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Abstract 30 

PIB ATPases are metal cation pumps that transport metals across membranes. These proteins 31 

possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high 32 

affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity 33 

and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) 34 

plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in 35 

zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species 36 

Arabidopsis halleri.  37 

Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding 38 

domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain 39 

and assessed the impact of the mutations on protein function and localization in planta, on 40 

metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance 41 

spectroscopy. 42 

The two Cys residues of the motif are essential for the function, but not for localization, of 43 

HMA4 in planta, whereas the Glu residue is important but not essential. These residues also 44 

determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus 45 

crucial for HMA4 protein function, whereas it is not required to maintain the protein 46 

structure.  47 

Altogether, combining in vivo and in vitro approaches in our study provides insights towards 48 

the molecular understanding of metal transport and specificity of metal P-type ATPases.  49 

 50 

Keywords: metal P-type ATPase, metal binding domain, zinc transport, structure-function 51 

analysis, Arabidopsis. 52 

 53 

  54 
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Introduction 55 

Zinc is an essential transition metal for development and growth of photosynthetic organisms. 56 

It plays important roles as enzyme or structural cofactor in many biochemical processes 57 

(Broadley et al. 2007; Palmer and Guerinot 2009; Nouet et al. 2011). However, zinc becomes 58 

toxic when present in excess in tissues, through unspecific binding or competition with other 59 

metals for the active sites in proteins (Goyer 1997; Gaither and Eide 2001; Hall and Williams 60 

2003; Tuerk and Fazel 2009). To maintain zinc concentration in tissues within an optimal 61 

range, plants have developed a complex and tightly controlled zinc homeostasis network. 62 

This network relies in part on zinc membrane transporters that ensure zinc uptake, 63 

distribution and storage (Krämer et al. 2007; Palmer and Guerinot 2009; Nouet et al. 2011). 64 

In Arabidopsis thaliana, HMA4 (Heavy Metal ATPase 4) encodes a zinc and cadmium efflux 65 

pump of the IB subfamily of P-type ATPases (or CPx-ATPases) (Williams and Mills 2005; 66 

Palmgren and Nissen 2011; Pedersen et al. 2012; Hanikenne and Baurain 2014) and is an 67 

essential node of the metal homeostasis network (Mills et al. 2003; Hussain et al. 2004; 68 

Verret et al. 2004). Together with its paralog AtHMA2, the HMA4 transporter is localized at 69 

the plasma membrane and is expressed in vascular tissues in roots and shoots (Hussain et al. 70 

2004; Verret et al. 2004; Siemianowski et al. 2013). AtHMA2 and AtHMA4 are responsible 71 

for the translocation of zinc from roots to shoots. A hma2hma4 double A. thaliana mutant 72 

displays stunted growth resulting from severe zinc deficiency in shoots (Hussain et al. 2004). 73 

AtHMA2 and AtHMA4 are also responsible for cadmium translocation to shoots (Wong and 74 

Cobbett 2009; Cun et al. 2014). In addition, the HMA4 protein plays a key role in the zinc 75 

and cadmium hyperaccumulation and hypertolerance syndrome in the Brassicaceae 76 

Arabidopsis halleri (Talke et al. 2006; Courbot et al. 2007; Hanikenne et al. 2008; Hanikenne 77 

et al. 2013) and Noccaea caerulescens (O' Lochlainn et al. 2011; Craciun et al. 2012), an 78 

extreme trait enabling these species to colonize metal-polluted soils (Krämer 2010; 79 

Hanikenne and Nouet 2011). In A. halleri, high expression of HMA4 supports high rates of 80 

root-to-shoot translocation of zinc mediated by xylem loading (Hanikenne et al. 2008). 81 

Increased expression of HMA4 in A. halleri results from tandem triplication and cis-82 

activation of expression of all three gene copies that were selected for during the evolutionary 83 

history of A. halleri (Hanikenne et al. 2008; Hanikenne et al. 2013).  84 

P-type ATPases constitute a superfamily of pumps using the energy of ATP to transport 85 

cations, and possibly phospholipids (Kühlbrandt 2004; Palmgren and Nissen 2011). P-type 86 
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ATPases can be divided into five major classes, I–V, based on ion transport specificities and 87 

clustering in phylogenetic trees (Axelsen and Palmgren 1998; Palmgren and Nissen 2011). 88 

Despite a low sequence conservation, all P-type ATPases share a set of structural and 89 

mechanistic features (Toyoshima and Nomura 2002; Toyoshima and Inesi 2004; Toyoshima 90 

2008; Toyoshima 2009; Palmgren and Nissen 2011). These proteins are characterized by the 91 

phosphorylation of an invariant Asp residue by ATP during the ion transport cycle. During 92 

this so-called Post-Albers cycle, the pumps undergo a series of conformational changes upon 93 

ion binding/release and phosphorylation/dephosphorylation. These conformational changes 94 

allow transport of the ion across the membrane. P-type ATPases possess specific cytoplasmic 95 

catalytic domains, the Actuator, Nucleotide and Phosphorylation domains, which are 96 

essential for the transport cycle. The transmembrane segments (TM) of P-type ATPases 97 

constitute the transport domain, which, determines ion selectivity and thanks to a high 98 

flexibility, allows binding and release of the ion (Kühlbrandt 2004; Williams and Mills 2005; 99 

Palmgren and Nissen 2011).  100 

Proteins of the IB subfamily of P-type ATPases are involved in metal cation transport across 101 

membranes (Williams and Mills 2005; Palmgren and Nissen 2011; Pedersen et al. 2012; 102 

Hanikenne and Baurain 2014). These proteins possess 8 TMs responsible for metal 103 

coordination during transport, notably including a specific metal binding site located in TM6 104 

with the conserved Cys-Pro-(Cys/His/Ser) motif and several other conserved residues 105 

(Argüello 2003; Pedersen et al. 2012; Hanikenne and Baurain 2014; Wang et al. 2014). Out 106 

of 45 P-type ATPases in A. thaliana, eight are IB metal ATPases (AtHMA1-8), which can be 107 

further divided in subgroups based on metal transport specificity (Axelsen and Palmgren 108 

1998; Argüello 2003; Hanikenne et al. 2005; Chan et al. 2010; Pedersen et al. 2012; 109 

Hanikenne and Baurain 2014). (i) AtHMA5-AtHMA8 transport monovalent metal cations 110 

(e.g. Cu+) and belong to the ubiquitous IB-1 subclass of metal ATPases found in all domains 111 

of life. This subclass includes the two human IB P-type ATPases, ATP7A and ATP7B, which 112 

both transport monovalent copper and whose mutations determine Menkes and Wilson 113 

diseases, respectively (Lutsenko and Petris 2003). In plants, the PAA1 (AtHMA6) and PAA2 114 

(AtHMA8) proteins are responsible for copper transport across the inner envelope and 115 

thylakoid membranes, respectively, which is required for copper delivery to plastocyanin 116 

(Shikanai et al. 2003; Abdel-Ghany et al. 2005; Bernal et al. 2007). (ii) AtHMA2-4 transport 117 

divalent metal cations (e.g. Zn2+ and Cd2+) and belong to subclass IB-2 of metal ATPases 118 

found in plants and in prokaryotes. (iii) AtHMA1 belongs to subclass IB-4 of metal ATPases 119 
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and has a broad ion specificity (Ca2+, Cd2+, Zn2+, Cu2+) (Seigneurin-Berny et al. 2006; 120 

Moreno et al. 2008; Kim et al. 2009; Boutigny et al. 2014). HMA1 orthologs in plants 121 

originate from a horizontal gene transfer from Chlamydiae into the common ancestor of 122 

Plantae and all share a non-canonical Ser-Pro-Cys in TM6 (Baum 2013; Hanikenne and 123 

Baurain 2014). 124 

IB metal ATPases possess N- and C-terminal extensions that contain high affinity metal 125 

binding domains (MBDs) rich in Cys and sometimes His residues. For instance, the C-126 

terminal domain of AtHMA4 contains multiple di-Cys motifs and an extended His stretch. 127 

