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1. Introduction

Multifractal analysis initially appeared in the context of fully developed turbulence [1]; the aim was to 
study the Hölder regularity of a signal. Let us be more precise about this notion. A locally bounded function 
f : Rn → R belongs to the Hölder space Λα(x0) (with x0 ∈ Rn and α ≥ 0) if there exist a constant C > 0
and a polynomial Px0 of degree less than α such that

|f(x) − Px0(x)| < C|x− x0|α (1)
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in a neighborhood of x0. The polynomial is clearly unique and one has Λα+ε(x0) ⊂ Λα(x0) for any ε ≥ 0. 
The Hölder exponent of f at x0 is defined by

hf (x0) = sup{α ≥ 0 : f ∈ Λα(x0)}.

As usual, a function f belongs to Λα(Rn) if f belongs to Λα(x0) for any x0, the constant C in (1) being 
uniform.

If the signal f is highly irregular, determining hf (x0) for each x0 is meaningless, since the function hf

can be itself very irregular. One tries instead to estimate the “size” of the iso-Hölder sets Eh, that is the 
sets of points sharing the same Hölder exponent h:

Eh = {x ∈ Rn : hf (x) = h}.

Such sets can be fractal sets, therefore by “size” one usually means Hausdorff dimension dimH (see e.g. [2]). 
The Hölder spectrum of f defined as

df : [0,+∞] → {−∞} ∪ [0, n] h (→ dimH Eh,

gives global information about the pointwise regularity of f .
Computing the Hölder spectrum by directly using the definition given above truly is an unattainable goal 

in most of the practical cases, but there exist heuristic methods to estimate df that give satisfactory results 
in many situations. Such a procedure is called a multifractal formalism; if it leads to the exact spectrum 
of the function f , one says that the multifractal formalism is satisfied for f . A method was first proposed 
by Parisi and Frisch [1]; later, Arneodo et al. proposed a similar method based on the continuous wavelet 
transform [3]. In both approaches, one tries to compute the function

η(q) = sup{s : f ∈ Bs/q
q,∞} (2)

relying on the Besov spaces Bs
q,p using the box-counting technique or wavelets [4], since heuristic arguments 

underlie the following equality:

df (h) = inf
q
{hq − η(q)} + n.

From a mathematical point of view, these methods only lead to an upper bound [4]. More precisely, if 
f : Rn → R is a locally bounded function belonging to Λε(Rn) for some ε > 0, then

df (h) ≤ inf
q>q0

{hq − η(q)} + n,

where q0 satisfies η(q0) = n.
Since the Besov spaces Bs

q,p are not defined for negative values of q, the decreasing part of the spectrum 
cannot be obtained using the method described above. To take care of this problem, Arneodo et al. proposed 
the wavelet transform modulus maxima (WTMM) method [5], using the notion of line of maxima in the 
wavelet transform. This technique proved helpful in many practical problems, but its theoretical contribution 
was limited; in particular, there is no underlying functional space. This is why Jaffard replaced the continuous 
wavelet transform with the discrete one and introduced the wavelet leaders method (WLM) [6], based on 
the oscillation spaces Os

q [7]. These spaces are well defined for negative values of q and s > n/q implies 
Os

q = Bs
q,∞. The idea consists in replacing Besov spaces in (2) with oscillation spaces to get

η(q) = sup{s : f ∈ Os/q
q }.
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When comparing the WTMM with the WLM, numerical results are similar [8], but there exists an upper 
bound associated to the WLM if f belongs to Λε(Rn) for some ε > 0 [6]: in this case, one has

df (h) ≤ inf
q
{hq − η(q)} + n.

Even with the WLM, a problem is still subsisting: in the multifractal formalisms presented above, the 
spectrum is obtained with an inverse Legendre transform and so is necessarily concave. However, it is possible 
to compute functions whose spectrum is not concave (see e.g. [9]). To overcome this second problem, Jaffard 
introduced a multifractal formalism which is heuristically based on the types of histogram of (discrete) 
wavelet coefficients [10]; for this reason, it will be called the wavelet profile method (WPM). If this formalism 
allows to effectively recover non-concave spectra, the problem met with the first approaches reappears: one 
cannot access the decreasing part of the spectrum through the WPM. The leaders profile method (LPM) 
[11] was created in order to combine the advantages of both the WLM and the WPM. The idea is to replace 
the wavelet coefficients in the WPM with the wavelet leaders. By doing so, one defines a new multifractal 
formalism that should lead to the detection of non-increasing and non-concave spectra.

In this paper, we present an implementation of the formalism based on the LPM. From a theoretical point 
of view, we prove that this method gives a sharper upper bound than the previous approaches and show its 
effectiveness by applying it to several examples. The remainder of this paper is structured as follows. We 
first introduce the three formalisms based on the discrete wavelet transform and describe an efficient way 
to implement the LPM. Next, we show that this approach is more theoretically sounds than the other ones 
considered here. We then switch to the practical point of view and show that, although the new technique 
is very efficient, it is complementary to the WLM.

2. Some multifractal formalisms

We briefly give here the three wavelet-based methods for estimating a Hölder spectrum we are going to 
work with. The first one is the well-known wavelet leaders method (WLM) [6], which can be seen as the 
discrete counterpart of the wavelet transform modulus maxima method [5,8]. Next, we recall the wavelet 
profile method (WPM) [10]; this method has recently been implemented [9]. Finally, we introduce the leaders 
profile method (LPM) [11], which can be seen as a combination of the two previous methods. Those three 
methods lead to an upper bound for the Hölder spectrum of any function f provided that f belongs to 
Λε(Rn) for some ε > 0 [6,10,11]. Let us mention that both the WPM and the LPM can be assimilated to 
large deviation methods (see e.g. [12]).

