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Abstract The paper concerns a detailed comparison between two optimization
methods that are used to perform the structural optimization of flexible com-
ponents within a multibody system (MBS) simulation. The dynamic analysis of
flexible MBS is based on a nonlinear finite element formulation. The first method
is a weakly coupled method which reformulates the dynamic response optimiza-
tion problem in a two-level approach. Firstly, a rigid or flexible MBS simulation is
performed and secondly, each component is optimized independently using a quasi-
static approach in which a series of equivalent static load (ESL) cases obtained
from the MBS simulation are applied to the respective components. The second
method, the fully coupled method, performs the dynamic response optimization
using the time response obtained directly from the flexible MBS simulation. Here,
an original procedure is proposed to evaluate the ESL from a nonlinear finite
element simulation, contrasting with the floating reference frame formulation ex-
ploited in the standard ESL method. Several numerical examples are provided to
support our position. It is shown that the fully coupled method is more general and
accommodates all types of constraint at the price of a more complex optimization
process.

Keywords Structural optimization · Dynamic response optimization ·
Equivalent static load · Flexible multibody system · Nonlinear finite element
method

1 Introduction

Since the early sixties, structural optimization has undergone considerable evolu-
tion. Nowadays, the achieved developments are such that optimization techniques
are embedded in commercial software tools and are daily used to solve industrial
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problems. Even if the majority of real loads are dynamic in essence, optimiza-
tion techniques are usually applied to the design of structural components under
(quasi-)static or vibration design criteria due to the intrinsic difficulties of evalu-
ating the dynamic response and then incorporating it in a optimization problem.

Historically, design of mechanisms firstly considered a component-based ap-
proach wherein the standard methods of static response optimization are used.
Saravanos and Lamancusa [20] selected several configurations of the mechanism
whereupon structural optimization was performed based on representative loading
conditions coming from the designer experience for each posture. This approach
is not rational since a few configurations can hardly represent the overall motion
and the optimal design strongly depends on the designers’ choices. Moreover, the
coupling between rigid and elastic motions are omitted which causes an inaccuracy
on the displacements and stresses.

With the evolution of multibody system (MBS) analysis, Bruns and Tor-
torelli [6] proposed an approach combining rigid MBS analysis and optimiza-
tion techniques to design optimal components. The component-based approach
is thusly extended towards a system-based approach which better captures the
behavior of the whole system. The optimization procedure is performed with load
cases evaluated directly during the MBS analysis. The method is illustrated on
the design of a slider-crank mechanism loaded with the maximum tensile force
calculated during the simulation. This breakthrough is essential since the optimal
design may be very sensitive to the support and loading conditions [2].

Using a system-based approach to perform the dynamic response optimization
of components, two optimization methods can currently be identified: the weakly
and fully coupled methods.

The weakly coupled method reformulates the dynamic response optimization
problem in a two-level approach. Firstly, a rigid or flexible MBS simulation com-
putes the loads applied to each component and secondly, each isolated compo-
nent is optimized independently using a quasi-static approach in which a series
of equivalent static load cases obtained from the MBS simulation are applied to
the respective components. An important development has been made by Kang
et al. [18] who proposed a rational method to define equivalent static loads (ESL)
to optimize flexible mechanisms. During the static response optimization process,
whereas ESL are implicit functions of the dynamic simulation response, they are
not updated. Thusly, cycles are needed to account for the ESL dependency on
design variables. Häussler [13] showed the importance of considering the update of
quasi-static loads at each cycle due to the property changes of component inertia
since these interactions might be significant. The weakly coupled method is used
in e.g. [14–16, 23].

The fully coupled method considers a more integrated approach of the opti-
mization problem wherein the optimization is performed using the time response
directly obtained from the MBS simulation. Oral and Kemal Ider [19] proposed
a methodology to consider the coupled rigid-elastic motion of the MBS system
and the time-dependency of the constraints. They investigated the representation
of global constraints either by the most critical constraint or aggregated with a
Kresselmeier-Steinhauser function. Later on, Brüls et al. [5] took advantage of
the evolution of numerical simulations and topology optimization tools to design
structural components within a flexible MBS simulation. They showed the feasi-
bility and convenience of integrating the optimization loop directly to the flexible
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MBS simulation. Doing so, the dynamic effects are naturally taken into account.
However, the resulting optimization problem is not a simple extension of struc-
tural optimization. The influence of the changes of component inertial property
on vibrations as well as the interactions between flexible components generally
result in complex design problems. Moreover, treating time-dependent responses
coming from the MBS analysis in the optimization process is rather complex. The
formulation of the optimization problem is essential to obtain good convergence
properties [28]. The fully coupled method is used in e.g. [15, 21, 27].

The objective of this paper is to investigate the performance of the weakly
and fully coupled methods. In addition, the standard ESL method was developed
for flexible MBS described using a floating reference frame formulation [18]. This
formalism facilitates the derivation of the equivalent static loads notably as this
formulation deals with body-attached frame. However, in our previous develop-
ments of the fully coupled method [5, 28], we adopted a nonlinear finite element
formalism [12]. In order to realize a fair comparison between both optimization
methods, it is preferable to use a unique MBS formalism. Therefore, another con-
tribution of this paper is to adapt the ESL method to the nonlinear finite element
formulation because the ESL method proposed by Kang et al. [18] cannot be sim-
ply translated and directly applied to the latter formalism.

The first part of the paper briefly discusses the flexible MBS analysis, i.e.
the derivation of the equations of motion and the time integration algorithm.
Afterwards, the ESL method is presented in three parts: the ESL definition, the
ESL derivation for a floating reference frame formalism and the proposed method
to derive the ESL for a nonlinear finite element formalism. The fully coupled
method is then described. The following part introduces the general framework
of the dynamic response optimization problem and the different approaches to
solve it. Several standard examples are investigated to compare both approaches,
to illustrate the similarities and differences and to support our discussion before
drawing our conclusions.

2 Flexible multibody systems approach

2.1 Equations of motion of flexible multibody systems

In this paper, flexible MBS are modeled using a nonlinear finite element formula-
tion as proposed by Géradin and Cardona [12], which is based on an inertial frame
approach. Absolute nodal coordinates which correspond to the displacements and
orientations of each node of the finite element mesh are gathered in the generalized
coordinate vector q.

The motion of the system is subject to kinematic constraints Φ(q, t) which
ensure the connections between bodies due to kinematic joints such as hinges,
spherical joints, etc. They introduce nonlinear kinematic constraints between gen-
eralized coordinates.