This domain may act as a zinc and cadmium sensor regulating the export capacity of the 128 

pump and is required for the full function of the protein in planta (Baekgaard et al. 2010; 129 

Mills et al. 2010).  130 

The N-terminal domains of IB-1 copper ATPases are characterized by Cys-x-x-Cys motifs, 131 

which are required for copper delivery by metallochaperones, protein activation and/or 132 

protein intracellular trafficking. These processes have been described in detail for ATP7A 133 

and ATP7B (Barry et al. 2010). In contrast, the N-terminal domain of plant IB-2 zinc 134 

ATPases possess a Cys-Cys-x-x-Glu conserved metal-binding motif (CCxxE) within a 135 

βαββαβ ferredoxin fold. This non-canonical site binds one zinc atom (Eren et al. 2007; 136 

Zimmermann et al. 2009). Deletion of the AtHMA2 N-terminal domain results in decreased 137 

ATPase activity (Eren et al. 2007) and in failure to complement the phenotype of the 138 

hma2hma4 A. thaliana mutant (Wong et al. 2009). Mutation of the two Cys residues of the 139 

motif into Ala equally impairs the function of the protein in vivo (Wong et al. 2009). The N-140 

terminal domain of AtHMA2 is thus essential for function in planta. Finally, the N-terminal 141 

domain of AtHMA4 was characterized using Nuclear Magnetic Resonance (NMR) and metal 142 

probes, which revealed zinc binding by the Cys and Glu residues of the C27CTSE31 motif and 143 

showed that its affinity for zinc was in the subnanomolar range (Zimmermann et al. 2009). 144 

The two Cys residues of the motif were required for function of AtHMA4 in yeast (Verret et 145 

al. 2005). 146 

Conserved MBD motifs in the N-terminal domain of copper IB P-type ATPases have distinct 147 

functions in different proteins or even different functions when present in tandem in the same 148 

protein ((Tsivkovskii et al. 2001; Mana-Capelli et al. 2003; Mandal et al. 2003; Argüello et 149 

al. 2007; Veldhuis et al. 2009; Palmgren and Nissen 2011; Drees et al. 2015). It is thus 150 

important to examine differences and commonalities in the role of the N-terminal domains 151 
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and their conserved MBDs for several IB P-type ATPases. Moreover, many examples exists 152 

in the literature illustrating the fact that the functional analysis of IB P-type ATPase MBDs 153 

may result in differing observations between in vivo and in vitro experiments, and also 154 

depending on the experimental setup (see for instance, Eren et al. 2007; Wong et al. 2009; 155 

Baekgaard et al. 2010; Mills et al. 2010; Drees et al. 2015). Here, to further advance our 156 

understanding of structure/function relationship in the HMA4 N-terminal domain, a range of 157 

mutants of the C27CTSE31 conserved motif were characterized by complementary in vivo and 158 

in vitro approaches. Our data highlight the key function of the domain in planta and reveal 159 

predominance of the two Cys residues for zinc coordination and affinity.  160 

 161 

 162 

Materials and methods  163 

Plant material, transformation and growth conditions  164 

A. thaliana L. Heynhold (accession Columbia, Col-0) and the A. thaliana hma2hma4 double 165 

mutant (Hussain et al. 2004) were used in all experiments. For genetic transformation of the 166 

hma2hma4 mutant, plants were cultivated on soil watered with a 1mM ZnSO4 solution in a 167 

controlled climate room at 22°C and a 8h day-1 photoperiod (short days) during 8 weeks. 168 

Plants were then transferred in a 16h day-1 photoperiod (long days) growth chamber to induce 169 

flowering and were watered with 3mM ZnSO4 for 5 weeks. The hma2hma4 plants were then 170 

transformed using Agrobacterium tumefasciens by floral dipping (Clough and Bent 1998). 171 

GFP fusions were transformed into Col-0 wild-type plants. 172 

For experiments, homozygous transgenic seeds (T3 generation) were germinated on 1/2 MS 173 

agar medium containing 1% sucrose in short days, after a 5 day incubation at 4°C. After 18 174 

days, seedlings were transferred on soil for phenotyping or into hydroponic trays (Araponics, 175 

Tocquin et al. 2003) containing modified Hoagland solution as described (Talke et al. 2006; 176 

Charlier et al. 2015; Nouet et al. 2015). For soil experiments, plants were watered with 177 

distillated water and grown for 2 weeks in short days followed by 5 weeks in long days. For 178 

hydroponic experiments, plants were grown for 2 weeks in control conditions (1 µM ZnSO4) 179 

in short days. Plants were then transferred in long days to initiate the treatments: 0.05µM 180 

CdSO4 or 0.2µM ZnSO4 (Nouet et al. 2015). Nutrient solutions were changed weekly during 181 
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4 weeks. Root and shoot samples were then harvested separately before processing for ICP-182 

AES analyses.  183 

Cloning 184 

To construct the pAtHMA4-AhHMA4 cassette and the C27CTSE31 variants, the AtHMA4 185 

promoter (pAtHMA4, 2595 bp, Hanikenne et al. 2008) was amplified from Col-0 genomic 186 

DNA by PCR using primers harbouring 5’-AscI and 3’-AcyI restriction sites (Table S1A), 187 

respectively. The promoter fragment was cloned into the AscI and AcyI sites of a pAhHMA4-188 

1-AhHMA4 pBluescript II KS+ vector (Hanikenne et al. 2008) in replacement of pAhHMA4-189 

1. This vector served as a template for the site-directed mutagenesis of the conserved N-190 

terminal C27CTSE31 motif as described (Talke et al. 2006) using mutagenic primers (Table 191 

S1B). The wild-type and variant versions of pAtHMA4-AhHMA4 were then excised by 192 

digestion with AscI and PacI and cloned at the corresponding sites of a promoter-less variant 193 

of the pMDC32 vector (Curtis and Grossniklaus 2003; Hanikenne et al. 2008). 194 

For localization experiments, the wild-type and variant versions of AhHMA4 were cloned at 195 

the PacI and AscI sites (Table S1A) in fusion with GFP into the pMDC83 vector allowing 196 

expression under the control of a double 35S promoter (Curtis and Grossniklaus 2003).  197 

For production in E. coli, a synthetic gene encoding the N-terminal part of the A. halleri 198 

HMA4 protein (AhHMA4n, residues 1-95) with optimized codon usage was obtained from 199 

GeneArt. The fragment was subsequently cloned into the pET9a expression vector (Novagen) 200 

using NdeI and BamHI restriction sites. Variants with mutations in the C27CTSE31 motif were 201 

obtained as above using the pET9a-AhHMA4n vector as template (see mutagenic primers in 202 

Table S1B).  203 

All final constructions were verified by sequencing. 204 

RNA Extraction, cDNA Synthesis, and Quantitative RT-PCR 205 

Total RNAs were prepared using the RNeasy Plant Mini kit with on column DNAse 206 

treatment (Qiagen), and cDNAs were synthesized using the RevertAid H Minus First Strand 207 

cDNA Synthesis kit with Oligo dT (Thermo Scientific). Transcript levels were determined by 208 

real-time RT-PCR in 384-well plates with an ABI Prism 7900HT system (Applied 209 

Biosystems) using MESA GREEN qPCR MasterMix (Eurogentec) as described (Talke et al., 210 

2006; Nouet et al. 2015) including 4 technical replicates for each sample/primer pair (Online 211 
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Resource 2).The quality of the PCRs was checked visually through analysis of dissociation 212 

and amplification curves. Relative gene expression levels were determined by normalization 213 

using multiple reference genes with the qBase software (Biogazelle, Hellemans et al. 2007). 214 

Three reference genes (At1g18050, UBQ10, EF1a) were selected from the literature 215 

(Czechowski et al. 2005). Their adequacy to normalize gene expression in our experimental 216 

conditions was verified using the geNorm software in qBase (gene stability measure 217 

