
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Inter-species differences for polychlorinated biphenyls and polybrominated
diphenyl ethers in marine top predators from the Southern North Sea: Part 1.
Accumulation patterns in harbour seals and harbour porpoises

Liesbeth Weijs a,b, Alin C. Dirtu b,c, Krishna Das d, Adriana Gheorghe b,e, Peter J.H. Reijnders f,
Hugo Neels b, Ronny Blust a, Adrian Covaci a,b,*

a Laboratory of Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
b Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
c Department of Inorganic and Analytical Chemistry, ‘‘Al. I. Cuza’’ University of Iassy, Carol I Bvd. No 11, 700506 Iassy, Romania
d Laboratory for Oceanology-MARE Center, University of Liège B6C, 4000 Liège, Belgium
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Harbour porpoises and harbour seals present differences in the accumulation of polychlorinated biphenyls and polybrominated diphenyl ethers.
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a b s t r a c t

Harbour porpoises (Phocoena phocoena) and harbour seals (Phoca vitulina) are two representative top
predator species of the North Sea ecosystem. The median values of sum of 21 polychlorinated biphenyl
(PCB) congeners and sum of 10 polybrominated diphenyl ether (PBDE) congeners were 23.1 mg/g lipid
weight (lw) and 0.33 mg/g lw in blubber of harbour seals (n¼ 28) and 12.4 mg/g lw and 0.76 mg/g lw in
blubber of harbour porpoises (n¼ 35), respectively. For both species, the highest PCB concentrations
were observed in adult males indicating bioaccumulation. On the contrary, the highest PBDE concen-
trations were measured in juveniles, likely due to better-developed metabolic capacities with age in
adults. A higher contribution of lower chlorinated and non-persistent congeners, such as CB 52, CB 95, CB
101, and CB 149, together with higher contributions of other PBDE congeners than BDE 47, indicated that
harbour porpoises are unable to metabolize these compounds. Harbour seals showed a higher ability to
metabolize PCBs and PBDEs.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Since several decades, it has been shown that pollution puts
a great pressure on the marine environment. Local input through
rivers and runoff, together with (long-range) atmospheric transport
are major factors governing the presence and distribution of
anthropogenic contaminants, such as polychlorinated biphenyls
(PCBs) and polybrominated diphenyl ethers (PBDEs) in the aquatic
environment, including seas and oceans (Tanabe et al., 1994; AMAP,
2004; Law et al., 2003, 2006a). Due to their physical and chemical
properties, these contaminants are capable of entering aquatic
ecosystems and as a consequence, they can be a threat to organisms
in every trophic level (Tanabe et al., 1994; Boon et al., 2002). Among

them, PCBs are the most monitored contaminants in marine
mammals (Duinker et al., 1989; Hutchinson and Simmonds, 1994;
Vetter et al., 1996; Severinsen et al., 2000; Kajiwara et al., 2001).
PCBs have been used for a variety of applications including
dielectric fluids for transformers, plasticisers, or components in
glue and paint. Although their production was banned since the
end of the 1970s, PCBs can still be found in wildlife. Recently,
attention has been drawn towards the accumulation and effects of
new persistent contaminants, such as PBDEs, in marine mammals.
The PBDE commercial mixtures contain fewer congeners than the
corresponding PCB mixtures. PBDEs are used as flame retardants in
textiles, furniture, and plastics (de Boer et al., 2000; Birnbaum and
Staskal, 2004). The use of the penta- and octa-BDE technical
mixtures is currently banned in Europe (EU-directive 2002/95/EC).
Several adverse effects observed in wildlife, such as endocrine
dysfunction, reproductive failure, immunological impairment,
developmental stress and genotoxic disorders have been linked to
the presence of these contaminants (Reijnders, 1986; Gauthier
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et al., 1999; Fair and Becker, 2000; Damstra et al., 2002; Beineke
et al., 2005; Das et al., 2006).

Marine mammals are top predators in aquatic food chains and
are, thus, particularly vulnerable and sensitive to contaminants
which are persistent in the environment and which can accumulate
in high concentrations. In marine mammals, uptake of organic
contaminants occurs mainly through their diet (Borgå et al., 2004),
while routes such as placental transfer and lactation may affect the
offspring at a critical stage of their development (Duinker and
Hillebrand, 1979; Debier et al., 2003a,b; Wolkers et al., 2004).

Harbour seals (Phoca vitulina) and harbour porpoises (Phocoena
phocoena) are two representative top predator species for the North
Sea ecosystem. Their long life spans and population density make
them suitable for monitoring pollution in the North Sea. These two
species share an extensive part of their diets, such as benthic and
pelagic fish species (Hall et al., 1998; Santos and Pierce, 2003).
However, comparisons between the harbour seals and porpoises in
the accumulation of contaminants must be made with caution.
Harbour seals are more sedentary, while porpoises seem to move
over larger distances and, as a consequence, concentrations of
contaminants in these two species may reflect contamination on
a different spatial scale (Vetter et al., 1996; Law et al., 2002; Das
et al., 2004; Fontaine et al., 2007).