The constrained dynamic problem is formulated using an augmented Lagrangian
approach based on the kinetic and potential energies of the system. The augmented
Lagrangian approach introduces a penalty term pΦT

q Φ with a penalty coefficient p
in the formulation of the constraints notably for convergence reasons. Nevertheless,
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since this term vanishes at convergence, the response of the system is independent
of the choice of p.

Following [12], the motion of the system is obtained by solving the following
differential-algebraic equation system (DAE)

M(q)q̈ + ΦT
q (q, t) (kλ+ pΦ (q, t)) = g(q̇,q, t),

kΦ(q, t) = 0,
(1)

subject to the initial conditions

q(0) = q0 and q̇(0) = q̇0. (2)

In this system, M is the mass matrix, q̈, q̇ and q are respectively, the acceleration,
velocity and displacement vectors, the vector g gathers the external, internal and
complementary inertia forces, k is a scaling factor, λ is the Lagrange multiplier
vector and the subscript (•)q denotes the derivative with respect to q. It should
be noted that the mass matrix can depend on the generalized coordinates.

2.2 Time integration

To solve the set of nonlinear DAE (1), Géradin and Cardona [12] consider the
generalized-α time integration scheme initially developed by Chung and Hul-
bert [9]. Arnold and Brüls [1] demonstrated that, despite the presence of algebraic
constraints and the non-constant character of the mass matrix, this integration
scheme leads to accurate and reliable results with a small amount of numerical
damping.

According to the generalized-α method, a vector a of acceleration-like variables
is defined by the following recurrence relation

(1− αm) an+1 + αman = (1− αf ) q̈n+1 + αf q̈n, (3)

with a0 = q̈0. The vector an is an auxiliary variable used by the algorithm and
can be interpreted as an approximation of the true acceleration q̈(t) at time t =
tn + (αm − αf )h.

The integration scheme is subsequently obtained by employing the pseudo-
acceleration an in the Newmark integration formulae:

qn+1 = qn + hq̇n + h2
(

1

2
− β

)
an + h2βan+1, (4)

q̇n+1 = q̇n + h (1− γ) an + hγan+1, (5)

where h denotes the time step. If the parameters αf , αm, β and γ are prop-
erly chosen according to [9], second-order accuracy and unconditional stability are
guaranteed for linear problems. It is convenient to define these parameters in terms
of the spectral radius at infinite frequencies ρ∞ ∈ [0, 1] as

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

,

γ =
1

2
− αm + αf , β =

1

4

(
γ +

1

2

)2

.

(6)
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The choice ρ∞ = 0 annihilates high frequency response whereas ρ∞ = 1 corre-
sponds to no numerical damping.

At time step n + 1, the variables q̈n+1, q̇n+1, qn+1 and λn+1 must satisfy
the system of nonlinear equations (1). To solve this dynamic equilibrium problem,
a Newton-Raphson procedure associated with the linearized form (7) of (1) is
employed, which brings the residual of (1), i.e. r = Mq̈ + ΦT

q (kλ+ pΦ)− g and
Φ, close to zero. More precisely, around an approximate solution q̈, q̇, q, λ, the
linearized residual equations are solved

r (q +∆q, q̇ +∆q̇, q̈ +∆q̈,λ+∆λ) '
r (q, q̇, q̈,λ) + M∆q̈ + Ct∆q̇ + Kt∆q + ΦT

q (k∆λ+ pΦq∆q) = 0,
kΦ (q +∆q) ' kΦ (q) + kΦq∆q = 0,

(7)

where Ct = ∂r/∂q̇ and Kt = ∂r/∂q denote the tangent damping and tangent
stiffness matrices respectively.

3 Weakly coupled approach - Equivalent static load method

3.1 Introduction and definition

In the context of dynamic response, the optimization problem formulation involves
time-dependent functions. The purpose of the equivalent static load method is
to remove the time component from the problem, i.e. to transform the dynamic
response optimization problem into a static optimization problem with multiple
load cases [8]. Indeed, all the advantages of static response optimization and all the
standard methods can thus be used while the problems related to time-dependent
functions are circumvented.

In [18], the authors define an equivalent static load as follows:
Definition 1. When a dynamic load is applied to a structure, the equivalent static
load is defined as the static load that produces the same displacement field as the
one created by the dynamic load at an arbitrary time.

In order to introduce the concept of equivalent static loads, let us consider
the following equilibrium equation of a linear structure1 subject to a dynamic
load g (t)

M(p)q̈(p, t) + K(p)q(p, t) = g(t), (8)

where p is the design variable vector, q and q̈ are the displacement and acceleration
vectors respectively, and the damping effect is neglected. Terms of equation (8)
can be rearranged as

K(p)q(p, t) = g(t)−M(p)q̈(p, t). (9)

The left-hand-side of (9) has a similar layout as the classical static equilibrium
equation of a structure. By identification and according to the previous definition,
the equivalent static load at time t is defined as

geq(t) = g(t)−M(p)q̈(p, t). (10)

1 The difference is made between a multibody system and a structure as the latter is com-
posed of only one body. This enables a simplification of the equations for this introductory
section.
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It should be noticed that the equivalent static load geq(t) is an implicit function
of the design variables and that it involves the external loads and inertia forces.
From an analysis point of view, equivalent static loads seem useless but they are
developed in order to elaborate a static response optimization problem. In lieu of
considering the dynamic loading, they offer the possibility of considering a series
of static loads that give at each time step the same displacement field as the one
given by the dynamic loading. Therefore, the dynamic optimization problem is
transformed into a optimization problem subject to multiple static load cases,
with a load case for each integration time step.

3.2 Derivation of the equivalent static loads using a floating frame of reference
formalism

Initially, the ESL method has been developed for flexible MBS modeled using a
floating reference frame formulation [18]. In order to develop the ESL derivation,
the equations of motion and the notations corresponding to this formalism are
first reminded.

According to [22], the equations of motion that govern a flexible multibody
system using a floating frame of reference formalism can be expressed as,mb

xx mb
xθ mb

xf

mb
θθ mb

θf

mb
ff


 ẍb0

θ̈
b
0

q̈bf

+

0 0 0
0 0 0

0 0 Kb
ff

 xb0
θb0
qbf

 =

−

CT
xb

CT
θb

CT
qbf

λ+


(
Qb
e

)
x(

Qb
e

)
θ(

Qb
e

)
f

+


(
Qb
v

)
x(

Qb
v

)
θ(

Qb
v

)
f

 , b = 1, 2, . . . , nb,

(11)

where nb is the number of bodies, qf is the nodal deformation, xb0 is a set of
Cartesian coordinates that defines the origin location of the floating body reference
frame and θb0 is a set of rotational coordinates that describes the orientation of the
floating body reference frame. The right-hand-side terms of (11) are respectively
the reaction force vector from the joint constraints, the external load vector and
the quadratic velocity vector including the effect of Coriolis and centrifugal forces.
As with the nonlinear finite element formalism, all the terms depend on time and
the flexible MBS expressed by (11) is subject to dynamic loads.

