Leonzio,
1996). By this way, in marine mammals, selenium
plays a key role in methylmercury detoxification
processes, and hence MTs would play a minor role,
probably limited to the detoxification of Hg?*.

STRUCTURE AND CHARACTERIZATION

Comparative sequence studies of MTs from different
species and organs have revealed remarkable
similarities among mammalian species (see Binz

and Kigi, 1999). About 56% of the 61 amino acid
residues are conserved in mammals, among them all
the 20 cysteine and nearly all lysine and arginine
residues (Kojima et al., 1999).

Characterization of marine mammal metalloproteins
were first attempted on sea lion and sperm whale
kidney and liver (Ridlington et al, 1981). Metal
binding proteins isolated from liver sperm whale
eluted in a manner similar to rat MTs, but the amino
acid analyses yielded only 12% cysteine residues
whereas all mammalian MTs contain approximately
30%. According to the authors, this protein was not
likely a metallothionein but rather a type of Cu-
chelatin. Similar conclusions were drawn for sea lion
liver and kidney metal binding proteins as the amino
acid analysis for the different metal-binding
fractions contained 2 to 15% cysteine residues. It
must be noted however, that general re-examination
of copper chelatin has resulted in its designation as a
MT (Winge et al., 1981 quoted by Roesijadi, 1992).
However, results reported by Ridlington ez al. (1981)
are inconsistent with other marine mammal MT
characterization. Indeed, striped dolphin MT-1 and
MT-2 isolation and characterization have been
performed (Kwohn et al., 1986, 1988). According to
these authors, 61 amino acid residues are present per
mole of each MT, including 20-21 cysteine residues
(Table 4). The absence of aromatic amino acids
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agrees with the lack of absorbance at 280 nm. MT
amino acid composition of striped dolphin compared
with rabbit for both isoforms is quite similar.
According to Kwohn et al. (1988), 89% of the MT-2
amino acid sequence is conserved between rabbit
and dolphin. Neither valine nor leucine were
detected in rabbit both isoforms, which suggests
microheterogeneity between the two species.

This discrepancy observed between the two
characterizations of marine mammal MTs might be
explained, at least in part, by technical evolution.
Indeed, Roesijadi (1992) has underlined early
technical difficulties associated with purifications of
MTs. Studies that have attempted to characterise
metal-binding proteins have often been influenced
by the presence of impurities or the isolation of
proteins onto which metals could be redistributed
during sample preparation.

Kwohn et al. (1986) have detected two isoforms in
the dolphin kidney identified as MT-1 and MT-2.

Table 4
hepatic MT-1 and MT-2 (after Nordberg et al., 1972)

289

According to its absorbance at 254 nm, the MT-2
isoform is much more abundant than MT-1 with a
ratio 1/16 while, for example, it is e.g. only 1/6.2 in
equine tissues (Kojima et al., 1976 quoted by
Kwohn et al., 1986). Most of the metals are therefore
bound to MT-2 except Cu which is preferentially
bound to MT-1 (Kwohn et al., 1986). The same
tendency is also observed for horse renal MTs
(Kojima et al., 1976 quoted by Kwohn et al., 1986)
indicating different cellular functions for each renal
MT of striped dolphins. However, it is worth
noticing that Wagemann and Hobden (1986)
reported MT-1 as the major form of MTs in the liver
and kidney from a narwhal. The functional
significance of multiple isoforms of MTs has yet to
be demonstrated for any mammalian species. The
different roles of MTs in the regulation of metals are
probably critical to cell functions but these have yet
to be studied in any marine mammal. It is clear,
however, that understanding the MT function will
need to consider the functionality and structure of
each MT isoform.

Amino acid composition of striped dolphin renal MT-1 and MT-2 (after Kwohn et al., 1986) and rabbit

Amino acid Dolphin MT-1

Dolphin MT-2

Rabbit MT-1 Rabbit MT-2

Asp
Thr
Ser
Glu
Gly
Ala
Cys
Val
Met
Ile
Leu
Phe
Lys
Arg
Pro
Tyr
His

NN W W

o]
pot

e S = L e ]

61
5986

Total
Molecular weight*

xamxmmm—_mgo\o\t\gmmm

61

6013

th 0 & — 2 W WL

MMMH\DMH—-—-MQOOLLQ\DLU\

—_— LN~ =] Y~ o =

57
5608

2 &

*Calculated as metal free molecular weight
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FACTORS MODULATING
METALLOTHIONEIN CONCENTRATIONS

