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Abstract. Topological relations are sometimes insufficient for differentiating 
spatial configurations of two objects with critical difference in their connection 
styles. In this paper, we present the projective 9+-intersection model, which 
refines topological relations into projective binary relations by considering 
projective properties of the objects’ shapes. This is indeed a reformulation of 
projective concepts of the Dimensional Model within the framework of the 9+-
intersection. Thirty projective binary relations are established between two 
regions in R2, one of which has a multi-order boundary (region+mob). These 
relations are identified computationally by applying to all theoretical relations 
the existing constraints for topological region-region relations and seven new 
specific constraints. After defining the concept of continuous neighbours 
between two projective binary relations, a conceptual neighbourhood graph of 
the 30 projective region+mob-region relations is developed.  

1.  Introduction 

Topological relations for categorising spatial configurations of objects have been 
studied extensively over the last two decades [1-15]. Especially, binary topological 
relations between spatial objects (point, line, regions and, to a smaller extend, bodies) 
are well-studied and frequently used. Several models of binary topological relations 
have been proposed and some of them have been adopted as OGC standards [16]. 
Other types of relations have also been introduced [17-20] and lots of work has still to 
be done to tackle the diversity and insufficiency of the representation of spatial 
relations. Indeed, even binary topological relations can be pushed further; for instance 
by considering dimension and number of topological intersections [7, 8]. However, 
the existing approaches cannot differentiate some spatial configurations of two 
objects, despite of their significant qualitative difference. For instance, Fig. 1a shows 
a set of spatial configurations between two bodies, which are all categorised into the 
same topological relation “touch” with a two-dimensional intersection. Similarly, 
Fig. 1b shows another set of configurations between a body and a line, which are all 
categorised into the same topological relation “touch” with a zero-dimensional 
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intersection. Distinction of such configurations is useful to perform more 
sophisticated spatial analyses, to perform more specific consistency checks, and so 
on. Such distinction based on the difference of connection styles seems particularly 
important when considering 3D large-scale applications; for example when 
categorising the spatial configurations of indoor objects (object arrangements in a 
room) or relationships between the components of objects (between the walls and roof 
of a building, between electronic components inside a computer, etc.). In such cases, 
considering topology only is not enough. Such applications go beyond “traditional” 
2D GIS domain and could be seen closer to 3D CAD world. However, with 3D urban 
modelling and 3D urban GIS development, we strongly believe that the types of 
spatial relationships currently modelled must be extended. 

 Categorising further binary spatial relations implies to consider another 
mathematical framework. For instance, projective geometry has been adopted to 
categorise spatial relations in a model called the Dimensional Model (DM) [21, 22]. 
The motivation behind DM was to identify spatial relations between 3D objects more 
precisely. Although formally defined, DM suffers from a lack of standardisation and 
strong algebra associated with the model. DM’s formal definition of spatial relations 
differs from the standard definition of spatial relations (e.g., the 9-intersection [2] and 
RCC-calculus [3]), even though DM may distinguish the same set of relations as the 
9-intersection and RCC-calculus do. Thus, it has been a hard step to adopt DM in 
addition to other models. Furthermore, neither conceptual neighbourhood graphs nor 
composition tables are currently available for DM relations. This is an obstacle to 
performing qualitative spatial reasoning. 

A recent development in the modelling methods of topological relations, the 9+-
intersection [15] has given an opportunity to reformulate DM projective concepts 
within a well-standardized framework of topological relations. The new combined 
model keeps all descriptive power of DM projective concepts and takes advantage of 
existing development in the 9-intersection [2] and the 9+-intersection [15], especially 
in terms of qualitative spatial reasoning.  

In this article, we propose a new model of refined topological relations based on 
projective properties of objects’ shapes. First, we explain fundamental concepts of 
DM, such as the order of points of a spatial object (Section 2). Then, we reformulate 
DM with the 9+-intersection (Section 3). We then identify all possible relations 
between two regions embedded in R², one of which has a “projective” shape (Section 
4). Then, we schematize these relations into a conceptual neighbourhood graph, 
whose analysis reveals some interesting properties of the relations (Section 5). And 
finally we conclude (Section 6). 