According to Definition 1, the system of equations (11) must be solved to
obtain the ESL. The last row can be rearranged as

Kb
ffq

b
f = −mb

xf ẍ
b
0 −mb

fθθ̈
b
0 −mb

ff q̈
b
f −CT

qbf
λ+

(
Qb
e

)
f

+
(
Qb
v

)
f
. (12)

Thusly, from Definition 1, the ESL of body b at time step tn in the body-attached
frame for a flexible MBS system described using a floating reference frame formu-
lation is

Kb
ffq

b
n,f = gbn,eq (13)

where

gbn,eq = −mb
xf ẍ

b
n,0−mb

fθθ̈
b
n,0−mb

ff q̈
b
n,f −CT

qbn,f
λn+

(
Qb
n,e

)
f

+
(
Qb
n,v

)
f
. (14)
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In (14), the first two terms represent the effect of the coupling between rigid body
motion and elastic deformation while the third term represents the inertia force
vector caused by elastic deformation of flexible bodies. The fourth term is the
reaction force vector from the joint constraints, the fifth term is the external load
vector and the last term includes the effect of the Coriolis and centrifugal forces.

From the previous developments initially made by Kang et al. [18], it is ob-
served that the resulting equations of motion resulting from the floating reference
frame formalism are suitable to obtain directly the ESL.

3.3 Derivation of the equivalent static loads using a nonlinear finite element
formalism

In [18], the derivation of the ESL for flexible MBS is straightforward due to in-
herent properties of the floating reference frame formulation. First, we point out
that the stiffness matrix is constant in the body-attached frame during the entire
motion. Thusly, independently of the system configuration, a single stiffness ma-
trix per body is considered in the optimization process, i.e. for all the time steps.
Second, the component deformation is computed in the body-attached frame and
is readily extracted for the ESL computation.

These essential characteristics do not exist in a standard nonlinear finite ele-
ment formalism. The equations of motion are developed in an inertial frame, i.e.
the forces are not expressed in a body-attached frame. Furthermore, no decoupling
exists between rigid body motion and elastic deformation which is usually one of
its key point.

Hereafter, we propose a method to recover these characteristics in a post-
processing step of the MBS simulation wherein ESL are obtained. We note that
the proposed method does not alter the MBS analysis.

At a converged time step tn, linearizing the equations of motion (1) leads to

M∆q̈ + Ct∆q̇ + Kt∆q + ΦT
q (k∆λ+ pΦq∆q) = ∆r,

kΦq∆q = ∆Φ.
(15)

At first sight, it would be possible to obtain a similar expression as in (9). However,
several problems are encountered when trying to apply Definition 1. Firstly, the
tangent stiffness matrix is related to the whole system and it evolves with the
system configuration. It would be very inefficient to store this matrix for each
time step. Secondly, the body tangent stiffness matrix Kb

t of body b is needed
to derive the ESL of body b. Thirdly, the generalized coordinate vector q(tn)
exhibits no decoupling between rigid body motion and elastic deformation while
the knowledge of deformation is required to derive ESL.

The key idea of the method is to introduce a corotational frame per body in
a post-processing step so that the required characteristics can be recovered. We
note that several definitions of the corotational frame exist such as e.g. a definition
based on the minimization of the strain energy, a chord frame or a tangent frame
definition [29].

The above-mentioned problems are circumvented as follows. 1) A single tan-
gent stiffness matrix for a chosen reference state Kt(tref ) is stored whereupon
appropriate transformations must be applied to the vector q(tn) in order to bring
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it back to the reference configuration for all other time steps. Based on the coro-
tational frame, transformation rules can be established to switch from the actual
configuration to the reference configuration and vice-versa. 2) For each body b,
the body tangent stiffness matrix Kb

t(tref ) is extracted from Kt(tref ) of the ref-
erence state. This is easily performed by identifying the coordinates related to
the nodes of body b and then extracting the body tangent stiffness matrix from
the complete matrix. This technique is possible because, in our implementation
of the finite element formalism, each body has its own set of nodal rotation and
translation coordinates, which are not shared with other bodies. 3) Component
deformation measure is defined with respect to the body-attached frame, i.e. the
corotational frame.

For each body b, a corotational frame definition is adopted and defined by
xb0 and θb0, the position of the body-attached frame in the inertial frame and
the relative rotation vector of the body-attached frame compared to its reference
configuration. As illustrated in Figure 1, the relationship between the absolute
position xi and orientation Ψi of node i of a flexible component and its local
displacement ui and rotation ψi with respect to the corotational frame is given
by

xi = xb0 + Rb
0 (Xi + ui) , (16)

Ψi = θb0 ◦ ψi, (17)

where Rb
0(θb0) is the rotation matrix between the inertial frame and the coro-

tational frame, Xi is the position of node i in the body-attached frame for the
non-deformed configuration and the operation ◦ symbolizes the composition of
rotations. Amongst others, Cardona and Géradin [7] provide a comprehensive def-
inition of corotational frames.

From (16)-(17), a local generalized displacement vector ubn with respect to the
corotational frame for body b at time step tn is defined as

ubn =
[
uT1 ψ

T
1 . . .u

T
i ψ

T
i . . .u

T
nnψ

T
nn

]T
, (18)

where nn numbers the nodes of body b. The size of the vector ubn is (nu + nψ)nn×
1, where nu and nψ represent the dimension of the local displacement and rotation
vectors, respectively. For planar problems, nu = 2 and nψ = 1 and for spatial
problems, nu = nψ = 3.

For MBS modeled using a standard nonlinear finite element formalism, the
ESL gbn,eq in the corotational frame at time tn for body b is defined as

gbn,eq = Kb
t(tref )ubn. (19)

To solve (19), boundary conditions must be enforced to remove the stiffness
matrix singularity caused by the rigid body modes. They mainly depends on the
choice of the corotational frame definition. For example, if a tangent frame is
used at node i, the local displacement of node i should be zero, i.e. clamping
conditions must be enforced in (19). A parallel reasoning can be drawn with the
floating reference frame formulation wherein boundary conditions must be imposed
to components in order to introduce flexibility in the MBS analysis, see e.g. the
Component Mode Synthesis method [22].

