

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Spatial autocorrelation: robustness of measures and tests

Marie Ernst and Gentiane $\operatorname{HAESBROECK}$

University of Liege

London, December 14, 2015

Spatial Data

Spatial data :

- geographical positions
- non spatial attributes

Example^a

Mean price of land for sales (\in/m^2) in Belgian municipalities

・ロト ・四ト ・ヨト ・ヨト ・ヨ

^aStatistics from Belgian Federal Government - http://statbel.fgov.be

Spatial Data

Spatial data :

- geographical positions
- non spatial attributes

Example^a

Mean price of land for sales (\in/m^2) in Walloon municipalities

^aStatistics from Belgian Federal Government - http://statbel.fgov.be

Spatial autocorrelation

Positive spatial autocorrelation

Negative spatial autocorrelation

No spatial autocorrelation

Weighting matrix W

- Binary weights,
- Row-standardized,
- Globally standardized, ...

Convention: zero diagonal and $S_0 = \sum_i \sum_j W_{ij}$

Spatial autocorrelation

Positive spatial autocorrelation

Negative spatial autocorrelation

No spatial autocorrelation

・ 4 回 ト 4 回 ト 4 回 ト ・ 回 ト ・

Weighting matrix W

- Binary weights,
- Row-standardized,
- Globally standardized, ...

Convention: zero diagonal and $S_0 = \sum_i \sum_j W_{ij}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n Moran's Index (1950)

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n Moran's Index (1950)

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n Moran's Index (1950)

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

Geary's ratio (1954)

$$c(z) = \frac{n-1}{2S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - z_j)^2}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n Moran's Index (1950)

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_{i=1}^{n} (z_i - \bar{z})^2}$$

Geary's ratio (1954)

$$c(z) = \frac{n-1}{2S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - z_j)^2}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n Moran's Index (1950)

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

Geary's ratio (1954)

$$c(z) = \frac{n-1}{2S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - z_j)^2}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

Getis and Ord's statistics (1992)

$$G(z) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_i z_j}{\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} z_i z_j}$$

The values z_1, \ldots, z_n are observed at locations s_1, \ldots, s_n Moran's Index (1950)

$$I(z) = \frac{n}{S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(z_i - \bar{z})(z_j - \bar{z})}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

Geary's ratio (1954)

$$c(z) = \frac{n-1}{2S_0} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij} (z_i - z_j)^2}{\sum_{i=1}^n (z_i - \bar{z})^2}$$

Getis and Ord's statistics (1992)

$$G(z) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} z_i z_j}{\sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} z_i z_j}$$

Tests based on asymptotic normality

Without spatial autocorrelation, *I*, *c* and *G* are **asymptotically Gaussian** under normality (N) and/or randomisation (R) assumption.

- moran.test: under N and R assumption
- geary.test: under N and R assumption
- globalG.test: under R assumption

Statistic	Expected value	Variance	p-value	
/ = 0.53			$<$ 2 $ imes$ 10 $^{-16}$	
c = 0.42	1		$< 2 imes 10^{-16}$	
G = 0.046		$2 imes 10^{-7}$	$< 2 imes 10^{-16}$	
		۰ 🗆		200

Tests based on asymptotic normality

Without spatial autocorrelation, I, c and G are **asymptotically Gaussian** under normality (N) and/or randomisation (R) assumption.

Package spdep in R:

- moran.test: under N and R assumption
- geary.test: under N and R assumption
- globalG.test: under R assumption

Statistic	Expected value	Variance	p-value	
/ = 0.53			$< 2 imes 10^{-16}$	
c = 0.42	1		$< 2 imes 10^{-16}$	
G = 0.046		$2 imes 10^{-7}$	$< 2 imes 10^{-16}$	
		۰ 🗆		200

Tests based on asymptotic normality

Without spatial autocorrelation, *I*, *c* and *G* are **asymptotically Gaussian** under normality (N) and/or randomisation (R) assumption.