 

 

(a) (b) 

Fig. 1. Topological equivalence of (a) spatial configurations of two bodies with two-
dimensional intersection and (b) those of a body and a line in zero-dimensional intersection. 
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2.  Dimensional Model (DM) 

The Dimensional Model (DM) was formally defined according to affine geometry 
[21, 22]. It was shown later that its definition satisfies projective geometry rules [23]. 
This model introduced the concept of “order of each point of a convex set” to conduct 
the segmentation of spatial objects. New binary spatial relations between two spatial 
objects, called dimensional relations, were defined based on the connectivity of the 
objects’ dimensional elements.  

2.1.  Order of Point of a Spatial Object 

Every point of a closed convex set has an order [24]. Let C be a convex set in d-
dimensional Euclidean space Rd. The order of a point x in C, denoted o(x,C), is the 
dimension of the intersection of all the supporting hyperplanes of C passing through 
x. If there is no supporting hyperplane containing x, then x is of order d. One can 
prove that the set of points of order d correspond exactly to the points of C’s interior 
in the sense of Euclidean topology (not equivalent to the interior in point-set 
topology, as we will see later). For example, suppose a triangle in R². In R², an 
infinite number of supporting hyperplanes (in this case, lines) can pass through a 
vertex of the triangle (Fig. 2a). Their intersection is a subspace of dimension 0 (a 
point corresponding to the given vertex). Thus, this vertex is of order 0. If we take a 
point being located on the edge of the triangle, there is only one supporting 
hyperplane. This subspace is of dimension 1 and thus the order of this point is 1 (like 
all points of the edge other than the two vertices). Lastly, for an interior point of the 
triangle, there is no supporting hyperplane and thus the order of this interior point is 2 
(the dimension of the embedding space). Other examples (a drop-shaped region in R² 
and a line segment in R²) are presented in Figs. 2b-c. 
 

  
(a) (b) (c) 

Fig. 2. Order of points of various spatial objects in R².  

This order concept has been extended from convex sets to topological manifolds 
with boundary1, such that we can consider a wide variety of spatial objects. The 

                                                           
1 Let n be a positive integer. We denote by Rn

+ the subset of tuples (α1,...,αn) with 
αn ≥ 0. A subset A of Rd is a topological n-manifold with boundary if each point 
x∈A has neighbourhood which is homeomorphic to an open subset of Rn

+. 
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definition of the extended concept is beyond the scope of this article; see [21] or [22] 
for a comprehensive development. 

Strictly speaking, the object’s “interior” concept in Euclidean topology, on which 
the original DM stands, is different from that in point-set topology [25], on which the 
9-intersection stands. This difference appears when considering an n-dimensional 
object embedded in Rd (n < d). In this case, Euclidean topology considers that the 
object has only a boundary (Fig. 3a), while point-set topology considers that the 
object consists of a boundary (the set of two endpoints) and an interior (Fig. 3b). 

  

 

 
(a) (b) 

Fig. 3. Differences between Euclidean topology and point-set topology for n-dimensional 
object embedded in Rd (n<d). 

To make DM consistent with the models based on point-set topology, the 
definition of point order has been extended [21], such that the previous definition of 
order is applied only to the points on the object’s boundary (in the sense of point-set 
topology), while we consider that the points in object’s interior (in the sense of point-
set topology) has the same order with the object’s dimension. In the previous 
definition of point order, for example, points on a line can be of order 0 or 1 and the 
points of order 0 are not only line extremities (Fig. 4a). In the extended definition of 
point order, the line’s “extremities” has order 0 while the line’s “interior” has order 1 
(Fig. 4b). 

 

 

 

 

(a)  (b) 

Fig. 4. The extension of point order concept for point-set objects. 

Another issue occurs when applying the previous order definition to the inflexion 
points. In this case, point’s order is higher than our intuition; i.e. equal to the order of 
interior points (Fig. 5a). Thus, in the extended definition of point order, if an object of 
dimension d has a boundary point of order d, the order of this point is reduced to d-1 
(Fig. 5b). 
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 (a)  (b)  

Fig. 5. Modification of inflexion points’ order. 

This extended point order concept enables us to consider the segmentation of 
object’s boundary and consequently to refine binary relationships between objects by 
considering the connectivity of objects “topological” primitives. It has given birth to 
the DM model through the concepts of dimensional elements and dimensional 
relationships. 

