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Abstract. It is now well-known that a curvilinear discretization of the
geometry is most often required to benefit from the computational ef-
ficiency of high-order numerical schemes in simulations. In this article,
we explain how appropriate curvilinear meshes can be generated. We
pay particular attention to the problem of invalid (tangled) mesh parts
created by curving the domain boundaries. An efficient technique that
computes provable bounds on the element Jacobian determinant is used
to characterize the mesh validity, and we describe fast and robust tech-
niques to regularize the mesh. The methods presented in this article are
thoroughly discussed in Ref. [1,2], and implemented in the free mesh
generation software Gmsh [3,4].

Keywords: High-order mesh, curvilinear mesh, geometry discretization,
mesh validity, element Jacobian

1 Introduction

There is a growing consensus in the computational mechanics community that
state of the art solver technology requires, and will continue to require too ex-
tensive computational resources to provide the necessary resolution for a broad
range of demanding applications, even at the rate that computational power
increases. The requirement for high resolution naturally leads us to consider
methods which have a higher order of grid convergence than the classical (for-
mal) 2nd order provided by most industrial grade codes. This indicates that
higher-order discretization methods will replace at some point the current finite
volume and finite element solvers, at least for part of their applications.

The development of high-order numerical technologies for engineering analy-
sis has been underway for many years now. For example, Discontinuous Galerkin
methods (DGM) have been thoroughly studied in the literature, initially in a
theoretical context [5], and now from the application point of view [6]. In many
contributions, it is shown that the accuracy of the method strongly depends on
the accuracy of the geometrical discretization (see for instance Ref. [7]). It is thus
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necessary to address the problem of generating high-order, curvilinear meshes.
This article focuses on unstructured meshes, that make it possible to deal with
the complex geometries involved industrial-grade problems. It is mainly dedi-
cated to the theoretical and practical aspects of high-order mesh generation as
they are implemented in the Gmsh mesh generator [3,4], that is distributed as
free software. An in-depth discussion of the techniques described hereafter, as
well as numerous examples and applications, can be found in Ref. [1,2].

The rest of the article is organized as follows. Section 2 gives an overview
of high-order mesh generation methods available in the literature. In Section 3,
we describe how high-order nodes are created, ordered in elements and placed
on the curved boundaries. In Section 4, we address the topic of mesh validity
and the reliable evaluation of element Jacobian determinants. Section 5 details
the mesh regularization methods available in Gmsh. Finally, we shortly draw
conclusions in Section 6.

2 Overview of high-order mesh generation methods

Although high-order numerical schemes have been a subject of intense research
for many years, a comparatively small number of research groups have worked on
high-order mesh generation methods, despite the necessity pointed out above. So
far, efforts in this field have been focused on the problem of creating curvilinear
meshes (i.e. meshes that follow the curvature of the domain boundaries defined
by CAD models) that fulfill the validity requirements imposed by the dominant
numerical methods (namely finite volumes and finite elements).

Two approaches can be considered for the generation of high-order meshes [8]:
one can either try to create directly a valid high-order mesh through a high-order
version of a classical meshing algorithm, or generate a first-order (i.e. straight-
sided) mesh that is subsequently curved and regularized if invalidities are found.
Both approaches are actually related, as they share the necessity of detecting
and repairing the invalid parts of the mesh.

The procedures for detection and regularization of invalidities are much more
complex and computationally expensive in the high-order case than for usual
straight-sided meshes, but the curvilinear character of a high-order mesh is usu-
ally localized to the vicinity of curved boundaries. This is why the direct ap-
proach, that involves operations on high-order meshes in the whole domain, has
been disregarded by most if not all authors in favor of the indirect approach that
takes advantage of existing technologies.

2.1 Curving

After generation of the first-order mesh, the following step in the indirect ap-
proach is to curve the boundaries of the mesh according to the geometry of
the problem. Model entities like model faces or model edges are supposed to be
smooth manifolds that are defined through a parametrization. In engineering
applications, the geometry of model entities is most often defined by a CAD
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model, but discrete geometries that are common in biomedical applications can
also be smoothly parametrized.

The mesh elements (or cells in the finite volume terminology) are usually
defined in a Lagrangian manner by a set of nodes (or vertices). Thus, the curving
procedure normally comes down to placing the high-order nodes corresponding
to boundary edges and boundary faces on the exact geometry.

This part of the high-order mesh generation process is generally not con-
sidered as a crucial point, and little information can be found about it in the
literature. Simple techniques for obtaining high-order boundary nodes include
interpolating them between the first-order boundary nodes in the parametriza-
tion describing the corresponding CAD entity [8,9] and projecting them on the
geometry from their location on the straight-sided element.

More sophisticated procedures have also been proposed. In Ref. [10], the high-
order nodes on boundary edges are interpolated in the physical space through a
numerical procedure involving either the CAD parametrization (in the case of a
mesh edge corresponding to an edge of the geometric model), or an approxima-
tion of the geodesic connecting the two first-order vertices (in the case of an edge
located on a 3D surface). Nodes located within surface elements are obtained
through a more sophisticated version of this procedure. Instead of interpolation,
Sherwin and Peiró [11] use a mechanical analogy with chains of springs in equi-
librium that yields the optimal node distribution along geometric curves and
geodesics for edge nodes. Two-dimensional nets of springs provide the optimal
distribution of surface element nodes.

These procedures generally aim to obtain a given node distribution on the
boundary of the computational domain. However, it may be more interesting
to search for the node locations that minimize the error in the approximation
of the exact geometric by the high-order mesh boundary, for instance in terms
of the Hausdorff distance. To our knowledge, this topic point has not yet been
explored in the context of high-order mesh generation for scientific computation.

The creation and placement of high-order nodes is treated in detail in Sec-
tion 3.