2.1. The discrete wavelet transform

Let us briefly recall some definitions and notations (for more precisions, see e.g. [13–15]). Under some 
general assumptions, there exist a function φ and 2n − 1 functions (ψ(i))1≤i<2n , called wavelets, such that

{φ(x− k) : k ∈ Zn} ∪ {ψ(i)(2jx− k) : 1 ≤ i < 2n, k ∈ Zn, j ∈ N}

form an orthogonal basis of L2(Rn). Any function f ∈ L2(Rn) can be decomposed as follows,

f(x) =
∑

k∈Zn

Ckφ(x− k) +
∑

j∈N

∑

k∈Zn

∑

1≤i<2n

c(i)j,kψ
(i)(2jx− k),

where

c(i)j,k = 2nj
∫

Rn

f(x)ψ(i)(2jx− k) dx
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and

Ck =
∫

Rn

f(x)φ(x− k) dx.

Let us remark that we do not choose the L2(Rn) normalization for the wavelets, but rather an L∞(Rn)
normalization, which is better fitted to the study of the Hölderian regularity.

On the torus Rn/Zn, we will use the periodized wavelets

ψ(i)
p (2jx− k) =

∑

l∈Zn

ψ(i)(2j(x− l) − k) (j ∈ N, k ∈ {0, . . . , 2j − 1}n)

to form a basis of the one-periodic functions on Rn which locally belong to L2(Rn) [16]. The corresponding 
coefficients c(i)j,k are naturally called the periodized wavelet coefficients.

From now on, we shall systematically use the periodized wavelet coefficients and often omit any reference 
to the index i. For instance, the set {cj,k : (j, k) ∈ E} has to be understood as the set {c(i)j,k : (j, k) ∈ E, 1 ≤
i < 2n}.

2.2. The wavelet leaders method

The WLM [6] is somehow an adaptation of the box-counting method [1] in the context of the discrete 
wavelet transform [8]. It is usually given for functions of L2(Rn), but in practice, real-life data have compact 
support, so that we can work with periodic functions.

Let λ(i)
j,k denote the dyadic cube

λ(i)
j,k = i

2j+1 + k

2j + [0, 1
2j+1 )n.

In the sequel, we will omit any reference to the indices i, j and k for such cubes by writing λ = λ(i)
j,k. We 

will also index the wavelet coefficients of a function f with the dyadic cubes λ so that cλ will refer to the 
quantity c(i)j,k. The set Λj will denote the set of dyadic cubes λ of [0, 1]n with side 2−j .

The wavelet leader associated to the cube λ is the quantity

dλ = sup
λ′⊂3λ

|cλ′ |.

By mimicking the box counting method, one sets

Sf (j, q) = 2−nj
∑

λ∈Λj

dqλ,

where the sum is restricted to the cubes λ such that dλ ̸= 0. From this, one sets

ηf (q) = lim inf
j→+∞

logSf (j, q)
log 2−j

(3)

to define the multifractal formalism associated to the wavelet leaders as follows,

dηf (h) = inf
q
{hq − ηf (q)} + n. (4)

The heuristic argument that underpins this method is a large deviation-type argument. Let us consider 
the quantity 

∑
λ d

q
λ. One can show that if λ is a dyadic cube containing a point whose Hölder exponent is 
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h, one has dλ ∼ 2−hj as j tends to infinity [6]. Since the number of such dyadic cubes λ should be about 
2df (h)j , the total contribution should correspond to 2(df (h)−hq)j . Moreover, from the previous definitions, 
one can expect to have 

∑
λ d

q
λ ∼ 2(−ηf (q)+n)j . The dominating contribution is the one corresponding to a 

value of h associated with the biggest exponent in 2(df (h)−hq)j , so that we are led to the following heuristic 
formula: −ηf (q) + n = suph{df (h) − hq}. It can be shown that one has df ≤ dηf [6].

Let us make two remarks. First, spectrum (4) is necessarily concave. Secondly, the wavelet leaders give rise 
to some generalization of the Besov spaces called the oscillation spaces, which define a rigorous framework 
for studying multifractal functions [7].

2.3. The wavelet profile method

For the wavelet profile method, the idea is to look at the distribution of wavelet coefficients and try to 
obtain some kind of robust information [10], i.e. information that relies on the function and not on the 
chosen wavelet. It is therefore natural to consider

ρf (h) = lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : 2−(h+ε)j ≤ |cλ| < 2−(h−ε)j}
log 2j ,

where cλ are the periodized wavelet coefficients of f and to apply an argument similar to the one given for the 
WLM. Considering dyadic cubes related to some Hölder exponent h, one has dλ ∼ 2−hj as previously stated. 
The number of such cubes should be about 2jρf (h) by definition. One therefore gets ρf (h) = df (h), at least 
intuitively speaking. However, this density ρf is not well defined, since it depends on the chosen wavelet basis 
[10]. Moreover, it seems that no general relation can be obtained between ρf and df from a theoretical point 
of view [10]. To circumvent this problem, one can slightly modify this approach to obtain an efficient method.

One defines the wavelet profile of f by

νf (h) = lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : |cλ| ≥ 2−(h+ε)j}
log 2j .