In summary, to define ESL for MBS modeled using a standard nonlinear finite
element formalism, five steps must be followed:
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xi

Fig. 1 Kinematic description of a corotational frame.

1. Select a reference configuration,
2. For each body b, extract the tangent stiffness matrix Kb

t(tref ) of the body out
of the global tangent stiffness matrix Kt(tref ),

3. For each time step tn and each body b,
3.1. Compute xb0,n, θb0,n and Rb

0,n related to the body-attached frame,

3.2. Construct the vector ubn via (18),
3.3. Compute gbn,eq via (19).

3.4 Remarks

Once the MBS analysis has been realized, ESL can be computed whereupon the
optimization process can be performed. We note that the optimization process
concerns isolated components whereas the effects of the whole system stem from
load cases.

4 Fully coupled method

The fully coupled method naturally incorporates dynamic effects into the opti-
mization process. Cost and constraint functions are formulated with the time re-
sponses obtained from the MBS simulation. Hence, the behavior of the whole
mechanical system is considered in the optimization process, i.e. it is not limited
to the behavior of the optimized component isolated from the rest of the system.
This approach also offers a global-local view of the optimization problem which is
necessary when designing lighter - more flexible components. Indeed, reducing the
mass and thus increasing the flexibility of a lone component can significantly influ-
ence the overall mechanical system behavior. The fully coupled approach evaluates
the dynamic loading exerted on the considered component (local view) based on a
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global system-level simulation and the optimization process also accounts for the
system global behavior.

With the fully coupled method, possibilities seem increased compared to an
isolated component optimization approach since more complex and coupled behav-
iors related to the whole system are considered. However, the optimization problem
formulation should be carefully addressed to obtain good convergence [28].

5 Optimization of flexible multibody systems

5.1 Formulation of the MBS optimization problem

Engineering design problems can be formulated as a mathematical optimization
problems (20) in which an objective function f0 (p) is minimized, subject to nc con-
straints fj (p) ensuring the integrity of the structural design and design require-
ments. The nv independent design variables are gathered in the vector p. Side-
constraints p

i
≤ pi ≤ pi reflect technological considerations.

minimize
p

f0 (p)

subject to fj (p) ≤ f j , j = 1, . . . , nc,

p
i
≤ pi ≤ pi, i = 1, . . . , nv.

(20)

This formulation provides a general and robust design framework that can be
solved by various types of optimization algorithms.

In MBS optimization, the cost and constraint functions are based on structural
properties and responses, i.e. mass, displacement or stress measures at particular
points and time steps. The design variables nv can be sizing, shape or topological
variables. Only sizing variables are considered here.

In the paper, the optimization problem concerns the minimization of the me-
chanical system mass m(p) while constraints are enforced at each time step, i.e. a
local formulation of the constraints. This option offers a tight control over the op-
timal design but the large number of constraints hinders the optimization process.
Local formulations are usually opposed to global formulations which agglomerate
parts or entire responses into a few constraints. The reduced number of constraints
generally facilitates the optimization convergence but the precise control of the op-
timized design is relinquished due to their global nature. The complexity of the
treated examples is rather moderate so that basic local formulations are sufficient.

Particularizing the general formulation (20) to the MBS optimization consid-
ered in this paper reads

minimize
p

m (p)

subject to M(p)q̈n + ΦT
q (p) (kλn + pΦ(p)) = g(p),

kΦ(p) = 0,

fj (p,qn, q̇n, q̈n,λn, tn) ≤ f j , j = 1, . . . , nc,

p
i
≤ pi ≤ pi, i = 1, . . . , nv,

(21)

for n = 1, . . . , nend, where nend is the number of simulation time steps.
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We note that this formulation can easily be extended to account for global
constraints of the form

nend∑
k=1

fkj (p,qn, q̇n, q̈n,λn, tn) ≤ f j . (22)

5.2 Optimization algorithm and sensitivity analysis

Mathematical programming tools are used to solve the optimization problem (21).
Gradient-based methods have been employed to solve large scale structural and
multidisciplinary optimization problems with great success [10, 24]. The major
advantage of these methods is their good convergence rates which limits the num-
ber of function evaluations to obtain an optimal design. However, these methods
are sensitive to local optima. In this study, we employ an “active-set” algorithm
which is based on the sequential quadratic programming approach and is part of
the optimization toolbox of Matlab® [17].

Gradient-based optimization methods require a sensitivity analysis to compute
the derivatives of the cost and constraint functions. The efficiency of the sensitivity
analysis is an essential part of the optimization process because it can drastically
affect computation time. While a semi-analytical sensitivity analysis needs less
computational efforts in comparison to a finite difference scheme, the latter ap-
proach is adopted in this paper. This sensitivity analysis requires one additional
simulation per design variable and thus, CPU time grows by a factor nv + 1. How-
ever, we adopt it to carry out the investigations as this method is easy to use and
the computation time is rather small for the examples considered here.

5.3 Weakly coupled method

Employing the weakly coupled method, the optimization problem formulation (21)
is reformulated such that the dynamic response of the system is replaced by a se-
ries of static responses, i.e. at time step tn, the component deformation under the
dynamic loading is mimicked by an ESL. As proposed in [8], the optimization pro-
cess repeatedly solves the following static response optimization problem wherein
ESL are incorporated,

minimize
p

m (p)

subject to Kb
t(p, tref )ubn = gbn,eq, b = 1, . . . nb,

fj
(
p,ubn, tn

)
≤ f j , j = 1, . . . , nc,

p
i
≤ pi ≤ pi, i = 1, . . . , nv,

(23)

for n = 1, . . . , nend.
In the optimization problem (23), the constraints are formulated with respect

to the local generalized displacement vector ubn, i.e. responses in the corotational
frame. To consider responses in the inertial frame, a relation must be defined
to switch from the corotational frame to the inertial frame representation based
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on (16)-(17). As shown afterwards in the examples, the constraints are often formu-
lated as a function of qbn, i.e. f∗j

(
p,qbn(ubn), tn

)
≤ f∗j , where qbn is the generalized

coordinate vector related to body b at time step tn in the inertial frame defined as

qbn =
[
xT1 ΨT

1 . . .x
T
i ΨT

i . . .x
T
nnΨT

nn

]T
. (24)

We note that after the first iteration of the static optimization process, the
assembly of qbn for all bodies creates a global generalized coordinate vector which
does not respect the kinematic constraints anymore since each component has
been optimized independently.

In the optimization problem formulation (23), each body is loaded by as many
load cases as the number of time steps. During the static response optimization
process, the ESL are not updated. Therefore, cycles between MBS analysis and
static response optimization are needed to account for the effects of the design
modification over the ESL. Reference [15] shows that doing so is identical to neglect
the time dependency in the sensitivity analysis of (21).

