Environmental context

Among the main greenhouse gases (GHG), nitrous oxide (N_2O) causes a serious environmental problem because of its global warming potential which is 298 times higher than CO$_2$ and because of its lifetime of 114 years. It is well known that microorganisms play an essential role in N_2O emissions (through nitrification and denitrification) and that agricultural soils emit most of this GHG. Thus, characterizing the dynamic of bacterial community and the expression of nitrogen cycle functional genes during a N_2O emission peak is of great interest to understand and anticipate N_2O emissions and improve good agricultural practices recommendations.

Methods

• Automated closed-dynamic-chamber (Fig. 1) system was used to Record N_2O emissions- 1 flux each 30 minutes (Fig. 2).
• Soil samples (10 cm top cm) were collected at strategic time (in triplicates) (green circles).
• Quantitative PCR was used to quantify gene expression during the observed peak (Fig. 3).
• Massive sequencing of 16S rRNA gene (Ion Torrent, MOTHUR) was conducted to assess the bacterial community dynamic (Fig. 4).

Results

Fig. 2 N_2O emissions and soil moisture during the experiment.

(1) Quantitative PCR analysis on N-genes cycle and 16S rRNA genes

Soil sampling over time (8 dates) and RNA extraction (Fig. 2)

![RNA extraction](image)

16S rRNA: bacterial 16S rRNA gene expression was quantified to report the global bacterial activity during N_2O emission peak.

- **nirS**: Nitrite reductase ($N_2O \rightarrow NO$)
- **nirK**: Nitrite reductase ($N_2O \rightarrow NO$)
- **nifH**: Nitrogenase reductase ($N_2O \rightarrow NH_4^+$)
- **nosZ**: Nitrous oxide reductase ($NH_4^+ \rightarrow NH_3$)
- **amoA**: Ammonia monoxygenase ($NH_3 \rightarrow NH_4OH$)

Quantification of genes (transcript copies number per g DNA)

The transcript quantity of nirS, nirK, nifH, nosZ, and 16S rRNA genes showed no significant changes during the N_2O emission peak. The transcript quantity of amoA gene showed a significant change positively correlated with N_2O emissions. amoA gene encodes for the ammonia monoxygenase which catalyzes during the nitrification the oxidation of ammonium to hydroxylamine (NH_2OH). NH_2OH can subsequently be abiotically transformed in N_2O process.

Fig. 3 16S rRNA transcripts abundance evaluation by quantitative PCR

Transcript abundance of OTUs was assessed by quantitative PCR (qPCR) using 16S rRNA genes as a house-keeping gene. Significant changes (20%) were observed for 6 OTUs (Fig. 3). The correlation coefficient of N_2O emissions and the average of N_2O emissions (for each operational taxonomic unit (OTU)) was calculated (0.40 to 0.50).

Conclusions

- The use of automated closed-dynamic-chamber system allowed the determination of N_2O emissions at a fine scale.
- Denitrification genes expression abundance did not significantly evolve during N_2O emissions.
- Nitrification marker (amoA gene) showed a significant correlation with N_2O emissions. amoA gene expression appeared to be the best proxy to follow N_2O emissions ($R^2 = 0.89$). amoA positive correlation wasn’t explained by an increase of *Nitrosomonas* members and could therefore be the result of a gene induction.
- Bacterial community structure remained globally stable except for 35 OTUs which showed a positive or negative significant correlation with N_2O emissions (including members of the nitrification process).
- Denitrification was expected after the rainfall but results demonstrated that nitrification could be the main driver of N_2O emissions in this agricultural soil.