The movement of lipophilic contaminants in marine mammals
is strongly influenced by the lipid dynamics inside the body. The
investigation of the presence of PCBs and PBDEs in blubber, the
subcutaneous fat layer, is therefore important to assess the overall
contamination status of the animals. Blubber provides insulation
for the body and acts as a metabolic energy storage site (Dunkin
et al., 2005). This latter role is important in the mobilization of
lipids and lipophilic contaminants, depending on the animal’s
condition.

In the present study, we have investigated the accumulation and
biomagnification of PCB and PBDE congeners in blubber of harbour
seals and harbour porpoises from the Southern North Sea. An
overall objective of this study was to gain knowledge about the
metabolic capacities of both harbour seals and porpoises. The first

part involves the study of PCB and PBDE concentrations and profiles
and their species-dependent relationship with age and gender. In
the second part (Weijs et al., 2009), biomagnification factors for
individual PCB and PBDE congeners were calculated and the
influence of various factors, such as octanol–water partition coef-
ficients and trophic position assessed through measurements of
15N stable isotopes, was discussed.

2. Materials and methods

2.1. Samples

Necropsy was carried out at the Department of Veterinary Pathology (Liege
University) and at the IMARES Research Center at Texel (The Netherlands). Blubber
samples were collected from 35 harbour porpoises and 28 harbour seals stranded or
bycaught in the Southern North Sea between 1999 and 2004. The animals were
dissected and tissues were archived at the Laboratory of Oceanography, University of
Liege (Belgium) at �20 �C. Biological parameters, such as age, gender, weight and
blubber thickness, were also recorded (standard procedure in Jauniaux et al., 2002
and Das et al., 2004) and given in Table 1. Age classification (<3 years for juveniles
and >3 years for adults) was based upon the length of the animals (for harbour
porpoises; T. Jauniaux, personal communication) and the development of their
gonads (for harbour seals; T. Jauniaux, personal communication).

2.2. Targeted compounds

The following PBDE congeners (IUPAC numbers) were targeted for analysis: 28,
47, 66, 85, 99, 100, 153, 154, 183, and 209. BDE 77 was used as internal standard (IS)
for tetra- and penta-BDE congeners, while BDE 128 was used as IS for hexa- and
hepta-BDE congeners. For BDE 209, 13C-labelled BDE 209 was used as IS. The
following 21 PCB congeners (IUPAC numbers) were targeted: 28, 31, 52, 74, 95, 99,
101, 105, 110, 118, 128, 138, 149, 153, 156, 170, 180, 183, 187, 194 and 199. Internal
standards used were CB 46 and CB 143. Individual standards for PBDEs (Wellington
Laboratories, Guelph, ON, Canada) and PCBs (Dr. Ehrenstorfer Laboratories,
Augsburg, Germany) were used for identification and quantification.

2.3. Chemicals

All solvents used for the analysis (n-hexane, acetone, dichloromethane, iso-
octane) were of pesticide-grade (Merck, Darmstadt, Germany). Sodium sulphate and
silica were pre-washed with n-hexane before use. Extraction thimbles were pre-
extracted for 1 h with the extraction mixture used for the samples and dried at
100 �C for 1 h.

Table 1
Arithmetic means, standard deviations (SD) and range of biological data (length, weight and blubber thickness), concentrations of CB 153,

P
PCBs, BDE 47 and

P
PBDEs (mg/g

lipid weight) measured in blubber of harbour seals and harbour porpoises from the Southern North Sea.

Harbour seal Harbour porpoise

AM JM AF JF AM JM AF JF

n 8 9 2 9 8 12 5 10
Length (cm)
Mean (SD) 139.4 (12.1) 106.6 (9.0) 153.0 (24.0) 112.2 (11.9) 145.5 (7.9) 107.3 (7.2) 149.4 (5.4) 111.8 (9.4)
Range 128–163 93–120 136–170 94–130 137–160 96–117 144–158 94–127
Weight (kg)
Mean (SD) 46.6 (8.9) 23.3 (5.1) 69.5 (41.7) 25.0 (8.5) 41.6 (7.1) 19.2 (4.9) 47.6 (10.0) 22.8 (4.9)
Range 34–58 17–33 40–99 10–36 36–58 11.3–26.5 36–60 15–30
Blubber thickness (mm) (n¼ 6) (n¼ 5) (n¼ 1) (n¼ 7)
Mean (SD) 20.5 (9.5) 14.6 (6.6) 50 10.9 (2.8) 9.1 (5.1) 10.8 (9.6) 15.6 (6.9) 14.2 (5.9)
Range 11–35 7–20 – 6–15 1.7–18 4–40 10–26 3–22

n 8 8a 2 8 8 11a 4a 10
CB 153 (mg/g lw)
Mean (SD) 28.9 (23.3) 7.2 (2.4) 4.3 (4.3) 10.3 (10.8) 28.7 (12.0) 3.9 (3.0) 1.7 (0.6) 3.7 (4.1)
Range 0.8–65.9 4.7–11.8 1.3–7.3 2.2–35.2 11.6–46.0 1.2–11.5 1.0–2.3 0.2–13.4
P