2.2 Detection of invalidities

As illustrated in Section 3, curving the mesh boundaries while leaving other mesh
entities unchanged may result in an invalid mesh with tangled elements. From
the point of view of numerical schemes, a mesh is generally considered as valid
if it is possible to integrate a quantity over each element, and if elements do not
overlap. Both requirements can be evaluated through the Jacobian determinant
of a transformation between a canonical reference element and the actual element
of the mesh, as in the finite element framework (see Section 4.1). The validity
depends on the sign of the Jacobian.

In order to characterize the quality of a high-order mesh independently of the
size of its elements, authors have used different distortion measures based on the
Jacobian determinant. Most of them involve the ratio of minimum to maximum
Jacobian in each element [8,10,11,12,13,14], the ratio of the minimum Jacobian
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to the Jacobian of the corresponding straight-sided element [1] or the integral of
the Jacobian divided by the Jacobian of the straight-sided element [15].

It is important to note that the Jacobian determinant of an element is a
higher-order polynomial of the coordinates in the reference space. As such, its
oscillatory nature makes it difficult to evaluate its extrema (and thus its sign)
by sampling. Several authors have developed procedures based on the convex
hull properties of Béziers polynomials for the reliable evaluation of Jacobian
bounds [1,13,16]. This point is the object of Section 4.

2.3 Regularization of invalid meshes

In case invalid elements are detected in a high-order mesh, a procedure to reg-
ularize the mesh (i.e. untangle the broken elements) has to be applied. This is
arguably the most important and problematic part of high-order mesh gener-
ation. On one hand, the procedure has to be robust, because a single invalid
element can make the mesh inappropriate for computation. On the other hand,
the regularization procedure shall not be much more computationally intensive
than the rest of the meshing process, in order to remain suitable for practical
applications. Several types of methodologies have been proposed in the litera-
ture.

A first possibility is to apply local refinement to the mesh in the regions
where the boundary curvature is considered as large enough to possibly create
invalid elements [11]. It has also been proposed to move the high-order nodes
along specific lines depending on geometric constraints and neighbouring ele-
ments [13]. More sophisticated methodologies combine a prescribed deformation
of elements near curved boundaries (by moving the control points of their Bézier
representation) with topological modifications in order to untangle all invalid
elements [8,16,17].

A second class of regularization methods are based on mechanical analogies:
the mesh is considered as embedded in an elastic medium, and the imposition
on the boundaries of a displacement corresponding to the curving results in a
problem that can be solved using finite elements. No topological modification
is made. The simple linear elastic analogy has been employed [10], but it may
prove unreliable. A more robust method may be obtained by using non-uniform
material properties, that is by using stiffer material in small elements near curved
boundaries. More successful strategies have been proposed, including a non-
linear mechanics formulation [14] and an iterative method working on the Bézier
control points of the elements instead of the Lagrangian nodes [12].

The last approach for regularization methods is based on optimization algo-
rithms. The point is then to find the mesh node locations which minimize an
objective function that characterizes the validity of the mesh, using the measures
described in Section 2.2. In Ref. [9], such a method is applied with a extended
distortion measure on triangular surface meshes. In a recent paper [2], we have
taken advantage of the control allowed by this approach on the validity of the
mesh to propose a robust untangling method, that is detailed in Section 5.2.
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3 Creation of high-order meshes

3.1 High-order elements

When dealing with high order elements, it is important to define how element
nodes are numbered for a given element shape and for a given order p. Our
convention is very general with respect to both those parameters. For all mesh
and post-processing purposes, reference elements are defined as in a classical
finite element framework.

We start by considering linear elements (lines, triangles, quads, tets, prisms,
hexes and pyramids), that contain only corner vertices. In 2D elements, the nodes
are numbered in such a way that each edge connects two consecutive nodes, the
normal to the oriented edge pointing outwards. In 3D elements, the edge-vertex
connectivity does not follow a general rule. Instead, the node ordering is such
that of the normal to each face of the element points outward.

The node ordering of a higher order (possibly curved) element is a gener-
alization of the one used in the first-order element. We number nodes in the
following order:

– the element corner vertices (i.e. the first-order vertices);
– the internal nodes for each edge;
– the internal nodes for each face;
– the volume internal nodes.

The numbering for internal nodes is recursive, ie. the numbering follows that of
the nodes of an embedded edge/face/volume of lower order. The higher order
nodes are assumed to be equispaced.

A visual description of the node ordering used in the Gmsh mesh generation
software can be found in its documentation [4].

3.2 Generating high order meshes based on CAD data

Modern mesh generation procedures take as input CAD models composed of
model entities : vertices G0

i , edges G
1
i , faces G

2
i or regions G3

i . Each model entity
Gd

i has a geometry (or shape) [18,3] for which solid modelers usually provide a
parametrization, that is, a mapping ξ ∈ Rd 7→ x ∈ R3. There are also four kind
of mesh entities Md

i that are said to be classified on model entities. Each mesh
entity is classified on the model entity of the smallest dimension that contains
it. The way of building a high order mesh is to first generate a straight sided
mesh. Then, mesh entities (edges, faces and regions) are curved according to the
geometry of the CAD entity it is classified on.

In the p-version of finite elements, high order nodes are added to edges, faces
and regions of the element with the aim of creating curvilinear elements with
their shape based on high order (Lagrangian or not) polynomial bases (see Figure
1). Other authors [19,20] would rather use the exact mappings of the geometry
and build a so-called isogeometric mesh.
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Fig. 1. Straight sided mesh (left) and curvilinear (cubic) mesh (right).

The naive curving procedures described above does not ensure that all the
elements of the final curved mesh are valid. Figure 2 gives an illustration of
this important issue: some of the curved triangles are tangled after having been
curved. It is important to note that this problem is not related to the accuracy
of the geometrical discretization: in Figure 2, the mesh would not be valid in the
iso-geometric case i.e. if the curved edge was assigned the exact geometry (blue
curve).

First-order mesh High-order vertices Untangling

Fig. 2. Straight sided mesh (left) basic curvilinear (quadratic) mesh with tangled ele-
ments (center) and untangled mesh (right).

Gmsh implements the polynomial version of high order meshes. There, the
choice of the position of high order nodes is a crucial parameter for the validity
of the high order elements.

