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Abstract

This paper presents an e�cient method for the �nite element assembly of high or-

der Whitney elements. We start by highlighting the most time consuming parts of the

classical assembly technique. This approach can be reformulated into a computationally

e�cient matrix-matrix product. We conclude by presenting numerical results.
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1 Introduction

There is a growing consensus that state of the art �nite element (FE) technology requires,

and will continue to require, too extensive computational resources to provide the necessary

resolution for complex high-frequency electromagnetic compatibility simulations, even at the

rate of computational power increase. This leads us to consider methods with a higher order

of grid convergence than the classical second order.

2 Classic �nite element assembly

By applying the classical Galerkin FE scheme with a curl-conforming basis, the solution of

the time harmonic propagation of an electrical wave is computed using elementary integrals

T e
i, j , as developed in [?]. Each T e

i, j is giving the contribution of the degrees of freedom (DOF)

i and j of the mesh element e .

The classical FE assembly algorithm computes the T e
i, j terms for every pair of DOF i and

j on every element e of the mesh. It is worth noticing that increasing the basis order will have

two impacts on the computation time: each element will have more DOFs and the numerical

quadrature will require more points. These two phenomena will substantially increase the

assembly time, as shown in Figure ??.

3 E�cient assembly

The key idea of a fast assembly procedure is to compute all the T e
i, j terms using matrix-matrix

products, as proposed by [?, ?] for standard nodal Lagrange �nite elements. Indeed, this

operation has an excellent cache reuse and highly optimized implementations can be found.



The T e
i, j terms can be computed by the product of two matrices. The �rst matrix will be

composed of the Jacobian matrices and non linear terms. The second matrix will be composed

only of the basis functions de�ned over the reference element.

It is worth noticing that depending on the mesh elements orientation, the curl-conforming

basis functions cannot simply be reordered, as for classical H 1
Lagrange bases. This situation

may be overcome by considering more than one reference element, as proposed by [?].

4 Numerical results

Figure ?? presents the assembly times of the classical and e�cient assembly procedures for

an increasing basis order. The FE matrix is assembled for a propagation problem into a wave

guide, meshed with 8579 curved tetrahedra. The tests were done on a Intel Core i7 960 and

by using the OpenBLAS implementation of the matrix-matrix product with 4 threads. It is

worth mentioning that the classical implementation also uses 4 threads for the assembly.
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Figure 1: Assembly time and speedup for the classical and fast procedures

It can be seen from Figure ?? that the matrix procedure is much faster than the classical

one for high order interpolations. For instance, the speedup on an order 6 problem, with more

than 900.000 unknowns, is around 20.
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