PCBs (mg/g lw)
Mean (SD) 72.4 (58.2) 20.7 (6.7) 12.5 (12.2) 28.3 (27.6) 82.9 (31.8) 15.4 (10.7) 7.3 (2.0) 12.9 (11.9)
Range 2.2–171.7 12.7–33.8 3.9–21.5 6.5–91.5 38.7–125.5 5.3–39.8 4.4–8.9 1.3–39.3

n 8 9 2 9 8 12 5 9a

BDE 47 (mg/g lw)
Mean (SD) 0.21 (0.11) 0.35 (0.21) 0.12 (0.05) 0.42 (0.31) 0.69 (0.46) 1.11 (1.16) 0.43 (0.30) 0.45 (0.27)
Range 0.07–0.40 0.11–0.73 0.08–0.15 0.07–0.82 0.11–1.43 0.27–3.88 0.15–0.79 0.16–0.99
P

PBDEs (mg/g lw)
Mean (SD) 0.30 (0.14) 0.44 (0.27) 0.18 (0.09) 0.54 (0.40) 1.54 (0.96) 1.73 (1.77) 0.85 (0.60) 0.70 (0.41)
Range 0.11–0.52 0.13–0.87 0.11–0.24 0.09–1.15 0.28–3.10 0.50–5.93 0.32–1.56 0.22–1.48

J – juvenile (<3 years); A – adult (>3 years); F – female; M – male.
a One outlier was excluded from the data set of the respective age–gender group.
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2.4. Sample preparation and clean up

The method used for the sample extraction and clean up has been previously
described and validated (Covaci et al., 2002; Voorspoels et al., 2003), and is briefly
presented below. Between 0.3 and 0.5 g blubber was dried with w8 g anhydrous
Na2SO4, spiked with internal standards BDE 77/BDE 128 (25 ng), CB 46/CB 143 (75 ng)
and 13C-BDE 209 (7.5 ng) and extracted for 2 h by hot Soxhlet with 100 ml hexane/
acetone (3/1; v/v). After lipid determination (performed on an aliquot of the extract),
the extract was cleaned on 8 g of acidified silica. After elution of analytes with 15 ml
hexane and 10 ml dichloromethane, the cleaned extract was concentrated to 200 ml.

2.5. Analysis

PBDEs were measured with an Agilent 6890-5973 gas chromatograph coupled
with a mass spectrometer system (GC–MS). The GC was equipped with
a 20 m� 0.18 mm� 0.20 mm AT-5 capillary column (Alltech, Lokeren, Belgium) and
the MS was operated in electron capture negative ionisation (ECNI) mode. Methane
was used as reagent gas and the ion source, quadrupole and interface temperatures
were set at 230, 150 and 300 �C, respectively. The MS was used in the selected ion-
monitoring (SIM) mode with ions m/z¼ 79 and 81 (for tri- to hepta-BDEs) and m/
z¼ 484.7/486.7 and 494.7/496.7 (for BDE 209 and 13C-BDE 209, respectively)
monitored during the entire run. Dwell times were set at 40 ms. One microlitre of
the cleaned extract was injected in solvent vent mode (injector temperature: 90 �C,
held for 0.05 min, then with 700 �C/min to 305 �C and kept for 25 min; vent flow
was set at 75 ml/min and the purge vent opened at 1.5 min). Helium was used as
carrier gas at constant flow (0.8 ml/min). The temperature of the AT-5 column was
kept at 90 �C for 1.50 min, then increased to 200 �C at a rate of 20 �C/min, further
increased to 300 �C at a rate of 5 �C/min, kept for 15 min.

PCBs were measured with the same GC–MS system as for the PBDE determi-
nation, operated in electron ionisation (EI) mode and equipped with
a 25 m� 0.22 mm� 0.25 mm HT-8 capillary column (SGE, Zulte, Belgium). The ion
source, quadrupole and interface temperatures were set at 230, 150 and 300 �C,
respectively. The MS was used in the SIM mode with two ions monitored for each
PCB homologue group. One microlitre of the cleaned extract was injected in cold
pulsed splitless mode (injector temperature 90 �C (0.03 min) then to 300 �C with
700 �C/min), pressure pulse 25 psi, pulse time 1.50 min. The splitless time was
1.50 min. Helium was used as carrier gas at constant flow (1 ml/min). The temper-
ature of the HT-8 column was kept at 90 �C for 1.50 min, then increased to 180 �C at
a rate of 15 �C/min (kept for 2.0 min), further increased to 280 �C at a rate of 5 �C/min
and finally raised to 300 �C at a rate of 40 �C/min, kept for 12 min.