Package spdep in R:

- moran.test: under N and R assumption
- geary.test: under N and R assumption
- globalG.test: under R assumption

Statistic	Expected value	Variance	p-value
<i>I</i> = 0.53	-0.0038	0.0006	$< 2 imes 10^{-16}$
<i>c</i> = 0.42	1	0.0008	$< 2 imes 10^{-16}$
G = 0.046	0.038	$2 imes10^{-7}$	$< 2 imes 10^{-16}$
		< □	

Permutation tests

(ロ)、(型)、(E)、(E)、 E) の(の)

Permutation tests

Permutation tests

$$p-value = \frac{\#\{I_{permuted} \ge I_{obs}\}}{\#\{simulations\} + 1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Permutation tests

$$p-value = \frac{\#\{I_{permuted} \ge I_{obs}\}}{\#\{simulations\} + 1}$$

- Benefits: No assumption on the distribution
- **Drawbacks** : Simulations (randomness, computational cost,...)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Permutation tests

Computation of the index using **random permutations** of the variable on the spatial domain.

$$p-value = \frac{\#\{I_{permuted} \ge I_{obs}\}}{\#\{\text{simulations}\} + 1}$$

- Benefits: No assumption on the distribution
- **Drawbacks** : Simulations (randomness, computational cost,...)

Example (nsim=5000)

Statistic	Observed rank	p-value	Package spdep in R:
<i>I</i> = 0.53	5001	$2 imes10^{-4}$	moran.mc
<i>c</i> = 0.42	1	$2 imes 10^{-4}$	geary.mc
G = 0.046	5001	$2 imes 10^{-4}$	/

Dray's test based on I

Decomposition of positive / negative influence on autocorrelation

$$I(z) = \sum_{\substack{I(u_k) < E[I] \\ \hline S_I^-(z)}} I(u_k) cor^2(u_k, z) + \sum_{\substack{I(u_k) > E[I] \\ \hline S_I^+(z)}} I(u_k) cor^2(u_k, z)$$

where u_k are eigenvector of *HWH*, $H = I_n - \frac{1}{n} \mathbb{1}\mathbb{1}'$.

- Simultaneous positive and negative spatial autocorrelation
- Permutation test

Example (nsim=5000)
Statistic Observed rank p-value

$$I = 0.53$$
 $S_I^+ = 0.57$ 5001 2×10^{-4}
 $S_I^- = -0.04$

Dray's test based on I

Decomposition of positive / negative influence on autocorrelation

$$I(z) = \sum_{\substack{I(u_k) < E[I] \\ S_I^-(z)}} I(u_k) cor^2(u_k, z) + \sum_{\substack{I(u_k) > E[I] \\ S_I^+(z)}} I(u_k) cor^2(u_k, z)$$

where u_k are eigenvector of HWH, $H = I_n - \frac{1}{n}\mathbb{1}\mathbb{1}'$.

- Simultaneous positive and negative spatial autocorrelation
- Permutation test

Example (nsim=5000) Statistic Observed rank p-value I = 0.53 $S_I^+ = 0.57$ 5001 2×10^{-4} $S_I^- = -0.04$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Moran's /	Geary's c	Getis and Ord's G
Test under R	Test under R	Test under R
Test under N	Test under N	
Permutation test	Permutation test	Permutation test
Dray's test		

How contamination influences the result of the tests?

Impact on the decision of the test

How contamination influences the result of the tests? Impact on the decision of the test

	Test	p-value
-	1 under R	$< 2 imes 10^{-16}$
Part Company Company	1 under N	$< 2 imes 10^{-16}$
	I Permutation	$< 2 imes 10^{-4}$
	Dray test	$< 2 imes 10^{-4}$
	c under R	$< 2 imes 10^{-16}$
Square Metre Prices (euro)	c under N	$< 2 imes 10^{-16}$
a 200 - 1000 a 400 - 1000 a over 1000	c Permutation	$< 2 imes 10^{-4}$
	G under R	$< 2 imes 10^{-16}$
	G Permutation	$< 2 \times 10^{-4}$