The position of high order nodes can be chosen by linear interpolation be-
tween the first-order nodes in the parametric space provided by the solid modeler
for the corresponding model entity. This procedure has the advantage of being
simple, fast and geometrically robust (no projection on surfaces is needed). Yet,
ill conditioned mappings are very common in CAD systems. Such a procedure
will generate very bad elements in the vicinity of singularities (e.g. the two poles
of a sphere described using spherical coordinates).
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Another option would be to place new nodes in such a way that the geomet-
rical error, i.e. the distance between the CAD model and the mesh, is minimized.
Note that the definition of such a distance is not trivial and that the non linear
procedure involved in such a minimization is time consuming.

The way Gmsh generates high order nodes (order p) on a mesh made of
simplices (triangles and tets) is the following one:

– For every model edge G1
i , add p−1 high order nodes on mesh edges M1

j that

are classified on G1
i ,

– For every model face G2
i , add p−1 high order nodes on mesh edges M1

j that

are classified on G2
i ,

– For every model region G3
i , add p − 1 high order nodes on mesh edges M1

j

that are classified on G3
i ,

– For every model face G2
i , add (p− 1)× (p− 2)/2 high order nodes on mesh

faces M2
j that are classified on G2

i ,

– For every model region G3
i , add (p−1)× (p−2)/2 high order nodes on mesh

faces M2
j that are classified on G3

i ,

– For every model region G3
i , add (p−1)× (p−2)× (p−3)/6 high order nodes

on mesh regions M3
j that are classified on G3

i .

When an edge going from xa to xb is saturated with its p− 1 high order points
xi, those are initially placed on a straight line segment between xa and xb in
an equispaced manner. Then, points xi are orthogonally projected on the real
geometry, using the functions provided by CAD systems. When an internal edge
of a region is saturated with high order points, no projection is needed.

When high order points are added on mesh faces classified on model faces, a
different procedure is applied. An incomplete element that contains corner nodes
and edge nodes is constructed. Those elements are sometimes called serendipity
(or incomplete) elements [21]. Gmsh’s way of numbering nodes allows us to easily
generate such elements. Incomplete elements are not converging optimally to the
exact geometry when the mesh is refined. Internal nodes have to be added to
achieve optimal convergence. Shape functions of the incomplete elements are
used to place the internal nodes on the geometry of the curvilinear incomplete
element. Then, those nodes are projected on the model face. The same procedure
is used for inserting mesh vertices inside high order regions. Yet, no projection
is needed in this case. The use of incomplete elements to predict the position of
high order nodes before projection has experimentally given better results than
a simple projection. Yet, there is no guarantee that such a procedure produces
valid high order meshes.

4 Validity of high-order meshes

4.1 Curvilinear Meshes, Distortion and Bounds on Jacobian

Determinants

Let us consider a mesh that consists of a set of straight-sided elements of order
p. Each element is defined geometrically through its nodes xi, i = 1, . . . , Np and
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a set of Lagrange shape functions L
(p)
i (ξ), i = 1, . . . , Np. The Lagrange shape

functions (of order p) are based on the nodes xi and allow to map a reference
unit element onto the real one:

x(ξ) =

Np
∑

i=1

L
(p)
i (ξ) xi. (1)

The mapping x(ξ) should be injective, which means that it should admit an
inverse. This implies that the Jacobian determinant detx,ξ has to be strictly
positive. In all what follows we will always assume that the straight-sided mesh is
composed of well-shaped elements, so that the positivity of detx,ξ is guaranteed.
This standard setting is presented on Figure 3 (left) for the quadratic triangle.

ξ1

x1

X3

X2

X1

x5

x6

x4

X5

X6

X4

Y

X

x(ξ) ξ3

ξ2

ξ5
ξ6

ξ4

ξ

η
X(ξ)

X(x)

x

y

x2

x3

Fig. 3. Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings x(ξ),
X(ξ) and X(x).

Let us now consider a curved element obtained after application of the
curvilinear meshing procedure, i.e., after moving some or all of the nodes of
the straight-sided element. The nodes of the deformed element are called Xi,
i = 1 . . . Np, and we have

X(ξ) =

Np
∑

i=1

L
(p)
i (ξ) Xi. (2)

Again, the deformed element is assumed to be valid if and only if the Jacobian
determinant J(ξ) := detX,ξ is strictly positive everywhere over the ξ reference
domain. The Jacobian determinant J , however, is not constant over the reference
domain, and computing Jmin := minξ J(ξ) is necessary to ensure positivity.
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The approach that is commonly used is to sample the Jacobian determinant
on a very large number of points. Such a technique is however both expensive
and not fully robust since we only get a necessary condition.

It is possible to follow a different approach: because the Jacobian determinant
J is a polynomial in ξ, J can be interpolated exactly as a linear combination
of specific polynomial basis functions over the element. We would then like to
obtain provable bounds on Jmin by using the properties of these basis functions.

In addition to guaranteeing the geometrical validity of the curvilinear ele-
ment, we are also interested in quantifying its distortion, i.e., the deformation
induced by the curving. To this end, let us consider the transformation X(x)
that maps straight sided elements onto curvilinear elements (see Figure 1). It is
possible to write the determinant of this mapping in terms of the ξ coordinates
as:

detX,x =
detX,ξ

detx,ξ

=
J(ξ)

detx,ξ

. (3)

We call X(x) the distortion mapping and its determinant δ(ξ) := detX,x the
distortion. The distortion δ should be as close to δ = 1 as possible in order not to
degrade the quality of the straight sided element. Elements that have negative
distortions are of course invalid but elements that have distortions δ ≪ 1 or
δ ≫ 1 lead to some alteration of the conditioning of the finite element problem.
In order to guarantee a reasonable distortion it is thus necessary to find a reliable
bound on Jmin and Jmax := maxξ J(ξ) over the whole element.