To solve the dynamic response optimization problem using the weakly coupled
method, the algorithm proposed in [8], apart from the stopping criteria, is as
follows,

1. Initialize the design variables and set it = 0.
2. Perform a dynamic MBS analysis.
3. Compute the ESL.
4. If it = 0, go to step 5. If it > 0 and if

tend∑
n=1
‖gbn,eq,it − gbn,eq,it−1‖

tend∑
n=1
‖gbn,eq,it−1‖

< ε, (25)

then, stop. Otherwise go to step 5.
5. Solve the static response optimization problem (23). The iterations to solve

this optimization problem are hereafter denoted as inner iterations.
6. Set it = it+ 1 and go to step 2.

One cycle is composed of steps 2 to 6. Reference [26] discusses the convergence
of the solution obtained using this optimization method towards the optimal so-
lution of the original dynamic response optimization problem. Figure 2 illustrates
the flowchart of the ESL method.

5.4 Fully coupled method

Considering the fully coupled method, the optimization problem formulation (21)
is employed as it is. The flowchart of the optimization process is illustrated in
Figure 3. The MBS simulation and the optimization process are fully coupled,
i.e. at each iteration of the optimization process, a MBS analysis is performed.
However, as described in Section 4, the design problem is quite complex and the
convergence may suffer poor properties if not treated properly. This is due to the
existence of significant couplings between vibrations and large amplitude motions,
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Fig. 2 Flowchart of the weakly coupled method.

the influence of the changes of component inertial property on the vibrations as
well as the interactions between flexible components.

Using the fully coupled method, the sensitivity analysis can be costly if not ad-
dressed with care. Efficient semi-analytical sensitivity methods have been proposed
to compute the response derivatives, i.e. dqn/dp, dq̇n/dp, dq̈n/dp, dλn/dp [3, 4].
The sensitivity analysis can also be incorporated into the time integration scheme
of the MBS analysis whereupon the cost of gradient computation is significantly
lessened.

1

MBS analysis
+

Sensitivity analysis

Initial design

Convergence?

Dynamic response
Optimization

Design update
it = it + 1

Stop
Yes

No

Fig. 3 Flowchart of the fully coupled method.
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6 Optimization of 2-dof planar robot

6.1 Modeling hypotheses

The first example concerns the mass minimization of a 2-dof planar robot inspired
from [18, 19]. Each robot arm has a length of 600 mm and is modeled by two
equal length beam elements with a hollow cross section (Fig. 4(a)). The adopted
beam element model is described in [12]. The robot is made of aluminum with
a Young’s modulus of E = 72 GPa, Poisson’s ratio of ν = 0.3 and mass density
of 2700 kg/m3. Each revolute joint is driven by an ideal motor which imposes
a smooth joint trajectory θ1(t) and θ2(t) such that the robot tip deploys along
a straight line. The initial joint angles are θ1(t0) = 120◦ and θ2(t0) = −150◦.
The ideal (rigid MBS) tip displacement corresponds to the following trajectory
equation

∆xtip(t) = ∆ytip(t) =
0.5

T

(
t− T

2π
sin

2πt

T

)
, (26)

where the period of the deployment motion T is set to 0.5 s.

The actuator of the second robot arm is located at joint A and has a mass of
2 kg. The combined mass of the end-effector plus the payload is 1 kg. The gravity
field is considered. The simulation is performed using the generalized-α scheme
with a time step h = 5× 10−4 s and a spectral radius of ρ∞ = 0.5.

The design variables pi are the outer diameters of the hollow beam elements
whose wall thickness is set to 0.1 × pi. Initial values of the design variables are
set to 50 mm. Tangent corotational frames are adopted to derive the ESL. Thusly,
the boundary conditions of each static load case correspond to fixed-free beam
conditions.

p1

p2
p3

p4

x

y

θ2(t)

θ1(t)

A

Tip

gravity

(a) Kinematic model of the 2-dof robot.

x

y

yAr

yA

ytipr
ytip

(b) Deflection constraint notation.

Fig. 4 Modeling of the 2-dof robot.

The optimization problem concerns the mass minimization of the robot m (p)
subject to nc deviation constraints ∆l(p,qn, tn) where nc equals the number of
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integration time steps. Mathematically, it is stated as

minimize
p

m (p)

subject to ∆l(p,qn, tn) ≤ ∆l, n = 1, . . . , nend,

0.02 m ≤ pi ≤ 0.06 m, i = 1, . . . , 4.

(27)

Two different optimization problems are studied hereafter, which result from two
different formulations of the deviation constraints.

6.2 Component-based constraints

Inspired from the initial paper [18] considering the coupling between the ESL
method and flexible MBS, the deviation constraint at time step tn reads

∆l =

√
(yA − yAr

)2 + ((ytip − ytipr )− (yA − yAr
))2 ≤ 0.001 m (28)

where yA and ytip are respectively the joint A and tip y-positions in the inertial
frame (Fig. 4(b)) and the subscript r refers to a reference mechanism, here the
same mechanism but whose components are modeled as rigid bodies.

The constraint formulation (28) is not suitable to perform the optimization
problem using the weakly coupled method as the terms are related to values in
the inertial frame while the weakly coupled method makes use of values in the
body-attached frame. Based on (16)-(17), (28) is easily reformulated as

∆l =

√(
R1

0,nu1
n,A

∣∣∣
y

)2

+
(

R2
0,nu2

n,tip

∣∣
y

)2
≤ 0.001 m, (29)

which only contains values related to the body-attached frames. Formulation (28)
is employed with the fully coupled method.

The simulation time interval is 0.65 s corresponding to 1301 time steps. The
fully coupled method is deemed converged when the relative change of the objective
function value and the relative constraint violation are less than 10−3 and 10−6

respectively. The weakly coupled method is deemed converged when the stopping
criteria (25) with ε equals to 10−2 is satisfied. These stopping criteria ensure a tight
convergence of the optimization processes so that the comparison is performed on
converged solutions.

The optimization results are gathered in Table 1 and the convergence history
is illustrated in Figure 5. For readability reasons of this figure, markers are printed
each 0.01 s. It is observed that both optimization methods converge quickly to-
wards a similar optimal design. The fully coupled method has no inner iteration
compared to the weakly coupled method. However, the inner iterations are based
on static computations and static analyses are less CPU-time consuming than dy-
namic analyses. Moreover, in this example, the weakly coupled method needs less
global iterations, i.e. MBS analysis, to converge. However it is not easy to draw a
general conclusion about the relative efficiency of the two methods in this case.
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Table 1 Numerical results (in kg and mm) - 2-dof robot - formulation (28).