One can show that the function νf is independent of the chosen wavelet basis [17]. It is obviously non-
decreasing, right-continuous and there exists hmin ∈ R for which νf (h) = −∞ for all h < hmin and 
νf (h) ∈ [0, n] for all h ≥ hmin. Moreover, hmin > 0 if f belongs to Λε(Rn) for some ε > 0. The wavelet 
profile gives, in some way, the asymptotic behavior of the number of coefficients that have a given order of 
magnitude: there are approximately 2νf (h)j wavelet coefficients whose modulus is greater than 2−hj .

If hmin > 0, the multifractal formalism based on the wavelet profile is defined as follows,

dνf (h) =

⎧
⎪⎨

⎪⎩

−∞ if h < hmin

min{h sup
h′∈(0,h]

νf (h′)
h′ , n} if h ≥ hmin

.

Again, we have the following relation in the general case: df ≤ dνf [10].
The passage from νf to dνf transforms the wavelet profile into a function with a special property, called 

the increasing-visibility [18]:

Definition 1. Take 0 ≤ a < b ≤ +∞. A function g : [a, b] (→ [0, +∞) is with increasing-visibility if g is 
continuous at a and

sup
y∈(a,x]

g(y)
y

≤ g(x)
x

,

for all x ∈ (a, b].
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In other words, a function g is with increasing-visibility if for all x ∈ (a, b], the segment [(0, 0), (x, g(x))]
lies above the graph of g on (a, x].

Of course, the WPM can only recover spectra with increasing-visibility. Moreover, since one considers 
wavelet coefficients and not wavelet leaders, this method can only lead to the increasing part of the spectrum 
[10]. The wavelet profile also gives rise to some generalization of the Besov spaces called Sν spaces [19].

2.4. The leaders profile method

The leaders profile method aims at combining the advantages of the two previous methods [11]. With 
the use of the wavelet leaders, one can consider entire spectra, while the profile function allows to recover 
non-concave spectra.

With the same large deviation-type argument as in the previous section, one could be led to consider the 
following profile,

ρ̃f (h) = lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : 2−(h+ε)j ≤ dλ < 2−(h−ε)j}
log 2j ,

so that there exist approximately 2ρ̃f (h)j wavelet leaders of amplitude 2−hj. However, here again, ρ̃f depends 
on the chosen wavelet basis [11].

The idea is to modify the above definition as follows. Let hs be the smallest positive real number such 
that ρ̃f (hs) = n. One sets

d̃f (h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : dλ ≥ 2−(h+ε)j}
log 2j if h ≤ hs

lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : dλ ≤ 2−(h−ε)j}
log 2j if h ≥ hs

. (5)

It can be shown that the leaders profile d̃f does not depend on the chosen wavelet basis and that if ρ̃f
takes the value −∞ outside of a compact set of (0, +∞), d̃f is the increasing hull of ρ̃f on (−∞, hs]
and its decreasing hull on [hs, +∞) [11]. Moreover, from the definition of hmin, it is direct to see that 
hmin = inf{h : d̃f (h) ≥ 0}. As for the two other methods, we have df ≤ d̃f .

Finally, let us mention that the leaders profile gives rise to some generalization of the oscillation spaces 
called Lν spaces [11].

2.5. An implementation of the leaders profile method

The implementation of the LPM is similar to that of the WPM [9]. Let us recall here the main ideas. It 
is based on the following proposition:

Proposition 1. Let C = (Cj)j∈N be a sequence of positive numbers such that there exists c > 0 with 
1/c ≤ Cj ≤ c for all j ∈ N. If we denote

d̃Cf (h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : dλ ≥ Cj2−(h+ε)j}
log 2j if h ≤ hs

lim
ε→0+

lim sup
j→+∞

log #{λ ∈ Λj : dλ ≤ Cj2−(h−ε)j}
log 2j if h ≥ hs

,

then d̃Cf (h) = d̃f (h) for all h ∈ R.
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This result is a simple adaptation of the proof of Proposition 2 in [9] where the wavelet coefficients are 
replaced by the wavelet leaders. If C is the constant sequence Cj = C, we naturally denote d̃Cf by d̃Cf .

Notations. The sets {λ ∈ Λj : dλ ≥ C2−hj} (resp. {λ ∈ Λj : dλ ≤ C2−hj}) will be denoted by E≥(C, h)
(resp. E≤(C, h)), and we set hmax = sup{h : d̃f (h) ≥ 0}.

The definition of d̃Cf (h) formalizes the idea that, if h ∈ [hmin, hs] (resp. h ∈ [hs, hmax]), there are about 
2d̃C

f (h)j wavelet leaders larger (resp. smaller) than C2−hj for j “large enough”. So, it is natural to approximate 
d̃Cf (h) by the slope of

j (→
log #E≥

j (C, h)
log 2 (resp. j (→

log #E≤
j (C, h)

log 2 ) (6)

for large values of j if h ∈ [hmin, hs] (resp. h ∈ [hs, hmax]). In practice, we fix a threshold for the correlation 
of the points used to compute the slope: we only keep the slope if this correlation coefficient is higher than 
the threshold. The impact of the choice of this threshold will be illustrated on several examples (the typical 
values used are p = 0.999, 0.99, 0.95, 0.9). From now on, the notation d̃Cf (h) will refer to this slope.