2.6. Quality assurance/quality control (QA/QC)

Multi-level calibration curves were created for the quantification and good corre-
lation (r2> 0.999) was achieved. The identification of each target analyte was based
on their relative retention times (RRTs) to the internal standard used for quantification,
ion chromatograms and intensity ratios of the monitored ions. A deviation of the ion
intensity ratios within 20% of the mean values of the calibration standards was
considered acceptable. Recoveries for individual PBDE congeners were between 87 and
104% (RSD< 12%), while recoveries of PCBs ranged between 75 and 90% (RSD< 10%).

For each analyte, the mean procedural blank value was used for subtraction. After
blank subtraction, the limit of quantification (LOQ) was set at three times the standard
deviationof the proceduralblank, which ensures>99% certainty that the reported value
is originating from the sample. For analytes that were not detected inprocedural blanks,
LOQs were calculated for a signal-to-noise ratio equal to 10. LOQs depended on the
sample intake and on the analyte and ranged between 1 and 4 ng/g lipid weight (lw).

QC was performed by regular analyses of procedural blanks, by random injection
of standards and solvent blanks. A standard reference material SRM 1945 (PCBs and
PBDEs in whale blubber) was used to test the method accuracy. Obtained values
were not deviating more than 10% from the certified values. The QC scheme is also
assessed through regular participation to interlaboratory comparison exercises
organised by the Arctic Monitoring Assessment Programme and the National
Institute of Standards and Technology.

2.7. Statistical analysis

Statistical analyses were conducted using the SPSS 14.0 statistical package. The
level of statistical significance was defined at p< 0.05. Outliers in all groups,
detected using Grubbs’ test, were removed before further calculations. Differences in
the concentrations and profiles of PCBs and PBDEs were compared between the
groups (adult males, adult females, juvenile males and juvenile females) using
one-way ANOVA, followed by Tukey’s post hoc test. Correlation coefficients between
PCBs and PBDEs were calculated using GraphPad Prism 4 (GraphPad Software, Inc.).

3. Results and discussion

3.1. PCB concentrations

Of the 21 congeners analyzed, only congener CB 31 was detected
in less than 50% of the blubber samples from harbour seals and

porpoises and therefore this congener was removed from the
following statistical interpretation. The remaining PCBs were
measured in all samples. PCB concentrations (sum of 21 congeners)
in blubber tissue ranged between 2.2–172 mg/g lw and 1.3–126 mg/g
lw for harbour seals and porpoises, respectively. These minimum
and maximum values represent a large range, underlying the
numerous biotic factors involved in PCB lipid accumulation (e.g.
age, gender and body condition). Therefore, the samples from both
species were divided into four groups according to their age and
gender: adult male (AM), adult female (AF), juvenile male (JM) and
juvenile female (JF). The results for the

P
PCBs for harbour seals and

porpoises are given in Table 1. Results for CB 153, the most
persistent PCB congener in marine mammals are also shown in
Table 1 to allow comparisons with other studies. Almost all
conclusions drawn for the

P
PCBs were similar for CB 153 (although

with other F and p-values).
For both species, the AM group contained the highest PCB

concentrations probably due to bioaccumulation of these contam-
inants in time. Contrarily, the AF group displayed the lowest
concentrations linked to the well-described transfer during gesta-
tion and lactation (Covaci et al., 2002; Wolkers et al., 2004; Shaw
et al., 2005). PCB concentrations were similar between JM and JF
(p> 0.05) suggesting that the accumulation pattern is comparable
between males and females until sexual maturity.

Harbour porpoises from the AM group tend to have higher,
although not statistically significant, concentrations of

P
PCBs than

harbour seals (F1,14¼ 0.200; p¼ 0.662), while the concentrations in
the other groups (JM, JF and AF) were lower compared with the
corresponding group of the harbour seals (F1,17¼1.520; p¼ 0.234
for JM, F1,16¼ 2.539; p¼ 0.131 for JF and F1,4¼ 0.907; p¼ 0.395 for
AF, respectively). An explanation can be found in differences in age,
body size or in the blubber thickness. Differences in the concen-
trations of PCBs between the outer and inner blubber layers, with
the outer layers having significantly higher concentrations, have
been reported previously in grey seals (Halichoerus grypus) (Debier
et al., 2003a), in harp seals (Phoca groenlandica) (Lydersen et al.,
2002), in ringed seals (Phoca hispida) (Severinsen et al., 2000) and
in bottlenose dolphins (Tursiops truncatus) (Montie et al., 2008).
The mean blubber thickness in the AM group was 9.1 mm for
harbour porpoises and 20.5 mm for harbour seals. Therefore, the
probability of having samples from the outer blubber layer is
greater for porpoises than for seals, with an overestimation of the
reported PCB concentrations as a consequence (Fig. 1A). The
difference in the body size, which influences the food intake and
therefore the contaminant uptake, could be another possible
explanation for variation between species (reviewed by Borgå et al.,
2004). However, in the present study, no influence of body size
could be detected, because there were no significant differences in
body size between the same age groups of both species (all p> 0.1).