M=0.404, pairwise variation CV=0.155) (Vandesompele et al. 2002). 218 

ICP-AES analyses 219 

For plant samples, shoot tissues were rinsed in milliQ water, whereas root tissues were 220 

desorbed and washed as described (Talke et al. 2006). Tissues were then dried at 60°C for 2 221 

days. For protein samples, proteins were dialyzed against the purification buffer A without 222 

zinc (see below). Samples (10-50 mg of tissues, 5-10 µM purified proteins) were then acid-223 

digested in DigiPrep tubes with 3 ml ≥65% (w/w) HNO3 (Sigma-Aldrich) on a DigiPrep 224 

Graphite Block Digestion System (SCP Science) as follows: 15 min at 45°C, 15 min at 65°C 225 

and 90 min at 105°C. After cooling, sample volumes were adjusted to 10 ml with milliQ 226 

water and 200 µl ≥65% HNO3 (Sigma-Aldrich). Metal concentrations were determined by 227 

ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy, Vista AX, Varian). 228 

GFP imaging 229 

Leaves of eighteen day-old T1 seedlings expressing the GFP fusions described above were 230 

analyzed (3 independent lines per construct). Images were collected using a SP2 inverted 231 

confocal microscope (Leica). An Argon/Ion laser (488nm) was used for excitation of the GFP 232 

protein and the emission light was dispersed and recorded at 500 to 540 nm, as described 233 

(Rausin et al. 2010). To induce plasmolysis, seedlings were incubated in a 6% (w/v) NaCl 234 

solution for 5 minutes prior observation. 235 

 236 

Production and purification of non-labelled and isotope-labelled N-terminal domains 237 

E. coli cells (strain BL21 (DE3)) transformed with the pET9a/AhHMA4n expression vector 238 

were grown at 37°C in 2 L of LB (Luria-Bertani) medium containing 50µM ZnCl2 and 239 

50µg/mL kanamycin. At an OD600 of ~ 0.8, the production was directly induced with 1mM 240 

IPTG (isopropyl β-D-thiogalactopyranoside). The culture was then incubated for 18h at 18°C. 241 
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The cells, collected by centrifugation, were resuspended in 50 mL of 10 mM Tris/HCl pH 8 242 

supplemented by 1 mM TCEP and 50 µM ZnCl2 (buffer A). A protease inhibitor cocktail 243 

(mini complete EDTA-free, Roche) was added to avoid the degradation of the protein. 244 

For isotope labelling, prior induction of expression, cells were harvested an OD600 of ~0.8 by 245 

centrifugation at 11000g for 20 min and resuspended in 500 ml of M9 medium containing 246 

[15N]NH4Cl and/or [13C]Glucose (Cambridge Isotope Labotaries, Inc.), 50µM ZnCl2 and 247 

50µg/mL kanamycin. After 1h incubation at 37°C, the expression of the protein was induced 248 

by 1mM IPTG. Labelled proteins were then collected as described above.  249 

In all cases, cells were lysed after harvest using an EmulsiFlex-C3 cell disrupter (Avestin). 250 

The cellular extracts were clarified by centrifugation at 48000g for 40 min at 4°C. The 251 

soluble fraction was then loaded onto a cation exchange sepharose column (24 mL, GE 252 

Healthcare) equilibrated in 10mM Tris/HCl pH 8 supplemented with 1mM TCEP and 50 µM 253 

ZnCl2. The bound proteins were eluted over a 250 mL linear NaCl gradient (0-300mM). The 254 

fractions containing AhHMA4n were pooled, dialyzed overnight against buffer A (see above) 255 

and then further purified on a 5 mL Poros HS column (Applied Biosystems). The proteins 256 

were eluted thanks to a linear NaCl gradient as above.  257 

The N-terminal domain variants were purified as described for the native AhHMA4 N-258 

terminal domain. However, for variants C27A, C28A and C27A/C28A/E31A, purification 259 

conditions were slightly different: (i) 10mM Tris/HCl pH 8, 1mM TCEP, 50 µM ZnCl2 and 260 

0.02% n-Dodecyl β-D-Maltopyranoside was used for equilibration and (ii) the elution 261 

gradient was increased to 1 M NaCl. 262 

The AhHMA4n fractions were concentrated by ultrafiltration on a 3 kDa molecular-mass cut-263 

off column (Vivaspin). The protein purity was assessed by SDS/PAGE (18% gels), and the 264 

final protein concentration was determined by using the molar absorption coefficient at 280 265 

nm (ε=8480 M−1·cm−1), which was calculated with the help of ProtParam (ExPASy 266 

Proteomics Server, http://expasy.org/). 267 

Determination of the affinity of HMA4n for zinc 268 

The AtHMA4n control was produced as reported previously (Zimmermann et al. 2009). The 269 

oxidised AhHMA4n protein with an internal disulphide bond (i.e. AhHMA4n-SS) was 270 

produced by quantitative oxidation of AhHMA4n with stoichiometric amount of 271 
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[FeIII(CN)6]3+ and purified by an ion-exchange column. The AhHMA4n native and variant 272 

proteins were produced as described above. To ensure a complete removal of all metal ions 273 

from the samples, they were incubated with excess EDTA, followed by a gel-filtration 274 

separation. 275 

The determination of zinc (ZnII) affinity was conducted via the competition reaction 1 and the 276 

data analysed via equation 2 (Xiao et al. 2013): 277 

 278 

 [ZnII(Par)2]  +  P       279 ZnII-P  + 2 Par      Kex         (P = protein or EGTA)    (eq 1) 

 280 

 281 

            282 

        (eq 2) 283 

 284 

 285 

The term [ZnII(Par)2] is the equilibrium concentration of probe complex [ZnII(Par)2] in eq 1 286 

and may be determined directly from the solution absorbance at 500 nm after subtracting the 287 

minor contribution from the Par ligand. The other terms in eq 2 are the known total 288 

concentrations of the relevant species. The term KD b2 = (Kex)-1 is a constant under fixed 289 

conditions and may be derived by curve-fitting of the experimental data to eq 2. However, the 290 

accumulated formation constant b2 for ZnII(Par)2 varies considerably with experimental 291 

conditions and this will affect the reliability of KD for ZnII-P (Zimmermann et al. 2009). To 292 

control such variation, the EGTA ligand, whose affinities for ZnII at various pH values are 293 

known, was used as a control affinity calibrator under each experimental condition. 294 

Consequently, the KD for ZnII-P may be obtained reliably via eq 3 relative to a control 295 

experiment in the same reaction medium with P = EGTA in eq 1: 296 

  KD(ZnII-P)  =  [Kex(EGTA) / Kex(P)] x KD(ZnII-EGTA)            (eq 3) 297 

The experiments were conducted in MOPS buffer (50 mM, pH 7.3, 100 mM NaCl) with the 298 

detailed procedure following that reported previously (Zimmermann et al. 2009). To ensure a 299 

complete reduction of all protein thiols, reductant TCEP (100 µM) was included in all 300 

reaction media (except for the experiments with the oxidised HMA4n sample). Control 301 

experiments showed that excess TCEP had no discernible impact on the estimated Zn(II) 302 

affinity. 303 

Nuclear Magnetic Resonance analysis 304 

[P]tot 

[Zn]tot 
= KD b2 

[Par]tot 

[ZnII(Par)2]
 

 2 

[Zn]tot 

[ZnII(Par)2]
 

1 –  –  2 
[ZnII(Par)2]

 

[Zn]tot 
+  1 –   [ZnII(Par)2]
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The spectral assignment experiment of the native and C27A/C28A/E31A triple mutant HMA4n 305 

domains were performed on 0.5 mM 13C- and 15N-labelled samples while the HSQC 306 

experiments on the single mutants (C27A, C28A and E31A) were conducted on 0.07-0.14 mM 307 

15N-labelled samples. The apo form of AhHMA4n was obtained by treating 100µM of 308 

protein with 400µM EDTA for 10 minutes. All samples were prepared in a buffer containing 309 

10mM NH4Ac, 1mM TCEP, 100mM NaCl at pH 6.6 with 5% D2O and DSS 10 µM. The 310 

different spectra were acquired at 293 K on a Bruker AVI 500MHz spectrometer equipped 311 

with a TCI cryogenically cooled probe. The spectra of the 2D (1H–15N HSQC) and 3D 312 