Of course, we do not know a priori the value of hs. It is estimated as follows: we first approximate 
the function d̃Cf (h) using the set E≥

j (C, h); let us denote this approximation by d̃C,≥
f (h). Next, we do the 

same with E≤
j (C, h) to obtain a function that we naturally denote d̃C,≤

f (h). Since d̃f can be defined as 
the minimum of the two functions appearing in (5), the intersection of d̃C,≥

f and d̃C,≤
f gives an estimation 

of hs.
It remains to explain how to compute an approximation of d̃f(h) using the values d̃Cf (h). It is important 

to understand that the main difference between the theory and the practice lies in the choice of the constant 
C in d̃Cf (h). Proposition 1 ensures that, at least in theory, the constant can be chosen arbitrarily. This is 
not true in practice because we only have access to a finite number of wavelet leaders. If the typical value 
of the wavelet leaders is too large (resp. too small) with respect to C, too many (resp. not enough) of 
them will be taken into account, so that the value d̃Cf (h) will be very different from the theoretical value 
d̃f (h).

Consequently, for a fixed h > 0, we construct the function

C > 0 (→ d̃Cf (h)

to approximate the value of d̃f (h). If h ≤ hs (resp. h > hs) this function should be decreasing (resp. 
increasing). If h ∈ [hmin, hmax], it should exist an interval I for which the values d̃Cf (h) with C ∈ I are close 
to each other. We use a gradient descent to detect this interval [9]: the gradient is the slope of the regression 
line over several consecutive points (we use here 3, but taking 5 points gives the same results). We say 
that a stabilization is detected if several consecutive gradients are smaller than 0.01. This value may seem 
arbitrary (and it is indeed), but it has been chosen after both numerical considerations (what is small in 
regard to the implementation) and numerous experiences (on several processes such as fractional Brownian 
motions, Lévy processes, Poisson and binomial cascades,...). We wanted this threshold to be defined once 
for all independently of the considered signal. We take an interval I of minimum length dmax/2 where dmax
is the largest wavelet leader computed. The mean of the values d̃Cf (h) over I gives the approximation of 
d̃f (h).

3. Comparison of the formalisms: theoretical results

In this section, we compare from a theoretical point of view the LPM with both the WLM and the WPM. 
More precisely, we first show that while it is not concave, the function d̃f gives a sharper approximation of 
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the spectrum of f than the WLM. We then prove that if d̃f is not with increasing-visibility, the LPM is 
also more efficient than the WPM on the increasing part of the spectrum.

3.1. LPM and WLM

Let us start with the following lemma which gives a connection between the function ηf and the profile 
ρ̃f .

Lemma 2. If ρ̃f takes the value −∞ outside of a compact set of [0, +∞), then

ηf (q) = inf
h∈R

{hq − ρ̃f (h)} + n, ∀q ∈ R.

Proof. Let hmin, hmax ∈ [0, +∞) be such that ρ̃f takes the value −∞ outside of [hmin, hmax]. Then

inf
h∈R

{hq − ρ̃f (h)} + n = inf
h∈[hmin,hmax]

{hq − ρ̃f (h)} + n.

Let us fix h ∈ [hmin, hmax], δ > 0 and ε > 0. From the definition of ρ̃f , there exists a subsequence 
(jm)m∈N such that

#
{
λ ∈ Λjm : 2−(h+ε)jm ≤ dλ < 2−(h−ε)jm}

≥ 2(ρ̃f (h)−δ)jm

for every m ∈ N. It follows that

ηf (q) ≤ lim
m→+∞

log
(
2−njm

∑
λ∈Λjm

dqλ

)

log 2−jm

≤ lim
m→+∞

log
(
2−njm2(ρ̃f (h)−δ)jm2−(hq+ε|q|)jm

)

log 2−jm

= n− ρ̃f (h) + δ + hq + ε|q|.

Since ε > 0 and δ > 0 are arbitrary, we get that

ηf (q) ≤ hq − ρ̃f (h) + n.

This result is valid for every h ∈ [hmin, hmax] and consequently,

ηf (q) ≤ inf
h∈[hmin,hmax]

{hq − ρ̃f (h)} + n.

For the other inequality, let us fix δ > 0 and ε > 0. For every h ∈ [hmin, hmax], there exist εh ≤ ε and 
Jh ∈ N0 such that

#
{
λ ∈ Λj : 2−(h+εh)j ≤ dλ < 2−(h−εh)j} ≤ 2(ρ̃f (h)+δ)j

for every j ≥ Jh. From the compactness of [hmin, hmax], there exist h1 < · · · < hN in [hmin, hmax], 
ε1, . . . , εN ≤ ε and J ∈ N0 such that the intervals (hi − εi, hi + εi) cover [hmin, hmax] and

#
{
λ ∈ Λj : 2−(hi+εi)j ≤ dλ < 2−(hi−εi)j} ≤ 2(ρ̃f (hi)+δ)j

for every i ∈ {1, . . . , N} and every j ≥ J . Since h1 − ε1 < hmin and hN + εN > hmax, we can assume that
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2−(hN+εN )j ≤ dλ ≤ 2−(h1−ε1)j

for every j ≥ J and λ ∈ Λj . It follows that

2−nj
∑

λ∈Λj

dqλ ≤ 2−nj
N∑

i=1
2(ρ̃f (hi)+δ)j2−(hiq−εi|q|)j

≤ 2(δ+ε|q|)j
N∑

i=1
2−(hiq−ρ̃f (hi)+n)j

≤ N2(δ+ε|q|)j2− infh∈R{hq−ρ̃f (h)+n}j

and consequently,

ηf (q) ≥ inf
h∈R

{hq − ρ̃f (h)} + n− δ − ε|q|.