How contamination influences the result of the tests? Impact on the decision of the test

	Test	Decision
	1 under R	RH ₀
And the second s	/ under N	RH_0
	I Permutation	RH_0
	Dray test	RH_0
	c under R	RH ₀
Square Metre Prices (euro)	c under N	RH_0
■ 200 - 1000 ■ 400 - 1000 ■ over 1000	c Permutation	RH_0
	G under R	RH ₀
	G Permutation	RH_0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

How contamination influences the result of the tests? Impact on the decision of the test

	Test	Decision	
	1 under R	RH_0	
	1 under N	RH_0	
	I Permutation	RH_0	
	Dray test	RH_0	
Square Metre Prices (euro)	c under R	RH_0	
Paliseul: $690 \in /m^2$	c under N	RH_0	
	c Permutation	FTR	
	G under R	RH ₀	
	G Permutation	RH_0	

How contamination influences the result of the tests? Impact on the decision of the test

	Test	Decision
	1 under R	RH ₀
	1 under N	RH_0
	I Permutation	RH_0
	Dray test	RH_0
Square Metre Prices (euro)	c under R	FTR
2 100 - 200 2 200 - 400 4 400 - 1000 0 over 1000	c under N	RH_0
Policeul: $730 \notin m^2$	c Permutation	FTR
	G under R	RH ₀
	G Permutation	RH_0

How contamination influences the result of the tests? Impact on the decision of the test

	Test	Decision
AND STORESTORES	1 under R	FTR
	1 under N	RH_0
	I Permutation	RH_0
	Dray test	RH_0
□ uder 100 □ 100 - 200 □ 200 - 400	c under R	FTR
■ 400 - 1000 ■ over 1000	c under N	FTR
$Paliseul\approxmax(Belgium)$	c Permutation	FTR
(1200€)	G under R	RH ₀
	G Permutation	RH_0

How contamination influences the result of the tests? Impact on the decision of the test

	Test	Decision
	1 under R	FTR
	1 under N	FTR
	1 Permutation	FTR
ALS ALS A	Dray test	FTR
Square Metre Prices (euro)	c under R	FTR
100 - 200 200 - 400 400 - 1000 over 1000	c under N	FTR
Paliseul: $1610 \neq m^2$	c Permutation	FTR
	G under R	FTR
	G Permutation	FTR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Resistance of a test (Ylvisaker, 1977)

- **Resistance to acceptance**: smallest proportion of fixed observations which will always implies the *non rejection* of *H*₀.
- Resistance to rejection: smallest proportion m₀ of fixed observations which will always implies the rejection of H₀.

Result: Resistance to rejection of considered tests: $\frac{1}{n}$

Impact on the p-value Hairplot: $\xi \mapsto p$ -value $(z + \xi e_i)$ for i = 1, ..., n

Contamination

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Contamination

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Impact on the p-value Hairplot: $\xi \mapsto p$ -value $(z + \xi e_i)$ for i = 1, ..., n