Due to the number and position of chlorine atoms, PCB conge-
ners do not follow the same metabolic pathways which result in the
formation of different metabolites (Letcher et al., 2000) and in
differences in accumulation patterns and persistence of PCBs. This
has resulted in the classification of PCBs in several groups as
introduced by Bruhn et al. (1995) and Boon et al., 1997 and recently
further developed by Wolkers et al. (2007) (Table 2). The most
persistent congeners from the metabolic groups I and IIIB reached
the highest proportions in harbour seals and porpoises, with
percentages between 90–95% and 67–81%, respectively (Fig. 2).
Less persistent congeners (metabolic groups IIB, IIC and IIIA) had
higher contributions in the blubber of harbour porpoises (espe-
cially CB 149), but were less important in harbour seals.

Concentrations of CB 153 were higher in the present study than
in similar species from other seas and oceans, indicating that the
Southern part of the North Sea is still highly contaminated with
PCBs, in agreement with previous published studies. Reijnders
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(1986) measured high PCB levels causing reproductive failures in
harbour seals from the Wadden Sea. Vetter et al. (1996) found the
highest PCB levels in harbour seals from the Dutch Wadden Sea and
concluded that this area is the major source of input of PCBs into the
North Sea and North Atlantic. The same study also found decreasing
PCB levels along the continental line from the North Sea to Germany,
Denmark and Norway (Table 3). Similar trends have been observed
in harbour porpoise with decreasing PCB and PBDE concentrations
from German Baltic and North Sea to Iceland (Das et al., 2006).
Covaci et al. (2002) also found that concentrations of PCBs in
harbour porpoises from the Southern North Sea were higher than in
porpoises from the English or Scottish coast of the North Sea.

3.2. General PCB profiles

CB 153 was the dominant PCB congener in all individuals of both
marine mammal species. Profiles for harbour seals (CB 153> CB
138> CB 187> CB 180> CB 99) and harbour porpoises (CB
153> CB 138> CB 149> CB 187> CB 180) were similar for all age
groups, except for AF porpoises (Fig. 3A and B). These results
confirm the PCB profiles reported in the literature and reflect the
differences in the accumulation of certain PCB congeners (e.g. CB
101 and CB 149) between pinnipeds (seals) and cetaceans
(porpoises) (Hutchinson and Simmonds, 1994; Vetter et al., 1996;
Boon et al., 1997).

Ratios between the concentrations of individual PCB congeners
and concentration of CB 153 for each animal within the four age–
gender groups were used to construct relative PCB profiles in order
to be able to make comparisons between the two species:

R153ðCBxÞ ¼
½CBx�
½CB153�

For harbour seals, the JM, JF and AF groups showed similar and
higher ratios for all PCBs than the AM group (Fig. 3A), suggesting
a better-developed metabolic capacity with age or an increased
metabolism with higher blubber concentrations for adult males.

For harbour porpoises, a higher contribution of higher chlori-
nated congeners, such as CB 170, CB 180, CB 183, CB 187, CB 194 and
CB 199, was observed for the AF group (Fig. 3B). This might be the
result of a selective transport of lower chlorinated PCB congeners to
their offspring and, as a consequence, an enrichment of the higher
chlorinated PCB congeners in the blubber of AF individuals. Similar
to our observations, Debier et al. (2003b) reported higher contri-
butions of higher chlorinated PCBs in blubber of adult female grey
seals and higher proportions of lower chlorinated PCBs in milk. The
same study also assumed a higher contribution of lower chlori-
nated PCBs in blubber of pups. Indeed, juvenile porpoises from our
study had higher ratios for lower chlorinated congeners (CB 28, CB
52, CB 74, CB 95, CB 99, CB 101, CB 118, CB 110 and CB 105), probably
due to their limited capacity for metabolic breakdown and as
a result of selective transfer of PCB lower chlorinated congeners
during lactation. For all congeners, the AM group showed the
lowest ratios in harbour porpoises suggesting a better-developed
capacity for PCB metabolism for this group.