The numbers δ > 0 and ε > 0 being arbitrary, we get the conclusion. ✷

Theorem 3. If ρ̃f takes the value −∞ outside of a compact set of [0, +∞), then d̃f (h) ≤ dηf (h) for every 
h ∈ R and dηf is the concave hull of d̃f .

Proof. By definition, dηf is the Legendre transform of ηf . Moreover, we know from Lemma 2 that ηf is the 
Legendre transform of ρ̃f . Using properties of this transform, we directly get that dηf is the concave hull of 
ρ̃f . In particular, hs is also the point at which dηf reaches its maximum. The function d̃f is the increasing 
hull of ρ̃f on (−∞, hs] and its decreasing hull on [hs, +∞) [11], hence the conclusion. ✷

3.2. LPM and WPM

Before comparing the LPM with the WPM, let us recall that we have

hmin = inf{h ∈ R : νf (h) ≥ 0} = inf{h ∈ R : d̃f (h) ≥ 0}.

Theorem 4. If hmin > 0, then d̃f (h) ≤ dνf (h) for every h ∈ R. Moreover, the inequality becomes an equality 
on (−∞, hs] if and only if d̃f is with increasing-visibility on [hmin, hs].

Proof. Let us fix h ∈ [hmin, hs], δ > 0, 0 < h0 < hmin and ε > 0 such that h0 − ε > 0. By definition of the 
wavelet profile νf , for every h′ ≤ h + ε there exist ε′ ≤ ε and J ∈ N0 such that

#
{
λ ∈ Λj : |cλ| ≥ 2−(h+ε′)j} ≤ 2(νf (h′)+δ)j

for every j ≥ J . Let us choose h1, . . . , hN ≤ h + ε, ε1, . . . , εN ≤ ε and J ∈ N0 such that the intervals 
(hi, hi + εi) cover [h0, h + ε] and

#
{
λ ∈ Λj : |cλ| ≥ 2−(hi+εi)j} ≤ 2(νf (hi)+δ)j

for every i ∈ {1, . . . , N} and every j ≥ J . Remark that since h0 < hmin, we can assume that |cλ| ≤ 2−h0j

for every j ≥ J . We obtain

#
{
λ ∈ Λj : dλ ≥ 2−(h+ε)j} ≤ 3n

∑

j≤j′≤h+ε
h0

j

#
{
λ′ ∈ Λj′ : |cλ′ | ≥ 2−(h+ε)j}.
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For every j′ which appears in the sum, we have

h0 ≤ (h + ε)j
j′

≤ h + ε

and from the covering of [h0, h + ε], there exists i ∈ {1, . . . , N} such that hij′ ≤ (h + ε)j ≤ (hi + εi)j′. We 
get then

#
{
λ′ ∈ Λj′ : |cλ′ | ≥ 2−(h+ε)j} ≤ #

{
λ′ ∈ Λj′ : |cλ′ | ≥ 2−(hi+εi)j′}

≤ 2(νf (hi)+δ)j′

≤ 2(νf (hi)+δ)h+ε
hi

j

and consequently,

#
{
λ ∈ Λj : dλ ≥ 2−(h+ε)j} ≤ 3n

((
h + ε

h0
− 1

)
j + 1

)
2j(h+ε) suph′∈(0,h+ε]

νf (h′)+δ

h′ .

It follows that

lim sup
j→+∞

log #
{
λ ∈ Λj : dλ ≥ 2−(h+ε)j}

log 2j ≤ sup
h′∈(0,h+ε]

(νf (h′) + δ)h + ε

h′ .

Taking the limit as ε → 0+ and using the right-continuity of νf , we get

d̃f (h) ≤ h sup
h′∈(0,h]

νf (h′) + δ

h′ ≤ h sup
h′∈(0,h]

νf (h′)
h′ + δ

h

hmin
.

Since δ > 0 is arbitrary, we obtain the first part of the proposition. Moreover, we have

νf (h) ≤ d̃f (h) ≤ h sup
h′∈(0,h]

νf (h′)
h′

for every h ∈ [hmin, hs], which leads to the conclusion. ✷

4. Numerical simulations on theoretical examples

In this section, the LPM (implemented as explained in section 2.5) is compared with both the WLM [8]
and the WPM [9] on several numerical simulations based on theoretical examples. We show that in most 
cases, the LPM is better than the WPM and that it works in a more general context than the WLM. We 
begin with the simple case of a family of monofractal functions, before dealing with multifractal functions 
associated with both concave and non-concave spectra.

4.1. Monofractal example: the fractional Brownian motion

A classical monofractal process is the fractional Brownian motion [20]. It is the unique Gaussian stochastic 
process that is self-similar with stationary increments and it depends on a parameter H ∈ (0, 1), called the 
Hurst index. The walk of a fractional Brownian motion of parameter H is continuous, nowhere differentiable 
and the associated Hölder exponent is equal to H almost surely [21].

These motions model many monofractal phenomena [20,22–24]. In Fig. 1, we have used the algorithm of 
Wood–Chan [25] to simulate some fractional Brownian motions. Let us recall that if H is equal to 0.5 (resp. 
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Fig. 1. Fractional Brownian motions with parameter H.

smaller than 0.5, larger than 0.5) the increments are independent (resp. negatively correlated, positively 
correlated).