[HNCA, HNCO, HNCACB and CBCA(CO)NH] (Cavanagh 1996) experiments were 313 

processed using TOPSPIN (Bruker) and analyzed with CCPNmr. 314 

NMR Minimum Chemical Shift Perturbation 315 

The effects of N-terminal domain mutations on the amide NH resonances were analysed as 316 

follows. For each cross-peak in the 1H-15N HSQC spectrum of the wild-type protein, the 317 

nearest cross-peak (in terms of 1H and 15N chemical shifts) in the spectrum of each mutant 318 

was identified. The 1H and 15N chemical shift differences, ΔH and ΔN, between each such 319 

pair of cross-peaks were measured and used to calculate a “minimum Chemical Shift 320 

Perturbation” (mCSP) (Lian et al. 2000).  321 

���� = �(6.7∆�)� + ∆�� 322 

While the individual chemical shifts may be underestimated, the perturbed amide NH can be 323 

reliably identified (Williamson et al. 1997). The minimum chemical shift is plotted as a 324 

function of residue number. The calculations were performed using TOPSPIN (*xpk) peak 325 

lists and a custom made tcl script. 326 

A threshold value was estimated in order to determine significant CSP. In a first step, all CSP 327 

are considered and the average (<CSP>) plus three times the standard deviation () is 328 

calculated. Then, the highest CSP (CSP≥<CSP>+3) are removed from the data and new 329 

average and new standard deviation are calculated. The operation is repeated until 330 

convergence is reached. The final value <CSP>+3 for the residues not significantly 331 

perturbed corresponds to the threshold (Tavel et al. 2012). 332 

Statistical analysis 333 

All statistical analyses of the data were carried out using STATISTICA (Statsoft).  334 
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 335 

Results 336 

In this study, we selected the A. halleri HMA4 protein as an experimental system to examine 337 

in vivo and in vitro the function of the conserved N-terminal C27CTSE31 metal binding motif. 338 

The AtHMA4 and AhHMA4 protein share 96.8% identity over the 95 residue N-terminal 339 

domain (Online Resource 1). 340 

The C27CTSE31 motif of the N-terminal domain is essential for the function of the 341 

HMA4 protein in vivo 342 

To examine in vivo the function of the C27CTSE31 N-terminal motif of HMA4 (Zimmermann 343 

et al. 2009), we separately mutated the two Cys and the Glu residues into Ala. A triple 344 

mutant, where the two Cys and the Glu were mutated into Ala, was also generated (Fig. 1a). 345 

The native (AhHMA4) and mutated genes were expressed under the control of the 346 

endogenous A. thaliana HMA4 promoter (pAtHMA4) in the loss-of-function hma2hma4 A. 347 

thaliana mutant (Hussain et al. 2004). Several independent homozygous transgenic lines (T3 348 

generation) were obtained for each construct. The HMA4 gene variants were expressed at 349 

similar levels in plant tissues (Online Resource 2). 350 

In our growth conditions on standard soil watered with tap water, the expression of AhHMA4 351 

rescued the phenotype of the hma2hma4 mutant. The plants developed normally and were 352 

able to flower and set seeds without additional zinc supply in the soil, as Col-0 wild-type 353 

plants (Fig. 1b-e). In contrast, expression of the C27CTSE31 motif variants resulted in the 354 

absence of (C27A, C28A, triple mutant) or in partial (E31A) complementation, respectively 355 

(Fig. 1f-j). Indeed, plant expressing the C27A, C28A and triple mutants displayed the stunted 356 

growth and chlorotic phenotype typical of the hma2hma4 mutant (Hussain et al. 2004; Wong 357 

and Cobbett 2009; Mills et al. 2010). These plants could complete their life cycle and set 358 

seeds only upon massive external zinc supply. The plants expressing the E31A mutant 359 

presented a phenotype intermediate between Col-0 and hma2hma4 plants, with a larger 360 

rosette and the development of flowers (Fig. 1f). The plants however required additional zinc 361 

supply to complete their life cycle. Note that similar results were obtained upon expression of 362 

the variants under the control of the A. halleri HMA4-1 promoter (data not shown, Hanikenne 363 

et al. 2008). 364 

Mutations in the C27CTSE31 motif alter zinc and cadmium distribution in plant tissues 365 
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We next determined if the mutation in the C27CTSE31 motif altered metal accumulation in 366 

plant tissues. Zinc and cadmium concentrations were measured by ICP-AES in roots and 367 

rosette leaves of 8 week old wild-type (Col-0) and hma2hma4 plants as well as transgenic 368 

plants expressing the C27CTSE31 variants after cultivation for four weeks in Hoagland 369 

hydroponic medium containing either 0.2 µM Zn or 0.05 µM Cd (Nouet et al. 2015). The 370 

hma2hma4 mutant accumulated about 6-fold higher zinc and 4-fold higher cadmium in roots 371 

and 2.2-fold lower zinc and 6-fold lower cadmium in shoots than the wild-type, respectively 372 

(Fig. 2). This reflected the inability of the hma2hma4 mutant to translocate zinc and cadmium 373 

from root to shoot. Expression of the native AhHMA4 gene in the hma2hma4 genetic 374 

background almost completely restored wild-type levels of zinc accumulation in root and 375 

shoot tissues. The plants expressing the C27A, C28A and triple mutants accumulated zinc at 376 

levels identical to the hma2hma4 mutant. In contrast, expression of the E31A mutant partially 377 

restored shoot zinc accumulation to levels intermediate between Col-0 and the hma2hma4 378 

mutant, but only marginally reduced root accumulation (Fig. 2a-b). Identical observations 379 

were made upon 0.05 µM Cd exposure (in the presence of 1 µM Zn): only the expression of 380 

the E31A mutant resulted in moderate increase of cadmium accumulation in shoots compared 381 

to the hma2hma4 mutant (Fig. 2c-d). 382 

The C27CTSE31 motif is not required for plasma membrane localization 383 

Mutations in the N-terminal domain of AhHMA4 might impact its intracellular localization. 384 

The inability of the C27CTSE31 motif variants to complement the phenotype of the hma2hma4 385 

mutant may therefore results from a mis-localization of the protein in cells rather than a loss 386 

of function. To exclude this hypothesis and to ascertain that the variants are expressed at the 387 

protein level, we expressed GFP fusions of the C27CTSE31 AhHMA4 variants under the 388 

control of a double 35S promoter in the Col-0 genetic background.  389 

Leaves of 18-day-old seedlings expressing the GFP fusions were imaged by confocal 390 

microscopy. All three simple mutants (C27A, C28A and E31A) and the triple mutant of the 391 

AhHMA4 protein were expressed and localized in the plasma membrane of leaf epidermal 392 

cells (Fig. 3). The induction of a plasmolysis of leaf cells confirmed the plasma membrane 393 

localization of the protein: a characteristic detachment of the membrane from the cell-wall, 394 

with the exception of plasmodesmata, was observed (Fig. 3f). No fluorescence was detected 395 

in leaves of Col-0 seedlings using identical settings (Fig. 3a). GFP imaging experiments also 396 
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suggests that the C27CTSE31 motif variant proteins are stable in planta, as we did not detect 397 

any GFP aggregation in cells (Fig. 3). 398 

Mutations in the C27CTSE31 motif alter zinc binding properties in vitro 399 

The native N-terminal domain of AhHMA4 (residues 1-95 residues, AhHMA4n) and the 400 

C27CTSE31 variants were expressed in E. coli and purified. After dialysis, we assessed the 401 

stoichiometry of zinc binding to the proteins by ICP-AES measurements (Table 1). The 402 

native AhHMA4n bound ~1 zinc ion per protein. Zinc binding was strongly reduced for the 403 

C27A and C28A mutant proteins as well as for the triple mutant. The E31A mutant retained an 404 

intermediate zinc binding capacity (Table 1).  405 

Using the Par zinc probe (Zimmermann et al. 2009), we next quantitatively estimated the 406 

binding affinity of the AhHMA4n variants for zinc (Table 2 and Online Resource 3). The 407 

native AhHMA4n protein had a KD for zinc in the nanomolar range identical to that for the 408 