2.2.  Dimensional Elements and Dimensional Relationships  

Based on the point order concept, we can consider the subsets of spatial objects, 
called dimensional elements. Dimensional elements are formally defined as follow: 

 
• The n-dimensional element (called nD-element) of a d-dimensional spatial object C 

(n ≤ d) corresponds to the set of all of C’s points (or parts) of order 0 to n. 
• The nD-element of a spatial object C has an extension and may have a limit. The 

extension is the subset of C formed by its points of order n, and the limit is the 
subset of C formed by its points of order 0 to order (n-1).  
 

Thus, if the nD-element has a limit, this limit corresponds to (n-1)D-element. The 0D-
element does not have a limit by definition. For instance, let us consider a polygon in 
Fig. 6a. This polygon is composed by points of order 0, 1, and 2. Thus, we can 
consider 0D-, 1D-, and 2D-elements for this convex. The different extension and 
limits are presented in the Figs. 6b-d. It should be noted that each object has one and 
only one nD-element. Thus, nD-element may be disconnected (e.g., a polygon’s 0D 
element)  
 

  
(a) (b) (c) (d) 

Fig. 6. (a) Order of points and (b-d) dimensional elements of a polygon 

Dimensional relationships between two spatial objects are spatial relationships 
determined by the connectivity of their dimensional elements. We consider three 
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connection styles, namely total relation, partial relation and no relation (non-
existent), instead of presence or absence of intersections (Fig. 7). 

 
• A dimensional element is in total relation with another dimensional element if 

their intersection is equal to the first element, and if the intersection between their 
extensions is not empty.  

• A dimensional element is in partial relation with another dimensional element if 
their intersection is not equal to the first element, and if the intersection between 
their extensions is not empty. 

• A dimensional element is in no relation (non-existent) with another dimensional 
element if the intersection between their extensions is empty. 
 

  
Total relation Partial relation No relation (non-existent) 

Fig. 7. Three types of connection styles between two 2D-elements (from black element to grey 
element). 

2.3.  Categorising Spatial Relationships Using Dimensional Relationships 

The spatial relationship between two objects can be expressed by the set of 
connection styles between pairs of dimensional elements of these two objects. For 
example, let us consider a triangle A (with 2D-, 1D-, and 0D-elements) and an ellipse 
B (with 2D- and 1D-elements, but no 0D-element) (Fig. 8). The dimensional 
relationships between two objects A and B are determined in the following sequence: 
first, check the dimensional relationship between A’s 2D-element and each of B’s 
dimensional elements; then, check the dimensional relationship between A’s 1D-
element and each of B’s dimensional elements, and so on. The dimensional 
relationships between B and A can be determined by the same approach. A 
dimensional relationship is coded as RnDm, where R stands for relation, nD for the 
dimension of the element of the first object, and m for the dimension of the element of 
the second object. For instance, R2D1 represents the dimensional relationships 
between the 2D-element of the first object and the 1D-element of the second object. 

 

   

 

 

 R2D2=non-existent R2D1=non-existent  R2D2=non-existent R2D1=non-existent  
 R1D2=non-existent R1D1=non-existent  R1D2=non-existent R1D1=partial  
 R0D2=non-existent R0D1=partial  R0D2=non-existent R0D1=partial  

Fig. 8. Two examples of categorization of spatial relationships using dimensional relationships. 
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3.  Reformulating the Dimensional Model with the 9+-intersection 

The Dimensional Model (DM) presented in the previous section has a strong 
correspondence with the 9-intersection [2]. The 9-intersection and its extensions have 
been frequently adopted in the studies of topological relations (e.g., [2, 10-13, 15]). 
Based on point-set topology [25], this model distinguishes the interior, boundary, and 
exterior of each spatial object, which are also called the object’s topological parts. 
The topological relation between two spatial objects A and B is characterized by the 
intersections of A’s three topological parts and B’s three topological parts, which are 
concisely represented by the 9-intersection matrix in Eqn. 1. °A , A∂ , and −A  are A’s 
interior, boundary, and exterior, while °B , B∂ , and −B  are B’s interior, boundary, and 
exterior, respectively. Normally, topological relations are distinguished by the 
presence or absence of these nine types of intersections.  
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In DM, as presented in Section 2, the points that form a spatial object are 
distinguished by their orders. Among the points that form an n-dimensional spatial 
object, the points of order n form the object’s interior, while the points of order 0 to n-
1 form the object’s boundary. This implies the presence of a certain correspondence 
between DM and the 9-intersection. Meanwhile, if n ≥ 2, DM considers n subsets of 
the boundary, whereas the 9-intersection cannot distinguish these subsets of the 
boundary. Instead, the 9+-intersection [15] enables such distinction of boundary 
subsets within the framework of the 9-intersection. 