Contamination

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
Impact on the p-value
Hairplot: \xi \mapsto p-value(z + \xi e_i) for i = 1, ..., n
```


Contamination

 \Rightarrow robust alternative must be considered

Robust Moran

(日)、

-

э

Moran scatterplot

Moran can be interpreted as the slope in a LS regression of $W\!z$ over z

Robust Moran

(日)、

æ

Moran scatterplot

Moran can be interpreted as the slope in a LS regression of Wz over z

Robust Moran

(日)、

э

Moran scatterplot

Moran can be interpreted as the slope in a LS regression of $W\!z$ over z

Idea: Robustly estimate this slope

Robust techniques

- Least Trimmed Squares (Rousseeuw, 1984)
- M-estimator (Huber, 1973)

Regression: y = ax + b and residuals: $r_i = y_i - \hat{y}_i$

Least squares regression Minimisation of $\sum_{i=1}^{n} r_i^2$

Least Trimmed Squares (Rousseeuw, 1984) Minimisation of the trimmed sum: $\sum_{i=1}^{n-h} r_{(i)}^2$

M-estimator (Huber, 1973)

Regression: y = ax + b and residuals: $r_i = y_i - \hat{y}_i$

Least squares regression Minimisation of $\sum_{i=1}^{n} r_i^2$

Least Trimmed Squares (Rousseeuw, 1984) Minimisation of the trimmed sum: $\sum_{i=1}^{n-h} r_{(i)}^2$

M-estimator (Huber, 1973)

Regression: y = ax + b and residuals: $r_i = y_i - \hat{y}_i$

Least squares regression Minimisation of $\sum_{i=1}^{n} r_i^2$

Least Trimmed Squares (Rousseeuw, 1984) Minimisation of the trimmed sum: $\sum_{i=1}^{n-h} r_{(i)}^2$

M-estimator (Huber, 1973)

Regression: y = ax + b and residuals: $r_i = y_i - \hat{y}_i$

Least squares regression Minimisation of $\sum_{i=1}^{n} r_i^2$

Least Trimmed Squares (Rousseeuw, 1984) Minimisation of the trimmed sum: $\sum_{i=1}^{n-h} r_{(i)}^2$

M-estimator (Huber, 1973)

Robust inference based on Moran Impact on the decision of the test: resistance

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Linked to the Breakdown point of the robust regression Least Trimmed Squares M-estimator h/n ≤ 0.5

Impact on the p-value: hairplot

Robust inference based on Moran

Impact on the decision of the test: resistance Linked to the Breakdown point of the robust regression Least Trimmed Squares M-estimator $h/n \leq 0.5$

Impact on the p-value: hairplot

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Robust inference based on Moran

Impact on the decision of the test: resistance Linked to the Breakdown point of the robust regression Least Trimmed Squares M-estimator $h/n \leq 0.5$

Impact on the p-value: hairplot

What about level and power?

Robust inference based on Moran

Impact on the decision of the test: resistance Linked to the Breakdown point of the robust regression Least Trimmed Squares M-estimator $h/n \leq 0.5$

Impact on the p-value: hairplot

What about level and power? \Rightarrow simulations

Simulations

Model

The Spatial autoregressive (SAR) model: $Z = \rho WZ + \varepsilon$

Simulation settings (Holmberg and Lundevaller, 2015)

- Spatial domain: grid (*n* = 100, 400, 900, 1600)
- Weighting matrix: queen and rook contiguity

 $\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

• Distribution of ε : N(0,1), $\mathcal{P}(1)$, Bern(0.5)

Contamination process

A number δ of observations are contaminated

Simulations

Example n= 100, queen contiguity, ho= 0.2 and $arepsilon\sim$ N(0,1) $\delta = 0$ $\delta = 1$ -15 10 -10 -5 0 5 -15 -10 -5 9 9 œ œ coords.x2 coords.x2 g ø 4 4 N _ N 2 8 10 2 6 coords.x1 coords.x1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

8

6

10

5 10

0

Comparison

1. Without contamination ($\delta = 0$)

Similar results are expected for classical and robust tests

2. With contamination ($\delta > 0$)

Robust tests should resist to contamination and be powerful

Robust tests vs initial tests