AtHMA4n protein (previously determined by Zimmermann et al. 2009), despite 3 409 

polymorphic positions in the N-terminal domain (see Online Resource 1). Oxidation of the 410 

two Cys thiols to an internal disulfide bond in the binding motif completely abolished zinc 411 

binding. The C27A mutation, taken as a representative of the most affected mutant variants, 412 

decreased affinity for zinc by 1.8 orders of magnitude, whereas the E31A mutation only 413 

reduced the affinity for zinc by 1.4 orders of magnitude.  414 

Structural impact of the C27CTSE31 motif mutations by NMR spectroscopy 415 

To examine the structural consequences of mutations in the C27CTSE31 motif of AhHMA4, 416 

2D 15N-1H HSQC NMR experiments were recorded for the native and C27CTSE31 variant 417 

AhHMA4n proteins. Backbone NH NMR signal chemical shifts and intensities are very 418 

sensitive probes to study protein structural and dynamic modifications. The HSQC spectrum 419 

of the native AhHMA4n protein was similar to previously published data for AtHMA4n 420 

(Zimmermann et al. 2009). The HSQC spectra of the C27CTSE31 motif variants revealed that 421 

the AhHMA4n domains were structured, despite (strongly) reduced zinc binding capability 422 

(Table 1), and displayed limited variations compared to the spectrum of the native 423 

AhHMA4n domain (Fig. 4 and Online Resource 4). These observations suggested that 424 

mutations in the C27CTSE31 motif had limited impact on the domain structure. To statistically 425 

support these conclusions, an analysis of the minimal chemical shift perturbations (mCSP) 426 

was used to compare the HSQC spectra of the native and C27CTSE31 variant AhHMA4n 427 
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proteins (Fig. 5a and Online Resource 5). The observed mCSPs corresponded to the mutated 428 

amino acid residues and to amino acid residues interacting with the mutated residues (Fig. 5). 429 

A very similar mCSP profile was also obtained for the apo form of the protein obtained by 430 

treatment with EDTA prior to NMR analysis (Online Resource 6). 431 

Backbone assignment (N, H, CO, Ca, Cb) was performed for the native AhHMA4n protein 432 

and the triple C27A/C28A/E31A mutant, which represented the most extreme modification of 433 

the C27CTSE31 motif. This confirmed that perturbed amino acid residues are located at the 434 

vicinity of the zinc binding site or correspond to more distant residues in the primary 435 

sequence that are spatially close in the 3D structure. Structure predictions using the backbone 436 

chemical shift and the Talos+ software (Shen et al. 2009) confirmed that the mutations in the 437 

C27CTSE31 motif did not have a major impact on the AhHMA4n domain secondary structure 438 

(data not shown).  439 

Discussion 440 

IB P-type ATPase proteins play essential roles in metal homeostasis in Arabidopsis species 441 

(Williams and Mills 2005; Nouet et al. 2011). Hence, HMA4 is a major actor in Zn 442 

hyperaccumulation as well as Zn and Cd tolerance in Arabidopsis halleri (Talke et al. 2006; 443 

Courbot et al. 2007; Willems et al. 2007; Hanikenne et al. 2008; Hanikenne et al. 2013). If 444 

the catalytic mechanism of transport by P-type ATPases is well described, establishing the 445 

roles and functions of N- and C-terminal extremities and their MBDs still require further 446 

investigations. Depending on the organisms and proteins, N-terminal MBDs have been 447 

involved in multiple functions, including regulatory roles, controlling catalytic activities, 448 

dephosphorylation and metal ion release possibly via interactions with the cytoplasmic ATP 449 

binding domain, or the intracellular targeting of the protein (Tsivkovskii et al. 2001; Mana-450 

Capelli et al. 2003; Mandal et al. 2003; Argüello et al. 2007; Veldhuis et al. 2009).  451 

Zimmermann et al. (2009) determined the 3D solution structure of the N-terminal domain of 452 

AtHMA4, which binds one zinc atom at the C27CTSE31 motif. Here, we examined the 453 

function of this motif in planta, assessed the contribution of the conserved Cys and Glu 454 

residues to zinc binding and evaluated the impact of mutations in the motif on protein 455 

structure and function. Combining both in vivo and in vitro analyses allowed an integrated 456 

analysis of the structure/function relationship for the N-terminal MBD of HMA4.  457 
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The HMA4 protein localizes to the plasma membrane in plant tissues (Verret et al. 2004; 458 

Courbot et al. 2007; Siemianowski et al. 2013; Nouet et al. 2015). The N-terminal domain of 459 

HMA4 was not involved in protein intracellular localization or in protein stability (Fig. 3). 460 

Indeed, all mutant variants in fusion with GFP localized in the plasma membrane of stable A. 461 

thaliana transformants (Fig. 3), in agreement with previous results for AtHMA2 (Wong et al. 462 

2009). In contrast, the C-terminal domain of AtHMA2 possibly contains a signal important 463 

for the subcellular localization of the protein in planta (Wong et al. 2009), whereas the C-464 

terminal domain of AtHMA4 is not required for correct localization in yeast cells (Baekgaard 465 

et al. 2010).  466 

Expression of the AhHMA4 gene under the control of the pAtHMA4 promoter only partially 467 

complemented the defect in root to shoot zinc translocation of the hma2hma4 mutant: zinc 468 

shoot accumulation level was lower than in the wild-type, but was however sufficient to 469 

sustain normal development (Figs. 1 and 2). When expressed under the control in the HMA4 470 

endogenous promoter, HMA4 is thus not sufficient alone to fully compensate for the loss of 471 

both HMA2 and HMA4. In contrast, expressing the same gene under the control of promoters 472 

of the A. halleri HMA4, which are stronger than the pAtHMA4 promoter (Hanikenne et al. 473 

2008) fully complemented the mutant (Nouet et al. 2015).  474 

In complementation experiments, the C27A, C28A and C27A/C28A/E31A mutations abolished 475 

the ability of the AhHMA4 protein to complement the strong zinc deficiency phenotype and 476 

to restore zinc and cadmium root-to-shoot translocation in the hma2hma4 A. thaliana mutant 477 

(Fig. 1 and 2). Reduced zinc binding and affinity (Tables 1 and 2, Online Resource 3) are 478 

thus accompanied by a loss of function in planta. Previous studies analysing the N-terminal 479 

MDB of AtHMA2 (~ 82% sequence identity with the AtHMA4 N-terminal domain, see 480 

Online Resource 1) suggested that the CCxxE motif is required for zinc and cadmium binding 481 

in vitro and for maximum enzyme turnover but were not essential for activity or metal 482 

binding to transmembrane metal binding sites in yeast cells (Eren et al. 2007). However, the 483 

two Cys residues of the motif were required for function of AtHMA2 in planta (Wong et al. 484 

2009) and AtHMA4 in yeast (Verret et al. 2005).  485 

In contrast, the E31A mutation sustained partial complementation of the hma2hma4 mutant 486 

phenotype (Fig. 1 and 2) and retained higher zinc binding and affinity than the Cys-->Ala 487 

mutants (Tables 1 and 2, Online Resource 3). Note that this mutant retained a higher capacity 488 

for zinc translocation to the shoot than for cadmium (Fig. 2).  489 
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The NMR HSQC spectrum of the amide NHs of the purified AhHMA4n protein was nearly 490 

identical to the data obtained by Zimmermann et al. for AtHMA4n (Zimmermann et al. 491 

2009). Since NMR chemical shifts are very sensitive to the structural environment, the very 492 

similar NMR spectrum was a strong evidence for a very similar 3D structure. This confirmed 493 

the global ferredoxin βαββαβ fold of the domain, in which the thiols of Cys residues and 494 

carboxy group of the Glu residue contributed to the coordination of zinc. The three 495 

polymorphic residues between AtHMA4n and AhHMA4n had thus no major impact on 496 

protein structure. Furthermore, we showed here that the mutations in the C27CTSE31 motif of 497 