As a first illustration, we have computed the spectrum of a classical Brownian motion (i.e. a fractional 
Brownian motion with H = 0.5). In Fig. 2, several examples of functions C (→ d̃C,≥

f (h) are represented 
for h ≤ 0.5. In Figs. 2(a), 2(b) and 2(c), one can see that the graphs do not stabilize for C > dmax or 
are less stable than in Fig. 2(d) (we recall that dmax is defined as the largest computed wavelet leader). 
Let us remark that the stabilization for C < dmax is due to the fact that we have only a finite number of 
coefficients. Therefore, almost every wavelet leader is taken into account in the computation of #E≥

j (C, h). 
Thus, this first stabilization is never relevant.

In Fig. 3, several functions C (→ d̃C,≤
f (h) are represented for h > 0.5. The graphs do not stabilize and the 

larger the constant C is, the closer to 1 the function is. Remark that these graphs always reach the value 1
because for large C, every wavelet leader is taken into account in the computation of #E≤

j (C, h), so that 
this last stabilization is not relevant.

In order to limit the human interaction, we use the method explained in Section 2.5 to approximate 
hs, i.e. H in this case. In Fig. 4, we have represented the spectrum of a Brownian motion obtained with 
the three wavelet-based methods. For the LPM, we use the threshold p = 0.99 to compute the functions 
defined in (6). One can see that the LPM gives better results than the WPM. For the WLM, the function η
(defined in (3)) seems linear. The usual way to proceed in this case is to define the Hölder exponent as the 
slope of η; indeed, estimating a multifractal spectrum leads to inaccurate results here, as the support of the 
so-computed spectrum is far too big (Fig. 4(c)). To detect more precisely the value of H, one considers the 
slope of η computed on several intervals [26]. The Hölder exponent is the mean of these slopes, the standard 
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Fig. 2. Functions C )→ d̃C,≥
f (h) for the increasing part of the spectrum of a Brownian motion.

Fig. 3. Functions C )→ d̃C,≤
f (h) for the decreasing part of the spectrum of a Brownian motion.

deviation giving error bars. The result is shown in Fig. 4(d). If one concludes from the behavior of η that 
the function is monofractal, the WLM is very competitive, but it is also the worse method without this 
conjecture.

For a fixed size 2j (211 ≤ 2j ≤ 220) and a fixed parameter H (H ∈ [0.1, 0.9]), we have simulated 100
fractional Brownian motions. Fig. 5 shows for every j, the mean and the box plot of the distances between 
the Hölder exponent detected and H (i.e. the absolute value of their difference) for the simulations of 
size 2j .
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Fig. 4. Spectrum of a Brownian motion obtained with (a) the LPM (the dotted lines represent the parts of the functions defined 
in (5) that are not taken into account to define the spectrum), (b) the WPM, (c) the WLM and (d) the WLM with the monofractal 
hypothesis (if the linear behavior of the function η leads to the conclusion that the studied function is monofractal (this is the 
monofractal hypothesis), the usual way to estimate the Hölder exponent is to compute the slope over different intervals, the mean 
of these slopes defining the exponent and the standard deviation leading to error bars).

For sizes between 215 and 220, the three methods give similar results, with a slight advantage for the 
LPM and the WPM for large sizes. For small sizes, the WPM becomes significantly less accurate than the 
two other methods. Let us recall that it is the only method which directly uses the wavelet coefficients; the 
other two methods use the wavelet leaders. Large wavelet leaders mark off the singularities of the function, 
while this has not to be true for the wavelet coefficients. Heuristically, the statistics based on the wavelet 
coefficients should be more irrelevant for studying singularities [6].

4.2. Multifractal examples

The first multifractal example that we will consider is the Lévy process. It is for example used in the 
field of financial modeling [27]. It is a stochastic process with independent and stationary increments that 
is right-continuous and admits almost surely a left limit at all points. It is associated to an index β ∈ [0, 2], 
called the Blumenthal and Getoor lower index, that governs the multifractal properties of the process. Any 
Lévy process can be decomposed into the sum of a (possibly vanishing) Brownian part and an independent 
pure jumps process.

The multifractal properties of the Lévy process have been studied in [28]. If the process has no Brownian 
part, the Hölder spectrum is almost surely equal to

df (h) = βh
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Fig. 5. Functions that represent for every j, the box plot of the distances between the Hölder exponent detected and H for 100 
simulations of size 2j of fractional Brownian motions. The mean of these distances is also represented (in blue). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

for all h ∈ [0, 1/β]. On the other hand, if the process has a Brownian part, the associated Hölder spectrum 
is almost surely equal to

df (h) =
{
βh if h ∈ [0, 1/2)
1 if h = 1/2

.

To simulate a Lévy process without Brownian part, the algorithm described in [29] is used. A Brownian 
motion is then added to create a Lévy process with a Brownian part. In Fig. 6, simulations of Lévy processes 
are represented.

First, let us study the case of a Lévy process without Brownian part associated to the index β = 1.3. 
Let us recall that in order to approximate the spectrum with h > 0, we first build the function C > 0 (→
d̃C,≥
f (h). If there is a stabilization, the mean of the ordinates corresponding to this stabilization defines the 

approximation. In Fig. 7, several examples are represented. For h = 0.38 (Fig. 7(a)), we have a stabilization, 
but for h = 0.65 (Fig. 7(b)) the function is more unstable for large C. The reason is that the number of 
wavelet leaders taken into account in the computation of d̃C,≥

f (h) increases with h. To avoid this problem, a 
simple solution is to raise the threshold for the correlation (see section 2.5) in order to only keep the points 
which are strongly correlated. By default, this threshold is set to 0.99; in Fig. 7(c), we have only kept the 
points with a correlation larger than 0.999. One can notice that in this case the function stabilizes.