Note that many different quality measures can be defined based on the Ja-
cobian determinant J . For example, one could look at the Jacobian determinant
divided by its average over the element instead of looking at the distortion. Ob-
taining bounds on Jmin and Jmax is thus still the main underlying challenge.
Other interesting choices are presented and analyzed in [15].

4.2 Adaptive Bounds for Arbitrary Curvilinear Finite Elements

In order to explain the adaptive bound computation let us first focus on the
one-dimensional case, for “line” finite elements. Since Bézier functions can be
generated for all types of common elements (triangles, quadrangles, tetrahe-
dra, hexahedra and prisms), the generalization to 2D and 3D elements will be
straightforward.

The One-Dimensional Case In 1D the Bézier functions are the Bernstein
polynomials:

B
(n)
k (ξ) =

(

n

k

)

(1− ξ)n−k ξk (ξ ∈ [0, 1] ; k = 0, ..., n) (4)

where
(

n
k

)

= n!
n!(n−k)! is the binomial coefficient. The Bézier interpolation requires

n+ 1 control values bi. We have

J(ξ) =

Nn
∑

k=0

B
(n)
k (ξ) bk. (5)
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Bernstein-Bézier functions have the nice following properties : (i) they form a

partition of unity which means that
∑n

k=0 B
(n)
k (ξ) = 1 for all ξ ∈ [0, 1] and (ii)

they are positive which means that B
(n)
k (ξ) ≥ 0 for all ξ ∈ [0, 1]. This leads to

the well known property of Bézier interpolations:

min
ξ∈[0,1]

J(ξ) ≥ bmin = min
i

bi and max
ξ∈[0,1]

J(ξ) ≤ bmax = max
i

bi. (6)

Moreover, the control values related to the corner nodes of the element are equal
to the values of the interpolated function. In what follows we assume that these
“corner” control values are always ordered at the Kf first indices. We then have

min
ξ∈[0,1]

J(ξ) ≤ min
i<Kf

bi and max
ξ∈[0,1]

J(ξ) ≥ max
i<Kf

bi. (7)

Since Lagrange and Bézier functions span the same function space, compu-
tation of the Bézier values bi from the nodal values Ji (and convertly) is done

by a transformation matrix. The tranformation matrix T
(n)
B→L, which computes

nodal values from control values, is created by evaluating Bézier functions at
sampling points:

T
(n)
B→L =













B
(n)
0 (ξ0) . . . B

(n)
n (ξ0)

B
(n)
0 (ξ1) . . . B

(n)
n (ξ1)

...
. . .

...

B
(n)
0 (ξn) . . . B

(n)
n (ξn)













.

Those sampling points are taken uniformly, i.e. at the location of the nodes of

the element of order n. The inverse transformation is T
(n)
L→B = T

(n)
B→L

−1
and

from the expression of the interpolation of the Jacobian determinant (5), we can
write

J = T
(n)
B→L B

B = T
(n)
L→B J , (8)

where B and J are the vectors containing respectively the bi’s and the Ji’s.

Adaptive Subdivision Let us assume that the domain [0, 1] is subdivided into
Q parts. The interpolation J [q](ξ[q]) on the qth subdomain [a, b] (0 ≤ a < b ≤ 1)
must verify

J [q](ξ[q]) =

Nn
∑

k=0

B
(n)
k (ξ[q]) b

[q]
k =

Nn
∑

k=0

B
(n)
k (ξ(ξ[q])) bk (ξ[q] ∈ [0, 1]), (9)

with ξ(ξ[q]) = a+ (b− a) ξ[q].
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Considering the nodes ξ
[q]
k such that ξ

[q]
k = ξk (k = 0, . . . , n) (i.e., such that

they are ordered like the sampling points), the expression (9) reads

T
(n)
B→L B[q] =













B
(n)
0 (a+ (b− a) ξ0) . . . B

(n)
n (a+ (b− a) ξ0)

B
(n)
0 (a+ (b− a) ξ1) . . . B

(n)
n (a+ (b− a) ξ1)

...
. . .

...

B
(n)
0 (a+ (b− a) ξn) . . . B

(n)
n (a+ (b− a) ξn)













B = T
(n)
B→L

[q]
B,

where B[q] is the vector containing the control values of the qth subdomain. This
implies that

B[q] =

[

T
(n)
L→B T

(n)
B→L

[q]
]

B = M[q]B. (10)

Each set of new control values bounds the Jacobian determinant on its own
subdomain and we have:

b′min = min
i,q

b
[q]
i ≤ Jmin ≤ min

i<Kf ,q
b
[q]
i (11)

and
max

i<Kf ,q
b
[q]
i ≤ Jmax ≤ b′max = max

i,q
b
[q]
i . (12)

If an estimate is not sufficiently sharp, we can thus simply subdivide the
appropriate parts of the element. This leads to a simple adaptive algorithm,
exemplified in Figure 4. In this particular case the original estimate (6)-(7) is not
sharp enough (Jmin ∈ [−3, 1]). After one subdivision, the Jacobian determinant
is proved to be positive on the second subdomain. The first subdomain is thus
subdivided once more, which proves the validity. In practice, a few levels of
refinement lead to the desired accuracy. The subdivision has quadratic speed of
convergence [22,23].

Note that in a practical implementation (with finite precision arithmetic),
we must take care of a problematic situation. If the minimum of the Jacobian
determinant is too close to zero but positive, then the upper bound is positive
while the lower bound might never get positive. In order to avoid this situation,
we limit the number of consecutive subdivisions that can be applied. The unde-
termined elements are then considered as invalid. Another way of getting rid of
this issue is to relax the condition of rejection.

Extension to Higher Dimensions The extension of the method to higher di-
mensions is straightforward, provided that Bézier functions can be generated and
that a subdivision scheme is available. Jacobian determinants J are polynomials
of ξ, η in 2D and of ξ, η, ζ in 3D.