The 9+-intersection supports the subdivision of objects’ topological parts by 
nesting the 9-intersection matrix. For instance, the topological relation between a 
directed line segment D and a simple region R is captured by the 9+-intersection 
matrix in Eqn. 2, as D’s boundary consists of two subparts (start point Ds∂  and end 
point De∂ ). The support of such subdivision is useful when a certain topological 
parts consist of multiple subsets that are qualitatively different. In our case, the 
boundaries of two spatial objects A and B can be distinguished into multiple subsets, 
each of which consists of the points of a specific order. Therefore, the relation 
between two spatial objects A and B is captured by the 9+-intersection matrix in 
Eqn. 3, where nA is A’s dimension, and nB is B’s dimension, Ai∂  is the set of points of 
order i in A (0 ≤ i ≤ nA–1), and Bj∂  is the set of points of order j in B (0 ≤ j ≤ nB–1). 
Similarly, if we distinguish A’s boundary subset, but not B’s boundary subset, then 
the relation between A and B is captured by the 9+-intersection in Eqn. 4.  
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Precisely speaking, the captured relations are no longer topological relations when 
n ≥ 2, but their refinements, because the order of a point is not invariant under 
topological transformation. Therefore, the relations distinguished by the 9+-
intersection matrix in Eqn. 3 or 4 are named binary projective relations. In addition, 
the model of spatial relations based on the 9+-intersection matrix in Eqn. 3 or 4 is 
called the projective 9+-intersection. As examples, Fig. 9 shows how the projective 
9+-intersection captures projective relations between a triangle and an eclipse. We 
also call an object whose boundary consists of points of different orders (e.g., 
polygons) the object with a multi-order boundary, or in short, objects+mob. 
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Fig. 9. Two examples of categorization of spatial relations using the projective 9+-intersection. 
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The projective 9+-intersection is upward compatible with DM, because, given a 9+-
intersection matrix in Eqn. 3, we can uniquely determine the dimensional relation in 
DM (i.e., a complete set of RnDm expressions) through the conversion formula in 
Eqn. 5 (compare Figs. 8-9). Meanwhile, the new model and DM has the following 
differences: 

 
• DM considers the intersections with respect to k-dimensional element (i.e., the set 

of points of order 1 to k), while the new model considers the intersections with 
respect to the extension of k-dimensional element (i.e., the set of points of order k).  

• The new model also considers the intersections with respect to the objects’ 
exteriors. 

• DM distinguishes three styles of intersections (i.e., partial, total, and non-existent), 
while the new model distinguishes only two styles (i.e., X intersects with Y or not). 
This change does not reduce the model’s representation capability, because it 
becomes possible to determine whether X overlaps with Y (partial relation), X is 
included in Y (total relation), or else (no relation), considering the intersections 
concerning the objects’ exteriors. 
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The projective 9+-intersection serves as a refinement of the 9-intersection, as easily 
expected from the shape of the underlying matrix. This means that spatial relations 
under the new model can be systematically categorized based on the sets of 
topological relations identified in the previous studies (e.g., [2]), as well as that the 
spatial arrangement of two objects that falls into the same topological relations in the 
previous relation set may be distinguished by the new model. The next sections 
discuss such characteristics of the new model as a refinement of the 9-intersection.  

4.  Projective Relations between a Region with Multi-Order 
Boundary and a Region 

There are in theory 24×3 = 4096 projective relations between a region with multi-order 
boundary and a region in R2, because the relations are represented by the 9+-
intersection matrix with 4×3 two-valued elements (e.g., Fig. 9). However, only a 
small subset of these relations can be realized in a particular space. As a refinement of 
the 9-intersection, all the constraints of the 9-intersection for topological region-
region relations, identified in [2], can be applied to the projective 9+-intersection. In 
addition, due to the subdivision of the region’s boundary, the following seven specific 
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constraints are additionally applied, where the set of points of order n in the boundary 
of a spatial object X is called X’s order n boundary:  