The use of the formula for the decreasing part of the spectrum is illustrated in Fig. 8. One can see that 
the function C > 0 (→ dC,≤

f (h) has no stabilization for h > 1/β.
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Fig. 6. Lévy processes with β = 1.3.

Fig. 7. Functions C )→ d̃C,≥
f (h) for the increasing part of the spectrum of a Lévy process (β = 1.3).

The theoretical spectrum is compared with the spectra obtained with the LPM, the WPM and the WLM 
in Fig. 9. First, we see that the WLM tends to determine a strictly concave spectrum while the LPM and the 
WPM fit the theoretical spectrum better. Secondly, the LPM and the WPM do not detect the spectrum for 
small h. These two methods are based on the same ideas: to determine the behavior of the number of coeffi-
cients that are greater than 2−hj across scales j. For small values of h, there are not enough remaining coeffi-
cients, so that it is very difficult to have an acceptable stabilization. However, the contribution of the wavelet 
leaders is not negligible. They can determine a stabilization for smaller h than the wavelet coefficients.
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Fig. 8. Function C )→ d̃C,≤
f (h) for the decreasing part of the spectrum of a Lévy process (β = 1.3).

Table 1
Mean values for the smallest h detected for a Lévy process of size 2j (β = 1.3).

j = 20
LPM WPM

p = 0.99 0.31 0.37
p = 0.95 0.25 0.31
p = 0.9 0.19 0.24

j = 15
LPM WPM

p = 0.99 0.44 0.52
p = 0.95 0.37 0.45
p = 0.9 0.34 0.41

For a fixed size 2j (212 ≤ 2j ≤ 220), we simulate 50 Lévy process without Brownian part (β = 1.3). For a 
fixed j, we compute the root-mean-square deviation (RMSE) of each simulation of size 2j. The mean and the 
box plot of these RMSE are represented in Fig. 10. The three different methods (LPM, WPM and WLM) 
are also compared and for the LPM and the WPM, the impact of the threshold p for the correlation of the 
points in formula (6) is studied. We see that the LPM and the WPM are clearly better than the WLM. 
Besides, we remark that the LPM and the WPM are more precise for p = 0.99. However, as illustrated in 
Table 1, the larger p is, the larger the smallest detected value of h is.

In conclusion, in this example, both the LPM and the WPM cannot determine the spectrum for small 
h but when the methods detect a spectrum, it is more accurate than the WLM. Moreover, thanks to the 
specificity of the wavelet leaders, the LPM is better than the WPM.

Now, let us study a Lévy process with a Brownian part; let us recall that its spectrum is non-concave. 
The theoretical spectrum is compared with the spectra obtained with the LPM, the WPM and the WLM 
in Fig. 11. By definition, the WLM cannot lead to non-concave spectra: It can only determine the concave 
hull of a spectrum. We see that the LPM and the WPM are close to the theoretical spectrum and detect the 
non-concave part of the spectrum. The discussion for the small values of h and the size of the simulation is 
the same as in the case of a Lévy process without Brownian part.

The last example we consider is a signal whose spectrum has a non-increasing part; it is based on the 
notion of multiplicative cascades. This notion is very important since it models many phenomena, including 
turbulence. The simplest case is given by the binomial cascade.

Definition 2. The binomial cascade of parameter p ∈ (0, 1) is the only Borel measure µ defined on [0, 1] such 
that

µ
(
[

n∑

k=1

εk
2k ,

n∑

k=1

εk
2k + 1

2n )
)

= p
∑n

k=1 εk(1 − p)n−
∑n

k=1 εk ,

for all n ∈ N and εk ∈ {0, 1} (k ∈ {1, . . . , n}).
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Fig. 9. Spectrum of the Lévy process without Brownian part (β = 1.3). Black (resp. red, blue and orange) theoretical (resp. LPM, 
WPM, WLM) spectrum. The results are obtained with 50 simulations. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Following a general framework proposed by Barral and Seuret [30], let us construct a function f by 
prescribing its wavelet coefficients in a given wavelet basis as follows: for every λ, we set cλ = µ(λ). We will 
say that the function f is a binomial cascade of parameter p. Let us mention that f and µ have the same 
multifractal properties.

The Hölder spectrum of a binomial cascade of parameter p ∈ (0, 1/2) is

df (h) = −
(
α log2 α + (1 − α) log2(1 − α)

)
,

where

α = h + log2(1 − p)
log2(1 − p) − log2 p

,

for all h ∈ [− log2(1 − p), − log2 p] (for a proof, see e.g. [31]).
In [32], the method of threshold of order γ > 0 was introduced. It consists in replacing the wavelet 

coefficients cλ by

ctλ = cλ1|·|≥2−γj (cλ).