For high order triangles, the Bézier triangular polynomials are defined as

T
(p)
i,j (ξ, η) =

(

p

i

)(

p− i

j

)

ξi ηj (1− ξ − η)p−i−j (i+ j ≤ p).
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J   min

Fig. 4. Top left: One-dimensional element mapping x(ξ). Top right: Exact Jacobian
determinant J(ξ) (black), control values on the original control points (green) and two
adaptive subdivisions (blue and red). Bottom: Estimates of Jmin at each step in the
adaptive subdivision process.

It is possible to interpolate any polynomial function of order at most p on the
unit triangle ξ > 0, η > 0, ξ + η < 1 as an expansion into Bézier triangular
polynomials. Recalling that, for a triangle at order p, its Jacobian determinant
J(ξ, η) is a polynomial in ξ and η at order at most n = 2(p− 1), we can write

J(ξ, η) =
∑

i+j≤n

bijT
(n)
i,j (ξ, η).

It is also possible to compute J in terms of Lagrange polynomials

J(ξ, η) =
∑

i

JiL
(n)
i (ξ, η)

where the Ji are the Jacobian determinants calculated at Lagrange points. It is
then easy to find a transformation matrix Tn

LB such that

B = Tn
LBJ,

where B and J are the vectors containing respectively the control values of the
Jacobian determinant bij and the Ji’s.

Other element shapes can be treated similarly. For quadrangles, tetrahedra,
prisms and hexahedra, the Bézier are functions respectively:

Q
(p)
i,j (ξ, η) = B

(p)
i (ξ) B

(p)
j (η) (i ≤ p, j ≤ p),
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T
(p)
i,j,k(ξ, η, ζ) =

(

p

i

)(

p− i

j

)(

p− i− j

k

)

ξi ηj ζk (1− ξ − η − ζ)p−i−j−k

(i+ j + k ≤ p),

P
(p)
i,j,k(ξ, η, ζ) = T

(p)
i,j (ξ, η) B

(p)
k (ζ) (i+ j ≤ p, k ≤ p)

and

H
(p)
i,j,k(ξ, η, ζ) = B

(p)
i (ξ) B

(p)
j (η) B

(p)
k (ζ) (i ≤ p, j ≤ p, k ≤ p).

Matrices of change of coordinates can then be computed inline for every polyno-
mial order, and bounds of Jacobian determinants computed accordingly. Table 1
summarizes the order of the Jacobian determinant and the number of coeffi-
cients in its expansion for all common element types. In all cases the subdivision
scheme works exactly in the same way as for lines. Figure 5 shows the first level
of subdivision for a third-order triangle.

Order (n) of J Number of coefficients

Line p− 1 n+ 1
Triangle 2(p− 1) (n+ 1)(n+ 2)/2

Quadrangle 2p− 1 (n+ 1)2

Tetrahedron 3(p− 1) (n+ 1)(n+ 2)(n+ 3)/6
Prism 3p− 1 (n+ 1)2(n+ 2)/2

Hexahedron 3p− 1 (n+ 1)3

Table 1.Order of the Jacobian determinant and number of coefficients in the expansion
for an element of order p.

Implementation As mentioned in Section 4.1, the bounds on the Jacobian
determinant can be used to either make the distinction between valid and invalid
elements with respect to a condition on Jmin, or to measure the quality of the
elements by systematically computing Jmin and Jmax with a prescribed accuracy.

In both cases the same operations are executed on each element. First, the
Jacobian determinant is sampled on a determined number of points Ns, equal to
the dimension of the Jacobian determinant space, and so to the number of Bézier
functions. Second, Bézier values are computed. Then adaptive subdivision is
executed if necessary. Algorithms 1 and 2 show in pseudo-code the algorithm used
to determine whether the Jacobian determinant of the element is everywhere
positive or not.

Algorithm 2 could be further improved by optimzing the loop on line 5, by
first selecting q for which we have the best chance to have a negative Jacobian
determinant (line 4, algo 2). In practice this improvement is not significant since
the only case for which we can save calculation is for invalid elements—and the
proportion of them which require subdivision in order to be detected is usually
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Fig. 5. Top: third-order planar triangle. Bottom left: exact Jacobian determinant and
control values (dots) on the original control points; the validity of the element cannot
be asserted. Bottom right: exact Jacobian determinant and control values (dots) after
one subdivision; the element is provably correct.

small. Note that we may also want to find, for example, all the elements for
which the Jacobian determinant is somewhere smaller than 20% of its average.
We then just have to compute this average and replace the related lines (4 and
7 for algorithm 1).

Another possible improvement is to relax the condition of rejection. We could
accept elements for which all control values are positive but reject an element
as soon as we find a Jacobian determinant smaller than a defined percent of the
average Jacobian determinant. The computational gain can be significant, since
elements that were classified as good and which needed a lot of subdivisions (and
have a Jacobian determinant close to zero) will be instead rapidly be detected
as invalid.

More interestingly, the computation of sampled Jacobian determinants and
the computation of Bézier control values in algorithm 1 can easily be executed
for a whole groups of elements at the same time. This allows to use efficient
BLAS 3 (matrix-matrix product) functions, which significantly speeds up the
computations.
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Algorithm 1: Check if an element is valid or invalid

Input: a pointer to an element.
Output: true if the element is valid, false if the element is invalid

1 set sampling points Pi, i = 1, . . . , Ns;
2 compute Jacobian determinants Ji at points Pi;
3 for i = 1 to Ns do

4 if Ji <= 0 then return false;

5 compute Bézier coefficients bi, i = 1, . . . , Ns using (8);
6 i = 1;
7 while i ≤ Ns and bi > 0 do

8 i = i+ 1;

9 if i > Ns then return true;

10 call algorithm 2 with bi as arguments and return output;

Algorithm 2: Compute the control values of the subdivisions

Input: Bézier coefficients bi, i = 1, . . . , Ns

Output: true if the Jacobian determinant on the domain is everywhere
positive, false if not

1 compute new Bézier coefficients b
[q]
i , q = 1, . . . , Q as in equation (10);

2 for q = 1 to Q do

3 for i = 1 to Kf do

4 if b
[q]
i <= 0 then return false;

5 for q = 1 to Q do

6 i = 1;

7 while i ≤ Ns and b
[q]
i > 0 do

8 i = i+ 1;

9 if i ≤ Ns then

10 call algorithm 2 with b
[q]
i as arguments and store output;

11 if output = false then return false;

12 return true;
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5 Untangling of high-order meshes

5.1 Strategy

Applying an untangling procedure to the entire mesh would result in a robust
methodology. In most practical cases however, it represents an unnecessary ex-
pense of computational resources. Indeed, only the vertices and elements in the
vicinity of the curved geometry really need to be modified in order to untan-
gle the mesh, while the mesh entities located far from the boundary remain
unchanged. In order to optimize the computational efficiency, the untangling
procedure can thus be applied locally. Subdomains are first defined around each
invalid element. Then, two strategies can be adopted in the framework of an
optimization procedure.