Compared to harbour seals, harbour porpoises had a higher
proportion of lower chlorinated (less persistent) congeners, such as
CB 52, CB 95, CB 101, CB 118 and CB 149. In both species, persistent
PCB congeners (CB 138, CB 170, CB 180 and CB 187) had a similar
contribution. All together, this means that harbour seals are able to
metabolize lower chlorinated PCB congeners in a more efficient
way than harbour porpoises. This finding, namely a distinction
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Table 2
Classification of the PCB congeners analyzed in the present study according to Bruhn
et al. (1995), Boon et al. (1997) and Wolkers et al. (2007).

Metabolic
group

Description Cytochrome P450
induction

PCB congeners in the
present study

I No vicinal o,m or
m,p H-atoms

2Ba 153, 180, 183, 187,
194, 199

IIA Vicinal m,p H-atoms
and �1 o-Cls

2B/3A and 1A
(maximum 1 o-Cl)

None

IIB Vicinal m,p H-atoms
and 2 o-Cls

52, 101, 110

IIC Vicinal m,p H-atoms
and 3 o-Cls

95, 149

IIIA No vicinal m,p
H-atoms and
�1 o-Cl

1A and 2Ba 28, 31, 74, 105, 118,
156

IIIB No vicinal m,p
H-atoms and �2 o-Cls

2B/1Aa 99, 128, 138, 170

a Boon et al. (1997), o – ortho, m – meta, p – para.
Fig. 2. Percentages of the metabolic groups (see Table 2) in the four age–gender
groups of harbour seals (columns without dots) and porpoises (columns with dots).
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between lower and higher chlorinated compounds for harbour
seals, agrees with findings of Boon et al. (1997) and Hobbs et al.
(2002).

3.3. PBDE concentrations

Of the 10 congeners analyzed, congeners BDE 85 and BDE 183
were detected in less than 50% of the blubber samples from both
harbour seals and porpoises. BDE 66 was measured in all samples
from harbour porpoises, but in less than 50% of harbour seals. BDE
209 could not be detected in any investigated sample at concen-
trations higher than 10 ng/g lw (LOQ). This agrees with previous
reports which could not detect BDE 209 in marine mammals (Boon
et al., 2002) or which have infrequently measured BDE 209 at
concentrations between 1 and 8 ng/g lw in seals (Thomas et al.,
2005; Shaw et al., 2007). Since very low or not detectable concen-
trations of BDE 209 were found in fish species which are prey for the
two studied marine mammal species (Voorspoels et al., 2003) and
the half-life of BDE 209 in blood of grey seals was estimated
between 8.5 and 13 days (Thomas et al., 2005), it is plausible to
assume that BDE 209 does not bioaccumulate in aquatic biota.
However, this congener is of particular concern, because it debro-
minates (in fish) to lower brominated PBDE congeners (such as BDE
154 and BDE 155), which are more water soluble and probably more
persistent in biota (Stapleton et al., 2004). The remaining congeners
were measured in all samples from both species. Results for
P

PBDEs and BDE 47, the most persistent PBDE congener in marine
mammals, are given in Table 1. Statistical comparisons for

P
PBDEs

and BDE 47 were similar, although with different F and p-values.
The highest concentrations of

P
PBDEs for all age–gender groups

were observed in harbour porpoises (range 0.22–5.93 mg/g lw)
compared with harbour seals (range 0.09–1.15 mg/g lw) (Table 1).

For harbour porpoises, males were more contaminated than
females (F1,32¼ 4.942; p¼ 0.033) with the JM group having the
highest (1.73�1.77 mg/g lw) and the group JF the lowest
(0.70� 0.41 mg/g lw) mean concentrations. For harbour seals,
juveniles tended to have higher

P
PBDE concentrations than adults

suggesting that the capacity for metabolic breakdown increases
with age or with higher body burdens. Yet these findings were not
statistically significant. This finding contrasts with the higher
concentrations measured in adult (age> 5 years) ringed seals
compared to subadult specimens (age< 5 years) from East Green-
land (Vorkamp et al., 2004), but agrees with results from harbour
seals from UK waters (Law et al., 2006b; MAFF, 1994) (Table 4).

Similar to PCBs, PBDE concentrations in the AF group were lower
than the other age–gender groups, supporting the hypothesis that
adult female animals reduce their contaminant loads through
gestation and lactation (Covaci et al., 2002; Law et al., 2002).

Similar to PCBs (see above), a decrease in the PBDE concentra-
tions was observed with the increase in the blubber thickness of
harbour porpoises, but not of harbour seals (Fig. 1B). This, together
with the fact that the blubber thickness was lower for harbour
porpoises, suggests that the probability of having samples from the
outer blubber layer was greater for porpoises than for seals. As
a consequence, a higher frequency of high PBDE concentrations was
observed for low blubber thickness values (Fig. 1B).