AhHMA4n, which drastically reduced zinc binding, had no significant effect either on the 498 

secondary or on the tertiary structure of the protein. This observation was also confirmed by 499 

the structural analysis of the apo form of AhHMA4n: the structure of the apo form is not 500 

altered.  501 

Altogether, our data indicated that the two Cys residues of the C27CTSE31 motif of the N-502 

terminal MBD are essential for the function of HMA4, whereas the Glu residue is important 503 

but not essential. Moreover, zinc binding to the N-terminal MBD is crucial for HMA4 protein 504 

function, whereas it is not required to maintain the N-terminal domain structure. Based on 505 

these observations arises the following question: what is the requirement of zinc binding for 506 

the protein function? It may be required for intramolecular interactions controlling the 507 

pump’s activity and/or conformational changes during metal transport (Tsivkovskii et al. 508 

2001). 509 

Copper IB pType ATPases and many bacterial zinc IB pType ATPases possess a highly 510 

conserved CxxC motif in their N-terminal MDBs. This motif can bind both monovalent (Cu+) 511 

or divalent (Cu2+, Zn2+, Cd2+) metal ions in vitro and, for instance, metal selectivity for Cu+ is 512 

determined in vivo by electrostatic and hydrophobic interactions with specific copper 513 

chaperones (Argüello et al. 2007). However, in all plant zinc IB pType ATPases, this 514 

conserved motif is replaced by a CCxxE motif. It was initially suggested that the CCxxE 515 

motif could confer selectivity for Zn(II) but not for Cu(I) due to its higher binding affinity for 516 

Zn(II) than for Cu(I) (Eren et al. 2007). However, this conclusion has been questioned when 517 

both CCxxE and CxxC motifs were showed to bind Cu(I) with affinities at least 6 orders of 518 

magnitude higher than Zn(II). Both motifs can also bind Zn(II) with moderate affinities in the 519 

nanomolar range (Zimmermann et al. 2009). Quantitative evaluations under identical 520 

conditions revealed that the MBDs containing the CCxxE motif bind Zn(II) with affinities 521 

20-30 times stronger than do those MBDs containing CxxC while relative affinities for Cu(I) 522 
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are inverted by a factor of 30-50 (Zimmermann et al. 2009). Consequently, it was proposed 523 

that, under metal-limiting conditions, zinc selectivity is conferred by relative affinities and 524 

not absolute affinities. Under these conditions, Cu(I) ions are confined to their native high 525 

affinity sites and are not available to compete for native Zn(II) sites (Zimmermann et al. 526 

2009). Interestingly, the affinity for zinc of the E31A domain of HMA4 featuring a CCxxA 527 

metal binding motif is essentially identical to that of the N-terminal domain of the copper 528 

ATPase HMA7 containing a CxxC metal binding motif (Zimmermann et al. 2009). Yet, in 529 

the hma2hma4 A. thaliana mutant, the endogenous copper ATPases, such as HMA5 (Andrés-530 

Colás et al. 2006; Kobayashi et al. 2008) or HMA7, do not seem to substitute HMA2 and 531 

HMA4 for Zn/Cd transport while the AhHMA4 E31A variant did partially sustain the Zn/Cd 532 

transport function. It appears that the functional specificity of different metal transporters 533 

must also depend on factors other than the metal-binding affinity and that these may include 534 

specific intra-molecular interactions (Tsivkovskii et al. 2001) or expression patterns. 535 

Interestingly, bacterial zinc (ZntA) and cadmium (CadA) IB pType ATPases also use a 536 

carboxylate ligand for zinc and cadmium, respectively, with the presence of a DCxxC motif 537 

found in the E. coli ZntA and of a Glu residue in a loop more distant of the CxxC motif in the 538 

CadA N-terminal domain (Banci et al. 2002; Banci et al. 2006).  539 

In conclusion, our analyses highlight the importance of zinc binding to the N-terminal MBD 540 

of HMA4 for the protein function in planta. This work further establishes the value of 541 

combining in planta and in vitro studies to reveal the structure/function relationships for 542 

transmembrane metal transporters. Future developments may possibly include analysing the 543 

interaction of the N-terminal domain and its MBD variants with other cytoplasmic domains 544 

of HMA4.  545 

 546 
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Table 1. Stoechiometry of zinc binding to AhHMA4 C27CTSE31 N-terminal variants.  

 Ratio protein/Zn 

AhHMA4n 0.86 

AhHMA4n C27A 0.06 

AhHMA4n C28A <0.01 

AhHMA4n E31A 0.37 

AhHMA4n C27A/C28A/E31A <0.01 
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Table 2. Affinity of zinc binding to AhHMA4 C27CTSE31 N-terminal variants.  

Protein 
log KD

a 

([Par]tot, 50 µM) 

log KD
a 

([Par]tot, 100 µM) 

average log KD 

 
log (KD/KD(wt)) 

AtHMA4nb <  9.40 a  9.63  9.63 ~ 0 

AhHMA4n <  9.47 a  9.60  9.60 0 

AhHMA4n C27A  7.82  7.83  7.83 1.8 

AhHMA4n E31A 8.21  8.19  8.20 1.4 

AhHMA4n SS N.D.c    

a The affinity for zinc was determined at two Par concentrations (50 and 100 µM) (see Zimmermann et al. 2009). 
b Used as control (described in Zimmermann et al. 2009). 
c Not Detectable. 
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Figure legends 

Fig. 1. Complementation of the hma2hma4 A. thaliana mutant by the A. halleri HMA4 

protein and C27CTSE31 variants expressed under the control of the pAtHMA4 promoter. a 

Partial sequences of the AhHMA4 N-terminal (AhHMA4n) domain. Mutated residues in the 

C27CTSE31 motif are shown in bold font. b-j Phenotype of the plants after 8 weeks of growth 

on standard soil. Plants were grown without Zn supplementation for phenotyping. Wild-type 

A. thaliana plants (Col-0 accession) (b) and the hma2hma4 mutant (c-d) are shown as 

controls. Mutant plants expressing a native AhHMA4 protein (e) or C27A (g-h), C28A (i), 

E31A (f) and triple C27A/C28A/E31A (j) variants display wild-type (e) or mutant phenotypes 

(g-j). Scalebars: 1 cm. 

 

Fig. 2. Zinc and cadmium accumulation in plants expressing AhHMA4n variants. Wild-type 

A. thaliana plants (Col-0 accession), hma2hma4 mutant and mutant plants expressing a native 

AhHMA4 protein or C27A, C28A, E31A and triple C27A/C28A/E31A variants were grown for 4 

weeks in Hoagland hydroponic medium containing 0.2 µM ZnSO4 (a-b) or 0.05 µM CdSO4 

(c-d). Metal contents (mg kg-1 DW) were measured by ICP-AES from root and shoot tissues. 

Values relative to the wild-type (Col-0) are means ± SEM of 2-3 independent lines from two 

independent experiments, each including two replicates of 3 plants per line. The data were 

analyzed with a Kruskal-Wallis non-parametric ANOVA followed by multiple comparison 

tests. Statistically significant differences (p<0.01) between means are indicated by different 

superscripted letters. 

 

Fig. 3. Cellular localization of C27CTSE31 AhHMA4 variants. GFP fusions of C27A (b), 

C28A (c), E31A (d) and triple C27A/C28A/E31A (e) variants were imaged by confocal 

microscopy in leaves of 18 day-old seedlings. The fusions were expressed in the Col-0 

background under the control of a double 35S promoter. Non transformed Col-0 seedlings 

served as controls (a). (f) Plasmolysis on leaf of AhHMA4 C28A expressing plants confirmed 

plasma membrane localization. The arrow indicates a plasmodesmata. Scalebars: 20 µM. 
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Fig. 4. Superposition of the 2D HSQC 1H-15N NMR spectra of the native (in black) and triple 

C27A/C28A/E31A mutant (in red) AhHMA4n proteins at pH 6.6. The marked peaks (arrows) 

represent the most affected residues.  