Primary subdomains The first step in the untangling procedure consists in
identifying all invalid elements in the mesh, for instance by means of the methods
described in Section 4. A subdomain of N layers of elements can then be built
around each of the invalid elements. Although these subdomains are usually
appropriate in isotropic meshes, they may not be adequate for boundary layer-
type meshes, where elements are highly anisotropic. In this case, the boundary
curvature responsible for the mesh tangling is typically large compared to the
normal size of the tangled element, but small compared to its tangential size (see
Figure 6). Thus, untangling such a mesh requires several layers to be curved in
the direction normal to the boundary, whereas there is no need to modify the
elements that are adjacent in the tangential direction. Therefore, a geometrical
criterion is introduced in the construction of the subdomains, as illustrated in
Figure 6: among the elements contained in the N layers surrounding the invalid
element, only those located within a certain distance are retained. This distance
is defined by multiplying the distance between the straight-sided and high-order
boundaries by a user-defined factor. The boundaries of the subdomain are fixed,
in order to ensure that elements lying outside do not get invalidated.

Fig. 6. Detail of a boundary-layer mesh on a curved geometry: tangled second-order
mesh (left), subdomain definition with a circle representing the geometrical criterion
(center), and untangled mesh (right).
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The optimal values for the number of layers N and the distance factor are
those that encompass the lowest number of elements while still leaving the un-
tangling procedure enough freedom to untangle the mesh (or reach a target value
for the Jacobian determinant). They are case-dependent. Note that in 3D, it is
desirable to make sure that the subdomain includes at least one layer of ele-
ments around all faces of the invalid element, because the latter is likely to have
tangled faces that cannot be repaired if they lie on the boundary of the subdo-
main. For the optimization procedure described in Section 5.2, a fair trade-off
between computation cost and robustness can be obtained with N = 6 layers of
quadrangles (or N = 12 layers of triangles) and a distance factor of 12 in many
applications involving boundary-layer meshes.

In complex cases, a unique value of these parameters for the whole mesh may
lead to subdomains that are too large for some invalid elements, but too small
for others. It is then beneficial to use the untangling procedure in an adaptive
loop where the subdomain size is progressively increased in case the procedure
fails to untangle the mesh.

Overlapping subdomains A potential problem with the subdomains created
as described above is that they may overlap. There is no guarantee that the
untangling procedure can be efficiently applied to each of these subdomains.
Let us consider the case of a subdomain built around an invalid element, that
contains another invalid element close to its boundary: this subdomain may not
provide the necessary degrees of freedom to fix the second invalid element, thus
the untangling procedure can fail in this subdomain. In order to avoid such
problems, two strategies can be applied:

Disjoint subdomains Overlapping subdomains are detected and merged. This
strategy ensures that each invalid element in a subdomain has enough sur-
rounding elements for the untangling procedure to be successful, provided
the primary subdomains are large enough. It is also well-suited for a parallel
setting in which each subdomain would be treated by a processor. However,
it may lead to large subdomains, which can prove inappropriate if the cost
of the untangling procedure does not scale well with the number of nodes
and elements involved.

“One-by-one” strategy The untangling procedure is applied sequentially to
each subdomain, with the objective of fixing only the invalid element around
which it is built, while allowing other invalid elements in the same subdomain
to remain broken. This strategy lets the untangling procedure work on small-
size subdomains, but is less appropriate for parallel operation at subdomain
level, because it is not possible to untangle concurrently subdomains that
overlap.

5.2 Untangling through optimization

We chose to apply to each subdomain an untangling procedure that preserves
the mesh topology. Its role is to move the mesh vertices in such a way that the
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tangled elements become valid, while the other elements do not become invalid.
The measure of the scaled Jacobian determinant characterizes the element va-
lidity in a continuously derivable manner with respect to the position of the
vertices, which allows us to use an optimization algorithm. In this section, we
derive an appropriate objective function relying on the robust Jacobian evalua-
tion technique presented in Section 4, and explain how to efficiently compute its
gradient. We then describe the method used to solve the optimization problem.

Computation of Bézier coefficients and their derivatives The general
goal of our method is to untangle both surface and volume meshes. To this end,
we consider that all points have three-dimensional coordinates x = {x, y, z}.
We also use three local coordinates ξ = {ξ, η, ζ}. For surface meshes however,
where only two parametric coordinates are defined, we assume that the vector
n = ∂x/∂ζ is the constant unit normal vector to the straight sided element, with
the same orientation convention used for the low-order mesh. This assumption
makes it possible to compute the Jacobian determinant at every Lagrange node
ξk = (ξk, ηk, ζk) at order q:

Jk = J(ξk) =
∂x

∂ξ

∂y

∂η

∂z

∂ζ
+

∂z

∂ξ

∂x

∂η

∂y

∂ζ
+

∂y

∂ξ

∂z

∂η

∂x

∂ζ
−

∂z

∂ξ

∂y

∂η

∂x

∂ζ
−

∂x

∂ξ

∂z

∂η

∂y

∂ζ
−

∂y

∂ξ

∂x

∂η

∂z

∂ζ
. (13)