The PBDE concentrations measured in the present study are
similar or slightly higher than in other studies, though information
about PBDEs in marine mammals (reviewed by Law et al., 2003,
2006a; Das et al., 2006) is scarce compared to PCBs (Table 4).
Kajiwara et al. (2006) investigated PBDEs in several small male
cetaceans from Asian waters and reported concentrations between
0.006 mg/g lw in blubber of spinner dolphins (Stenella longirostris)
from India (between 1990 and 1992) and 6 mg/g lw in Indo-Pacific

Table 3
Mean concentrations and standard deviations (between brackets) in mg/g lipid weight of CB 153 in blubber tissue of harbour seals and porpoises.

Species Location Year n CB 153 (mg/g lipid weight) Reference

AM JM AF JF

Harbour seal Canada 1996–2000 8 10.6 (5.1) Hobbs et al., 2002
Norway 6-4 0.61 0.12 Wolkers et al., 2004
Southern North Sea 1999–2004 8–8–2-8 28.9 (23.3) 7.2 (2.4) 4.3 (4.3) 10.3 (10.8) Present study

Harbour porpoise Baltic Sea 1985–1993 4-13 20 (13) 6.6 (3.6) Berggrena et al., 1999
Kattegat-Skagerrak 1988–1990 7-10 5.7 (2.3) 4.8 (2.5) Berggrena et al., 1999

1978–1981 5 19 (12) Berggrena et al., 1999
Norway 1988–1990 8 5.6 (4.6) Berggrena et al., 1999
United Kingdom 1999–2004 16–18–8-15 3.7 (3.2) 4.4 (7.4) 2.2 (1.5) 2.9 (1.6) Law et al., 2006b
Southern North Sea 1999–2004 8–11–4-10 28.7 (12.0) 3.9 (3.0) 1.7 (0.6) 3.7 (4.1) Present study
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Fig. 3. Ratios between mean concentrations of each individual PCB congener and CB 153 (R153(CBx)) in harbour seals (A) and harbour porpoises (B). Error bars represent SD.
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humpback dolphins (Sousa chinensis) from Hong Kong (between
1997 and 2001). The same study found PBDE concentrations (sum
of 10 congeners) ranging from 0.024 to 0.100 mg/g lw in male
harbour porpoises (n¼ 3) from Japan. Despite the small sample
size, these results are an order of magnitude lower than these for
harbour porpoises from the present study. Shaw et al. (2007)
reported mean PBDE concentrations in blubber tissue of harbour
seals stranded in the North-Western Atlantic between 1991 and
2005 and found concentrations almost 10 times higher as in
present study (3.65 mg/g lw for harbour seal pups (n¼ 13), 2.94 mg/g
lw for juveniles (n¼ 14), 1.39 mg/g lw for AM (n¼ 7) and 0.33 mg/g
lw for AF (n¼ 8)). This is probably a reflection of the higher usage of
the penta-BDE technical mixture in North America compared to
Europe (Law et al., 2003).

3.4. General PBDE profiles

BDE 47 was the most abundant congener in all analyzed samples
of both species similar to previous findings for the same species
(Boon et al., 2002; Covaci et al., 2002; Shaw et al., 2007) and other
marine mammals (sperm whales Physeter macrocephalus, de Boer
et al., 1998; ringed seals and beluga whales Delphinapterus leucas,
Wolkers et al., 2004; bottlenose dolphins, Johnson-Restrepo et al.,
2005; Californian sea lions Zalophus californianus, Stapleton et al.,
2006).

Profiles for JF and JM harbour porpoise were similar, namely BDE
47> BDE 100> BDE 99> BDE 154> BDE 153. For AF and AM
harbour porpoises, this pattern changed into BDE 47> BDE
99> BDE 100> BDE 154> BDE 153. These profiles are comparable
with results from Boon et al. (2002) for harbour porpoises, but
differ from bottlenose dolphins (Johnson-Restrepo et al., 2005).

Profiles for harbour seals are different, with the AM harbour seal
showing the following pattern, BDE 47> BDE 153> BDE 99, BDE
154> BDE 100. The profiles for other age–gender groups are
different from that of the AM group BDE 47> BDE 99> BDE

100 w BDE 153> BDE 154. Similar results were also found by Shaw
et al. (2007).

Ratios between the concentrations of individual PBDE conge-
ners and the concentration of BDE 47, the most persistent and
dominant PBDE, for each animal within the four age–gender groups
were used to construct relative PBDE profiles for harbour seals and
porpoises (Fig. 4A and B):

R47ðBDExÞ ¼
½BDEx�
½BDE47�

For harbour seals (Fig. 4A), the JM and JF groups showed lower
proportions of all measured PBDEs, while the AM and AF groups
had slightly higher contributions of BDE 99, BDE 100, BDE 153 and
BDE 154, combined with lower concentrations of this congeners,
which is a reflection of the higher concentrations of BDE 47 in
juveniles compared to adults.