Good correlation between the p-value of robust and classical Moran's tests ($\geq 90\%)$

evel $(n = 100)$							
	ε	W	Moran	M-est	imator	LT	٢S
				MAD	Huber	75%	95%
	N(0,1)	Queen	0.055	0.061	0.062	0.072	0.073
	N(0,1)	Rook	0.051	0.051	0.050	0.053	0.054
	$\mathcal{P}(1)$	Queen	0.044	0.054	0.053	0.080	0.063
	$\mathcal{P}(1)$	Rook	0.052	0.056	0.055	0.057	0.056
	Bern(0.5)	Queen	0.067	0.086	0.087	0.091	0.091
	Bern(0.5)	Rook	0.041	0.061	0.050	0.076	0.076

э.

Power

proportion of rejected null hypothesis with ho= 0.1, 0.2 or 0.3

n=100 ,queen, gaussian

0 80 0.0 Power 4 M-est (MAD) M-est.(Huber) LTS(75%) 0.2 LTS(95%) 00 0.10 0.15 0.20 0.25 0.30

э

Power

proportion of rejected null hypothesis with ho= 0.1, 0.2 or 0.3

rho

500 simulations for n = 100, $\varepsilon \sim N(0, 1)$

Level

δ	W	Moran	M-estimator		LTS	
			MAD	Huber	75%	95%
1	Queen	0.064	0.072	0.072	0.140	0.126
1	Rook	0.026	0.030	0.030	0.094	0.046
2	Queen	0.050	0.068	0.068	0.134	0.090
2	Rook	0.040	0.052	0.052	0.096	0.064
3	Queen	0.054	0.062	0.060	0.104	0.090
3	Rook	0.054	0.076	0.076	0.086	0.098
4	Queen	0.026	0.048	0.048	0.092	0.064
4	Rook	0.050	0.064	0.062	0.090	0.080
5	Queen	0.058	0.072	0.070	0.124	0.126
5	Rook	0.040	0.058	0.058	0.062	0.054
10	Queen	0.052	0.060	0.060	0.072	0.070
10	Rook	0.068	0.074	0.070	0.078	0.068

500 simulations for n = 100, $\varepsilon \sim N(0, 1)$

Power

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

(日)、

æ

500 simulations for n = 100, $\varepsilon \sim N(0, 1)$

Power

500 simulations for n = 100, $\varepsilon \sim N(0, 1)$

Power

◆□> ◆□> ◆三> ◆三> ・三 のへの

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

500 simulations for n=100, $\varepsilon \sim N(0,1)$

Preliminary observations

- Robust test using Least Trimmed Square gives good results
- Robust test using M-estimator is more sensitive to leverage points

Perspective

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In progress

- Simulations and comparison need to pursue
- Proposition of a robust test based on the others statistics

Perspective

• Study robustness of local measures and local tests

Perspective

In progress

- Simulations and comparison need to pursue
- Proposition of a robust test based on the others statistics For Geary's *c*:
 - $\hat{\gamma}(h) = S_z^2 c$ for $\hat{\gamma}(h)$ the empirical variogram
 - Robust estimation of the variogram using Q_n

•
$$\hat{c} \propto \frac{1}{2} \left(\frac{Q_n(\mathcal{V}_n)}{Q_n(z)} \right)^2$$

Perspective

• Study robustness of local measures and local tests

References

Spatial autocorrelation:

- Dray (2011). A new perspective about Moran's coefficient [...]. Geogr. anal.
- Geary (1954). The contiguity ratio and statistical mapping, The inc. Statistician.
- Getis and Ord (1992). The analysis of spatial association by use of distance statistics. *Geographical analysis*.
- Holmberg and Lundevaller (2015). A test for robust detection of residual spatial autocorrelation [...]. *Spatial Statistics*.
- Moran (1950). Notes on Continuous Stochastic Phenomena. Biometrika.

Robustness:

- Genton (1998). Spatial BDP of variogram estimators. Math Geol.
- Genton and Lucas (2003). Comprehensive Definitions of Breakdown Points for Independent and Dependent Observations. *J R Stat Society*.
- Genton and Ruiz-Gazen (2010). Visualizing influential observations in dependent data. *Journal of computational and graphical statistics*.
- Huber (1973). Robust regression [...]. Annals of Statistics.
- Lark (2008). Some Results on the Spatial Breakdown Point of Robust Point Estimates of the Variogram. *Mathematical geosciences*.
- Rousseeuw (1984). Least Median of Squares Regression. J Am stat assoc.
- Ylvisaker (1977). Test resistance. J Am stat assoc.