As

x =

Np
∑

i=1

xe
iL

(p)
i (ξk),

we can easily express the sensitivity ∂Jk/∂x
e
i of the Jacobian determinant at

point k with respect to xe
i . The quantities ∂Jk/∂y

e
i and ∂Jk/∂z

e
i can be calcu-

lated in the same manner. In practice, we compute for each element e the matrix
J of size Nq × (3Np + 1) as:

J =
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Let B be the matrix

B =
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, (14)

that contains both the Bézier coefficients Bl as well as their gradients with
respect to the position of the nodes of element e. Defining the constant trans-

formation matrix T q
lk = B

(q)
l (ξk) that gives the Bézier coefficients Bl from the



19

Lagrange coefficients Jk, B can be calculated through a single matrix-matrix
product: Blj = T q

lkJkj .
We can then make use of the Bi’s and their gradients in a gradient-based op-

timization procedure. To this end, an objective function that allows us to control
the quality of elements based on the coefficients Bi needs to be constructed.

Objective function In what follows, we detail the objective function f(xe
i )

that is employed in an unconstrained optimization procedure to untangle invalid
curved elements. The function f = E + F is composed of two parts E and F .

The first part E is based on the assumption is that the method is provided
with a straight-sided mesh of high quality. This mesh has potentially been defined
to satisfy multiple criteria, such as a predetermined size field, or anisotropic
adaptation. The conversion such meshes to high order is expected to preserve as
much as possible all these features. Therefore, the nodes shall be kept as close
as possible to their initial location in the straight sided mesh.

To this end, we define the function E by analogy with an energy associated
with the displacement xe

i − Xe
i of the nodes, i.e. as a positive quadratic form

that is a measure of the distance between the straight sided nodes Xe
i and their

position xe
i in the curved mesh:

E(xi,K) =
1

2

∑

e

Np
∑

i=1

Np
∑

j=1

(xe
i −Xe

i )K
e
ij(x

e
j −Xe

j) ≥ 0 (15)

where K is a symmetric positive matrix of size 3nv × 3nv and Ke
ij is of size

3 × 3. Here, we define K as the diagonal matrix with entries we
i /L

2, where
we

i are user-defined weights used to set the balance between the two parts E
and F of the objective function f , and L is a length scale representative of
the problem. We choose L as the maximum distance, among all vertices of the
initial tangled mesh, between a node and its counterpart in the straight-sided
mesh. Regarding the non-dimensional weights we

i , we usually set we
i = 1000 if

the node i of element e lies on the boundary, and we
i = 1 otherwise. In practice,

we observe that the exact value of we
i has a limited influence on the convergence

of the optimization method. The part E in f prevents the problem from being
under-determined, and it steers the optimization procedure towards a solution
that preserves the features of the straight-sided mesh, but the term F dominates
for the most problematic (tangled) elements that drive the mesh deformation.

The second part F of the functional controls the positivity of the Jacobian
determinant. A log barrier[24] prevents Jacobians from becoming too small, and
a quadratic function is used to penalize Jacobians that are too large:

F(xi, ǫ) =

ne
∑

e=1

Nq
∑

l=1

F e
l (x

e
i , ǫ)

where

F e
l (x

e
i , ǫ) =

[

log

(

Be
l (x

e
i )− ǫJe

0

Je
0 − ǫJe

0

)]2

+

(

Be
l (x

e
i )

Je
0

− 1

)2

. (16)
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The function F is designed to blow up when Be
l = ǫJe

0 , but still vanishes when-
ever Be

l = Je
0 . Barrier methods are one of the most successful class of algorithms

used for general nonlinear optimization problems. These techniques are very ro-
bust with respect to the convexity characteristics of the objective function and
constraints[25], so they converge to at least a local minimum in most cases.
Figure 7 shows a plot of the barrier function in Equation (16) for ǫ = 0.2.

B
e
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Je
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Fǫ(
B

e

l

Je

0

)

Fǫ(x) = (x− 1)2 + log
(

x−ǫ

1−ǫ

)2

0
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0 1 2 3ǫ

Fig. 7. Plot of the barrier function F (Je
l ) for ǫ = 0.2.

As the objective function f is smooth, we can compute its gradient ∇f with
respect to the positions of the element vertices xe

i . This gradient can then be used
in a gradient-based optimization procedure. As explained in Section 3.2, each
vertex is classified on a given model entity, to which it is geometrically linked.
In order for the vertices to remain on their model entity, the sensitivity of f is
computed with respect to the location of vertices expressed in the parametric
space of the model entities rather than in the physical space.

A mesh vertex M0
i classified on a model edge G1

j can only be moved along

G1
j , i.e. its position only depends on one curve parameter t. The corresponding

component of the gradient will thus be computed as

df

dt
=

∂f

∂xe
i

·
dxe

i

dt

with dxe
i/dt the tangent vector to the curve at point t, that is obtained from the

CAD model.
A mesh vertex M0

i classified on a model face G2
j can only be moved along

the surface. Two parameters u and v are associated to such a vertex, and the
corresponding sensitivities ∂f/∂u and ∂f/∂v depend respectively on ∂xe

i/∂u
and ∂xe

i/∂v the two tangent vectors to the surface at point (u, v). Those can be
computed using the CAD model.

A vertex that is classified on a model region has complete freedom to move in
every direction of the 3D space, in which case the physical coordinates {x, y, z}
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are used. Finally, a mesh vertex that is classified on a model vertex has no
freedom to move, it is thus excluded from the optimization problem.

Optimization method The general optimization procedure, that involves a
moving barrier for the objective function, is detailed in Algorithm 3.

Algorithm 3: Optimization method

1 Define subdomains Bk, k = 1 . . . NB ;
2 for k = 1 to NB do

3 repeat

4 compute κ = mine minl
Be

l

Je
0

, e ∈ Bi, l ∈ [1, Nq];

5 if κ < ǭ then

6 set ǫ = κ− 0.1 |κ|;
7 solve minxi f(xi,K, ǫ) for all elements of subdomain Bk;

8 recompute κ = mine minl
Be

l

Je
0

, e ∈ Bi, l ∈ [1, Nq];

9 until κ ≥ ǭ;

The untangling problem can be formally defined as

min
xi

f(xi,K, ǫ), i = 1, . . . , nv.

