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Introduction

 Efficiency of conventional energy plants needs to be improved

 The best option to increase the efficiency consists in adjusting the produced electricity

to the demand

 This is not always possible:

 Nuclear energy plants: Constant production

 Wind and solar energy plants: Production not related with the demand.

 Pumped Storage Hydroelectricity (PSH) plants can be used

 Landscape and wildlife impacts

 MONTAINOUS REGIONS



Introduction

 Underground Pumped Storage

Hydroelectricity (UPSH) plants can be

constructed in flat areas

 Landscape and wildlife impacts are lower, difference in

the elevation between reservoirs is higher (smaller

reservoirs can store more energy) and MORE

AVAILABLE SITES

 Underground reservoir can be drilled or

abandoned cavities can be used (open pits or

deep mines)

 Cheaper but impacts the surrounding aquifer.

 Main impacts: Modification of piezometric head

and/or the chemistry of the groundwater

Natural Head Modified Head

Upper reservoir

Underground (lower) reservoir



Objectives

 To define the main impacts caused by UPSH plants on the piezometric head.

 To evaluate the influence on the groundwater flow impacts of aquifer parameters,

underground reservoir properties, and pumping/injection characteristics.

 To propose analytical solutions to compute relevant aspects of the flow impacts.



Methods – Problem statement



Methods

 Reference scenario

 K is 2 m/d, S is 0.1, radius of the mine is 50m, α’ is 100d-1 , cycles are regular

 One variable is modified at each alternative scenario to determine its influence

 Aquifer parameters

 Reservoir properties

 Pumping-injection characteristics (regular vs. irregular cycles)



Results (general behavior)
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 Main impact consists in oscillation of the piezometric head

 Piezometric evolution depends on depth

 Some relevant characteristics are defined to compare the

impacts caused in different scenarios.



Results (aquifer parameters)
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Results (reservoir characteristics)
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Results (pumping-injection periods)
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SceR (regular) 0.5d pumping (1m3/s) + 0.5d injection (1m3/s)

Sce1 (irregular) 0.5d pumping (1m3/s) + 0.25d injection (2m3/s)+0.25d no-activity

Sce2 (irregular) 0.5d pumping (1m3/s) + 0.25d no-activity +0.25d injection (2m3/s)

SceR
Sce2

Oscillations magnitude increases with irregular cycles (the same volume injected in less time → more

linear behavior)

Maximum drawdown and final average head depends on the injection characteristics.



Results (analytical solutions)

 Derived from equations for large diameter well (Papadopulos-Cooper (1967) and

Boulton-Streltsova (1976)

 Time to reach the dynamic steady state

 Dynamic steady state is reached when increment of F (of a continuous pumping) is constant that occurs

when dF/dln(1/u) starts to decrease.

 Oscillations magnitude
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Conclusions

 Groundwater flow impact consists in an oscillation of the piezometric head. It drops at

the beginning and recovers until reaching a dynamic steady state.

 Groundwater flow impact is higher if the hydraulic diffusivity (T/S) is increased.

Therefore, impact would be higher in high transmissive confined aquifers.

 The properties of the underground reservoir (walls waterproofed and size) and

characteristics of pumping-injections periods are important to estimate the flow impacts.

 Analytical procedures can be used to compute some relevant aspects of the impacts
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