Fig. 5. Chemical shift perturbation resulting from the C27A/C28A/E31A mutation in the 

AhHMA4n protein. a A threshold of 3 standard deviations (green line) was selected to 

identify significant shift perturbations when comparing the native and triple C27A/C28A/E31A 

mutant AhHMA4n proteins. The green and orange boxes represent the alpha helices and beta 

sheets in the sequence, respectively. b The shift perturbations were localized on the structure 

of AtHMA4n (2KKH (Zimmermann et al. 2009)) using Pymol. A color code for residues was 

used to represent the level of perturbation: red ≥ 2ppm; 2ppm ≤ purple ≤ 1ppm; blue ≤ 1ppm. 
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Table S1. Primers used in the study. 

(A) Cloning primers.  

 

 

Restriction enzyme sites are indicated in bold font. 

 

(B) Mutagenic primers.  

Mutated bases are are indicated in bold font. 

  

Name  Sequence (5’=>3’) 

pAtHMA4 AcyI  TTTCTCTTCTTCTTTGTTTTGTGACGCC 

pAtHMA4 AscI   TATAGAATTCGGCGCGCCACTTACCGATCGGGTATGCCATG 

AhHMA4  AscI GGCGCGCCAAGCACTCACATGGTGATGGTGG 

AhHMA4  PacI CCTTAATTAAGGATGGCGTCACAAAACAAAGAAGAAG 

Name  Sequence (5’=>3’) 

Full length protein (in vivo experiments) 

AhHMA4 Nter C27A Fwd          GTTACTTCGATGTTCTCGGAATCGCTTGCACATCGGAAGTTCC 

AhHMA4 Nter C27A Rev          GGAACTTCCGATGTGCAAGCGATTCCGAGAACATCGAAGTAAC 

AhHMA4 Nter C28A Fwd          CTTCGATGTTCTCGGAATCTGTGCTACATCGGAAGTTCC 

AhHMA4 Nter C28A Rev          GGAACTTCCGATGTAGCACAGATTCCGAGAACATCGAAG 

AhHMA4 Nter E31A Fwd         CGGAATCTGTTGCACATCGGCAGTTCCTATCATCG 

AhHMA4 Nter E31A Rev         CGATGATAGGAACTGCCGATGTGCAACAGATTCCG 

AhHMA4 Nter C27/AC28A/E31A Fwd  GATGTTCTCGGAATCGCTGCTACATCGGCTGTTCCTATCATCGAG 

AhHMA4 Nter C27A/C28A/E31A Rev  CTCGATGATAGGAACAGCCGATGTAGCAGCGATTCCGAGAACATC 

N-terminal domain (in vitro experiments) 

AhHMA4 Nter C27A Fwd          CAGAATGTTTTCGATGATCGGAACTTCGCTGGTACAAGCAATACCC 

AhHMA4 Nter C27A Rev          GGGTATTGCTTGTACCAGCGAAGTTCCGATCATCGAAAACATTCTG 

AhHMA4 Nter C28A Fwd      CAGAATGTTTTCGATGATCGGAACCGCGCTGGTACAACAAATACCC 
AhHMA4 Nter C28A Rev          GGGTATTTGTTGTACCAGCGCGGTTCCGATCATCGAAAACATTCTG 

AhHMA4 Nter E31A Fwd       CAGAATGTTTTCGATGATCGGAACCGCGCTGGTACAACAAATACC 

AhHMA4 Nter E31A Rev          GGTATTTGTTGTACCAGCGCGGTTCCGATCATCGAAAACATTCTG 

AhHMA4 Nter C27A/C28A/E31A Fwd CAGAATGTTTTCGATGATCGGAACCGCGCTGGTGGCAGCAATACC 

AhHMA4 Nter C27A/C28A/E31A Rev  GGTATTGCTGCCACCAGCGCGGTTCCGATCATCGAAAACATTCTG 



(C) Real-time RT-PCR primers. 

Name Sequence (5’=>3’) 

AhHMA4 Fwd AGCTAGCTACAGGGCGACAGCA 

AhHMA4 Rev CAGCTTTAACCGCTACAACTGTGCT 

EF1a Fwd TGAGCACGCTCTTCTTGCTTTCA 

EF1a Rev GGTGGTGGCATCCATCTTGTTACA 

UBQ10 Fwd GGCCTTGTATAATCCCTGATGAATAAG 

UBQ10 Rev AAAGAGATAACAGGAACGGAAACATAGT 

At1g18050 Fwd CCATTCTACTTTTTGGCGGCT 

At1g18050 Rev TCAATGGTAACTGATCCACTCTGATG 

 

 



AtHMA4    MALQNKEEEKKKVKKLQKSYFDVLGICCTSEVPIIENILKSLDGVKEYSVIVPSRTVIVVHDSLLISPFQIAKALNEARLEANVR  75
AhHMA4    MASQNKEEEKKKVKKLQKSYFDVLGICCTSEVPIIENILKSLDGVKEYSVIVPSRTVIVVHDSLLISPFQIAKALNQARLEANVR  75
AtHMA2    MAS----------KKMTKSYFDVLGICCTSEVPLIENILNSMDGVKEFSVIVPSRTVIVVHDTLILSQFQIVKALNQAQLEANVR  65

**           **: ****************:*****:*:*****:**************:*::* ***:****:*:******

VNGETSFKNKWPSPFAVVSGLLLLLSFLKFVYSPLRWLAVAAVAAGIYPILAKAFASIKRPRIDINILVIITVIATLAMQDYTEAAAVVFLFTIS  180
VNGETNFKNKWPSPFAVVSGLLLLLSFLKFVYSPLRWLAVAAVAAGIYPILAKAFASIRRPRIDINILVIITVIATLAMQDFMEAAAVVFLFTIA  180
VTGETNFKNKWPSPFAVVSGILLLLSFFKYLYSPFRWLAVAAVVAGIYPILAKAVASLARFRIDINILVVVTVGATIGMQDFMEAAVVVFLFTIA  170
*.***.**************:******:*::***:********.**********.**: * ********::** **:.***: ***.*******:

DWLETRASYKATSVMQSLMSLAPQKAIIAETGEEVEVDEVKVDTVVAVKAGETIPIDGIVVDGNCEVDEKTLTGEAFPVPKQRDSTVWAGTINLN  275
DWLETRASYRATAVMQSLMSLAPQKAIIAETGEEVEVDEVKVSTVVAVKAGETIPIDGIVVDGNCEVDEKTLTGEAFPVPKQKDSSVWAGTINLN  275
EWLQSRASYKASAVMQSLMSLAPQKAVIAETGEEVEVDELKTNTVIAVKAGETIPIDGVVVDGNCEVDEKTLTGEAFPVPKLKDSTVWAGTINLN  265
:**::****:*::*************:************:*..**:************:********************** :**:*********

GYICVKTTSLAGDCVVAKMAKLVEEAQSSKTKSQRLIDKCSQYYTPAIILVSACVAIVPVIMKVHNLKHWFHLALVVLVSGCPCGLILSTPVATF 370

GYISVKTTSLAGDCVVAKMAKLVEEAQSSKTKSQRLIDKCSQYYTPAIIVVSACVAIVPVIMKVHNLKHWFHLALVVLVSGCPCGLILSTPVATF 370

GYITVNTTALAEDCVVAKMAKLVEEAQNSKTETQRFIDKCSKYYTPAIILISICFVAIPFALKVHNLKHWVHLALVVLVSACPCGLILSTPVATF  360
*** *:**:** ***************.***::**:*****:*******::* *.. :*. :********.*********.************** 

CALTKAATSGLLIKSADYLDTLSKIKIVAFDKTGTITRGEFIVIDFKSLSRDINLRSLLYWVSSVESKSSHPMAATIVDYAKSVSVEPRPEEVED  465
CALTKAATSGLLIKSADYLDTLSKIKIAAFDKTGTITRGEFIVIDFKSLSRDISLRSLLYWVSSVESKSSHPMAATIVDYAKSVSVEPRPEEVED  465
CALTKAATSGLLIKGADYLETLAKIKIVAFDKTGTITRGEFIVMDFQSLSEDISLQSLLYWVSSTESKSSHPMAAAVVDYARSVSVEPKPEAVED  455
**************.****:**:****.***************:**:***.**.*:********.**********::****:******:** ***