The range of MT concentrations in marine mammal
kidneys and liver is widely extended (from 58 to
1200 pg/g fw). Their concentrations appear to be
high compared with those in rats. Indeed, hepatic
levels in normal rats are about 1 pug.g”! while it can
reach more than 200 pg.g”' in Cd-induced animals
(Eaton and Toal, 1982). Maximal concentrations
encountered in marine mammals are much higher
(Table 1). However, the modulation of MT
concentrations in marine mammals is poorly
understood due to a lack of extensive
quantifications. In most cases, the factors
influencing MT concentrations in the wild are
assumed after experimental studies on other
mammals. Till now, only two studies have attempted
to correlate MTs with ecological or ecotoxicological
factors (Tohyama et al, 1986; Amiard-Triquet and
Caurant, 1997). According to these authors, the MT
concentrations depend more on particular tissues, the
heavy metal concentration, the age and the diet.

The tissue

MT concentrations are always higher in the kidneys
than in the livers (Table 1). Few data are available to
allow for comparison, but MT level in the kidney
appears to bel.2 to 1.6 fold higher than in the liver
(Table 5) except for sperm whales stranded on the
Belgian coast in which the ratio may be related with
the debilitated status of these animals.

The metal level

A study performed on harbour seals (Phoca vitulina)
caught on Japanese coasts show that MT
concentrations are significantly correlated with the
level of Cd and Zn in the livers and with the level of
Cd, Zn and inorganic Hg in the kidneys (Tohyama et
al., 1986). These authors suggest that inorganic Hg
and Cd could be sequestered in MT and that Hg
toxicity could also be lessened by this protein.

The age

Tohyama et al. (1986) have pointed out that higher
MT levels have been quantified in the liver and
kidney of a seal pup as compared to adults. Neonates
of various mammalian species are known to have
relatively high levels of MTs with associated Zn and
Cu in the liver (Bakka and Webb, 1981, quoted by
Tohyama et al., 1986). Amiard-Triquet and Caurant
(1997) have quantified hepatic MTs in gestating
female pilot whales and their foetuses. MT mean
concentrations were always lower in the foetus than
in mother’s livers (mean: 73 mg/kg and 167 mg/kg,
respectively). However, the ratio MT / total proteins
remained unchanged. In harbour seals, Tohyama et
al. (1986) found a correlation between MT levels
and age. The observed age-dependant changes in
renal and hepatic MTs are associated with Cd
accumulation as it has been shown recently in
human tissue (Yoshida et al., 1998).

The diet
As quoted above, Caurant et al. (1996) and Amiard-

Table 5 Comparison of the ratio of MT concentrations in the kidney (K) and liver (L)
Species n Sampling status Ratio K.L! Reference
Globicephala melas 7 by-caught 1.2 Amiard-Triquet and Caurant, 1997
Phoca vitulina 15 by-caught 1.4 Tohyama et al., 1986
Monodon monoceros 1 by-caught 1.6 Wagemann et al., 1984
Physeter macrocephalus 2 stranded 8.7-124 Holsbeek et al., 1999
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Triquet and Caurant (1997) have compared
metallothionein-like protein (MT-LP) concentrations
between pilot whales caught in July and November
1986 (Fig. 1).
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Fig. 1 Mean concentrations and standard

deviations of metallothionein-like proteins (MT-LP)
calculated in the livers of pilot whales (Globicephala
melas) caught in the Faroe Islands (data adapted from
Caurant et al., 1996; Amiard-Triquet and Caurant,
1997).

MT mean concentrations in the livers of pilot whales
caught in the summer 1986 are more than three fold
higher than those encountered in winter caught
individuals, while Cd concentrations are similar for
both groups. Squid is the major food item in pilot
whales and is considered as a significant source of
Cd for several predators (Das et al., 1999b). The
lower level of MTs in whales caught in November
could be related to lower Cd assimilation in winter.
Indeed, the summer diet of pilot whales consists
mainly on cephalopods whereas the winter diet is
characterized by a higher fish input (Caurant et al.,
1996; Amiard-Triquet and Caurant, 1997).
According to the authors, the elevated MT
concentrations would reflect a induction by a recent
Cd assimilation. The metal could be sequestered
later under another detoxified form (e.g. precipitated
within lysosomes).