 
• Constraint 1: If A’s order 0 boundary intersects with B’s interior, then A’s order 1 

boundary must intersect with B’s interior 
• Constraint 2: If A’s order 0 boundary intersects with B’s exterior, then A’s order 1 

boundary must intersect with B’s exterior 
• Constraint 3: If A’s order 0 boundary intersects with B’s interior and B’s exterior, 

then A’s boundary must intersect with B’s boundary 
• Constraint 4: If A’s order 1 boundary intersects only with B’s exterior, then A’s 

order 0 boundary must not intersect with B’s interior 
• Constraint 5: If A’s order 1 boundary intersects only with B’s interior, then A’s 

order 0 boundary must not intersect with B’s exterior 
• Constraint 6: A’s order 1 boundary intersects with at least one part of B 
• Constraint 7: A’s order 0 boundary intersects with at least one part of B 

 
Fig. 10 illustrates these constraints using the 9+-intersection matrix.  
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Fig. 10. New constraints applied to the matrix of the projective 9+-intersection. 

By applying these constraints, the number of relations is reduced from 4096 to 30 
(Figs. 11-12). All of these 30 relations normally have geometric realization in R2. 
Exceptionally, when A’s order 0 boundary consist of three distinctive subparts (i.e., 
when A is a triangle), the relation “overlap-11” is impossible. These 30 relationships 
are indeed a refinement of eight topological relations between regions. Consequently, 
we have decided to keep the same names (i.e. overlap, contains, inside, covers, 
coveredBy, equal, meet, and disjoint [4]) and just added a number to them which 
reflects the number of refined cases.  
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Fig. 11. Thirty possible projective relations between a region with a multi-order boundary and a 
region in R² – Part 1. 
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Fig. 12. Thirty possible projective relations between a region with a multi-order boundary and a 
region in R² – Part 2. 
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5.  Conceptual Neighbourhood Graph 

The 30 projective relations derived in the previous section are organized into a 
similarity-based schema, called a conceptual neighbourhood graph [26]. Conceptual 
neighbourhood graphs are frequently used for schematizing, analyzing, and 
visualizing a set of spatial relations [4, 9, 11, 14, 15, 19, 26-30]. In a conceptual 
neighbourhood graph, each node corresponds to a spatial relation, and two nodes are 
linked if their corresponding relations are conceptual neighbours. Different 
definitions of conceptual neighbours lead to different graph shapes for the same set of 
relations [26, 28]. This paper considers that two projective relations between a region 
with a multi-order boundary (region+mob) A and a region B are conceptual neighbours 
if there is a configuration of one relation that can switch to a configuration of another 
relation by transforming A continuously, such that one vertex or edge loses/gains one 
intersection with B’s interior, boundary, or exterior. Accordingly, the transformation 
in Fig. 13a establishes continuous neighbours, but that in Fig. 13b, which yields the 
generation of three intersections ( °∩∂ BA0 , °∩∂ BA1 , and BA ∂∩∂1 ) and loss of 
one intersection ( BA ∂∩∂0 ), is not accepted. Acceptable continuous transformation 
always results in the change of one of six elements in the middle two rows of the 
matrix (i.e., °∩∂ BA0 , BA ∂∩∂0 , −∩∂ BA0 , °∩∂ BA1 , BA ∂∩∂1 , and −∩∂ BA1 ). 
Thus, all candidates for conceptual neighbours are derived computationally from the 
patterns of the 9+-intersection matrix that correspond to the 30 projective relations.  
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(a) (b) 

Fig. 13. (a) A continuous transformation that establishes conceptual neighbours and (b) another 
continuous transformation that does not establish conceptual neighbours.  

Based on the previous definition of conceptual neighbours, we developed the 
conceptual neighbourhood graph of the 30 projective region+mob-region relations 
(Fig. 14). Basically, the developed graph has both horizontal and vertical symmetry 
axes, even though the upper-left part is missing and overlap-refinements do not follow 
the horizontal symmetric axis. The spatial arrangement of the 30 projective 
region+mob-region relations in this conceptual neighbourhood graph corresponds to the 
arrangement of topological region-region relations in their conceptual neighbourhood 
graph [4] (Fig. 15a). This highlights the characteristics of these 30 projective 
region+mob-region relations as the refinement of topological region-region relations. 
The comparison of two graphs shows that the number of steps from one relation to 
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another relation is larger in our graph, except those from disjoint to contains and vice 
versa (Fig. 15b).  
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Fig. 14. Conceptual neighbourhood graphs of the 30 projective relations between a region with 
a multi-order boundary and a region in R², together with the six elements in the matrix’s middle 
two rows.  
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Fig. 15. (a) Conceptual neighbourhood graphs of eight topological region-region relations [4] 
and (b) numbers of steps between nodes in the corresponding conceptual neighbourhood graph 
of projective region+mob-region relations in Fig. 14. 
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Through the analysis of the developed conceptual neighbourhood graph, we found 
the following facts: 