A broad range of methods can be used to solve such an unconstrained mini-
mization problem. We have tested several alternatives: interior point methods
implemented in the software package IPOPT [26], as well as L-BFGS [27] and
conjugate gradients [28] algorithms provided by ALGLIB [29]. In our experi-
ence, the use of conjugate gradients seems to be the best choice in terms of
computational efficiency.

A crucial aspect of the optimization procedure is the definition of an appro-
priate sequence of optimization problems. In a given subdomain, the value of
the barrier ǫ must be lower than the worst scaled Jacobian determinant among
all elements, so that the variables remain in the domain of definition of the bar-
rier function F . In particular, ǫ has to be negative for an initially tangled mesh.
Therefore, we compute a sequence of optimization problems with “moving barri-
ers”: ǫ is increased between each optimization problem, until the desired barrier
value ǭ is reached. This procedure is illustrated in Figure 8.

In practical cases, it is most often necessary to apply preconditioning to the
optimization problem, because the scale of the parametric or physical coordinates
used for different mesh vertices can differ by orders of magnitude, depending on
the model entities on which they are classified. We found that a simple diagonal
preconditioner, based on the norm of the tangent vectors dxe

i/dt for vertices
classified on model edges (respectively ∂xe

i/∂u and ∂xe
i/∂v for vertices classified

on model faces), and unity for vertices classified on model regions, allows the
optimizer to converge in a fast and robust manner.
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Fig. 8. Optimization procedure: three successive series of (maximum) 30 conjugate
gradient iterations, with their respective log barriers.

In practice, the value of Je
0 appearing in Algorithm 3 represents the Jacobian

determinant of the straight-sided version of element e in the original mesh. It
is computed at initialization and held constant during the optimization process,
which saves computational time and favors curved elements that resemble their
first-order counterpart in the original mesh. However, all vertices of element e
are allowed to move, so the value of Je

0 after optimization is different from the
original one. The measure of the minimum scaled Jacobian determinant in the
untangled mesh may thus yield a lower value than the barrier ǭ. Nevertheless,
the positivity of the Jacobian determinant is not threatened as long as the op-
timization procedure is successful.

5.3 Untangling through analytical methods

In boundary layers meshes used in CFD, where elements are highly stretched
along the boundary, it is relatively clear that the curvature should “propagate”
in the direction normal to the boundary in order to untangle the mesh. In this
case, it may be possible to apply simple techniques to determine in an analytical
fashion the displacement that high-order nodes shall undergo for the mesh to
become valid.

Such a method is illustrated in Figure 9. In a boundary layer mesh, the
subdomains created following the methodology described in Section 5.1 typically
consist of a “stack” of elements above the tangled element. It is then possible to
define a “meta-element” that includes the whole subdomain under consideration,
based on the curved edge or face of the tangled mesh element. In 2D, the meta-
element is a quadrangle created from the curved boundary edge. In 3D, the
meta-element is either a prism created from a curved boundary triangle, or an
hexahedron created from a curved boundary quadrangle.
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Let us consider the mapping between the straight-sided version and the
curved version of the meta-element, as described in Section 4.1. If the meta-
element is sufficiently large in the direction normal to the boundary, its curved
version is valid in the sense of Section 4.1 and the mapping is injective. All
mesh vertices in the subdomain are located within the straight meta-element.
We can then apply the straight-to-curved meta-element mapping to them: their
images are located in the curved subdomain in a way that untangle the mesh by
distributing the element curvature along the direction normal to the boundary.

The straight-to-curved meta-element transformation is defined by the com-
position X ◦ x−1, following the notation of Section 4.1 illustrated in Figure 3. As
the straight-to-reference meta-element mapping x(ξ) is bilinear, its inversion is
computationally inexpensive. So is the forward high-order transformation X(ξ)
from the reference to the curved meta-element. This interpolation technique is
thus much more efficient than the iterative optimization procedure presented in
Section 5.2.

This method is particularly interesting in boundary layer-type meshes, where
most elements are created from columns of vertices that are aligned in the di-
rection normal to the boundary. In this case, the meta-element can be chosen
to have the same boundaries as the column of elements above the invalid one.
Thus, all the elements in the column undergo a consistent deformation, and the
untangling is successful as long as the meta-element is valid. When vertices are
not aligned, as in boundary layer meshes near complex geometric features or
fully unstructured meshes, different vertices of a same element can belong to dif-
ferent meta-elements, which may not lead to a valid element. Even then, it can
be beneficial to apply the analytical method to correct most invalid elements,
before using the optimization method described in Section 5.2 to untangle the
rest of the mesh in a robust manner.

Fig. 9. Illustration of the analytical curving technique: the “meta-element” is shown
with red lines and the high-order mesh nodes that are moved to untangle the mesh are
marked in red.



24

6 Conclusion

The techniques presented in this article prove valuable for the creation, diag-
nostic and regularization of high-order meshes. They can be used as the basis
of a robust, efficient and versatile high-order mesh generation framework. They
have already been demonstrated to produce valid meshes of relatively high or-
der for a wide variety of industrial and scientific problems. For a more thorough
discussion of these methods and examples of applications, the reader is referred
to Ref. [1,2]. An efficient and ready-to-use implementation can be found in the
free software Gmsh [3,4].

Nevertheless, two topics have not been addressed in this article. The first
one is the geometrical accuracy of the curvilinear mesh: the quality of the ap-
proximation of the CAD geometry by the mesh depends on the location of the
high-order nodes on the boundary. The second one is the numerical properties
of high-order meshes beyond the mere validity: their curvilinear nature affects
numerical schemes in terms of interpolation properties and conditioning. These
aspects should ideally be taken into account in the mesh generation process, but
have been the subject of little interest from the scientific community so far. They
should be investigated more intensely in the future.
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