MTs AS BIOCHEMICAL INDICATOR
OF METAL EXPOSURE AND TOXICITY

Soon after their discovery in aquatic species, the
induction of MT and the analyses of its capacity to

bind metals were proposed as candidates for
biochemical monitoring of metal pollution in the
aquatic environment (Roesijadi, 1996). Heavy metal
analysis in the tissues reflects the level of
contamination of a population but not its response to
metal exposure, as these can be detoxified, at least in
part, through the binding to MTs. The induction of
MTs by non-essential metals as Cd has been
considered as an asset in biomonotoring studies.
Moreover, with current methodologies, MT
induction can be measured at several levels: increase
in metal content in the MT pool, increase in MT and
increase in MT mRNA (e.g. Suzuki, 1992; Caurant
et al., 1996; Tom et al, 1998). Each reflects a
different level of cellular regulation and function,
and provides complementary information.
Arguments against application of MT analysis in
environmental studies resides mainly in our current
lack of detailed understanding of basal MT function
and its relationship to induction by metals
(Roesijadi, 1992; Cosson and Amiard, 1998).
Through forty years of MT research, the different
interacting processes appear numerous and
complex. Cosson and Amiard (1998) have recently
reviewed the utilisation of MTs as potential
biomarkers of metal contamination in aquatic
animals including marine mammals and have
underlined the difficulty to correlate metal
bioaccumulation and increased MT level. Thus
proposal for the use of MTs as biochemical
indicators of metal pollution in marine mammals
merits continued considerations, as further
investigations are needed to understand the
processes involved in detoxification.

LIMITS TO DETOXIFICATION

Drawing conclusions concerning the potential role
of MTs in marine mammals is not an easy task due
to an obvious lack of recent published studies and
extrapolation from other mammals are often
advanced. Concerning potential role of these
proteins in Cd detoxification, advises are mitigated.
The rates of MT synthesis can become limiting as
exposure concentrations increase. The related
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decreasing metal binding to MTs could result in the
spillage of metals to other structures that would
include target sites for metal toxicity (Roesijadi,
1992). Any detoxification process has a cost for the
cell or the organism involved and might have a limit.
This threshold cannot be fully defined in terms of
tissue metal or MT concentrations because of the
number of parameters that can interact to limit
physiological pathways that lead to detoxification.
For example, gender and hormonal activity can
modulate the synthesis of MTs (Blazka and Shaikh,
1991). Moreover, binding to MTs might not be a
final step, and the formation of secondary
components with toxic effects have been
demonstrated in other mammals. The accumulation
and degradation of Cd-metallothionein complex
(Cd-MT) in the renal tubular epithelial cells can
induce nephrotoxicity in mice counteracted by Zn
which has a protective effect against this Cd-MT-
induced nephrotoxicity (Liu et al., 1996; Tang et al.,
1998). As a result of their physiological function in
the homeostasis of essential metals, MTs could be
involved in many cellular pathways. Thus, they could
modulate physiological processes as an indirect effect
of heavy metal exposure. For example, MTs have
been demonstrated as potential modulators of some
parameters of the immune response (Liebbrandt ef
al, 1994; Borghesi et al, 1996). Detoxification
pathways could therefore lead to more subtle toxic
effects underlying the complexity to approach toxic
effects of heavy metals.

CONCLUSION

Compared with other animals, liver and kidneys of
marine mammals display high MT concentrations,
related with their high levels of contamination by
heavy metals (mainly Cd and Hg). These high heavy
metal concentrations result from both their
homeothermy (which requires large food
consumption) and their position at the top of marine
food webs. Data about MTs remain scarce and, untill
now, discussion is only possible about their potential
role in the detoxification of Hg and Cd. Obviously,
MTs play a minor role (if any, when considering

methylmercury) in the binding and detoxification of
Hg by marine mammals. On the contrary, close
interactions occur between Cd and MT dynamics.
Cytosolic MTs appear as a potential short term way
of detoxification of Cd accumulated from diet.
Long-term detoxification however would imply a
sequestration of the metal under a precipitated form
(e.g. in lysosomes). So many parameters are likely to
modulate the MT concentration in marine mammals
tissues that its use as a biomarker of heavy metals
pollution in the marine environment remains
debatable.
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