In the case of a binomial cascade f of parameter p ∈ (0, 1/2), if f t is the function obtained after a threshold 
of order γ, then the Hölder spectrum of f t is non-concave [32]. More precisely, denote by ωt : [γ, − log2(p)] →
(0, +∞) the increasing function
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Fig. 10. Functions that represent for every j, the box plot of the RMSE. The mean of these RMSE is also represented (in blue). 
The value p represents the threshold for the correlation of the points in formula (6). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Spectrum of a Lévy process with a Brownian part (β = 1.3). Black (resp. red, blue and orange) theoretical spectrum (resp. 
LPM, WPM, WLM). The results are obtained with 50 simulations of size 220. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

Fig. 12. Theoretical spectrum of a binomial cascade of parameter p = 0.38 (left) and its threshold of order γ = 1.15 (right).

u (→ γ
u + log2(1 − p)
γ + log2(1 − p)

and by ht
max = ωt(− log2 p); if γ ∈ [− log2(1 − p), − log2 p], the Hölder spectrum of f t is equal to

dft(h) =

⎧
⎪⎪⎨

⎪⎪⎩

df (h) if h ∈ [− log2(1 − p), γ],
df (ω−1

t (h)) if h ∈ (γ, ht
max],

−∞ otherwise.

This is illustrated in Fig. 12.
The theoretical spectra of a binomial cascade and of its threshold are compared with the spectra obtained 

with the LPM and the WLM in Fig. 13. The WPM is not illustrated here since it can only detect the 
increasing part of spectra. In the two examples, the LPM underestimates the theoretical spectrum but it 
detects the non-concave part of the spectrum of the threshold function. The WLM does not detect this 
non-concave part. However, one can argue from Fig. 13 that the spectrum obtained with the LPM seems 
also non-concave where it is theoretically concave. This is due to the fact that the threshold binomial cascade 
is numerically very badly behaved. As shown in Fig. 14, this non-concave aspect disappears as one increases 
the number of points; the spectrum is also closer to the theoretical one. Here again, the part of the spectrum 
corresponding to the smallest values of h cannot be detected.

While studying the function C (→ d̃C,≤
f (h) with h > γ = 1.15 for the approximation of the decreasing 

part of the threshold cascade, we have noticed two stabilizations. The highest corresponds to the theoretical 
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Fig. 13. Blue (resp. red) spectrum of a binomial cascade of parameter p = 0.38 (resp. its threshold of order γ = 1.15). The results 
are obtained with signals of size 220. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 14. Spectrum of a threshold cascade of parameter p = 0.38 and γ = 1.15 with the LPM. The results are obtained with a signal 
of size 260.

value, while the smallest corresponds to the cascade without the threshold. In Fig. 15, several examples are 
represented to compare the detected stabilizations for a cascade and for its threshold. The presence of two 
stabilizations can be explained as a numerical phenomenon. The threshold replaces the small coefficients 
by 0. So, the value of d̃C,≤

f (h) (which depends on the number of coefficients smaller than C2−hj) for small 
C reflects this modification. On the opposite, the value of d̃C,≤

f (h) for large C is less affected by this change 
and allows to detect the presence of the original cascade. In Fig. 16, the values of the smallest stabilizations 
are represented.

These last examples lead to the conclusion that the LPM provides additional information with respect 
to the WLM. For a binomial cascade, the LPM confirms that the spectrum is strictly concave. In this case, 
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Fig. 15. Function C )→ d̃C,≤
f (h) for the decreasing part of the spectrum of a cascade of parameter p = 0.38 (left) and its threshold 

of order γ = 1.15 (right).

Fig. 16. Spectrum of a cascade of parameter p = 0.38 with a threshold of order γ = 1.15. Black (resp. red) theoretical spectrum 
(resp. LPM). Dotted black (resp. red) theoretical spectrum of a cascade of parameter p = 0.38 (resp. the smallest stabilization 
detected with the LPM). (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

the WLM detects the theoretical spectrum. For the signal obtained after a threshold, the LPM indicates 
the presence of a non-concave part. The spectrum obtained with the WLM is necessarily not correct: 
it gives only the concave hull of the theoretical spectrum. Thus, the LPM gives additional information 
about the theoretical spectrum. Besides, the LPM detects the presence of two phenomena in the signal: 
the cascade and the cascade with a threshold. This last fact is very interesting in practice and must be 
thorough.
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5. Conclusion

From a theoretical point of view, we have shown that the LPM is more efficient than the WLM: the 
WLM only gives the concave hull of the spectrum obtained with the LPM. Concerning the WPM, a similar 
result holds: the WPM only leads to the increasing-visibility-part of the spectrum given by the LPM.

On the practical playground, these results have been confirmed. First, all the methods behave in the 
same way for monofractal signals, as illustrated for fractional Brownian motions. Concerning multifractal 
signals, as illustrated with Lévy processes, the WLM tends to give strictly concave estimations, so that 
the LPM appears to be more precise. However, as shown for the Lévy process and the binomial cascade, 
the LPM cannot detect the part of spectra corresponding to the smallest values of h. The same problem 
is observed with the WPM and is even worse, since larger parts are missed. Of course, the WPM cannot 
detect the decreasing parts of spectra.

As a conclusion, the LPM is a method that allows the computation of non-concave and non-increasing 
spectra. Both the WLM and the LPM are complementary: the first approach relies on the assumption that 
the researched spectrum is concave. Such a hypothesis can be tested with the LPM. Also, the WLM allows 
to estimate the earlier part of the spectrum (corresponding to the smallest values of h), which is not the 
case with the LPM. The size of the analyzed signal is more critical for the LPM. If the number of data 
is not large enough, it can be dubious to assert that a spectrum computed via the LPM is non-concave, 
since numerical effects can be involved; the same well-known problem is met when studying signals that are 
possibly monofractal.
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