 
• The pairs of relations with one difference in the matrices’ middle two rows, where 

one has ( )φφφ ¬¬  and another has ( )φφφ ¬  or ( )φφφ¬  with 
respect to one of these two rows (e.g., overlap-3 and overlap-9), are not conceptual 
neighbours, because the shift between these two relations require that one vertex or 
one edge of the triangle skips over the region’s boundary (Fig. 16).  

• The matrices’ middle two rows of the relations on the graph’s vertical centre line 
(i.e., overlap-3, -5, -6, -10, -11, and equal) are left-right symmetric.  

• In each pair of relations located symmetrically with respect to the graph’s vertical 
centre line (e.g., inside and contain), the matrix of one relation is derived from the 
matrix of another relation by exchanging the matrix’s elements with respect to 
°B  and −B . This means that one relation is derived from another relation by 

reversing B’s interior and exterior, assuming a spherical surface that embeds the 
configurations of the relations. 

• Similarly, in each pair of relations located symmetrically with respect to the 
graph’s horizontal centre line (e.g., disjoint and contain), the matrix of one relation 
is derived from the matrix of another relation by exchanging the matrix’s elements 
with respect to °A  and −A . This means that one relation is derived from another 
relation by reversing A’s interior and exterior, assuming a spherical surface that 
embeds the configurations of the relations. 

• Overlap-1 to overlap-11 follow the vertical symmetric axis only. We can consider 
a virtual graph that is horizontally and vertically symmetric (Fig. 17), considering 
the patterns of their projective 9+-intersection matrices. In this graph, however, 
overlap-1' to overlap-10' have no geometric realization. 
 
From the third and fourth findings, we can expect that the upper-left empty part of 

the conceptual neighbourhood graph in Fig. 14 potentially domiciles the relations that 
appear in a spherical surface, but not in a plane. This is analogous to Egenhofer’s [11] 
finding of three additional region-region relations on a spherical surface, namely 
attaches, embraces, and entwined. Thus, it is expected that the relations at the graph’s 
upper-left empty part neighbour should be the refinements of attaches, embraces, and 
entwined relations. 
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Fig. 16. Non-continuous transformation, even though that yields only one change in the middle 
two rows in the 9+-intersection matrix.  
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Fig. 17. Virtual symmetry of the conceptual neighbourhood graph in Fig. 3 with respect to 
overlap refinements. Overlap-1' to overlap-10' have no geometric realization, however.  

6.  Conclusions 

This paper developed a new model of projective relations based on the Dimensional 
Model [22] and the 9+-intersection [15]. As a first step, this paper identified 30 
projective relations between a region with a multi-order boundary and a region (i.e., 
projective region+mob-region relations) in R2, and schematized these 30 relations into a 
conceptual neighbourhood graph. Naturally, the next target is the relations between 
two regions, both with a multi-order boundary (i.e., projective region+mob- region+mob 
relations). By replacing regions by regions with multi-order boundaries, the number 
of projective relations will increase, and the conceptual neighbourhood graph will 
become more complicated (probably more high-dimensional). It is also expected that 
the shapes of regions with multi-order boundaries influence the realizability of some 
projective relations. For instance, a triangle and a quadrilateral cannot have an equal 
relation. 

Another challenge is to identify and analyze projective relations in a three 
dimensional space. Systematic analyses of three-dimensional topological relations 
were conducted in [10, 21], identifying many relations that cannot be realized in R2. 
Similar analysis should be possible for projective relations. 

An interesting and promising topic is the composition of projective relations. The 
composition of spatial relations is an operation that derives possible relations between 
two spatial objects from the knowledge of the relations between each of these objects 
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and the common third object. Such compositions of spatial relations have been 
frequently discussed as a foundation of qualitative spatial reasoning [6, 11, 14, 18, 27-
29, 31, 32]. It is an interesting question whether the compositions of projective 
relations become crisper than those of topological relations, as the projective relations 
consider the dimensional characteristics of the regions’ boundaries. 
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