

AN UPDATE ON THE VORTEX PROJECT

Olivier Absil & the VORTEX team

THE VORTEX CORONAGRAPH IN A NUTSHELL

Perfect on-axis cancellation

Annular Groove Phase Mask (AGPM)

 Rotationally symmetric half-wave plate made of **sub-wavelength** (aka zero-order) gratings

Small IWA,
 360° discovery,
 can be made
 achromatic

Mawet et al. 2005

HOW WE BUILD AGPMS

Preparation of diamond substrate

Moulding the silicon stamp with PDMS

Reactive ion etching smi UPPSALA

RTEX

UNIVERSITET

EARLY ACHIEVEMENTS

- First N- and
 L-band AGPMs
- Peak rejection measured at L band

ORTEX

THE VORTEX PROJECT

WP1 exploitation

commissioning observations image processing

WP2 improvement

design manufacturing testing

WP3 performance

apodisation wave front sensing orbital angular momentum

WP1 exploitation

commissioning observations image processing

CONQUER THE WORLD

2015

(L+M)

ÖRTEX

FIRST OBSERVATIONS

- Revisit famous systems
- Dedicated survey (cool dwarfs)
- Transition disks

500 mas

IMAGE PROCESSING

Carlos Gomez

- VORTEX pipeline:
 9k lines python package
- Fast and efficient PCAbased algorithm for ADI/SDI
- Currently testing machine learning techniques + ideas from computer vision field

SIGNAL THEORY

- Very small IWA reached with AGPM
- Required revisit of SNR for small sample statistics

• For all the gory details, see Mawet et al. 2014

WP2 improvement

design manufacturing testing

BETTER MID-IR AGPMS

Brunella Carlomagno

- Rigorous Coupled Wave Analysis to simulate ZOG
- L-band only: optimal peak rejection > 1000:1
- L+M band: optimal peak rejection ~ 500:1
- Goal: EELT/METIS

MANUFACTURING IMPROVEMENTS

- Better pattern transfer with solvent-assisted moulding
- Better control of etch rate

6000 rpm 30 s

555

65°C 10 min

PDMS

R1813

Ortex

600:1 reached in L band,

115°C 5 min

FIRST K-BAND AGPMS

Period = 800nm!!!

ORTEX

CHARGE-4 VORTEX

Christian Delacroix

RTEX

CHARGE-4 VORTEX

Christian Delacroix

- Discretization of the 2D grating pattern, using lines and curves
- 3D FDTD simulations

)RTEX

PERFORMANCE TESTING

Aïssa Jolivet

TEX

• All-reflective bench with super-continuum IR source and commercial (FLIR) camera. DM to be added this year.

WP3 performance

apodisation wave front sensing orbital angular momentum

Garreth Ruane

ZERNIKE AMPLITUDE APODISATION

Preserves the

 « nodal area » in
 the pupil plane

Elsa Huby

Post-Vortex Wave Front Sensing

- Wave front sensing at the position of the coronagraph
- Measure (and correct) non-common path aberrations

THE « 4Q » METHOD

Elsa Huby

• Differential intensities:

$$\Delta I_x = (I_2 + I_4) - (I_1 + I_3)$$

$$\Delta I_y = (I_1 + I_2) - (I_3 + I_4)$$

• Model:
$$\frac{\Delta I_x}{\beta} = T_x^3 + \alpha T_x T_y^2,$$
$$\frac{\Delta I_y}{\beta} = T_y^3 + \alpha T_y T_x^2$$

))RTEX

 $4\lambda D$

Elsa Huby

4Q METHOD: Validation

))RTEX

4Q METHOD: CENTRAL OBSTRUCTION

Plain pupil

- Breaks the nice (analytical) relationship
- Tip-tilt can still be recovered in a limiting regime and/or with the help of apodisation

Orbital Angular Momentum

)RTEX

WORTEX