Method Mass Iter. Inner p1 p2 p3 p4
iter.

Weakly Coupled 0.962 6 57 39.29 28.33 34.94 25.19
Fully Coupled 0.962 9 / 39.35 28.25 35.14 24.91
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Fig. 5 2-dof robot - formulation (28): objective function history and deviation constraint for
the optimal design.

6.3 Multicomponent-based constraints

In [19], the authors enforce a trajectory tracking constraint which is expressed at
time step tn as

∆l =

√
(xtip − xtipr )2 + (ytip − ytipr )2 ≤ 0.001 m (30)

where xtip and ytip are respectively the tip x and y-positions in the inertial frame.
The simulation time interval is still equals to 0.65 s. Stopping criteria are identical
to the ones used in Section 6.2.

In the previous example, each optimized component is subject to component-
based constraints, i.e. each component is constrained by its own responses. Here,
the trajectory tracking constraint enforces a multicomponent-based constraint,
i.e. by constraining the absolute deflection of the robot tip, all components are
constrained. However, the weakly coupled method concerns the optimization of
components which are isolated from the rest of the system during the optimization
process. Thusly, (30) must be reformulated in order to consider the flexibility of
the whole system by enforcing component-based constraints.

Due to the open-loop system properties, we formulate the deflection of the
tip as a linear combination of all the component deflections. At time step tn, the
deflection of the tip is stated as[

xtip − xtipr
ytip − ytipr

]
=

nb∑
k=1

Rk
0,nukn,ext (31)
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where k is the robot link index and the subscript ext denotes the link extremity.

Using the fully coupled method, multicomponent-based constraints are incor-
porated in the optimization problem without any difficulty. The generalized coordi-
nates of the MBS analysis are available for the optimization process and naturally
account for the flexibility of the whole mechanism.

The optimization results are given in Table 2 and are illustrated in Figure 6.
Markers are again printed each 0.01 s. The weakly coupled method is deemed
converged after 5 cycles while the fully coupled needs 11 iterations. Although the
optimal values of objective functions are similar, the design variable values are
slightly different. The effect is observed in Figure 6 where the time responses of
the optimal systems are different. However, the critical time zone around 0.1 s
exhibits not so much difference between the two optimal solutions in terms of time
response.

Table 2 Numerical results (in kg and mm) - 2-dof robot - formulation (30).

Method Mass Iter. Inner p1 p2 p3 p4
iter.

Weakly Coupled 1.411 5 49 47.87 34.51 42.11 30.08
Fully Coupled 1.408 11 / 48.58 35.02 41.43 29.08
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Fig. 6 2-dof robot - formulation (30): objective function history and deviation constraint for
the optimal design.
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7 Optimization of a 4-bar mechanism

7.1 Modeling hypotheses

The optimization problem concerns the mass minimization of a 4-bar mechanism
inspired from [11, 18, 25]. The 4-bar mechanism consists of three flexible links con-
nected to each other and to the ground by revolute joints (Fig. 7). The three links
have a constant solid circular cross section, Young’s modulus of E = 68.95 GPa,
Poisson’s ratio of ν = 0.3 and mass density of ρ = 2757 kg/m3. Each link is
modeled by six beam elements [12]. The lengths of the links are l1 = 0.3048 m,
l2 = l4 = 0.9144 m and l3 = 0.762 m. Lumped masses of 5 kg are located at points
A and B. The 4-bar mechanism moves in the horizontal plane so that gravity
can be ignored. The input crank is driven by an ideal motor which imposes the
rotation θ(t) with a linear acceleration from 0 to 10π s−1 in 0.3 s and then main-
tains a constant angular velocity until 0.5 s. The simulation is performed using
the generalized-α scheme with a time step h = 5× 10−4 s and a spectral radius of
ρ∞ = 0.5.

The design variables pi are the link diameters. Initial values of design variables
are set to 250 mm. Tangent corotational frames are adopted to derive the ESL.

p1 1

p2

2

p33

4
x

y

A

B

θ(t)

Fig. 7 Kinematic model of the 4-bar mechanism.

7.2 Optimization problem and numerical results

The optimization problem is to find the mobile link diameters which minimize
the total mass of the system subjected to a deviation constraint on point A.
Mathematically, it is stated as

minimize
p

m (p)

subject to ∆l(p,qn, tn) ≤ 0.001 m, n = 1, . . . 1001,

0.015 m ≤ pi ≤ 0.5 m, i = 1, . . . , 3,

(32)
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where at time step tn,

∆l =

√
(xA − xAr

)2 + (yA − yAr
)2. (33)

In (33), xA and yA are respectively the x and y-positions of point A in the inertial
frame. The reference mechanism is the same mechanism but whose components
are modeled as rigid bodies. The optimization differs from [11, 18, 25] wherein
authors consider stress constraints.

The weakly coupled method can hardly incorporate the loop closure kinematic
in the optimization problem formulation due to the component-based characteris-
tics of the method. To overcome this difficulty, the closed-loop system is opened in
the optimization problem formulation and the multicomponent-based constraint
is split into two constraints. The first one enforces a limit on the deflection of link
1 and the second one constrains the cumulative deflection of links 2 and 3. At time
tn and using the values related the body-attached frames, it reads

∆l1 =

((
R1

0,nu1
n,A

∣∣∣
x

)2
+

(
R1

0,nu1
n,A

∣∣∣
y

)2
) 1

2

≤ 0.001 m, (34)

∆l2 =

((
R2

0,nu2
n,A

∣∣∣
x

+ R3
0,nu3

n,B

∣∣∣
x

)2
+

.

(
R2

0,nu2
n,A

∣∣∣
y

+ R3
0,nu3

n,B

∣∣∣
y

)2
) 1

2

≤ 0.001 m, (35)

where the last subscript of ubn denotes the point where the displacement is consid-
ered. Note that the loop closure constraint is still enforced in the MBS simulation,
it is only discarded at the level of the optimization procedure. On the contrario,
the fully coupled method incorporates constraint (33) without any difficulty.

The fully coupled method is deemed converged when the relative changes of the
objective function value and design variable values vary less than 10−3 while the
relative constraint violation is less 10−6. The weakly coupled method is deemed
converged when the stopping criteria (25) with ε equals to 10−2 is satisfied. These
tolerance values ensure a tight convergence of the optimization processes so that
the comparison is performed on converged solutions.