YQNFPGEGIYGKIDGNDIFIGNKKIASRAGCSTVPEIEVDTKGGKTVGYVYVGERLAGFFNLSDACRSGVSQAMAELKSLGIKTAMLTGDNQAAA  560
YQNFPGEGIYGKIDGNDIYIGNKRIASRAGCSTVPEIEVDTKGGKTVGYVYVGERLAGVFNLSDACRSGVSQAMKELKSLGIKTAMLTGDSQAAA  560
YQNFPGEGIYGKIDGKEVYIGNKRIASRAGCLSVPDIDVDTKGGKTIGYVYVGETLAGVFNLSDACRSGVAQAMKELKSLGIKIAMLTGDNHAAA  550
***************::::****:******* :**:*:********:******* ***.***********:*** ******** ******.:***

MHAQEQLGNVLDVVHGDLLPEDKSRIIQEFKKE-GPTAMVGDGVNDAPALATADIGISMGISGSALATQTGNIILMSNDIRRIPQAVKLARRARR  654
MHAQEQLGNALDVVHGELLPEDKSKIIQEFKKE-GPTAMVGDGVNDAPALATADIGISMGISGSALATQTGHIILMSNDIRRIPQAVKLARRARR  654
MHAQEQLGNAMDIVRAELLPEDKSEIIKQLKREEGPTAMVGDGLNDAPALATADIGISMGVSGSALATETGNIILMSNDIRRIPQAIKLAKRAKR  645
*********.:*:*:.:*******.**:::*:* *********:****************:*******:**:**************:***:**:*

KVVENVCLSIILKAGILALAFAGHPLIWAAVLVDVGTCLLVIFNSMLLLREKKKIGNKKCYR--ASTSKLNGRKLEGDDDYVVDLEAGLLTKSGN  747
KVIENVCLSIILKAGILALAFAGHPLIWAAVLVDVGTCLLVILNSMLLLREKKKIGNKKCYR--ASTSMLNGRKLEGDDDDAVDLEAGLLTKSGN  747
KVVENVVISITMKGAILALAFAGHPLIWAAVLADVGTCLLVILNSMLLLSDKHKTGN-KCYRESSSSSVLIAEKLEG--DAAGDMEAGLLPKISD  737
**:*** :** :*..*****************.*********:****** :*:* ** **** :*:* * ..**** * . *:*****.* .:

GQCKSSCCGDKKNQENVVMMKPSSKTSSDHSHPGCCGDKKEEKVKPLVKDGCCSEKTRKSEGDMVSLSSCKKSSHVKHDLKMKGGSGCCASKNEK  842
GQCKSSCCGDKKNQEKVVMMKPSSKTSSDHSHPGCCGDKKQGNVKPLVRDGGCSEETRKAVGDMVSLSSCKKSSHVKHDLKMKGGSGCCANKSEK  842
KHCKPGCCGTKTQEK---AMKP-AKASSDHSHSGCCETKQKDNVT-VVKKSCCAEPVDLGHG---------------------HDSGCCGDKSQ- 805

:**..*** *.:::    *** :*:******.***  *:: :*. :*:.. *:* .  . *                      .****..*.: 

GKEVVAKSCCEKPKQQVESVGDCKSGHCEKKKQAEDIVVPVQIIGHALTHVEIELQTKETCKTSCCDSKEKVKETGLLLSSENTPYLEKGVLIKD  937
VEEVVAKSCCEKPKQQMESAGDCKSSHCEEKKHAEEIVLPVQMIGQALTGLEIELQTKETCKTRCCDNKEKAKKKGLLLSSEDTSYLEKGVLIKD  937
----------QPHQHEVQVQQSCHN-------------------------------KPSGLDSGCCGGK-------------------------- 833

:  :::::   .*:.                               . .  .: **..*

EGNCKSGSENMGTVKQSCHEKGCSDEKQTGEITLASEEETDDQDCSSGCCVNEGTVKQSFDEKKHSVLVEKEGLDMETGFCCDAKLVCCGNTEGE 1032
EGNCKSACQKTGTVKQSCHEKAPLDIETKLVSCGNTEGEVGEQTDLEIKIEGDCKSGCCSDEKQTGEITLASEEETDSTDCSSG---CCMDKE-E 1028
-----SQQPHQHELQQSCHDKPS------------------------------------------------------------------------ 851

*   :   ::****:*

VKEQCRLEIKKEEHCKSGCCGEEIQTGEITLVSEEETESTNCSTGCCVDKEEVTQTCHEKPASLVVSGLEVKKDEHCESSHRAVKVETCCKVKIP 1127
VTQICGLETEGGGDCKSHCCGTGLTQEGSSKLGNVESAQS----GGCGTVKVSSQSCCTSSTDLVLSDLQVKKDEHCKSSHGAVKVETCCKVKIP 1119
-----GLDI-----------GTGPKHEGSSTLVNLEGDAK-------EELKVLVNGFCSSPADLAITSLKVKSDSHCKS---------------- 907

*:            *        : : : *   .          :   :    ..:.*.::.*:**.*.**:*

EACASKCRDRAKRHSGKSCCRSYAKELCSHRHHHHHHHHHHHVSA------- 1172

EACASECKEKEKRHSGKSCCRSYAKEFCSHR---HHHHHHHHVSA------- 1161

-----NCSSRERCHHGSNCCRSYAKESCSHD---HHHTRAHGVGTLKEIVIE 951

:* .::  * *..******** ***    *** : * *.:

Online Resource 1. Alignment of the AtHMA4, AhHMA4 and AhHMA2 proteins (Clustal

W). The conserved C27CTSE31 is in red font. Conserved residues are marked with a star,

conserved substitutions with colons and the semi-conserved substitutions with dots,

respectively. The N-terminal domain is boxed in orange. Note that the C-terminal domains

of the proteins diverged extensively and align badly.



Online Resource 2. Expression of AhHMA4 in seedlings expressing AhHMA4n variants. hma2hma4
mutant plants expressing a native AhHMA4 protein or C27A, C28A, E31A and triple C27A/C28A/E31A
variants were grown for 2 weeks on 1/2 MS medium. Expression levels of AhHMA4 relative to three
reference genes (see Methods) and to AhHMA4 lines are means ± SEM of 2-5 independent lines (>10
seedlings/line). The expression levels are not statistically different (t-test, p<0.05). RTL: Relative
Transcript Level.
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Online Resource 3. Determination of ZnII dissociation constants (KD) of AhHMA4n native and
C27CTSE31 variant proteins in MOPS buffer (50 mM, pH 7.3) with the Par ligand as a detection probe
and the EGTA ligand as an affinity standard. Variation of [ZnII(Par)2] with the HMA4n : Zn ratio in
the presence of [Par]total = 50 µM (a) or 100 μM (b): (i) native AhHMA4n (in red) and control
AtHMA4n (in black, Zimmermann et al. 2009); (ii) control EGTA affinity standard; (iii) E31A variant;
(iv) C27A variant; (v) oxidized AhHMA4n with an internal disulfide bond. Curve-fittings of the
experimental data to eq 2 (see Methods) allowed derivation of KDb2 (= (Kex)

-1) and the calculation of
KD for Zn

II-P via eq 3 (see Methods) with a control reaction involving EGTA and with known KD for
ZnII-EGTA.
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(B)

(C)

Online Resource 4. Superposition of the 2D HSQC 1H-15N NMR spectra of the native (in

black) and C27A (a), C28A (b) and E31A (c) mutant (in red) AhHMA4n proteins at pH 6.6.



Online Resource 5. Chemical shift perturbation at pH 6.6 resulting from the C27A (a),

C28A (b) and E31A (c) mutations in the AhHMA4n protein. A threshold of 3 standard

deviations (green line) was selected to identify significant shift perturbations when

comparing the native and mutant AhHMA4n proteins. The mutated residues are in red.
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Online Resource 6. Chemical shift perturbation at pH 7.3 resulting from the treatment of

the native AhHMA4n protein with EDTA. A threshold of 3 standard deviations (green line)

was selected to identify significant shift perturbations when comparing the holo- and apo-

forms of the AhHMA4n protein.
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