

AN UPDATE ON THE VORTEX PROJECT

Olivier Absil & the VORTEX team

Université
de Liège

THE VORTEX CORONAGRAPH IN A NUTSHELL

l = topological charge (winding number)
= height of the screw dislocation

Perfect on-axis cancellation

VORTEX

ANNULAR GROOVE PHASE MASK (AGPM)

- Rotationally symmetric half-wave plate made of **sub-wavelength** (aka zero-order) gratings
- Small IWA,
360° discovery,
can be made
achromatic

How WE BUILD AGPMs

Preparation of
diamond substrate

Moulding the silicon stamp
with PDMS

Reactive ion etching

Nanoimprint

VÖRTEX

UPPSALA
UNIVERSITET

EARLY ACHIEVEMENTS

Nov 2009

Oct 2010

Feb 2012

- First N- and L-band AGPMs
- Peak rejection measured at L band

THE VORTEX PROJECT

WP1 exploitation

commissioning
observations
image processing

CONQUER THE WORLD

2013 (L) 2015 (L+M) ?

2012 (L)

2012 (N)

VÖRTEX

FIRST OBSERVATIONS

- Revisit famous systems
- Dedicated survey
(cool dwarfs)
- Transition disks

IMAGE PROCESSING

Carlos Gomez

- VORTEX pipeline:
9k lines python package
- Fast and efficient PCA-based algorithm for ADI/SDI
- Currently testing machine learning techniques + ideas from computer vision field

SIGNAL THEORY

- Very small IWA reached with AGPM
- Required revisit of SNR for small sample statistics
- For all the gory details, see Mawet et al. 2014

BETTER MID-IR AGPMs

Brunella Carlomagno

- Rigorous Coupled Wave Analysis to simulate ZOG
- L-band only: optimal peak rejection $> 1000:1$
- L+M band: optimal peak rejection $\sim 500:1$
- Goal: EELT/METIS

MANUFACTURING IMPROVEMENTS

- Better pattern transfer with solvent-assisted moulding
- Better control of etch rate
- 600:I reached in L band,
 $>100:I$ in L+M band

FIRST K-BAND AGPMs

Period = 800nm!!!

10 μ m

Date : 8 Dec 2014 EHT = 5.00 kV

WD = 5.3 mm | Probe = 100 pA

VÖRTEX

Christian Delacroix

CHARGE-4 VORTEX

VORTEX

Christian Delacroix

CHARGE-4 VORTEX

- Discretization of the 2D grating pattern, using lines and curves
- 3D FDTD simulations

PERFORMANCE TESTING

Aïssa Jolivet

VODCA

Vortex Optical Demonstrator
for Coronagraphic Applications

- All-reflective bench with super-continuum IR source and commercial (FLIR) camera. DM to be added this year.

WP3 performance

apodisation
wave front sensing
orbital angular momentum

Gareth Ruane

ZERNIKE AMPLITUDE APODISATION

- Preserves the « nodal area » in the pupil plane

Elsa Huby

POST-VORTEX WAVE FRONT SENSING

- Wave front sensing at the position of the coronagraph
- Measure (and correct) non-common path aberrations

Elsa Huby

THE « 4Q » METHOD

- Differential intensities:

$$\Delta I_x = (I_2 + I_4) - (I_1 + I_3)$$
$$\Delta I_y = (I_1 + I_2) - (I_3 + I_4)$$

- Model: $\frac{\Delta I_x}{\beta} = T_x^3 + \alpha T_x T_y^2$,
- $\frac{\Delta I_y}{\beta} = T_y^3 + \alpha T_y T_x^2$

Elsa Huby

4Q METHOD: VALIDATION

Elsa Huby

4Q METHOD: CENTRAL OBSTRUCTION

Plain pupil

Obstructed pupil

- Breaks the nice (analytical) relationship
- Tip-tilt can still be recovered in a limiting regime and/or with the help of apodisation

ORBITAL ANGULAR MOMENTUM

QUESTIONS?

The VORTEX team, 2014