The initial design has a mass of 268 kg (without the lumped masses) and
a maximum deviation around 50 µm which is far from the upper bound limit.
The optimal design greatly differs depending on the optimization method. The
objective function optimal value is 7 times larger with the weakly coupled method
(Tab. 3). The ESL method surprisingly needs a large number of iterations to
converge. In Figure 8, it is observed that, in both methods, at least one constraint
is active once converged. The optimization processes would seem to be trapped in
local optima.

7.3 Trivial optimization

In order to explain the previously obtained behavior, the same optimization process
is performed but the lumped masses at points A and B are removed.
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Table 3 Numerical results (in kg and mm) - 4-bar mechanism.

Method Mass Iter. Inner p1 p2 p3
iter.

Weakly Coupled 20.703 73 786 69.85 87.61 37.22
Fully Coupled 2.967 21 / 56.15 15.10 16.24
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Fig. 8 4-bar mechanism: objective function history and deviation constraint for the optimal
design.

Before performing the optimization, let us get a feeling of the optimal design.
The goal is to minimize the deviation of point A which is mainly guided by the
motor through link 1. Links 2 and 3 mainly follow the imposed motion and produce
reactions forces at point A. Thusly, physical intuition would tend to remove these
links.

The optimization results are gathered in Table 4 and the convergence history is
illustrated in Figure 9. The fully coupled method converges towards our predicted
design wherein design variables p2 and p3 reach the lower bound of their side-
constraints. The weakly coupled method also converges and at least one constraint
is active at convergence but the optimum design is quite different. Links 2 and
3 can not be removed, they are optimized in order to satisfy (35). However, if
this constraint is suppressed, links 2 and 3 can no more be incorporated in the
optimization problem. This example illustrates that the weakly coupled is not
suitable to consider multicomponent-based constraints in the presence of closed-
loops.

8 On some particular behaviors

The 2-dof robot example developed in the previous section concerns the structural
optimization of mechanical systems wherein flexibility effects are not predominant.
We have illustrated that both optimization methods can converge towards the same
optimal design.
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Table 4 Numerical results (in kg and mm) - 4-bar mechanism without lumped masses.

Method Mass Iter. Inner p1 p2 p3
iter.

Weakly Coupled 13.321 37 410 54.75 68.46 35.37
Fully Coupled 1.349 12 / 28.39 15.00 15.00
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Fig. 9 4-bar mechanism without lumped masses: objective function history and deviation
constraint for the optimal design.

In this section, the optimization problem of Section 6.2 is reconsidered as it
concerns optimization with component-based constraints which is suitable to both
methods. The difference is that the simulation time interval is slightly increased
so that the mechanism approaches a singularity as its motion is driven by the tip
position. After time t = 0.65 s, the robot Jacobian J defined as

J =

 ∂xtip∂θ1

∂xtip
∂θ2

∂ytip
∂θ1

∂ytip
∂θ2

 , (36)

tends to become singular whereupon inertia effects become predominant over the
robot which is already in an extended configuration. As exposed hereafter, diffi-
culties arise when flexibility effects become more important.

8.1 Oscillating phenomenon

Remembering the optimization problem in Section 6.2, the deviation constraint
formulation reads

∆l =

√
(yA − yAr

)2 + ((ytip − ytipr )− (yA − yAr
))2 ≤ 0.001 m, (37)

where yA and ytip are respectively the joint A and tip y-positions in the inertial
frame. Here, the only difference compared to the study conducted in Section 6.2 is
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that the simulation time interval is set to 0.66 s corresponding to 1321 time steps.
The same stopping criteria are used.

The convergence history of the weakly coupled method is illustrated in Fig-
ure 10. It is observed that the objective function value oscillates, which prevents
the convergence of the optimization and it reaches the allowed maximum number
of iterations. Observing the trajectory tracking constraint evolution during several
iterations (Fig. 10(b)-10(e)), we point out that the deviation constraint is always
activated for the last time step but oscillating phenomenon appears due to the
deviation constraint around 0.125 s. Between iterations 4 and 5, the optimization
process reduces the mass and then tries to converge. However, after performing the
MBS analysis and updating the ESL, the optimization process converge towards
a design that was previously obtained so that the process enters an infinite loop.
Move-limits can be implemented to damp out these oscillations but the optimal
design is thus artificially forced.

This example illustrates that in certain circumstances, oscillations prevent the
optimization convergence. However, in the present case, this phenomenon seems
to appear only for this particular simulation time interval where there is a strong
interaction between the activation of the constraint at the last time step and the
activation of constraints around 0.125 s.

Employing the fully coupled method, the optimization problem smoothly con-
verges without any oscillation (Fig. 11 - Tab. 5). The optimization is deemed
converged after 11 iterations where a single constraint corresponding to the last
time step is active.

Table 5 Numerical results (in kg and mm) - 2-dof robot - formulation (37).

Method Mass Iter. Inner p1 p2 p3 p4
iter.

Fully Coupled 1.099 11 / 43.54 32.56 34.20 25.90
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(a) Objective function.
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(b) Iteration 4.
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(c) Iteration 5.
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(d) Iteration 6.
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(e) Iteration 7.

Fig. 10 Weakly coupled method: illustration of the oscillating behavior of the optimization
process.
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Fig. 11 2-dof robot - fully coupled method - formulation (37): objective function history and
deviation constraint for the optimal design.

8.2 Initial point influence

A general characteristic of gradient-based algorithms is that they are sensitive to
local optima. Thusly, depending on the initial value of design variables, several
optimal designs can be obtained.

In this section, four different starting points are used: p1
0 = [50, 50, 50, 50],

p2
0 = [55, 55, 55, 55], p3

0 = [55, 45, 35, 25] and p4
0 = [45, 45, 45, 45]. The latter is an

infeasible starting point making the optimization process more complex.
Considering the optimization problem treated in Section 6.2 and based on the

numerical results gathered in Table 6, we conclude that the influence of the initial
point on the optimal design is not significant. To support this conjecture, the
deviation constraint is given as a function of the design parameters in Figure 12
for time t = 0.0995 s where p1 and p3 are set to 39.35 and 35 mm respectively.
The design domain presents similar shape for time steps around. It is observed
that the design space domain is relatively smooth whereupon the convergence is
facilitated and the optimization process is not much sensitive to local optima.

Let us now continue with the same optimization problem except that the 2-
dof robot undergoes a motion until the final joint angles θ1(tend) = 60◦ and
θ2(tend) = −30◦ corresponding to a simulation time interval of 0.6687 s and thus
1338 time steps. Approaching the singularity of the mechanism, inertia effects
become more important.