For harbour porpoises (Fig. 4B), the same trends as found for
harbour seals were observed. Juveniles seemed to have lower
contributions of all measured PBDE congeners than adults, probably
because of a higher ‘start concentration’ of BDE 47 from lactation
and gestation (assuming that similar to PCBs, the less lipophilic
congeners will be mostly abundant in milk), together with
a minimal metabolism at that age. In general, harbour porpoises had
a higher contribution of congeners BDE 99, BDE 100, BDE 153 and
BDE 154 compared to harbour seals. Although congeners BDE 28,
BDE 66 and BDE 183 were infrequently detected, their concentra-
tions were higher in porpoises than in seals, indicating that harbour
porpoises have difficulties with metabolizing PBDEs.

3.5. Relationship between PCBs and PBDEs

Johnson-Restrepo et al. (2005) reported a significant correlation
(r¼ 0.83, p< 0.01) between PCB and PBDE concentrations in fish
and a higher correlation coefficient for the relationship between

Table 4
Mean concentrations and standard deviations (between brackets) in mg/g lipid weight of BDE 47 in blubber tissue of harbour seals and porpoises.

Species Location Year n BDE 47 (mg/g lipid weight) Reference

AM JM AF JF

Harbour seal California 1989–1998 6–4 2.04 (2.41) 0.20 (0.15) She et al., 2002
North Sea 9 1.24 Boon et al., 2002
Southern North Sea 1999–2004 8–9–2–9 0.21 (0.11) 0.35 (0.21) 0.12 (0.05) 0.42 (0.31) Present study

Harbour porpoise North Sea 9 0.86 Boon et al., 2002
United Kingdom 1992–2004 31–31–24–22 0.52 (0.53) 1.02 (1.23) 0.74 (1.07) 1.23 (1.21) MAFF, 1994; Law et al., 2006b
Southern North Sea 1999–2004 8–12–5–9 0.69 (0.46) 1.11 (1.16) 0.43 (0.30) 0.45 (0.27) Present study
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PCBs and PBDEs in dolphins and sharks from coastal Florida. Shaw
et al. (2007) found a highly significant correlation (r¼ 0.82,
p< 0.01) between PCBs and PBDEs in harbour seals from the North-
Western Atlantic coast. In the present study, no significant corre-
lations between PCBs and PBDEs or between CB 153 and BDE 47 in
harbour seals or harbour porpoises could be found (all p> 0.05), all
age groups together or separate. This could be an indication for
a different accumulation and biomagnification through the food
chain, but it may also reflect the variation in accumulation within
each age–gender group.

3.6. Adverse effects

The PCB and PBDE concentrations, found in the present study,
can be a serious threat for harbour seals and porpoises. Mean
concentrations for PCBs and PBDEs in harbour porpoises in the
present study (Table 1) are more than 2 (for AF) to 20 (for AM) times
higher for PCBs and about 10 times higher for PBDEs compared to
concentrations from stranded or bycaught harbour porpoises from
European coasts which are associated with interfollicular fibrosis,
splenic depletion and thymic atrophy (Beineke et al., 2005; Das
et al., 2006). Furthermore, PCB concentrations in almost all age–
gender groups of both species are more than an order of magnitude
higher than levels of PCBs negatively associated with vitamin A (a
dietary hormone essential to growth, development, reproduction
and immune function) concentrations in plasma and blubber of
free-ranging harbour seals from British Columbia (Canada) and
Washington State (USA) (Mos et al., 2007).

4. Conclusions

Harbour porpoises and harbour seals, two representative top
predator species for the North Sea ecosystem, are good indicators of
coastal pollution, because they have long life spans, feed high in the
food chain and do not present large-scale migration. We found that
factors, such as age and gender, among others, are important for the
bioaccumulation of PCBs and PBDEs in marine mammals. The AM
group had the highest concentrations of PCBs, but not of PBDEs,
probably because of an increased metabolism with age or body
burden. The AF group could eliminate considerable amounts of
PCBs and PBDEs by gestation and lactation resulting in low
concentrations. However, the transfer of PBDEs to the offspring
needs more attention in the future. Juvenile animals had mixed
trends in concentrations with the lowest concentrations for PCBs,
but the highest for PBDEs. Harbour seals, members of the pinni-
peds, and harbour porpoises, members of the Cetacea, are from an
evolutionary point of view different and have therefore a different
ability for metabolic breakdown reflected by the different PCB or
PBDE profiles. Harbour porpoises have more difficulties of metab-
olizing lower halogenated and less persistent PCB and PBDE
congeners than harbour seals probably due to less efficient cyto-
chrome P450 enzymes. This could lead to bioaccumulation of these
contaminants to a greater extent in harbour porpoises and subse-
quently to possible adverse effects.
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