Analyzing the results given in Table 7, the weakly coupled method seems to be
rather insensitive to the starting points. Although the number of iterations needed
to converge strongly varies, the optimal design remains similar. Using the fully
coupled method, optimal designs differ with the initial points. Unlike the weakly
coupled method, in Figures 13-14, it is observed that the fully coupled method
generally activates only the constraint related to the last time step at convergence.
In Table 8, the history of active constraints is given for p0 = [55, 55, 55, 55] where
it is clearly shown that the fully coupled method is more affected by the dynamic
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Table 6 Formulation (28) - Numerical results for 4 initial points (in kg and mm).

Initial point Mass Iter. Inner p1 p2 p3 p4
iter.

Weakly Coupled Method

p0 = [50, 50, 50, 50] 0.962 6 57 39.29 28.33 34.94 25.19
p0 = [55, 55, 55, 55] 0.962 8 73 39.29 28.32 34.93 25.20
p0 = [55, 45, 35, 25] 0.962 6 49 39.30 28.34 34.94 25.17
p0 = [45, 45, 45, 45] 0.962 5 39 39.31 28.30 34.88 25.26

Fully Coupled Method

p0 = [50, 50, 50, 50] 0.962 9 / 39.35 28.25 35.14 24.91
p0 = [55, 55, 55, 55] 0.962 11 / 39.39 28.19 35.15 24.91
p0 = [55, 45, 35, 25] 0.961 16 / 39.36 28.24 35.10 24.88
p0 = [45, 45, 45, 45] 0.962 9 / 39.46 28.17 35.10 24.84
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Fig. 12 Design domain of the deviation constraint at time step 200 (0.0995 s) plotted with
respect to design variables p2 and p4.

effects occurring at the end of the simulation. Using the weakly coupled method,
the optimization is less affected by the last time step and as depicted in Table 8,
the last constraint is no more active at convergence within the given tolerance.
This behavior can be explained by the fact that design sensitivies are smoother
in the weakly coupled method due to their time independence. In this case, this
approximation avoids getting stuck in a local minimum created by the last time
steps where inertia effects are predominant.
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To explain the difference between optimal designs obtained with the fully cou-
pled method, the design space domain of the deviation constraint as a function of
design variables for time step t = 0.6685 s is illustrated in Figure 15 where p1 and
p3 are set to 52.49 and 33.24 mm respectively. The design space configuration ex-
hibits a lot of oscillations near the upper bound value of the constraint preventing
the convergence towards a unique optimal design.

Lastly, observing Figure 14, the convergence history exhibits oscillations. This
is expected as the convergence is hardened when the starting point is infeasible
combined with a local formulation of the optimization problem [28]. Other formu-
lations can help to work with a feasible domain of the design space more adapted
to gradient-based algorithms but these difficult and important issues are left for
future work.

Table 7 Influence of the initial point on the optimal design (in kg and mm).

Initial point Mass Iter. Inner p1 p2 p3 p4
iter.

Weakly Coupled Method

p0 = [50, 50, 50, 50] 1.353 10 101 52.53 37.81 33.24 24.76
p0 = [55, 55, 55, 55] 1.355 5 34 52.62 37.81 33.23 24.77
p0 = [55, 45, 35, 25] 1.352 7 64 52.45 37.84 33.21 24.80
p0 = [45, 45, 45, 45] 1.355 6 50 52.60 37.85 33.23 24.76

Fully Coupled Method

p0 = [50, 50, 50, 50] 1.427 15 / 51.71 36.89 38.07 27.31
p0 = [55, 55, 55, 55] 1.386 14 / 51.82 36.77 36.90 25.52
p0 = [55, 45, 35, 25] 1.372 9 / 52.27 37.32 34.24 26.32
p0 = [45, 45, 45, 45] 1.350 19 / 52.85 37.21 33.29 24.66

9 Conclusions

Two optimization methods for the structural optimization of mechanisms have
been compared. On the one hand, the weakly coupled method uses a MBS simu-
lation to generate ESL whereupon static response optimization with multiple load
cases is performed. On the other hand, the fully coupled method solves a dynamic
response optimization problem with time responses obtained directly from the
MBS analysis.

In order to carry out a fair comparison using an unique MBS formalism, we
proposed a method to derive ESL adapted to a standard nonlinear finite element
formulation.

When the optimization problem concerns component-based constraints, i.e.
where each component is optimized subject to its own set of constraints, both
methods can converge towards the same optimum. The weakly coupled method
generally lessen the CPU time consumption as it avoids the expensive gradient



Weakly and fully coupled methods for mechanism design 27

Table 8 History of active constraints, p0 = [55, 55, 55, 55].

Iterations Weakly coupled method Fully coupled method

1 / /
2 1338 /
3 286, 287, 288, 289, 290, 1338 /
4 238, 239, 240, 241, 242, 1338 /
5 239, 240, 241, 242 /
6 - Conv - 1338
...

...
10 1338
11 /
12 /
13 /
14 1338

computation of the state variables. Also, less dynamic analyses are usually required
to converge. However, this reduction is partly balanced by inner iterations which
are performed at each cycle although the latter are based on static computations.

When multicomponent-based constraints are considered, the weakly coupled
method is not suitable except in particular cases, i.e. when the multicomponent-
based constraints can be properly translated into components-based constraints.
The fully coupled method is more general and accommodates all types of com-
ponent and multicomponent-based constraints at the price of a more complex
optimization process.

The examples illustrate the potential of both methods to perform structural
optimization of flexible mechanisms. However, as illustrated by the last section, it is
not trivial to obtain convergence for mechanisms wherein flexibility and vibrations
are important. The understanding of the physical behavior of the mechanism is
fundamental to manage the optimization process and interpret afterwards the
optimization results.
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(a) Starting point: p0 = [50, 50, 50, 50].
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(b) Starting point: p0 = [55, 55, 55, 55]
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(c) Starting point: p0 = [55, 45, 35, 25]

Fig. 13 Influence of the initial point on the optimization process: objective function history
and deviation constraint for the optimal design.



Weakly and fully coupled methods for mechanism design 29

0 2 4 6 8 10 12 14 16 18 20
1

1.2

1.4

1.6

1.8

2

Iterations

M
as
s
E
vo
lu
ti
on

[k
g]

Weakly C.M.
Fully C.M.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]
D
ev
ia
ti
on

C
on

st
ra
in
t
[m

m
]

Upper bound

1

Fig. 14 Infeasible initial point p0 = [45, 45, 45, 45]: objective function history and deviation
constraint for the optimal design.
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Fig. 15 Design domain of the deviation constraint at time step 1338 (0.6685 s) plotted with
respect to design variables p2 and p4.
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